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Abstract – Multiaccess Edge Computing (MEC) brings additional computing power in proximity of mobile users, reducing
latency, saving energy and alleviating the network’s bandwidth. This proximity is beneϔicial, especially for mission‑critical
applications where each second matters, such as disaster management or military operations. Moreover, it enables MEC
resources embedded on mobile units like drones or robots that are ϔlexible to be deployed for mission‑critical applications.
However, the MEC servers are capacity‑limited and thus need an acute management of their resources. The mobile resources
also need a smart deployment scheme to deliver their services efϔiciently. In this survey, we review mission‑critical applica‑
tions, resource allocation and deployment of mobile resources techniques in the context of the MEC. First, we introduce the
technical speciϔics and uses of MEC in mission‑critical applications to highlight their needs and requirements. Then, we dis‑
cuss the resource allocation schemes for MEC and assess their ϔit depending on the application needs. In the same fashion, we
ϔinally review the deployment of MEC mobile resources. We believe this work could serve as a helping hand to design efϔicient
MEC resource management schemes that respond to challenging environments such as mission‑critical applications.

Keywords – Disaster management, multiaccess computing, resource allocation, resource deployment, unmanned aerial
vehicles

1. INTRODUCTION
Mission‑critical applications require particular attention 
as they may imply life or important assets losses, which 
entails entail tremendous consequences in their fai-
lure. We can consider disaster management applica-
tions, where time is a precious resource: the ϐirst 72 
hours, the golden relief time, is particularly critical to 
locate and res‑ cue people [1]. Military applications 
are also mission‑ critical as they defend citizens from 
external threats and defend the country. IoT technology 
combined with cloud computing has the potential to 
assist rescuers and agents to gain every precious second, 
by gathering information, analyzing the situation and 
providing support services. It will also help agents 
organize and coordinate their op‑ eration to handle the 
situation [2]. Cloud computing retains many 
advantages, like reduced costs [3] and is easily scalable 
[4]. However, cloud computing is constrained by its 
remote location from end users, leading to high latency 
and delays. This problem is increased by the heavy data 
generation from IoT devices that burden the net‑ 
work and possibly creating bottlenecks when tasks are 
not processed rapidly enough [5]. In addition, mission‑ 
critical applications operate in challenging environments 
with a damaged or scarce network, making the cloud dif‑ 
ϐicult to reach. Hence, cloud computing may not ϐit all 
the mission‑critical applications’ challenges and require‑ 
ments.
In recent years, a new trend has arisen, moving cloud 
computing capacities to the edge of the network. This 
paradigm is called edge computing where connected de‑ 
vices send their tasks to computing nodes located at the

edge of the network, i.e., next to users or things produ-
cing data [5]. This proximity provides advantages over 
the cloud, namely: i) latency reduction [5, 6, 7] ii) energy 
saving [5, 6], iii) augmented privacy [6, 7] and iv) location 
and context awareness [5, 6]. These beneϐits represent 
the key to carrying out the strong requirements of 
real‑time applications. It is especially the case for 
mission‑critical and time‑critical applications where time 
is an important resource [7]. Different edge computing 
paradigms exist, each more or less speciϐic. Fog 
computing and edge com‑ puting both bring cloud 
services to the edge of the net‑ work, hence can be 
confused [8]. However, edge com‑ puting focuses 
more on things while fog computing focuses on the 
overall infrastructure from the edge to the cloud [5, 8]. 
Cloudlets are “data center in a box” close to users and 
accessible by WiFi. They take example of WiFi access 
point but with computing capacities to deliver cloud 
services close to users with little maintenance and low 
power [9]. However, they have been discarded be‑ 
cause of their WiFi access that implies limited coverage, 
difϐicult mobility support between cloudlets and security 
concerns. Similar to cloudlets, micro‑data‑centers consist 
of 10 servers or less and are placed next to users [10]. 
Finally, Mobile Edge Computing (MEC) is deϐined by 
ETSI in 2015 as edge computing incorporated in Radio 
Access Networks (RANs) to serve mobile users [11] as 
shown in Figure 1. The term mobile edge computing has 
evolved to multiaccess computing [12], allowing 
heterogeneous Ra‑ dio Access Technologies (RATs), like 
5G, LTE, Wi‑Fi and so on, in the paradigm and so 
broadening its use cases. In this paper, we therefore 
employ MEC as multiaccess edge computing as a generic
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term that also includes the mobile edge computing 
paradigm. MEC is the most promising candidate for 
mission‑critical and time‑critical applications, because 
of its proximity, good mobility support for mobile users 
and integration of multiple access technologies. In 
MEC networks, local servers are limited in resources 
and as a recent paradigm, it undertakes open 
challenges to manage these limited‑capacity resources 
[5, 13]. Thus, MEC resources need to be properly 
managed to handle efϐiciently the users’ requests. The 
resource management in MEC is divided in three aspects : 
i), ofϐloading decision, ii), resource allocation and iii), 
users mobility management, i.e service migration.
In mission‑critical scenarios, edge resources may be em‑ 
barked on mobile units, such as drones and vehicles. In‑ 
deed, communication networks are often damaged by
disaster or are nonexistent due to remote location [14].
Thus, drones and vehicles have the necessary mobility to
be deployed rapidly in emergency areas, temporarily and
are ϐlexible enough to move to follow the demands’ dy‑ 
namic (which occurs when users are mobile or in situa‑ 
tions where demands are highly dynamic in a single de‑ 
vice) [15, 16, 17]. The resource management is then en‑ 
larged with a fourth aspect : iv) mobile resource
management which includes the deployment of the
resources, i.e., their number and location, their path
planning and new costs such as deployment delays.
In this survey, we start by presenting related surveys
in Section 2. We then present two main use cases of
mission‑critical applications that may use edge
computing in Section 3. As MEC is a recent ϐield, we
also include other edge com‑ puting paradigms like fog
computing or cloudlets. We then review in Section 4
resource allocation methods for MEC, not only for
mobile resources, as again there is not enough work on
it. Finally, we review resource deployment schemes for
MEC in Section 5 and provide open challenges and future
research direction in Section 6. With that survey, we
aim to provide tools and insight for the design of robust
MEC resource management schemes that are beϐitting for
real life hard‑constrained use cases. To the best of our
knowledge, it is the ϐirst survey that provides a review
about MEC resource management through the scope of
mission‑critical applications.

