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Abstract – Stealth technology and Unmanned Aerial Vehicles (UAVs) are expected to dominate current and future aerial
warfare. The radar systems at their maximum operating ranges, however, are not always able to detect stealth and small
UAVs mainly due to their small radar cross sections and/or low altitudes. In this paper, a novel technique as an alternative
to radar technology is proposed. The proposed approach is based on creating a mesh structure of laser beams initiated from
aerial platforms towards the ground. The laser mesh acts as a virtual net in the sky. Any aerial vehicle disrupting the path of
the laser beams are detected and subsequently localized and tracked. As an additional feature, steering of the beams can be
used for increased coverage and improved localization and classi ication performance. A database of different types of aerial
vehicles is created arti icially based on Gaussian distributions. The database is used to develop several Machine Learning
(ML) models using different algorithms to classify a target. Overall, we demonstrated through simulations that our proposed
model achieves simultaneous detection, classi ication, localization, and tracking of a target.

Keywords – Classi ication, detection, laser, localization, machine learning, mesh, radar cross section, stealth, tracking,
unmanned aerial vehicles (UAVs)

1. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) have applications in
several areas nowadays [1], one of which is the defense
industry. The small size and ability to ly at low altitudes
make the UAVs practically invisible to conventional radar
systems [2] at long ranges. Moreover, stealth technol‑
ogy is the most essential part of the current and future
combat aerial vehicles. Stealth Aerial Vehicles (SAVs) can
avoid being detected by radars due to their small Radar
Cross Sections (RCS) that are achieved by using a mix of
techniques to absorb and scatter the incoming radar en‑
ergy [3].
Radar technology has evolved signi icantly over the
decades. However, there are still known limitations of the
radar systems [4]. The basic radar principle still relies on
back‑scattered re lections from a potential target [5]. For
SAVs and UAVs, the back‑scattered re lections are weak
and the strength of the received signal is generally below
the noise loor. Therefore, the target remains undetected
by conventional radar systems over a signi icant distance,
i.e., insuf icient slant range. In the literature, there are
some radar systems proposed for detecting targets with
small RCS [6, 7, 8]. However, these radar systems are
too complex, expensive, and they are designed to use only
speci ic wavelengths that further contribute to complex‑
ity and high cost.
Different types of early warning radar systems can pro‑
vide speci ic detection capabilities against the SAVs and
UAVs [9, 10]. However, the detection capabilities (i.e, RCS
as a function of detection range) vary with the operating
frequency of the radar system and the type of the aerial

vehicle. There are also laser scanning techniques avail‑ 
able in the literature for the detection and tracking of 
terrestrial moving objects [11, 12, 13]. Laser scanning 
works on a similar principle to radars, i.e., relies on back‑ 
scattered signals, and classi ies a moving target based on 
individual laser scans at different instances of the time ob‑ 
tained from different parts of a target. Implementation 
of this technique is quite challenging, and there is lim‑ 
ited amount of work available in the literature for the de‑ 
tection of aerial targets using this technique. In [14], a 
laser‑based radar is used for the detection of UAVs. As the 
approach in [14] follows the basic radar principle, it also 
shares the disadvantages of the radar systems.
Similar to radar systems, Electro‑ 
Optical/Infrared (EO/IR) imaging is used for detection, 
tracking, and classi ication of aerial targets [15]. The 
operation of the EO/IR sensors are different from the 
radar systems. The EO/IR imaging uses ultraviolet, 
visible and infrared spectral bands for different types of 
targets. The advantage of the EO/IR technique compared 
to radars is that it can operate in the passive mode and 
the illumination is either provided by natural sources or 
by the target itself. The ine details of the target iltered 
from the background environment using EO/IR image 
processing can help in the tracking, and classi ication 
of small and stealthy targets. However, the selection of 
the spectral band for EO/IR imaging is dependent on 
type of the target. The EO/IR imaging is also affected by 
environmental and atmospheric conditions, e.g. haze, 
fog, and clouds. The EO/IR imaging has a limited range 
compared to radars. High resolution and sensitivity
EO/IR imaging is complex and expensive.
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Fig. 1 – Laser mesh created by two airborne UAVs that are quasi‑static. A uniformly spaced laser array is considered on each airborne UAV. The laser
array platform is tilted at each airborne UAV. The coverage area and shape of the elements of the mesh can be changed by changing the spacing between
the individual laser beams and changing the position of airborne UAVs or changing the tilt of the array platform.

In this paper, a new alternative to radar systems for 
the detection, classi ication, localization, and tracking of 
aerial objects is provided. In our work, a novel concept 
of the mesh of laser beams in the sky is proposed. A sim‑ 
ple illustration of the concept using two UAVs is shown in 
Fig. 1. The laser mesh forms a web‑like structure in the 
sky. Laser beams in the mesh can be transmitted either 
from a satellite or a High‑Altitude Platform (HAP) such 
as hot air balloons, medium altitude rotary‑wing UAVs, 
or both. The transmitted laser beams can be received ei‑ 
ther directly on the ground or rotary‑wing UAVs near the 
ground. Any lying object that crosses the laser mesh will 
block the path of the laser beams and will be detected 
and subsequently localized. Laser mesh steering is intro‑ 
duced to steer virtual gates at different azimuth positions. 
The laser steering in the azimuth plane helps in localiza‑ 
tion, classi ication, and tracking of moving aerial objects, 
and increases the coverage area. A mathematical model 
of the blockage of the laser beam of the Gaussian pro ile is 
provided. Moreover, Gaussian training data that has the 
features of 3D shape, maximum velocity, pitch and drift 
angles, and a maximum altitude is used for model devel‑ 
opment. A data set is created for eleven different type of 
lying objects grouped in four categories. The results ob‑ 
tained from simulations proves the viability of our pro‑ 
posed approach.
The main advantages of our proposed approach com‑ 
pared to radar systems are summarized as follows:

• Our proposed approach is energy ef icient compared
to the radar systems. The radar systems broadcast
the radio signals in the free space and the transmit‑
ted energy spreads in different directions. A small
fraction of the transmitted energy from the radar is
received back. On the other hand, in our approach, a
point‑to‑point connection is establishedwithout sig‑
ni icant spreading of the transmitted energy towards
the receiver (RX). Moreover, the received laser en‑
ergy can be recycled into other forms.

• The energy emissions from the radar can be detected 
from a long distance, hence, exposes them to the risk 
of detection. However, in the proposed approach, 
there are no long‑range emissions sourced from the 
transmitter (TX) or the RX.

• Radar systems use complex algorithms for clutter re‑ 
jection. These algorithms have limitations depend‑ 
ing on the size and height of the lying target, the mo‑ 
tion of the objects in the surroundings, and the ter‑ 
rain type. In the proposed approach, no clutter re‑ 
jection is required.

• The radar systems depend on the delay of the re‑ 
ceived pulses to range a target and pulse repetition 
frequency needs to be correctly selected to avoid 
range ambiguity. In our approach, a target is de‑ 
tected instantaneously without delay and range am‑ 
biguity issue.

• Large and bulky antennas are required for long‑ 
range transmission and reception of radar signals. 
There are additional maintenance overheads for ro‑ 
tating radars. On the other hand, laser beam gener‑ 
ation, and reception are performed using electronic 
and optical equipment that are concise and more ef i‑ 
cient compared to mechanically controlled radar sys‑ 
tems.

• Complex sounding signals and processing tech‑ 
niques are used for the detection, localization, and 
classi ication of sophisticated targets e.g., terrain 
hugging drones and missiles. Our proposed ap‑ 
proach does not require complex sounding signals 
and associated processing techniques.

• The probability of detection of different types of 
aerial targets with the proposed approach is signif‑ 
icantly higher compared to conventional radar sys‑ 
tems. The probability of false alarms using our ap‑ 
proach is also small compared to radar systems as
the detection is solely dependent on the interruption 
of the laser link.
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Fig. 2 – Amesh element is created by laser beams from two sources. The divergence of the laser beams along the direction of propagation is also shown.
The divergence of the laser beams is considered small resulting in approximately the same beam radius along the direction of propagation.

• We can achieve Simultaneous Detection, Classi ica‑
tion, Localization, and Tracking (SDCLT) using our
approach with high accuracy and without any signif‑
icant complexity. For radar systems, SDCLT requires
complex operations and accuracy depends on the re‑
lected energy that can bemanipulated by the target.

• The common countermeasure for engaging incom‑
ing aerial targets mainly consists of iring projectiles
towards the incoming aerial object. The intercep‑
tion procedure is highly complicated and requires
constant tracking of the aerial object from multiple
sources. However, using the proposed setup, the in‑
terception procedure can be signi icantly simpli ied.

• The range resolution of traditional radar systems has
a trade‑off with the detection range [16]. Similarly,
the angular resolution has a trade‑off with the in‑
stantaneous ield of view of the radar system. On the
other hand, for our proposed approach, the resolu‑
tion of the target depends only on the density of the
laser beams.

• Themain information of a target obtained by a radar
system is its RCS. The accurate determination of the
RCS of a target is important for the classi ication of
modern aerial threats. The RCS of a target depends
on many factors e.g., frequency of the radar system,
angle of illumination, and physical properties of the
target. Therefore, the RCS of a target varies during
measurements. No RCS variations are present using
our approach.

• The RXs of modern radar systems are complex and
expensive. The complexity is mainly due to process‑
ing of the 1) weak received echoes, 2) range and
Doppler ambiguities, 3) clutter rejection, and 4) ind‑
ing the precise position of the target in the azimuth
and elevation planes. In comparison, no complex
processing is required at the RXs of our approach.
The RX components of our proposed approach are
also simple and inexpensive.

• Generally, a single radar cannot perform all the tasks
related to an aerial target. For example, there are
separate search, tracking, and ire‑control radar sys‑
tems. These radar systems require networking for
a combined response. The networking is vulnerable
to failures, jamming, and delays. Our proposed laser
mesh setup provides a single front‑end for detection,
tracking, classi ication, and ire‑control guidance.

• Radar systems are more vulnerable to mechanical
and electronic jamming compared to our proposed
approach.

• The performance of a particular radar system de‑
pends on the terrain. For example, the performance
of a particular radar system is different in a hilly area
compared to an urban area. In comparison, our pro‑
posed approach is independent of the terrain.

The rest of the paper is organized as follows: The pro‑ 
posed laser mesh setup is provided in Section 2; Section 3 
discusses the detection of a target; the classi ication fea‑ 
tures of a target are provided in Section 4; Section 5 pro‑ 
vides classi ication, localization, and tracking of a target; 
the limitations of the proposed approach are discussed in 
Section 6; the simulation results are provided in Section 7, 
and Section 8 concludes the paper.

2. PROPOSED LASER MESH SETUP
In this section, the details of the laser mesh setup and 
laser mesh steering are provided.

2.1 Mesh of laser beams
Laser is a concentrated beam of light obtained through 
stimulated emission of electromagnetic radiation [17].
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The main advantage of a laser is spatial coherence result‑ 
ing in higher directivity compared to radio waves. A sin‑ 
gle laser beam has a small coverage area due to high di‑ 
rectivity. Therefore, to cover a large area, multiple laser 
beams are required. The coverage area of a single laser 
beam at a given distance from the TX depends on the di‑ 
vergence of the beam. The divergence of the laser beam 
with distance results in the broadening of the beam, as 
shown in Fig. 2. We consider that the divergence of the 
laser beams is small (e.g. collimated laser beams). The 
small divergence of laser beam results in approximately 
constant radius of the beam with distance. In Fig. 2, Ω and 
Ω′, are the solid angles of the beams, and 𝑤0 and 𝑤 are 
the beam waists of the two sources. Given 𝑟 as the radius 
of the beam, and Δ𝑥 as the separation between the two 
beams such that Δ𝑥 ≫ 𝑟, the area of a mesh element in 
Fig. 2 is approximated as 𝐴e = (Δ𝑥)2 [18]. The area of 
the laser mesh element, 𝐴e, is selected depending on the 
type of the aerial threat.
In our proposed approach, the TXs (and RXs) of the laser 
beams can be either on a satellite, a HAP, or on a medium 
altitude hovering UAV. The RXs (or TXs) can be on the 
ground or over a hovering UAV. Multiple laser beams can 
be transmitted from a single TX. A blockage to the path 
of a laser beam by any aerial object (taken as target) is 
readily identi ied. Localizing a target in both azimuth and 
elevation planes based on the blockage to the path of the 
laser beams by the target will require at least two sources 
of laser beams as shown in Fig. 1. The laser beams from 
two different sources in a laser mesh can be overlapping 
or non‑overlapping. Different wavelength lasers will be 
needed to avoid co‑channel interference in case of over‑
lapping beams.

2.2 Laser mesh steering
The coverage area of the laser mesh, i.e., the size of the net, 
in the azimuth plane depends on the number and separa‑ 
tion distances of the laser RXs. We will assume that the 
laser RXs are placed on the ground. The top view of the 
steered laser positions (RXs) in the (𝑥, 𝑦) plane is given in 
Fig. 3. In this igure, a single two dimensional (2D) laser 
mesh from an airborne UAV (e.g. UAV1 in Fig. 1) is com‑ 
posed of 𝐿 × 𝑀 laser RXs at 𝑖th steering position. The 2D 
mesh contains 𝑗 = 1, 2, 3, … , 𝐿, one dimensional (1D) ar‑ 
ray of laser RXs, and 𝑀 is the number of RX elements at 
each array, shown in Fig. 3.
In Fig. 3, there are 2𝑁 + 1 azimuth positions due to 
beam steering. The steering centers at the azimuth po‑ 
sitions are 𝑖 = −𝑁, −𝑁 + 1, … , 0, 1, 2, … , 𝑁 . The dis‑ 
tance between the consecutive RXs is represented as Δ𝑥, 
the distance between two consecutive 1D arrays is repre‑ 
sented as Δ𝑦 and the distance between the two consec‑ 
utive steering positions is Δ𝑃 . The Δ𝑥 and Δ𝑦 should 
be carefully chosen to classify the aerial targets based on 
their dimensions. From Fig. 3, a matrix of dimensions 
𝐿(2𝑁 + 1) ×𝑀 is obtained over all the steering positions. 
If ℎ is the height of the TX from the RXs at the central steer‑ 
ing position, 𝑖 = 0,  𝑗 = 𝐿/2,  the slant range, 𝑑𝑖,𝑗 from 
the TX to 𝑖t h steering position (𝑖 ≠ 0)  and 𝑗t h 1D array is

𝑑𝑖,𝑗 = √ℎ2 + ((𝑗 − 𝐿/2)Δ𝑦 + 𝑖Δ𝑃 )2. The total azimuth
distance covered during steering is 2𝑁Δ𝑃 𝐿Δ𝑦. In addi‑ 
tion, the speed of the steering between any two consecu‑
tive steering positions is given as 𝑣s = Δ𝑃

Δ𝑡s
, where Δ𝑡s is
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Fig. 4 – A Gaussian pro ile of a single laser beam propagating in the 𝑥‑direction.

the time to steer between consecutive steering positions.
If 𝑣 is the maximum speed of the incoming target, then it
is required that 𝑣s ≫ 𝑣 in order to accurately detect and
localize the moving object.