2. RELATED WORKS
Several surveys about MEC exist in the literature. They 
are either general [6, 18, 19, 20] or focus on different 
aspects and methods [21, 22, 23]. Mao et al. [6] in‑ 
troduce MEC with the modelling of MEC communication 
and computation, mobile devices and edge server. They 
then review and classify resource management, and ϐi‑ 
nally identify open research directions. Mach and Bec‑ 
var [20] present a thorough survey about MEC ofϐloading, 
resource allocation, user mobility management and its ar‑ 
chitecture. They highlight what to take into account when 
designing MEC computation ofϐloading schemes and dis‑

cuss previous work. Abbas et al. [18] provide a deϐini‑
tion of MEC and its application. They also provide in‑
sight of MEC related research and technologies. Vhora
and Gandhi [19] introduce a review on MEC architec‑
ture, related research and challenges, tools for simula‑
tion and ϐinally MEC applications. Peng et al. [21] review
service adoption and provision for MEC. They consider
MEC service adoption, i.e task ofϐloading, from themobile
users’ perspective andMEC service provision, i.e resource
allocation and server placement, from the edge server
side. Wang et al. [22] review service migration in MEC
that they deϐine and compare with previous existing con‑
cepts. They discuss the state‑of‑art methods and techni‑
cal service hosting solutions. Zamzam et al. [23] propose
a resource management survey using machine learning
methods. They organize the research by goals and classify
machine learning methods. There also are surveys about
public safety and mission‑critical wireless network solu‑
tions [24, 25, 26, 27] or technology solutions [15, 2, 28].
Baldini et al. [24] survey public safety organization use
cases, requirements and their wireless communications
standard. Jarwan et al. [25] provide design requirements,
architecture solutions and standards for public safety net‑
works based on LTE. These works also provide a testing
and evaluation framework for such networks using Net‑
work Simulator NS‑3. Yu et al. [27] describe the layered
architecture of public safety communication. Then they
review communication technologies for device‑to‑device
communications and dynamic wireless networks. They
also discuss the integration of some technologies in pub‑
lic safety networks like 5G and edge computing. Kumbhar
et al. [26] introduce public safety networks standards and
challengeswith a focus on LTE, LandMobile Radio System
(LMRS) and Software‑Deϐined Radio (SDR). Thewhite pa‑
per [15] reports technologies employed in public safety
applications and highlights gaps and the technology that
can ϐill them. The authors provide thorough use cases and
their technologies’ opportunities. Works [2, 28] study the
application of IoT technologies for disaster management
operations and future research directions. We can note
that none of these surveys focus on MEC. This survey is
complementary to these previous ones as it browsesMEC
resource management work and discusses them by their
suitability depending on the applications, with a focus on
mission‑critical applications.

3. MISSION‑CRITICAL APPLICATIONS USE
CASES

MEC offer computing services independently from the
Internet and at proximity to requesting users and de‑
vices [8]. This proximity allow new low‑latency ser‑
vices such as object or speech recognition [10] or aug‑
mented/virtual reality [19, 11]. It also offers anew typeof
location‑aware and context‑aware services [6, 29]. The‑
ses MEC services may be employed by mobile users but
also by IoT devices [19, 11], such as security cameras [17,
30]. Mission‑critical applications may proϐit from these
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Fig. 1 – The multiacess edge computing paradigm

types of services to carry out their crucial objectives that
involve life and properties. Thus, in the next section, we
are going to review twomain use cases, disaster manage‑
ment and military and what kind of edge services they
may request. We will also review the technical speciϐics
of these two uses cases.

3.1 Disaster management
With climate change, disaster occurences are bound to
increase [31], having important social and economic im‑
pacts. The rescuers need to be prepared and supported
efϐiciently to carry out their mission, saving many lives
and recover from the situation. IoT is recognized as a
relevant technology for providing useful support to res‑
cue operations [2, 28]. But all the data produced by IoT
needs low‑latency processing to be useful for rescuers in
real time. For this, MEC is a promising candidate due to
its proximity [5] and its on‑site rapidly deployable [32,
33] networking structure, even in difϐicult environments.
In the next section, we review disaster management ap‑
plications that use MEC but also other edge computing
paradigms as currently there is little work only onmobile
MEC.

3.1.1 Edge‑enabled disaster management ap‑
plications

Edge services enable low‑latency applications that pro‑ 
vide situation awareness to rescuers. These types of ap‑ 
plications deliver important information about the situa‑ 
tion, helping rescuers adapt and organize their mission. 
A common use of edge computing by disaster manage‑ 
ment applications is for video and image analytics [17, 
16, 34, 17, 35, 30, 36, 37] as edge computing responds 
to the short response time requirements of these appli‑ 
cations. It helps discover victims’ locations, count and 
state and provide facial recognition for missing persons. 
It also helps analyzing the environment to detect danger‑ 
ous paths clogged with ϐire or hazardous chemicals and 
paths obstructed by wreckage.

Wu. et al. found that video analytics done in the edge 
instead of on the cloud reduces the latency up to 61% 
using 4G [17], expressing the usefulness of edge 
computing in these situations. The analysis can be done 
entirely in the edge servers, but as they are capacity 
limited it may be done only partially, the rest being 
handled in the cloud. Some previous work leverages the 
edge computing power to ϐilter images taken from a 
disaster context and send only relevant ones to the 
cloud for advanced processing. Indeed, several images 
and video are taken by smartphones [16], drones [34] 
or cameras [17], and by sending them all the cloud will 
burden the network, as they do not all contain useful 
information. The ϐiltering will save precious bandwidth 
and act in real time without human intervention. COCO, 
proposed by Zhao et al. [35], is a MEC‑based adaptive 
image sensor that uploads to the cloud only images with 
speciϐic content. Liu et al. [16] propose Echo that is an 
edge‑based face recognition frame‑ work, that also 
ϐilters images and preprocesses them before sending 
them to the cloud. Chemodanov et al. [30] propose 
geospatial video analytics that analyze images from 
many devices in a broad area to deliver information to 
rescuers. They employ fog computing to preprocess 
images and manage human‑computer interactions, that 
are trivial tasks with low latency expectations. edge 
computing allow other applications, like localization and 
path ϐinding for autonomous agents (drones and boats) 
when searching for victims in the sea [36]. Avgeris et 
al. [37] propose SMOKE, a three‑layered cyber‑physical 
social system to detect forest ϐires and assist public au‑ 
thorities. They use the edge layer to process images cap‑ 
tured by IoT nodes to detect ϐire at an early stage. They 
also propose the horizontal and vertical scaling of the 
edge resource to adjust the QoS. It can monitor rescuers’ 
health in mission and alert about their state [17]. Finally, 
artiϐicial intelligence which runs at the edge provides an 
action plan and helps decision‑making [17].

3.1.2 Technical speciϔicity

Architecture Several architectures are “three‑layered” 
where the ϐirst layer is composed of ϐield sensors, then 
the second edge layer and the third one that is the cloud. 
The cloud is kept to store historic data [17] and runs less 
time‑sensitive or heavy tasks [35, 16, 30]. Edge servers 
are often in mobile units near the disaster scene like ϐire 
vehicles, public buses [38] or drones [36]. It highlights 
the need for edge resources mobility management to sup‑ 
port the rescuers as they move on the ϐield. Sensor de‑ 
vices that gather data are heterogeneous. Wireless wea-
rable sensors monitor health or help for localization. Body 
cameras [17] and smartphones [35, 16, 30], from civilians or 
rescuers, capture the environment to analyze paths, 
recognize missing people or help evaluate their state and 
injuries. Surveillance cameras [30, 17] are also used to 
evaluate the environment on a larger scale.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 2, 9 November 2021



Finally, autonomous agents, like drones, unnamed 
agent boats or robots, are able to go where humans 
cannot and cover rapidly an area to ϐind missing people 
or assess the situation [36, 34]. Figure 2 represents an 
example of a disaster management architecture.

Network speciϐications In edge computing, there 
are two main channels of communication: on one part 
the communication between end devices and the edge, 
the other part is the connection between the edge and 
the cloud. The regular network can be damaged 
rendering the connection between the edge and the 
cloud disrupted or unstable [16, 34]. For the 
connection between the edge and end devices, 4G and 
5G are the most common network access employed, 
especially with civil smart‑ phones [16] or drones [34, 
36]. With the expansion of smart cities, the public 
WiFi hotspot is also a candidate. However, it is 
noticeable that 4G seems to induce less la‑ tency than 
WiFi in the case of video analytics [17]. Also, end devices 
and sensors may establish an ad hoc network to 
communicate together and with edge computing de‑ 
vices, without pre‑existing structure [17, 30]. The satel‑ 
lite network is an other option especially when the 
re-gular network does not work, however the latency 
can be problematic [16].

3.2 Military
IoT for military is restricted because of unstable net‑ 
works, limited bandwidth, power‑limited devices and a 
highly dynamic environment [39]. Edge computing of‑ 
fers the low‑latency and mobility required in the battle‑ 
ϐield [40].

3.2.1 Edge‑enabled military applications

The battleϐield has a vast variety of heterogeneous sen‑ 
sors and devices that generate a lot of heterogeneous 
data [41, 42]. To ease the instability of the network, edge 
computing has the power to declutter all this 
information by ϐiltering, preprocessing and add meaning 
to the mass of data. Singh et al. [40] introduce an 
edge‑based system to monitor soldiers’ health, weapons 
and location of those in command, the other soldiers and 
themselves. In addi‑ tion to ϐilter, their framework 
merges and attaches mea-ning to data to bring 
situational awareness to agents on the ϐield and those in 
command. Wang et al. [41] leverage fog computing to 
compute and store the mass of data near the ϐield 
and so provide real‑time responses. Moreover, they 
use it to ϐilter and preprocess data to reduce 
information sent to the cloud, sparing bandwidth. They 
found that the latency is reduced to about 85% 
when 300 tasks are requested. Castiglione et al. [42] use 
edge computing to authenticate agents with 
their biometrics data when they access sensitive 
material like weapons or vehicles, in addition to 
monitoring their health. Lewis et al. [43] propose 
tactical cloudlets to compute intensive tasks, like 
video and audio recognition and also ϐilter useless 
data to lighten the application.

3.2.2 Technical speciϔicity
There are numerous sensors on the battleϐield that can 
be on the ground sensors or wearable [42]. Sensors are 
worn by soldiers for health monitoring. They can also 
be on weapons to monitor their status [40]. Like disas‑ 
ter management application, drones [41] or robots [44] 
may be used. In battleϐield health monitoring, the wire‑ 
less devices worn by soldiers form a Body Area Network 
(BAN) [40]. Devices communicate with each other and 
with the edge with the LoWPAN wireless network. These 
devices send raw data to edge networking devices which 
transmit it to the semantic fog where data is processed 
meaningfully. Architecture of the combat cloud‑fog con‑ 
sists of the combat resource, fog computing and cloud 
computing [41]. Combat resource is combat units which 
collect data and execute physical action, like radars or 
drones. They can communicate together. Networking de‑ 
vices near the ϐield perform the fog computing. The com‑ 
puting tasks are distributed among them since networ-
king devices have their own duty and low capacities. 
Mission‑critical applications have strong requirements 
and distinct speciϐicities. We have seen they employ 
heterogeneous end devices, sensors, vehicles and au‑ 
tonomous agents, generating many data. All this data, 
the unstable network and the strong latency requirement 
make MEC a promising solution to deliver effective sup‑ 
port to agents. Moreover, we have seen diverse network 
access used in these applications, which is consistent with 
the variety of end devices. By integrating heterogeneous 
network access, MEC is all the more consistent in this type 
of application. Finally, some applications employ vehi‑ 
cles to transport the edge server [16, 17], which stresses 
their high dynamic and need for resource mobility ma-
nagement.

Fig. 2 – An example of an architecture of a MEC disaster management 
application

4. RESOURCE ALLOCATION
MEC resources are capacity limited, unlike the cloud, and 
can even work on batteries. The resource allocation 
scheme is so vital to manage these limited resources 
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Table 1 – Review of architectures, goals and resources used in resource allocation for MEC

Architecture Cloud Ref Goals Allocated
resources

Energy Latency Other Computing
resources

Communication
resources

Task
placement Other

Two
Edge servers One user

Tw
oA

Ps

x [45] x x x

One
Edge server

Two ϐixed
users

On
eA

P

[46] x Ofϐloading
time

[47] x x x

Multi‑users

[48] x x
[49] x x x x

x [50] x x x
[51] x x x
[52] x x x
[53] x x x
[54] x x x
[55] x Revenue x x

M
ul
ti‑
AP

s

[56] x x
[57] x x
[58] x Costs x x
[59] x x x x

Multi‑Edge
servers

x [60] x x
x [61] x x x

[62] x x Ofϐloading
time

[63]
Min

timeout
probability

x

[64] x Reliability x x
x [65] x x x

[66] x Costs x
[67] x x x
[68] x x x x
[69] x x

x [70] x x x x
[71] x x x

x [72] x x x x
[68] x x x x
[73] x x x
[74] x x x x
[75] x x

Multi‑UAVs [76] x x

[77]
Nb of
served
tasks

x x

One
UAV

Multi‑devices
(ϐixed) [78] x Bit

ofϐloading
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Table 2.1 – Review of methods used in resource allocation for MEC

Methods Ref
Main

constrains Ofϐloading
decisionCommunication

capacities
Computing
capacities

Devices
battery

Tasks
deadlines

Cauchy‑Schwarz inequality,
Linear programming [61] x x x

KKT conditions,
Sub‑gradients method [52] x
ADMM decomposition,
Convex optimization [55] x x x

Regularization technique,
Convex optimization [66] x

Lagrange duality method,
KKT conditions,

Convex optimization
[47] x x x

Dinkelbach,
Lagrange duality and
Sub‑gradients methods

[46] x x

Majorization‑minimization
method [57] x x

Benders decomposition [60] x
Convex optimization,
Heuristic algorithm [62] x x
Decomposition

and iteration algorithm [65] x x
Genetic algorithm [58] x x x x
Decomposition and
iteration algorithm [49] x x x
Successive convex
approximation,
Matching theory

[74] x x x

Decomposition and
iteration algorithm

based on
genetic algorithms

[75] x x x

Cauchy‑Schwarz
inequality,

Convex optimization
[79] x x

Decomposition and
iteration algorithm [76] x
Successive convex
approximation,

Decomposition and
iteration algorithm

[78] x x x

Decomposition and
iteration algorithm [68] x x x

Reinforcement learning

[70] x x
[53] x x x
[69] x x
[56] x
[73] x
[51] x x x x

Decomposition and
iteration algorithm [59] x x x

Deep Neural Network [48] x x x
Game theory [67] x x
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Table 2.2 – Review of methods used in resource allocation for MEC (following)

Methods Ref
Main

constrains Ofϐloading
decisionCommunication

capacities
Computing
capacities

Devices
battery

Tasks
deadlines

Dynamic Programming
algorithm [54] x x

Decomposition and
iteration algorithm [71] x x x x
Convex optimization

and Heuristic [50] x x x x x
Heuristic [72] x x x x
SCA‑based

iteration algorithm [77] x x x x
Lyapunov
theory [63] x x

Interior‑point (IPA)
alogrithm [45] x x

efϐiciently and respond to users’ requests. In this 
section, we ϐirst show in Section 4.1 the different aspects 
to take into account for modelling the requesting 
devices’ tasks. Then in Section 4.2 we present the 
different types of MEC resources we can allocate, be it 
computing or communica‑ tion resources. We then 
discuss in Section 4.3 the diffe-rent goals pursued by 
resource allocation methods. We ϐinally review in 
Section 4.4 the different methods that have their own 
trade‑off between accuracy and speed. We discuss 
these methods according to the system scale and 
requirements.