3. DETECTION OF A TARGET
In this section, a Gaussian laser beam is considered and
the blockage to the path of a Gaussian beam is mathemat‑
ically modeled. Themodel is then used to detect the pres‑
ence of a target.

3.1 Mathematical modeling of blockage of a
laser beam

Laser beams considered in this work are modeled as
Gaussian beams [19]. Consider a single Gaussian beam il‑
lustrated in Fig. 4. The direction of the propagation of the
beam is along the 𝑥‑direction and the beam is polarized in
the 𝑧‑direction. The incident electric ield E(inc)(𝑟, 𝑥) for
the beam at a distance 𝑥 from the source, using paraxial
approximation, given as [20]

E(inc)(𝑟, 𝑥) =

𝐸0 ̂z 𝑤0
𝑤b(𝑥) exp( −𝑟2

𝑤2
b(𝑥)) exp( − 𝑗(𝑘𝑥 + 𝑘𝑟2

2𝑅(𝑥) − 𝜙(𝑥))),
(1)

where 𝑟 represents the radial distance from the beam’s
central axis,𝐸0 is the electric ield amplitude at origin and
at time instance 𝑡0 = 0. 𝑤b(𝑥) is the width of the beam
along the direction of propagation, which is given as [20]

𝑤b(𝑥) = 𝑤0√1 + 𝑥
𝑥𝑅

, (2)

where 𝑥𝑅 is the Rayleigh range given by 𝑥𝑅 = 𝜋𝑤2
0𝑛0
𝜆 , 𝜆

is the wavelength, and 𝑛0 is the index of refraction of the
free space. In (1), 𝑘 = 2𝜋𝑛0

𝜆 is the wavenumber, 𝑅(𝑥)

is the radius of curvature of the wavefront of the beam
at an axial distance 𝑥, given by 𝑅(𝑥) = 𝑥[1 + ( 𝑥𝑅

𝑥 )2],
and 𝜙(𝑥) is the Gouy phase. The divergence of the laser
beam in Fig. 4 is represented by angle 𝜃 for 𝑥 ≫ 𝑥𝑅 as
𝜃 = lim

𝑥→∞
arctan (𝑤b(𝑥)

𝑥 ). Similarly, the apex angle of the
cone is given as 𝜓 = 2𝜃, and solid angle Ω = 𝜋 sin2 𝜃.
Moreover, the incident magnetic ieldHinc(𝑟, 𝑥) polarized
in the 𝑦‑direction is given as H(inc)(𝑟, 𝑥) = ŷ

𝜂0
𝐸(inc)(𝑟, 𝑥),

where 𝜂0 is the impedance of the free space.
The incident intensity distribution is given by

𝐼 (inc)(𝑟, 𝑥) =
Re(𝐸(inc) × 𝐻∗(inc))

2 ,

=|𝐸0|2
2𝜂0

( 𝑤0
𝑤b(𝑥))

2
exp( −2𝑟2

𝑤2
b(𝑥)), (3)

where |𝐸0|2
2𝜂0

is the intensity at the beam’swaist. In the case
of blockage, the incident electric ield is divided into re‑
lected and transmitted electric ields given as E(rfl)(𝑟, 𝑥),
and E(tx)(𝑟, 𝑥), respectively. Therefore, the incident elec‑
tric ield can be written as E(inc)(𝑟, 𝑥) = −E(rfl)(𝑟, 𝑥) +
E(tx)(𝑟, 𝑥). The re lected component, E(rfl)(𝑟, 𝑥) is mainly
specular as the wavelength is signi icantly small com‑
pared to the size of the target. The transmitted compo‑
nent is signi icantly small compared to the re lected com‑
ponent for solid surface targets. The re lected and trans‑
mitted intensity distributions represented, respectively,
as 𝐼 (rfl)(𝑟, 𝑥) and 𝐼 (tx)(𝑟, 𝑥) are

𝐼 (rfl)(𝑟, 𝑥) = Γ2
1𝐼 (inc)(𝑟, 𝑥),

𝐼 (tx)(𝑟, 𝑥) = Γ2
2𝐼 (inc)(𝑟, 𝑥), (4)

where Γ1 = ∣𝐸(rfl)(𝑟,𝑥)∣
∣𝐸(inc)(𝑟,𝑥)∣ is the re lection coef icient, and

Γ2 = ∣E(tx)(𝑟,𝑥)∣
∣E(inc)(𝑟,𝑥)∣ is the transmission coef icient.
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3.2 Detection of the target based on blockage
of laser beam

The RXs of laser beams at 𝑖th azimuth steering position
and 𝑗th mesh, at a distance 𝑑𝑖,𝑗 from the TX, and an aper‑
ture radius of 𝑟(RX) expects an intensity 𝐼 (RX)(𝑟(RX), 𝑑𝑖,𝑗)
(See (3) ) in case there is no blockage. The intensity, 𝐼 (RX),
as a function of 𝑟(RX) and 𝑑𝑖,𝑗) is given as

𝐼 (RX)(𝑟(RX), 𝑑𝑖,𝑗) = |𝐸0|2
2𝜂0

( 𝑤0
𝑤b(𝑑𝑖,𝑗)

)
2
exp(−2𝑟(RX)2

𝑤2
b(𝑑𝑖,𝑗)

).

(5)

The corresponding received power at the RX side is given
as [21]

𝑃 (RX)(𝑟(RX), 𝑑𝑖,𝑗) =
𝜋∣𝐸0|2𝑤2

0[1 − exp( −2𝑟(RX)2

𝑤2
𝑏(𝑑𝑖,𝑗) )]

4𝜂0
. (6)

Finally, the Signal‑to‑Noise Ratio (SNR) represented as
𝑆/𝑛G at the RXs of 𝑖th steering position and 𝑗th mesh in
the presence of Additive White Gaussian Noise (AWGN)
𝑛G ∼ 𝒩(0, 𝜎2

n) can be written as

𝑆/𝑛G = 𝑃 (RX)(𝑟(RX), 𝑑𝑖,𝑗)
𝜎2𝑛

. (7)

If there is a blockage to the path of a single laser beam
or a bunch of beams due to a potential target, the re‑
ceived intensity, 𝐼 (RX)(𝑟(RX), 𝑑𝑖,𝑗) of each beam is reduced
and a subsequent reduction occurs in the SNR,𝑆/𝑛G. This
reduction is due to the re lection and absorption of the
incident intensity from a target given in (4). Let 𝛾 be
the threshold for minimum SNR. The detection thresh‑
old𝛾 is obtainedusingNeyman‑Pearsondecision rule and
square law detection function for a given probability of
false alarm (pfa). If 𝑆/𝑛G < 𝛾, then, this is perceived
as the presence of a target at that particular RX position.
The material of the target does not signi icantly change
the blockage characteristics.

4. TARGET FEATURES
In this section, details of the features, i.e. 3D shape, max‑
imum velocity, pitch, and drift angles, and maximum alti‑
tude, obtainable by the proposed approach are provided.