The reviewed papers in this section are summarized in 
tables 1, 2.1 and 2.2. Table 1 summarizes architectures, 
goals and resources considered in each scheme. For the 
architecture, reviewed papers consider the number of 
edge servers, the number of users, the number of Access 
Points (APs) and may integrate the cloud into the 
system. Their goals are mainly to reduce the energy 
consumption of the system or the latency. There are 
also other goals like reducing the different costs of 
the network, ensuring its reliability or maximizing 
the tasks coverage, e.g., the number of served tasks.
The allocated resources are mainly computing 
resources, with or without communication resour-
ces, and the tasks placement, e.g., on which the server
will process a task. Communication resources are 
rarely allocated alone. Tables 2.1 and 2.2 
summarize which methods the reviewed papers 
employ. We discuss these methods in Section 4.4. 
Depending on the goals and the system, reviewed 
papers take into consideration different constraints, 
such as communication capacities of MEC servers, the 
devices’ battery and so on. Finally, each reviewed 
paper may resolve along the resource allocation the 
ofϐloading decision, that is the decision to process tasks 
locally on the devices or remotely on servers.

4.1 Task modelling
The system modelling is crucial in an efϐicient resource al‑ 
location scheme. It allows the algorithm to consider the 
system critical aspects and deliver adapted results. An 
important aspect of system modelling is the modelling of 
the tasks. A task is commonly modelled as (S, C, L), where 
S is the associated data (input data and code), C the re‑ 
quired CPU cycles to achieve the task and L the task dead‑ 
line, i.e., the task maximum tolerant latency [70, 68, 80]. S 
and C can be deduced through code proϐiling [81, 58, 62]. 
Some works do not include the task deadline in their mod‑ 
elling [74, 62]. But this parameter is central in latency 
sensitive applications for obvious reasons. It will allow 
the scheme to respect task deadlines, prioritize tasks with 
close deadlines and may employ it to drop some obsolete 
tasks that burden buffers. Also, work can assume dividing 
tasks to allocate parts with different resources to accele-
rate processing. However, if parts of the tasks have 
strong dependencies, this may burden the network as a 
resource needs to wait for the others to process its part. 
Some work does not consider dividing to simplify the 
scheme [58]. The task generation speed [79] or 
distribution [82] have impact on the workload over the 
network, and may help prevent bottlenecks.

4.2 Resources to allocate
Diverse types of resources can be allocated to users, 
mainly communication resource and computational re‑ 
sources. Moreover, we can consider them jointly, leading 
to more efϐicient schemes.
Communication resource Usually, the main communi‑ 
cation resource allocated is the bandwidth. It is allo‑ 
cated to devices with a percentage of the total spec‑ 
trum bandwidth available [80, 67] or the amount of ra‑ 
dio bandwidth [70]. It can also depend on the chan‑ 
nel access method considered in the system. For sys‑
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tems using TDMA, some work allocates time in each time
slots for each device proportionally to the data they need
to ofϐload [79, 52]. For OFDMA, subcarriers are allo‑
cated [57, 83]. The promising Non‑Orthogonal Multiple
Access (NOMA) method, suitable for 5G, allows sharing
subcarriers between multiple users instead to at most
one, like in OFDMA. So if the system uses NOMA, the re‑
source allocation scheme had to assign the subcarriers
to multiple users [71, 50]. Some work also model com‑
munication resources abstractly to be applied on differ‑
ent types of systems. A point to consider when we al‑
locate communication resources is the interference. The
intra‑cell interference is usually ignored to sub‑channels
assignment [49, 62]. Inter‑cell interference makes the re‑
source allocationmore complex as it addsdependencebe‑
tween users’ uploading rates [62]. Some work ignores
this inter‑cell interference as they postulate that cells are
far enough fromeachother orhaveorthogonal bandwidth
allocation [49]. However, it can be interesting to con‑
sider it for networks where these interferences are highly
probable, like ultra‑dense MEC networks. In addition, as
MEC may possess heterogeneous Radio Access Technolo‑
gies (RATs), it raises the interesting problem of choosing
the right RAT to serve a device at a given time for a given
task. For instance, Hsu et al. [72] consider the licensed 5G
and the unlicensed NR‑U. Indeed, each RAT has its own
characteristic, like coverage, mobility support, data rate
and so on. All of this may inϐluence the delay, the energy
consumption and the quality of service. They can also in‑
cur additional costs, like 5G instead of the generally free
Wi‑Fi. Finally, next generation emergency [84] and public
safety [85] communications are challenges to incorporate
in MEC resources allocations.
Computational resource Instead of the cloud, MEC sys‑
tems have limited computational resources. Thus they
are critical resources we need to allocate efϐiciently. It is
even more the case with many mobile users or extremely
limited edge resources, as it is often the case in mission‑
critical applications. If the computing resources are badly
allocated, important devices’ tasks may be unprocessed
on time and the overall system can be congested. Compu‑
tational resourcesmay be CPU cycles per seconds [55, 80,
62] or CPU cores [56]. For UAVs‑based MEC, some work
allocates the number of ofϐloaded bits to the UAV [86, 87].
However, recent work considers allocating CPU frequen‑
cies instead because it seems to reduce energy consump‑
tion further [78, 88, 89]. To reduce the latency further
and help MEC servers, some works also consider the use
of some spare computing power on certain devices that
can use it to assist other devices. The deviceswith enough
resources communicate directly with requesting devices,
called device‑to‑device [90] or machine‑to‑machine [71]
communication.
Joint communication and computation The communi‑
cation and computation allocations affect each other. Re‑
gardless of how much a task is given a certain amount
of communication resource, if it does not have enough
computing resource, the task will not be processed more

rapidly, and conversely [55]. So these two resources are 
involved in QoS requirements, such as delay and energy 
consumption, and jointly allocating them lead to more ef‑ 
ϐicient results [62].
Server selection The server selection for a task can also 
be considered as a resource allocation. Matching MEC 
nodes with tasks is relevant because MEC nodes may 
possess heterogeneous capacities, in terms of quantity 
as well of quality, and ϐit more or less a task need [65, 
70]. Plus, there is a trade‑off to consider between com‑ 
putational time and network delay, depending on servers’ 
workloads, their distance from devices and their channel 
quality. For example, it may be worthier to assign a task 
to a farther server but which is less busy [65].