4.1 Features associated with target shape
Depending on the distance between consecutive beams,
the blockage at the intersection position of laser beams
on a mesh due to a target has a corresponding blocked
area. Fig. 5(a) shows laser beams blocked at different po‑
sitions on laser meshes, 𝑗 = 1, 2, 3, due to a target. The
area of each blocked position (i.e., blocked intersection



Table 1 – Training data of 3D shape, maximumvelocity, pitch and drift angles, andmaximumaltitude of targets and their respective categorization based
on shape.

Target Type Given
target

Multi‑
rotor
UAVs

Heli‑
copters

Fixed‑
wing
UAVs

Small
ixed‑
wing
planes

Large
ixed‑
wing
planes

Fighter
jets

Cruise
missiles Birds Ballistic

missiles

Rockets
and

artillery
shells

HGVs

Category cat. 3 cat. 1 cat. 2 cat. 3 cat. 3 cat. 3 cat. 3 cat. 3 cat. 3 cat. 4 cat. 4 cat. 4

Central part

Length (m)
𝜇 =

5.65, 𝜎 =
0.05

𝜇 =
1.94, 𝜎 =

1.3

𝜇 =
21.4, 𝜎 =

16.2

𝜇 =
7.8, 𝜎 =

6.15

𝜇 =
13.63, 𝜎 =

9.3

𝜇 =
56.8, 𝜎 =

14.6

𝜇 =
20.26, 𝜎 =

6.2

𝜇 =
6.48, 𝜎 =

2.6

𝜇 =
0.69, 𝜎 =

0.4

𝜇 =
14.1, 𝜎 =

11.1

𝜇 =
3.3, 𝜎 =

2.5

𝜇 =
5.3, 𝜎 =

4.5

Width (m)
𝜇 =

0.52, 𝜎 =
0.03

𝜇 =
2.15, 𝜎 =

1.6

𝜇 =
21.4, 𝜎 =

16.2

𝜇 =
0.73, 𝜎 =

0.5

𝜇 =
2.17, 𝜎 =

1.04

𝜇 =
4.4, 𝜎 =

1.32

𝜇 =
3.36, 𝜎 =

1.1

𝜇 =
0.7, 𝜎 =

0.2
NA

𝜇 =
1.54, 𝜎 =

0.91

𝜇 =
0.33, 𝜎 =

0.09

𝜇 =
0.75, 𝜎 =

0.2

Height (m)
𝜇 =

0.52, 𝜎 =
0.03

𝜇 =
0.6, 𝜎 =

0.36

𝜇 =
5.35, 𝜎 =

2.26

𝜇 =
2.1, 𝜎 =

1.89

𝜇 =
3.5, 𝜎 =

1.28

𝜇 =
14.6, 𝜎 =

5.9

𝜇 =
4.5, 𝜎 =

1.5

𝜇 =
0.7, 𝜎 =

0.2
NA

𝜇 =
1.5, 𝜎 =

0.91

𝜇 =
0.23, 𝜎 =

0.21

𝜇 =
0.75, 𝜎 =

0.2

Wings and tail
sections span
and width

Wing span
(m)

𝜇 =
2.67, 𝜎 =

0.04
NA

𝜇 =
21.35, 𝜎 =

13.99

𝜇 =
20.7, 𝜎 =

17.36

𝜇 =
15.2, 𝜎 =

7.9

𝜇 =
59.4, 𝜎 =

17.4

𝜇 =
12, 𝜎 =

4.44

𝜇 =
2.5, 𝜎 =

0.52

𝜇 =
1.4, 𝜎 =

0.7
NA NA NA

Wing
width (m)

𝜇 =
0.75, 𝜎 =

0.02
NA NA

𝜇 =
1.03, 𝜎 =

0.62

𝜇 =
1.93, 𝜎 =

0.94

𝜇 =
7.15, 𝜎 =

2.36

𝜇 =
3.7, 𝜎 =

1

𝜇 =
0.8, 𝜎 =

0.4

𝜇 =
0.8, 𝜎 =

0.5
NA NA NA

Tail span
(m)

𝜇 =
0.89, 𝜎 =

0.035
NA

𝜇 =
3.1, 𝜎 =

1.2

𝜇 =
6.56, 𝜎 =

5.5

𝜇 =
4.7, 𝜎 =

2.8

𝜇 =
22, 𝜎 =

8

𝜇 =
4.6, 𝜎 =

2.02

𝜇 =
0.9, 𝜎 =

0.2

𝜇 =
0.41, 𝜎 =

0.2
NA NA NA

Tail width
(m)

𝜇 =
0.27, 𝜎 =

0.022
NA

𝜇 =
1, 𝜎 =

0.7

𝜇 =
1.85, 𝜎 =

1.6

𝜇 =
1.9, 𝜎 =

2.2

𝜇 =
8.33, 𝜎 =

5.5

𝜇 =
1.87, 𝜎 =

0.9

𝜇 =
0.3, 𝜎 =

0.15

𝜇 =
0.18, 𝜎 =

0.12
NA NA NA

𝑣(max) (m/s)
𝜇 =

350.2, 𝜎 =
7.5

𝜇 =
20.2, 𝜎 =

8.5

𝜇 =
65.9, 𝜎 =

28.14

𝜇 =
76.8, 𝜎 =

62.3

𝜇 =
154.5, 𝜎 =

87

𝜇 =
266.5, 𝜎 =

17.8

𝜇 =
636, 𝜎 =

99.2

𝜇 =
800, 𝜎 =

750

𝜇 =
32.2, 𝜎 =

29.5

𝜇 =
3500, 𝜎 =

3000

𝜇 =
937.5, 𝜎 =

593

𝜇 =
4000, 𝜎 =

2500

𝛼∘
𝜇 =

12, 𝜎 =
8

𝜇 =
10, 𝜎 =

5

𝜇 =
15, 𝜎 =

25

𝜇 =
20, 𝜎 =

30

𝜇 =
10, 𝜎 =

20

𝜇 =
8, 𝜎 =

15

𝜇 =
20, 𝜎 =

45

𝜇 =
12, 𝜎 =

30

𝜇 =
10, 𝜎 =

30

𝜇 =
5, 𝜎 =

30

𝜇 =
5, 𝜎 =

15

𝜇 =
10, 𝜎 =

60

𝛽∘ 𝜇 =
7, 𝜎 = 5

𝜇 =
15, 𝜎 =

10

𝜇 =
10, 𝜎 =

15

𝜇 =
15, 𝜎 =

20

𝜇 =
8, 𝜎 =

15

𝜇 =
7, 𝜎 =

15

𝜇 =
15, 𝜎 =

40

𝜇 =
8, 𝜎 =

10

𝜇 =
5, 𝜎 =

15

𝜇 =
5, 𝜎 =

20
𝜇 =

5, 𝜎 = 8
𝜇 =

8, 𝜎 =
45

ℎG (km)
𝜇 =

30, 𝜎 =
25

𝜇 =
4.62, 𝜎 =

2.21

𝜇 =
4.7, 𝜎 =

1.9

𝜇 =
11.5, 𝜎 =

6.9

𝜇 =
9.95, 𝜎 =

5.31

𝜇 =
14, 𝜎 =

1.15

𝜇 =
17.2, 𝜎 =

1.3

𝜇 =
20, 𝜎 =

17.5

𝜇 =
2.8, 𝜎 =

2

𝜇 =
721, 𝜎 =

829

𝜇 =
13.2, 𝜎 =

14.63

𝜇 =
23, 𝜎 =

10.5

Table 2 – Size, velocity, and lying altitude of popular rotary and ixed‑wing UAVs.

Target Type Type Total area 𝑣(max) (m/s) Max. altitude (km)
Length of central part (m) Wing span (m) Height of central part (m)

Phantom 4 [22] Multi‑rotor UAV 0.4 0.15, propellers dia 0.19 20 0.5
Matrice 600 [23] Multi‑rotor UAV 1.18 0.5, propellers dia 0.5 18 2.5

Amazon Prime Air [24] Multi‑rotor UAV 9.1 2.5, frame and propellers 1.5 22.2 0.15
MQ‑8B [25]] Helicopter UAV 7.3 8.4, propellers dia 2.9 59.2 6.1

Sky Surfer [26] Fixed‑wing UAV 0.91 1.4 0.32 13.8 0.2
Eclipse 2.0 [27] Fixed‑wing UAV 1.1 5.5 0.25 28 0.13
MQ‑9A [28] Fixed‑wing UAV 11 20 3.6 123.5 15.24

Global Hawk [29] Fixed‑wing UAV 14.5 35.4 4.7 175 19.8
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Algorithm 1 Extraction of shape features of the target.
1: procedure SHAPE‑FEATURES‑EXTRACTION
2: %Consider that we are at 𝑗th laser mesh at the 𝑖th steering position (see Fig. 5), and each intersection of the laser beams are unique

in the (𝑥, 𝑦, 𝑧) coordinate plane
3: for 𝑖 = −𝑁 ∶ 𝑁 do
4: for 𝑗 = 1 ∶ 𝐿 do
5: if there is blockage at an intersection of the laser beams at (𝑥, 𝑦, 𝑧) detected using 𝑆/𝑛G < 𝛾 at respective RXs then
6: Assign area 𝐴(𝑥, 𝑦, 𝑧) to each blocked laser mesh intersection position as shown in Fig. 5(b)
7: if blockage at same (𝑥, 𝑧) position at different 𝑗 mesh then
8: Extend a 3D area using length 𝑙𝑐e (where 𝑙𝑐e = Δ𝑦) across the 𝑗 mesh where the blocked positions have the same

(𝑥, 𝑧). Label this 3D area as the central section as shown in Fig. 6
9: After a central section has been identi ied, the area on the sides of it (i.e. different 𝑥 values) is labeled as wings

section (discussed in Section 4)
10: if the area of the wings decreases more than or equal to half at a later 𝑗th mesh then
11: It is identi ied as the tail section.
12: The 3D area of wings and tail section is obtained by extending the 2D area of the plane shown in Fig. 6 by 𝑙we ,

and 𝑙te, respectively, on both sides of the plane.
13: The 3D area for wings and tails is extended to later 𝑗 mesh, only if later mesh positions have same (𝑥, 𝑧) coor‑

dinates
14: end if
15: end if
16: end if
17: end for
18: end for
19: return Estimated shape features of the target section‑wise (if the target is detected)
20: end procedure

of two beams) is represented as 𝐴(𝑥, 𝑦, 𝑧) = 𝑠2(𝑥, 𝑦, 𝑧),
where 𝑠 is one edge of the squares shown in Fig. 5(b). An
example blockage of four neighboring intersections, their
corresponding areas, and area of elements are illustrated
in Fig. 5(b), where 𝑠 ≈ Δ𝑥 (see Fig. 2). There is a single
blocked intersection at 𝑗 = 1 laser mesh, whereas, ive
and three blocked intersections at 𝑗 = 2 and 𝑗 = 3, re‑
spectively. A 3D area of the target based on the blocked
laser beams at 𝑗 = 1, 2, 3 can be approximately calculated
(Fig. 6). The overall procedure for 3D area calculation and
extraction of shape features of the target are given in Al‑
gorithm 1.

At lines 2, and 3 of Algorithm 1, we traverse over all the
steering positions and laser mesh at these steering posi‑
tions. We will focus on the 𝑖th steering position and cor‑
responding 𝑗 = 1, 2, 3, laser mesh, shown in Fig. 5 for the
explanation of the algorithm. At lines 5 and 6, if there is a
blockage due to the presence of a target and the condition
𝑆/𝑛G < 𝛾 is true (see Section 3.2), a ixed area 𝐴(𝑥, 𝑦, 𝑧)
is assigned to each blocked laser mesh intersection posi‑
tion. The area assignment due to blockage is shown in
Fig. 5(b). On line 7 it is checked whether the blockage
is present at same points in the 𝑥𝑧 plane at different 𝑗th
laser mesh. To understand that, consider that we have
blockages at the same points in the 𝑥𝑧 plane at 𝑗 = 1, 2, 3,
laser mesh shown in Fig. 5(a) and (b), then we can draw
a straight line passing through these points (along the 𝑦‑
axis) at 𝑗 = 1, 2, 3, laser mesh and the line will be per‑
pendicular to the laser mesh 𝑥𝑧 plane. If instead of a line,
we consider blockage area𝐴(𝑥, 𝑦, 𝑧) extension across the
lasermesh positions along the 𝑦‑axis, a 3D central section

is formed shown in Fig. 6. The length of the central sec‑
tion between any two laser meshes is 𝑙𝑐e = Δ𝑦 given at
line 8. After the central section has been identi ied, any
laser mesh intersections that are blocked and not part of
the central section and extend along the 𝑥 or 𝑧‑axes only
is considered either as a wing or tail section. The 3D area
and lengths of the wings and tail sections are provided at
lines 9 to 13 of Algorithm 1.
The 3D shape of a target can have a minimum of one sec‑
tion and a maximum of three sections. These are cen‑
tral, wing, and tail sections as shown in Fig. 6. The to‑
tal length of the central section of a target is given as
𝑙(c) = 𝑙ce × (𝑁B − 1), where 𝑙ce = Δ𝑦, and 𝑁B is the num‑
ber of meshes that have a blocked beam or beams. Four
shape categories recognizable by the proposed method
are shown in Fig. 7. The width of the central section at
the 𝑗th mesh is 𝑤(c)

𝑗 = 𝑠 × 𝑁 (c)
𝑗,B, where 𝑁 (c)

𝑗,B are the num‑
ber of the blocked laser beams at the center section of the
𝑗th mesh. The coordinates of the blocked positions at the
𝑗th mesh constituting the width of the central section are
(𝑥(c)

𝑗 , 𝑦(c)
𝑗,o, 𝑧(c)

𝑗,o), where 𝑦(c)
𝑗,o, and 𝑧(c)

𝑗,o are the constant coor‑
dinates in the 𝑦 and 𝑧 planes, respectively, whereas 𝑥(c)

𝑗
varies. The height of the central section at the 𝑗th mesh
is obtained similarly as ℎ(c)

𝑗 = 𝑠 × 𝑁 (c)
𝑗,B. The coordinates

of the blocked positions at the 𝑗th mesh contributing to
the height of the central section are (𝑥(c)

𝑗,o, 𝑦(c)
𝑗,o, 𝑧(c)

𝑗 ) where
𝑧(c)

𝑗 only varies and the other two coordinate values are
constant. The width and height of the central section are
shown in Fig. 6 for a particular target and in Fig. 7 for dif‑
ferent categories of the targets. In Fig. 6, the length, width,
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Fig. 7 – Four categories of the targets based on the shape.

and height of the central section is 2𝑙ce, 𝑠, and 𝑠, respec‑
tively.
The wingspan at a 𝑗th mesh from Fig. 6 and Fig. 7 is given
as 𝑙(w) = 𝑠 × 𝑁 (w)

𝑗,B , where 𝑁 (w)
𝑗,B are the number of blocked

laser beam positions of the 𝑗th mesh at the wings section.
The coordinates of the blocked positions at the 𝑗th mesh
for the wingspan are (𝑥(w)