4.3 Goals
The goals of the resource allocation scheme depend on 
the use cases and the applications considered by the 
work. They can be more adapted to latency sensitive 
applications by minimizing tasks’ completion time, or ϐit 
MEC systems with battery‑powered devices by minimi-
zing their energy consumption. The goal can be 
tuned with weight in the objective function. It can aim to 
prioritize some devices [62] or some aspect of a 
multi‑objective problem [49], like giving more weight to 
energy consumption rather than latency.

4.3.1 Energy‑aware parameters
In mobile edge computing networks, mobile devices are 
battery powered. Thus minimizing their energy con‑ 
sumption is crucial to maintaining the user’s quality of 
experience [62] and preserve autonomous devices’ bat‑ 
tery to let them complete their tasks. Some work con‑ 
siders the overall energy consumption, e.g., from the lo‑ 
cal computing to the ofϐload computing [57]. Other work 
considers only the device’s energy consumption as is it as‑ 
sumed that MEC servers have reliable power sources [47, 
49]. However, in mission‑critical applications, servers 
can be battery powered, like embedded on UAVs or in 
buses. They may have more energy at their disposal than 
end devices; nonetheless, their energy budget is limited. 
Moreover, the energy consumption of the overall system 
is always important to minimize the application’s energy 
impact. The energy consumption for a task is often calcu‑ 
lated as 𝐸 = 𝜅𝐹 𝛽 ⋅ 𝑐 , where F is the computing capacities 
of the device as CPU cycles per seconds, c represent the 
number of CPU cycles required to ϐinish the task, 𝜅 and 𝛽 
are constant that depends on the device’s chip architec‑ 
ture [54, 62]. 𝜅 is often 10−26 or 10−27 and 𝛽 is 2 [59, 70, 
53, 49]. So the computing capacities inϐluence the task’s 
process time but also the energy consumption. Therefore, 
there is a trade‑off between energy consumption and 
execution time to consider. This trade‑off can be 
adjusted with a weight factor in the optimization goal to 
ϐit the application needs, having a low energy 
consumption or a reduced latency [91, 59]. It can 
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additionally include external factors like the device’s 
residual battery [59] and so adjust to the devices’ needs 
in real time. When MEC servers are UAVs, the hover time 
is to be included in the energy model under the form: 𝐸ℎ 
= 𝑃 ⋅ 𝑇 , where P is the power to hover and T the 
hovering time [92]. Besides the hovering time, UAV 
consumes energy for ϐlying, depending on its velocity 
and weight [86]. Its accelerations have equally 
signiϐicant impact on energy [78]. We can ignore some 
energy consumption points in the optimization whether 
they are idle energy and we cannot control it. This is the 
case for server idle energy consumption or energy 
consumption of links that are trafϐic independent [60, 
58]. Plus, some actions are negligible in comparison to 
others in the system, like downloading energy 
consumption [53].

4.3.2 Latency
Latency is crucial in mission‑critical applications where 
situations may be life or death, like in search and res‑ 
cue. A task’s latency comprises the processing time and 
necessary transmission time from the device to the edge 
and potentially to the cloud [79, 68, 54, 65]. Work [52] 
add to it the compression time, present in system with 
heavy tasks like video processing. We can also add the 
local or remote computational queuing delay [55, 64] 
because of the continue tasks generation, present even 
when other tasks are processed. The processing time de‑ 
pends on CPU cycles required to complete the task and 
the computing capacities, e.g., CPU cycles/seconds, allo‑ 
cated to the task [74, 69]. The latency is equally affected 
by the data generation speed. When the generation is 
superior to the system processing capacities, data accu‑ 
mulates in buffers and nodes don’t process tasks in real 
time. Wang et al. [61] refer to it as a blocking state and 
propose to adapt the resource allocation scheme depen-
ding on whether the system is in a blocking state or 
in a nonblocking state. Furthermore, the data 
generation is usually non‑uniform across the system. It 
leads vary‑ ing workloads between servers, and some 
may be over‑ loaded while others are free from tasks. It 
is so interest‑ ing to consider balancing in the resource 
allocation [69], as well as the trade‑off between 
computing and transmis‑ sion time when moving a task 
to a less loaded but further node [65]. In addition, some 
devices can process critical tasks or occupy a pivotal role 
in the system, therefore they need priority in their 
processing. A solution proposed in [52] is minimizing a 
weighted‑sum delay of all devices, the weight reϐlecting 
devices’ importance in the system. Alternatively, [51] 
proposes to measure each tasks’ pri‑ ority with delay 
and reliability requirements. Standardly, the 
downloading time from server to devices is ignored, 
since results data are smaller and downlinks have higher 
rates [62, 58]. What’s more, the transmission time be‑ 
tween a base station and its associated MEC server is ig‑ 
nored [59]. Finally, as seen in Section 4.1, the partition 
of tasks can greatly reduce the processing time by paral‑ 
leling the processing. [45] shows that the dynamic place‑

ment of the tasks partitioning decision, i.e the decision to 
process on which nodes each part of the task, can reduce 
the latency. Indeed, if the decision is taken on the reques-
ting node, it can take its much constrained resources. But 
if the decision is taken on a remote MEC server, it may 
take more time to reach other MEC servers, depending on 
their placement from the device.

4.3.3 Reliability
As seen in Section 3, some tasks of mission‑critical appli‑ 
cation are of vital importance. Thus, the MEC must have 
a certain level of reliability to ensure that these tasks are 
processed. In wireless networks, the reliability is seen as 
the probability to successfully transfer data within a de‑ 
lay [93]. A ϐirst challenge in MEC networks is node failure. 
The redundancy of tasks is a relevant solution to mitigate 
this effect [94, 95]. However, it can burden the network 
if the redundancy takes more than the needed compu-
ting or communication resources. A node failure 
measurement helps ensure the minimum tasks’ 
reliability, avoiding the resources’ overuse [77]. Another 
challenge is extreme events in server and UE processing 
queues. When queues are overloaded they may drop 
some critical tasks, and assuring an average queuing 
delay is not sufϐicient to prevent that [96]. Thus, the 
work [64] uses the statistics of the extreme queue length 
to ensure reliability.

4.4 Methods
The chosen method for resource allocation has to propose 
a satisfactory compromise between precision, computa‑ 
tional complexity and scalability depending on the prob‑ 
lem and its context. Some methods may be unable to solve 
a problem [56] or ϐill the system requirements. In addi‑ 
tion, the method has to ϐit the scale of the system, not 
being too complex for large‑scale systems, and its needs, 
for example if suboptimal results are sufϐicient.