𝑗 , 𝑦(w)
𝑗,o , 𝑧(w)

𝑗,o ). For example in
Fig. 6, the wingspan is 5𝑠. The width of the wings section
at the 𝑗th mesh is 𝑤(w) = 𝑙(w)

e × 𝑁 (w)
𝑗,B , where 𝑙(w)

e is a con‑
stant value, and for simplicity can be taken as 𝑙(w)

e = 𝑠, and
coordinates of the blocked positions corresponding to the
width of the wings at the 𝑗th mesh are (𝑥(w)

𝑗,o , 𝑦(w)
𝑗 , 𝑧(w)

𝑗,o ).
The height of the wings section at the 𝑗th mesh is given
as ℎ(w) = 𝑠𝑁 (w)

𝑗,B . The coordinates of the blocked mesh
positions forming the height of thewings are represented
as (𝑥(w)

𝑗,o , 𝑦(w)
𝑗,o , 𝑧(w)

𝑗 ). Thewidth andheight of thewings sec‑
tion for a given target is shown in Fig. 6, and for Category 3
in Fig. 7. In Fig. 6, the width and height of the wings sec‑
tion is 𝑙(w)

e , and 𝑠, respectively. The dimensions of the tail
section are obtained similarly as for the wings section.

4.2 Velocity, pitch and drift angles, and alti‑
tude of the target

The motion characteristics of a target at a given time de‑
pends on the velocity, and pitch and drift angles. These
three features of a target can be estimated using the pro‑
posed framework and can be utilized to classify a target.
LetΔ𝑑𝑖,𝑖+1 represent the distance between any two steer‑
ing positions, 𝑖 and 𝑖 + 1, which have one or more blocked
intersections due to a target, and Δ𝑡𝑖,𝑖+1 is the corre‑
sponding time difference for a target to move between

mesh locations at 𝑖th and (𝑖 + 1)th steering positions. The
instantaneous velocity is represented as 𝑣(𝑡) = Δ𝑑𝑖,𝑖+1

Δ𝑡𝑖,𝑖+1
.

Over the steering positions, we can write the maximum
velocity as

𝑣(max) = max(Δ𝑑𝑖,𝑖+1
Δ𝑡𝑖,𝑖+1

), ∀ 𝑖 = −𝑁, −𝑁+1, … , 𝑁−1, 𝑁.
(8)

The trajectory variations of a target in the elevation and 
azimuth planes can be represented using pitch and drift 
angles, respectively. Let 𝛼(𝑡), and 𝛽(𝑡) represent the pitch
and drift angles of a target, respectively. If ℎ𝑖+1(𝑡) and 
ℎ𝑖(𝑡) are the estimated heights of the target at 𝑖 + 1 and 𝑖
steering positions, 𝑥𝑖+1(𝑡) and 𝑥𝑖(𝑡) are the 𝑥‑coordinates 
of the target at 𝑖 + 1 and 𝑖 steering positions at time 𝑡, and 
Δ𝑃 is the distance between two consecutive steering po‑ 
sitions shown in Fig. 3, then 𝛼(𝑡) and 𝛽(𝑡) are given 
as [30, 31]

𝛼(𝑡) = tan−1 (ℎ𝑖+1(𝑡) − ℎ𝑖(𝑡)
Δ𝑃 ), (9)

𝛽(𝑡) = tan−1 (𝑥𝑖+1(𝑡) − 𝑥𝑖(𝑡)
Δ𝑃 ). (10)

The maximum altitude of an aerial target contains valu‑
able information characterizing the target. This feature
can also be determined using our proposed setup. The
maximum z‑coordinate value at the intersection pair of
blocked beams provides themaximum altitude of the tar‑
get at that location. The maximum altitude of the target
from the ground is represented as ℎ(G). The maximum al‑
titude, velocity, pitch and drift angles, and 3D shape fea‑
tures for different types of targets are given in Table 1.
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The data in Table 1 is used for creating the training set
that is utilized developing the ML models for classi ica‑
tion. Another Table 2 is provided that contains the size,
maximum velocity and light altitude of popular rotary
and ixed‑wing UAVs.

5. CLASSIFICATION, LOCALIZATION, AND
TARGET TRACKING

In this section, details of the classi ication, localization,
and target tracking models used in our approach are pro‑
vided.

5.1 Classi ication of a target using training
data

Any lying object that disrupts the path of the laser beams
is considered as a potential target in the proposed ap‑
proach. These objects can be man‑made or birds. Flying
objects are classi ied based on the features discussed in
Section 4, i.e., shape, maximum velocity, pitch and drift
angle characteristics, and maximum light altitude by de‑
veloping ML models using training data details provided
in Table 1. Target types are grouped into four categories
based on the 3D shape (Fig. 7), i.e., drone‑like objects,
chopper‑like objects, ixed‑wing typeobjects, andmissile‑
like objects. The dimensions of the 3D shapes are pro‑
vided in Table 1. The irst category is assigned to multi‑
rotor UAVs that have either a square or rectangular cen‑
tral section from the mainframe and mounted rotors on‑
board the mainframe. The 3D shape of the irst category
is shown in Fig. 7(a). The second category for helicopters
with a square central section due to the rotor blades fol‑
lowed by a tail section shown in Fig. 7(b). The tail sec‑
tion is not present in some cases for Category 2. Central
sections of objects in Category 2 are expected to be larger
than central sections of objects in Category 1. In Fig. 7(c),
a third category is shown that covers all the aerial tar‑
gets with central, wings, and tail sections. These include
ixed‑wing UAVs and planes, cruise missiles, and birds.
The fourth category represents targets with only a long
main central section without any signi icant wings and
tail spans (Fig. 7(d)). The fourth category includes ballis‑
tic missiles, rockets and artillery shells, and Hypersonic
Glide Vehicles (HGVs).
The parameters of the training data in Table 1 consist
of the length, width, and height of the central section of
eleven different targets (i.e., classes), grouped into four
categories. The wingspan, wing width, tail span, and tail
width values are also provided. The height of the wings
and tail sections have small variances among different
types of targets, hence, these two features are not in‑
cluded in the training set to decrease the statistical noise
as low as possible. Other features used while creating the
training set are maximum velocity, pitch and drift angles,
and maximum altitude values of eleven different types.
Each and every feature that is used creating the training
data is assumed to have a Gaussian distribution with the

mean and standard deviations provided in Table 1. The
NA entries in Table 1 indicate that there are no values
present for the training features of that particular target
type.
Fig. 8 shows the Probability Density Functions (PDFs) of
the length of the central section andmaximum velocity of
different types of training targets based on the parame‑
ters provided in Table 1. Even though the PDFs of differ‑
ent training targets overlap, the usedMLmodels take sev‑
eral other features into account that yields to high classi‑
ication accuracy. Visual boundaries among the different
types of targets for length of the central section and max‑
imum velocity are given in Fig. 9. It is observed that even
with only two features, target classes become quite sepa‑
rable. Let M(Tr) represent the matrix containing training
data of eleven targets that is given as

M(Tr) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑙(c,C1)
1 𝑤(c,C1)

1 ℎ(c,C1)
1 𝑙(w,C1)

1 𝑤(w,C1)
1 𝑙(t,C1)

1
𝑙(c,C1)
2 𝑤(c,C1)

2 ℎ(c,C1)
2 𝑙(w,C1)

2 𝑤(w,C1)
2 𝑙(t,C1)

2
⋮ ⋮ ⋮ ⋯ ⋮ ⋮

𝑙(c,C1)
𝑘 𝑤(c,C1)

𝑘 ℎ(c,C1)
𝑘 𝑙(w,C1)

𝑘 𝑤(w,C1)
𝑘 𝑙(t,C1)

𝑘
𝑙(c,C2)
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⎥
⎥
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(11)

where 𝑙(c,C1)
1 , 𝑤(c,C1)

1 , and ℎ(c,C1)
1 are the irst points repre‑

senting length, width, andheight of the central section, re‑
spectively, belonging to the irst class. 𝑙(w,C1)

1 , 𝑤(w,C1)
1 are

irst points of the wingspan and wing width of the irst
class, respectively, and the irst points of the tail span
and width are represented with 𝑙(t,C1)

1 , 𝑤(t,C1)
1 . Moreover,

the irst points of maximum velocity, pitch and drift an‑
gles, and maximum light altitude are represented, re‑
spectively, with 𝑣(

1
C1), 𝛼(

1
C1), 𝛽(

1
C1), ℎ(

1
G,C1), for the irst class.
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Fig. 8 – PDFs of length of central section and maximum velocity of the training targets.

Algorithm 2 Simultaneous Detection, Classi ication, Localization, and Tracking of the Aerial Target.
1: procedure SDCLT
2: %The total coverage of a single virtual door is𝑀Δ𝑥ℎ and the total area spanned at all the steering positions is𝑀Δ𝑥Δ𝑦(2𝑁 +1)𝐿ℎ
3: % Considering that we have 𝑗 laser mesh at the 𝑖th steering position (see Fig. 3 )
4: for i = ‑N:N do
5: if there are laser beams with 𝑆/𝑛G < 𝛾 then for a given pfa
6: Obtain the estimated features of the target given in Table 1, (and discussed in Section 4)
7: Categories and classify the target (see Section 5)
8: if a positive threat identi ied then
9: Obtain the localization and tracking of the target and update at every 𝑖th steering position (see Section 5.2)

10: end if
11: else
12: Steering positions only
13: end if
14: end for
15: return Estimated coordinates, and features of the target (if detected)
16: end procedure

Each class has 𝑘 number of samples and there are𝐾 = 11
classes in our training set.
Similar to the training data, the feature values for a given
target is given in the form of a matrix,M(eval) as

M(eval) =

⎡
⎢
⎢
⎣

𝑙(c)1 𝑤(c)
1 ℎ(c)

1 𝑙(w)
1 𝑤(w)

1 𝑙(t)1
𝑙(c)2 𝑤(c)

2 ℎ(c)
2 𝑙(w)

2 𝑤(w)
2 𝑙(t)2

⋮ ⋮ ⋮ ⋯ ⋮ ⋮
𝑙(c)𝑘′ 𝑤(c)

𝑘′ ℎ(c)
𝑘′ 𝑙(w)

𝑘′ 𝑤(w)
𝑘′ 𝑙(t)𝑘′

𝑤(t)
1 𝑣1 𝛼1 𝛽1 ℎ(G)

1
𝑤(t)

2 𝑣2 𝛼2 𝛽2 ℎ(G)
2

⋮ ⋮ ⋮ ⋮ ⋮
𝑤(t)

𝑘′ 𝑣𝑘′ 𝛼𝑘′ 𝛽𝑘′ ℎ(G)
𝑘′

⎤
⎥
⎥
⎦

(12)

where the number of samples for the target are 𝑘′. The
target data is interpolated to adjust the size of the target’s
data equal to the training data that can be formulated as

M(eval) =interpolate(M(eval), 𝑘). (13)

Let C(Tr) represents an array that contains the target 
classes. In (14), the size of this vector corresponding to 
(11) are 𝑘 × 𝐾 , given as

C(Tr) =
[𝐶1,1 𝐶1,2 … 𝐶1,𝑘 𝐶2,1 𝐶2,2 …

𝐶2,𝑘 … … 𝐶𝐾,1 𝐶𝐾,2 … 𝐶𝐾,𝑘]𝑇

(14)
where 𝑇 is the transpose operation.

In this study, four different types of classi iers, i.e., 
Naive Bayes (NB, Linear Discriminant Analysis (LDA, K‑ 
nearest Neighbor (KNN, and Random Forest (RF, are 
used for classi ication. With 𝑓 representing the modeling 
function of a classi ier, ℳ1, ℳ2, ℳ3, and ℳ4 expresses
the corresponding models as given below
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Fig. 10 – (a) Re lected laser beams to provide spatial diversity, (b) laser beam transmitted and re lected towards the source.

ℳ1 = 𝑓 (NB)(M(Tr),C(Tr)), (15)

ℳ2 = 𝑓 (LDA)(M(Tr),C(Tr)), (16)

ℳ3 = 𝑓 (KNN)(M(Tr),C(Tr)), (17)

ℳ4 = 𝑓 (RF)(M(Tr),C(Tr)). (18)

The interpolated target’s data and the classi ier models
areused to estimate theparticular class of the target using
the prediction function given as

𝐶(est,ℳq) =predict(ℳ𝑞,M(eval)), (19)

where 𝑞 = 1, 2, 3, 4 stands for the model used, and
𝐶(est,ℳq) is the estimated class from the 𝑞th model. The
predictions aremade using the relevant predict functions
speci ic to the models deployed.

5.2 Localization and tracking of the target
The (𝑥, 𝑦, 𝑧) coordinates of the intersection of the laser 
beams are unique as shown in Fig. 5(a. If one or more 
laser intersections are blocked by a target, the coordi‑ 
nates of the blocked intersection positions provide the lo‑ 
calization of the target at a given time instance. As the 
target moves, the localization information is also updated 
in time. The center of the target is the center position of 
the blocked laser intersections and mesh. For example in 
Fig. 5(b, the center of the target is at the third blocked in‑ 
tersection of 𝑗 = 2 laser mesh. The tracking and mapping 
of the target’s trajectory are obtained as the blocked laser 
intersection positions are updated as the target moves. 
The overall SDCLT process of a target is given in Algo‑ 
rithm 2. In Algorithm 2 at lines 4 and 5, a detection test 
is carried out 𝑆/𝑛G < 𝛾 to determine the presence of 
a target for each steering position. Once a target is de‑ 
tected, the shape features of the target are extracted (that 
are provided in Table 1. Next, the target is classi ied and 
categorized based on the extracted features. The localiza‑ 
tion and tracking of the target are also carried out at dif‑ 
ferent steering positions (discussed in Section 5.2). The 
extraction of features, classi ication, and localization, and 
tracking of the target are provided at lines 6 to 9 of 
Algorithm 2.
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center of the sequence is the estimated center of the detected target’s position.

6. LIMITATIONS OF THE PROPOSED 
APPROACH AND SOLUTIONS

In this section, limitations of our proposed approach are
discussed and possible solutions are provided.

6.1 Laser beams transmission and reception
A limitation of the proposed approach is the dif iculty in
the deployment of airborne laser TXs and a large num‑
ber of laser RXs on the ground. There can be different
options for the deployment of laser TXs and RXs. The
TXs of the uniformly spaced array of laser beams can be
placed on High‑Altitude Platforms (using tethered hot air
balloons) or low‑altitude satellites e.g. Starlink satellite
network. The RXs of the laser beams can be either located
near the TX or co‑located with the TX using the re lection
of laser beams from the ground as shown in Fig. 10(a),

and (b), respectively. This can eliminate the need for the
placement of RXs on/near the ground. Similar to Star‑
link Satellite Constellation, a dense network of satellites
can be used carrying TXs and RXs of laser beams shown
in Fig. 11. In Fig. 11, an example laser mesh setup us‑
ing a network of low‑altitude satellites and laser re lec‑
tion from the ground is shown. The transmitted and re‑
lected laser beams form an angle Θ with the unit normal
at the satellite and ground, respectively. The transmitted
laser beams are re lected from the ground and received at
a nearby satellite. Using the con iguration in Fig. 11, and
a large number of satellites in the network, the change in
the shape of the laser mesh at a given geographic location
due to the motion of the satellites is minimum. Moreover,
a large coverage area is possible at an affordable cost.