4.4.1 Optimization methods
Classic mathematical optimization methods aims to solve 
problems optimally. Cao et al. [47] solve optimally the 
resource allocation in a three‑node network to minimize 
devices’ energy consumption with the Lagrange duality 
method. Chen et al. [68] propose a scheme for resource 
allocation and task placement in ultra‑dense networks 
for minimizing the task completion time. They resolve 
the computational resource allocation part of the prob‑ 
lem with Karush–Kuhn–Tucker (KKT) conditions. Ren 
et al. [52] exploit the KKT conditions to allocate a MEC 
server’s resources to users while minimizing the delay, 
where data is compressed locally by the user before 
sending. Even though classic mathematical optimization 
methods allow optimal outcomes they come with signiϐi‑ 
cant complexity. Thus they are adapted to small‑scale sys‑ 
tems with few parameters. They are unadapted to large‑ 
scale systems where the complexity is too high to handle 
and they will either not be able to solve the problem or 
demand an unfeasible amount of time.
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4.4.2 Decomposition techniques
Decomposition techniques are used for challenging prob‑ 
lems where optimal solutions are likely nonexistent. They 
decompose the initial problem into sub‑problems, easier 
to tackle. They are in addition employed instead of opti‑ 
mal solutions to reduce complexity. A reduced comple-
xity is important in MEC systems where resources are 
limited unlike in the cloud. They can be a good 
trade‑off between efϐiciency and results, especially 
with systems where medium accuracy is sufϐicient. 
Plus, we may implement them easier and in a 
distributed manner. Iterative algorithms When 
considering several joint problems, we can decouple 
the sub‑problems and solve them individually, like 
decoupling the ofϐloading decision and the resource 
allocation. To retain the connection be‑ tween the 
sub‑problems, we solve them in an iterative algorithm. 
Each iteration takes the output of the previous iteration 
in input to update the solution until convergence to the 
optimal solution. It allows a decreased complexity but at 
the cost of the solution’s precision. In iterative 
algorithms, we have to pay attention to its conver‑ 
gence properties and its required iterations. Li et al. [75] 
propose a two‑stage heuristic resolving iteratively the of‑ 
ϐloading decision and the CPU frequency allocation with 
the goal of minimizing the energy consumption of mo‑ 
bile devices. Pham et al. [49] propose the JOBCA iterative 
algorithm to solve the resource allocation and ofϐload‑ 
ing problem for wireless back‑haul networks. Networks 
with wireless back‑haul may be utilized for rural areas or 
emergency services where wired back‑haul is expensive 
and restrictive. Li et al. [58] introduce an ofϐloading and 
resource allocation scheme for multiple wireless access 
points to minimize the monetary and energy costs. Tran 
and Pompili [62] propose a resource allocation scheme 
for multiservers in ultra‑dense networks to minimize a 
weighted sum of task completion time with devices’ en‑ 
ergy consumption. For that they introduce an iterative 
heuristic algorithm to solve the initial problem in polyno‑ 
mial time. Fan and Ansari [65] address the workload al‑ 
location for cloudlets, considering the trade‑off between 
sending tasks to a near cloudlet but overloaded or a far 
cloudlet but less busy. To simplify the initial problem, 
they propose an iterative algorithm solving task assi-
gnment and computing resource allocation. Zhang et al. 
[59] aim at ϐinding the trade‑off between latency and 
energy consumption. They investigate a scenario with 
one small cell and another with multiple small cells and 
propose an iterative search algorithm for the multiple 
cell scenarios. Zhu et al. [71] introduce a resource 
allocation scheme for 5G Industrial Internet of Thing 
(IIoT). In this scheme, they include devices with enough 
computing resource to help other devices with 
machine‑to‑machine communication. Mathematical 
decomposition Mathematical solutions exist to 
transform the problem into simpler sub‑problems. 

Then, we can solve them with classic optimization 
methods. Ji and Guo [46] propose a resource 
allocation for two users, one far and one close to the 
MEC server. In the relay mode, where the nearest 
user serves as relay between the MEC server and the far 
user, they employ the Dinkelbach’s method to transform 
the non‑convex problem into a convex one. Next, they 
solve it with classical convex optimization methods. 
Wang et al. [55] propose a resource allocation strategy 
with a two‑stage tandem queues for maximizing the 
revenue of the network. The ϐirst queue is for packet 
transmission through the base station and the second 
for computational processing at the MEC server. The 
initial NP‑Hard problem is decomposed with an Alter‑ 
nating Direction Method of Multipliers (ADMM)‑based 
algorithm into convex sub‑problems. ADMM is an al‑ 
gorithm to solve problem with a splittable objective 
function. It is adapted to decentralized systems because 
of its decomposability and requires a few iterations to 
converge for modest accuracy [97]. However, it is slow 
to converge for high accuracy. Yang et al. [60] handle 
the task allocation problem for cloudlets with Bender 
decomposition to minimize the overall energy con‑ 
sumption. Zhang et al. [80] use a modiϐied generalized 
Benders decomposition for latency‑sensitive services 
with caching to minimize the overall latency. They also 
solve the problem with a branch and bound method that 
has an exponential computation complexity. Wang et 
al. [66] introduce MOERA, an online resource allocation 
algorithm to minimize arbitrary operational costs and 
costs that reduce quality of service (e.g., delay) and 
consider user’s mobility without their prior knowledge. 
They use a regularization technique [98] to divide into 
sub‑problems. Wang et al. [61] consider MEC systems 
having a nonblocking state and a blocking state when 
too much data has accumulated in a server’s buffers. 
For the nonblocking state, they divide the problems into 
task assignment and resource allocation sub‑problems 
with the Cauchy–Schwarz inequality. For the blocking 
state they aim to recover the nonblocking state rapidly 
by equalizing the transmitting and computing resource 
across layers. Lyu et al. [54] address task admission 
and resource allocation by minimizing the energy con‑ 
sumption with their EROS scheme. The initial problem 
is simpliϐied to an integer programming problem by pre‑ 
admitting tasks that have to be ofϐloaded to meet their 
deadlines. Then it is resolved with a quantiϐied dynamic 
programming algorithm. Haber et al. [77] provide a 
resource allocation scheme for UAV‑assisted MEC, taking 
into account the UAV positioning and reliability.

4.4.3 Game theory
Game theory methods are adapted to systems where each 
node has individuals’ interests. For example, when there 
is a service provider aiming at maximizing its revenue 
and autonomous devices, each wanting to complete their 
tasks as quickly as possible. Theses methods can propose 
a consensus in such systems in a decentralized manner.
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Josilo and Dán [67] provide a resource allocation model 
where edge services providers and devices interact as a 
Stackelberg game. The devices are the leaders and want 
to minimize their tasks completion time by choosing to 
which edge server they ofϐload their tasks and through 
which access point. Sardellitti et al. [74] use matching 
theory to assign users to a MEC server and their 
communication and computational resources, according 
to the users’ preferences.

4.4.4 Learning methods
Learning methods learn from the past and/or from the 
environment. They are more rapid than classic methods, 
but can be less precise. Each one possesses its own ad‑ 
vantages or inconvenient.
Evolutionary Computation (EA) EA is inspired by 
biology. Many algorithms exist under EA and are 
more or less adapted to certain problems with their 
own pros and cons. For example, genetic algorithms 
tend to not be trapped in local optima [99, 100] while 
being hard tuning it to problems. Thus, Wan et al. [100] 
propose a different use of EA for task‑driven resource 
assignment, including hybridization of different EA 
algorithms. Li et al. [99] use a genetic algorithm to 
minimize completion time for mo‑ bile devices and an 
edge server.
Reinforcement learning Allocation resource schemes 
can use a reinforcement learning method. More speci-
fically a Q‑learning method can be used. It has for 
advantage to be model‑free and adapt itself to a 
stochastic environment. It is so a solution for dynamic 
context, that we retrieve in mission‑critical MEC 
scenarios [70]. Also, we can tune it to take more or less 
long‑term decisions. Wang et al. [73] propose a 
multi‑stack reinforcement learning algorithm for 
resource allocation in mobile edge computing. They use 
multi‑stack to take advantage of a historical resource 
allocation scheme and avoid learning the same scheme. 
However, a disadvantage of reinforcement learning is 
the Q table. It will be excessively large for large‑scale 
systems due to many different possible states, 
rendering its storage and the Q value search complex 
[53, 69]. Alternatively, we can use a deep rein‑ 
forcement learning method, with a deep neural network 
to estimate the Q value for an action and a state. But we 
lose the “model‑free” properties of the Q‑learning, and 
need to train a model. Chen et al. [70] propose a deep 
reinforcement learning for CoMEC network, where col‑ 
laborative edge servers are connected. Li et al. [53] use 
deep reinforcement learning for allocating computational 
resources of a MEC server to mobile devices by minimi-
zing execution delay and energy consumption. Wang 
et al. [69] introduce a deep reinforcement learning 
based resource allocation algorithm to minimize the 
computing and routing delay in edge networks. They 
also consider balancing the resource allocation to 
reduce local‑ ized pressure on the network and improve 
delays. Yang et al. [56] propose a deep reinforcement 
learning agent for the trade‑off between downlink data 

reliability and delay by CPU allocation and data 
blocklength in ultra‑reliable low latency commu-
nication networks. The Q‑learning method is suitable 
when there is not much communication or interaction 
with other agents in the system, i.e., in MEC 
environment the mobile devices. However, if we assume 
that the mobile devices interact and are intelligent 
agents, Q‑learning lacks an adaption mechanism to the 
other agents’ (mobile devices) actions. Feng et al. [51] 
employ a WoLF‑PHC reinforcement learning for resource 
allocation to reduce energy consumption and prioritize 
tasks in mission‑critical applications. The WoLF‑PHC al‑ 
gorithm adapts the learning rate by learning slower when 
we “take the ascendant” to let the other agent the time to 
adapt its strategy and reach a whole system equilibrium. 
Conversely, the learning rate will be faster when the other 
agent takes the ascendant to “catch them up” [101]. 
Deep neural network Li and and Lv [48] use a Deep Neu‑ 
ral Network (DNN) for resource allocation to minimize 
the network energy consumption. They train DNNs to 
simulate the behavior of a sequential quadratic program‑ 
ming algorithm. They train a DNN with a ϐixed number 
of devices in the data set and the other with a random 
number of devices, rendering the latter one more ϐle-
xible than the specialized one. Thus, the DNN will 
take less time to solve the problem with an 
approximation of the optimal result. However, the 
environment is highly dynamic and leads various 
uncertainties. A training set might be under‑
representative of the complex system and the trained 
DNN is not ϐlexible enough to tackle some situations as it 
does not adapt on run [69]. Moreover, it can be difϐicult 
to ϐind good data beforehand.

5. MOBILE RESOURCE DEPLOYMENT
When MEC servers are mounted on UAV or robots, they 
are suited to cover the needs of mobile users in temporary 
events or emergency responses. Indeed, ϐixed resources 
might instead be too costly, too inϐlexible to deploy or just 
needed for a limited time. Particularly in emergency re‑ 
sponses and post‑disaster management, deploying tem‑ 
porary additional computing resources can help rescuers, 
victims and wireless devices processing critical tasks with 
critical delay constraints. However, mobile edge resource 
deployment comes with many challenges.
For deploying one mobile resource, we have to optimize 
its trajectory between a starting and an ending point to 
serve the mobile devices by minimizing the delay [104] 
or the system energy consumption [83, 78, 86]. For de‑ 
ploying multiple mobile resources, we need to optimize 
their numbers, i.e minimizing their number while satis‑ 
fying the goal, their locations and associate them with 
mobile users. Indeed, with multiple mobile resources, 
we do not have a starting and ending point so we cannot 
plan the entire trajectory but rather compute the next lo‑ 
cation point. Goals can be minimizing energy consump‑ 
tion [92], minimizing number of deployed nodes [82] or 
balance the workload between resources [108]. Also, the 
deployment scheme is often joint with another problem‑
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Table 3 – Review of architectures and goals used in mobile resource deployment for MEC

Architecture Goals Ref Deployment type
Number of UAVs

to deploy
UAVs

locations
UAVs

trajectory

One UAV

Fixed nodes

Min energy

[83] x
[78] x

Mobile users

[87] x
[102] x
[86] x
[103] x

Min Delay [104] x
Max Computation Rate [105] x
Max Ofϐloaded Bits [106] x

Multi‑UAVs

Fixed nodes
Max Coverage [107] x
Load balancing [108] x
Min UAV number [82] x x

Mobile users

Min Energy [92] x
[109] x

Min Delay and Energy [88] x
Max Ofϐloaded Tasks [110] x
Max Served Tasks [111] x

Max Computation Efϐiciency [89] x
Nb of served resquests [77] x

atic: tasks scheduling, ofϐloading decision, CPU optimiza‑ 
tion, i.e what amount of CPU a task needs, resource or bits 
allocation. We summarize reviewed papers for this part in 
tables 3 and 4, classifying them depending on their main 
objectives and undertaken constraints.

5.1 System modelling
One UAV deployment Generally, when we consider one 
UAV deployment, we assume that it starts and ϐinishes its 
trajectory at predeϐined locations. Like that, the UAV does 
cycles in which devices can ofϐload their tasks [102, 83, 
78, 87, 102, 106]. The problem is then to study the path 
planning in theses cycles. The cycle is separated in time 
slots, where the UAV is considered static, as well as de‑ 
vices when they are mobile [83, 78, 87]. In general, in 
these system the area covered is not large [86], and thus 
these works are convenient for short term deployment 
and low‑scale applications or to help ϐixed servers in short 
areas. We name this deployment type as trajectory in 
table 3.
Multi‑UAVs deployment Deployment of multiple UAVs 
can cover large areas and be used in large‑scale appli‑ 
cations. It is a complex challenge that is highly coupled 
with the resource allocation scheme as they depend on 
each other. Previous research considers different sce‑ 
nario for multiple UAVs deployment. [107] and [109] as‑ 
sume a three layer MEC system, with a device layer, a 
UAV layer and ϐixed ground MEC servers. Islambouli and 
Sharafeddine [82] study UAVs swarm deployment with 
some UAVs acting as relays for multi‑hop ofϐloading when 
the transmission power is too low [82]. Some other works

consider UAVs deployment jointly with other problems 
like tasks scheduling [92], user association and resource 
allocation [89].

5.2 Deployment methods
Like resource allocation, the deployment of UAV is often 
associated with a joint problem. In these cases, the prob‑ 
lem will be too complex to address directly. Thus, works 
tend to decompose the initial problem into sub‑problems 
and resolve them iteratively, where the deployment part 
is resolved with the results of the previously resolved joint 
problems [89, 102, 78]. In the next subsections, when au‑ 
thors employ iterative algorithms, we will focus on the de‑ 
ployment part.