The classi ication and localization accuracy of a target de‑
pend on the distance between consecutive laser beams in
a mesh. To obtain greater accuracy, we require a mesh
of closely spaced and spatially diverse laser beams that
is challenging. The generation of spatially diverse laser
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Fig. 14 – Simultaneous detection, localization, and tracking of a target using three laser mesh at each steering position. The red dot shows the position
of the target.

beams can be realized through the use of lens, and mir‑
rors [32], or using multiple re lectors at different spa‑
tial positions in the path of the transmitted laser beams.
Fig. 10(a) shows an example scenario of transmitted and
re lected laser beams for a given re lector orientation.
These techniques, together with the use of multiple hi‑
erarchical TXs, and RXs of the laser beams, can create a
dense mesh of laser beams that are spatially diverse and
in close formation.

6.2 Multiple targets detection

The detection ofmultiple targets simultaneously is a com‑
plex task. In case laser beams are blocked due to multi‑
ple targets that are close to each other, a clear decision
cannot be made whether it is because of a single large
target or multiple smaller targets. To remove this ambi‑
guity, a sequence of laser beams can be directed to the
next steering position once a target is identi ied. The cen‑
ter of the sequences is the estimated center of the target
at the next steering position based on the trajectory of
the target. The sequences are applied sequentially with
a delay of Δ𝑡seq. An example illumination sequence is
shown in Fig. 12 where rectangular sequences are ap‑
plied. In Fig. 12, 𝐿 = 13, and nine mesh are illuminated
sequentially for a delay of Δ𝑡seq starting from the cen‑

ter outwards for an 𝑖th steering position. Other complex
sequences that may help in the identi ication of multiple
close lying targets are also possible. The sequential ap‑
plication of the sequences helps in the identi ication of
boundaries of a target, thus leading to the detection of
multiple targets.

7. SIMULATION SETUP AND RESULTS

Simulations are carried out to irst observe the blockage
of a laser beam by a target (discussed in Section 3). In the
simulations, a Gaussian beam of waist radius 2 × 10−3 is
generated as shown in Fig. 13. The intensity of the Gaus‑
sianbeamshown inFig. 13 is normalized. Thewavelength
is 𝜆 = 100 × 10−9, beam waist radius 𝑤0 = 2 × 10−3, and
Rayleigh range 𝑥R = 125.7 m. An RX is present at a dis‑
tance of 𝑑𝑖,𝑗 = 350m, and the radius of the aperture at the
RX is 𝑟(RX) = 1 × 10−2. The variance of the AWGN noise is
𝜎2
n = 1×10−4. The electric ield amplitude at the origin is

𝐸0 = 200, and the received power in (6) is 3.3 × 10−4 W,
and the maximum SNR (from (7) ) is 5.1 dBwhen there is
no target present. The threshold 𝛾 for a pfa of 0.1 is set to
be 𝛾 = 3.6 dB. Now, a target is introduced at a 200 m dis‑
tance from the TX of the laser beam. The value of Γ1 and
Γ2 are selected to be 0.7 and 0.2, respectively, for the tar‑
get. The SNR due to blockage from the target is −14.7 dB
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Fig. 15 – Confusion matrix for classi ication of targets at 200 different instances using (a) Naive Bayes, (b) K‑nearest neighbor, (c) Linear Discriminant
Analysis classi iers, and (d) Random forest classi iers. The classi ications are obtained through automated hyperparameter optimization.

that is signi icantly less than the SNR threshold for target
detection. Consequently, the target will be detected.
The laser beam in Fig. 13 is used to form meshes at dif‑
ferent steering positions shown in Fig. 14. In the simula‑
tions, we used 7 steering positions, i.e., 𝑖 = −250 ∶ 25 ∶
250, and each steering position had three 1D arrays i.e.
𝐿 = 3. Each 1D array had 21 RX elements from the two
airborne UAVs. The number of laser intersection posi‑
tions in eachmeshwere 21×21. A target highlightedwith
red dots is shown in Fig. 14. The target lays over three
meshes at each steering position. The estimated features
of the target from Section 4 were recorded for the target.
The features of the target are given in Table 1 under the
name Given target. The features of the given target are
similar to a BGM‑109 Tomahawk missile [33].
In our data set, we used 200 samples per class generated
from the Gaussian distribution parameters given in Ta‑
ble 1. A target can be classi ied with the help of training
data of different aerial targets, and using NB, LDA, KNN,
and RF classi iers. The NB, LDA, KNN, and RF classi iers
from Statistics and Machine Learning Toolbox of Matlab

are used in the simulations [34]. Hyperparameter opti‑
mization in classi ication is also performed using Matlab.
For this speci ic target (Tomahawk misile), NB, LDA, and
DTmodels were able to correctly classify based on its fea‑
tures provided inTable 1 as a cruisemissile, whereasKNN
failed. For a better understanding of the used classi ica‑
tion models, the confusion matrices are also provided for
all four classi iers in Fig. 15. To derive the confusion ma‑
trices, 200 new samples are created using the parameters
given in Table 1. Themodel is optimized using automated
optimized hyperparameter values to minimize the classi‑
ication error.
The results given inFig. 15 showthat theNBclassi ier per‑
forms the best among all. There are no misclassi ications
with an NB classi ier. The NB classi ier considers the dif‑
ferent features given in Table 1 as independent that helps
in the best classi ication. The KNN performs poorly com‑
pared to the other classi iers. The classi ication in KNN
is based on nearest distance and values of many of the
features of the targets e.g., length and velocity shown in
Fig. 8 are overlapping, therefore, KNNmisclassi ies differ‑
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ent targets. The LDA is able to correctly classify most of
the targets except ixed‑wing UAVs and small ixed‑wing
planes. The LDA misclassi ies ixed‑wing UAVs and small
ixed‑wing planes as ighter jets, as many of the features
are similar. Similar to LDA, the RF classi ier misclassi ies
ixed‑wing UAVs and small ixed‑wing planes. However,
the total number ofmisclassi ications is smaller for theRF
classi ier compared to the LDA classi ier. Overall perfor‑
mance of the models proves the viability of our proposed
approach.

8. CONCLUSIONS AND FUTUREWORK
In this work, a novel technique called laser mesh for de‑
tection, classi ication, localization, and tracking of aerial
targets as an alternative to radars is provided. Mesh of
laser beams are proposed to detect, classify, and local‑
ize aerial targets. To create the mesh, at least two air‑
borne platforms are required. Any aerial object crossing
the mesh will block the path of the laser beams and, sub‑
sequently, will be detected and localized in space. Using
our laser mesh setup, we can obtain the 3D shape, veloc‑
ity, pitch anddrift angles, and amaximumaltitude of a tar‑
get. MLmodels for classi ication are used assuming Gaus‑
sian distributed features of 3D shape, maximum velocity,
and pitch and drift angles, and a maximum altitude of 11
different classes. Simulations proved the viability of the
proposed approach. Future work includes carrying out
the real‑world implementation of the proposed approach.
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