5.2.1 Convex optimization
Convex optimization allows ϐinding an optimal solution 
to a relatively simple problem. It can be sufϐicient in a 
problem with one UAV, but not for a more complex prob‑ 
lem, like with multiple UAVs. Xiong et al. [87] use the CVX 
solver to solve a UAV trajectory along with ofϐloading and 
bits allocation. Li et al. [86] also propose a convex func‑ 
tion solvable by a CVX solver in their two‑stage alterna-
ting algorithm for UAV trajectory and bits allocation.

5.2.2 Successive Convex Optimization (SCA
method

Non‑convex optimization problems are frequent in UAVs‑
enabled MEC due to lots of constraints and parameters.
Thus, the Successive Convex Optimization (SCA) method
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Table 4 – Review of methods used in mobile resource deployment for MEC

Ref Method Joint problematic Main
constraintsBits

allocation Scheduling Ofϐloading Power
allocation

CPU
optimi‑
zation

Resource
allocation

User
association

[83]
Lagrangian duality,
Successive convex
approximation

x x x
Power and
computation
capacities

[78]
Successive convex
approximation,

Decomposition and
iterative algorithm

x x x
Energy devices
consumption’s,

Trajectory constraints

[87] Decomposition and
iterative algorithm x x Task deadlines,

Energy budget

[102]

Dinkelbach method,
Successive convex
approximation,

Decomposition and
iterative algorithm

x Computing capacities,
Mechanical constraints

[86] Decomposition and
iterative algorithm x Energy budget,

Data Causality

[104]
Penalty

dual‑decomposition
method

x x Residual battery,
Energy budget

[105] Decomposition and
iterative algorithm x UAV speed

[109] Decomposition and
iterative algorithm x Devices

coverage
[88] Successive convex

approximation x Computing
capacities

[103]
Block successive
upper‑bound

minimization algorithm
x x

Latency constraints,
Computation

and power capacities
[110] Greedy algorithm x Computation

capacity
[111] Greedy dispatching

algorithm
Communication range,

UAVs number
[89] Decomposition and

iterative algorithm x x UAV Velocity,
Obstacles

[106] Decomposition and
iterative algorithm x x UAV battery

and velocity
[107] Deep Reinforcement

Learning x x ‑

[108] Differential
Evolution algorithm

x Computation
capacities

[92] x x x Computation
capacities

[82] Meta‑Heuristic x
Computation capacities,

Time and
power constraints

[77] SCA‑based
iterative algorithm x x

UAV battery,
Tasks reliabiltiy,

Latency requirements
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resolve these problems by approximating them into con‑ 
vex problems iteratively [112]. This method will produce 
a local optimal solution in a parallel and distributed man‑ 
ner. Some work employs the SCA method to resolve UAV 
trajectory [105, 83, 89, 78] and UAV position [88, 77] 
problems. However the resulting optimizer can have a 
high computational complexity and does not respond to 
the real‑time requirement of the system [78].

5.2.3 Greedy algorithms

Greedy algorithms are known heuristics solutions for 
coverage problems [113], such as in UAV deployment. 
They propose a good estimation of the global optimal 
solution to complex problems. Chen et al. [110] use a 
greedy algorithm to deploy UAVs to locations and 
associate their devices’ tasks to maximize ofϐloaded tasks. 
Wang et al. [111] use a greedy algorithm to dispatch 
UAVs, considering users’ hotspots, for maximizing the 
number of processed tasks.

5.2.4 Population‑based meta‑heuristics

Population‑based meta‑heuristics search for the best so‑ 
lutions in a set of candidate solutions. It starts with a ran‑ 
dom population of solutions, then merges, keeps or elimi‑ 
nates each one in each iteration to obtain the most suited. 
They have the advantage to avoid local optima [114] at 
the cost of a higher complexity than a classic optimization 
method. Thus, it can be hard to employ them for online 
solutions. Besides, each algorithm possesses its own ad‑ 
vantage and inconvenience.
Evolutionary computation Wang et al. [92] use a Diffe-
rential Evolution (DE) algorithm to decide UAV 
location. Their problem possesses a mixed decision 
variables and is a variable‑length, posing problem to use 
efϐiciently a DE algorithm, so they propose a new 
encoding where each UAV in an individual and the 
population is a deployment solution. Yang et al. [108] 
also use a DE to deploy UAVs at a location to balance the 
workload among them to avoid bottleneck in the 
network.
Ions motion optimization Islambouli and Sharafed‑ 
dine [82] use ions motion optimization [114] to choose 
the number of UAVs and their positions, along with de‑ 
vice associations and computation allocations. The algo‑ 
rithm models the population of possible solutions that are 
anions and cations and choose an efϐicient solution itera‑ 
tively. The work [114] shows that ions motions optimiza‑ 
tion tend to avoid local optimum and few tuning parame‑ 
ters, instead of other population‑based algorithms.

6. OPEN ISSUES AND CHALLENGES

In this section, we discuss some still open issues and re‑ 
lated challenges.

6.1 Real‑time resource allocation and deploy‑
ment

MEC application environments evolve and change rapidly, 
it is therefore essential to evaluate and predict diverse as‑ 
pects of the application and network to respond appro‑ 
priately. For the resource allocation scheme, the chan-
ging trafϐic load and channel conditions can hinder the 
network, creating bottlenecks and signiϐicantly impede 
the delay. For deployment of mobile resources, user 
mobility is important to take into account to position the 
resource at the proper place and taking account of the 
travel time to be sure they are available when needed. 
Many other aspects can impact the resource management 
scheme. Classic machine learning mechanisms may help 
predict these aspects, but they have to be meticulously 
modelled as historic data may not match the application 
due to the challenging and very fast changing 
environment.

6.2 Security and privacy
The security and privacy questions in MEC are sensi‑ 
tive because of the distributed and wireless nature of the 
paradigm. Also, in mission‑critical applications, it is even 
more the case as the information can be sensitive and 
malicious attackers can take advantage of the situation 
or make it worse. The ϐixed and wearable sensors are 
prone to network attacks on their wireless communica‑ 
tion. The attackers can jam the communication, rende-
ring them unreliable or listen to the conϐidential data. 
The cloud is generally more secure than the other 
layers of MEC, but privacy is to be considered as we 
transmit sensitive data to the Internet. MEC needs 
proper security and privacy mechanisms to be reliable in 
sensitive situations.

6.3 Green MEC
Several pieces of work focus on reducing the energy con‑ 
sumption of the devices, as it is important to preserve 
their battery. However, they may not consider the 
energy consumption on the overall application, i.e., the 
energy consumption of the edge and cloud. It is 
indispensable to consider it globally to achieve green 
MEC, therefore minimizing pollution and reduce costs. 
Further, it is even more the case with mission‑critical 
applications where resources may be on mobile units 
and so battery‑constrained.

6.4 MEC experimentation and test beds
The majority of the reviewed work validate their work 
by simulation. Although there are good simulation tools, 
experiments are valuable to assess a scheme in real si-
tuations. The prevalence of simulations is 
undoubtedly due to the lack of tools, especially test beds 
for edge com‑ puting. The SILECS1 platform proposes a 
large‑scale distributed infrastructure from sensors to 
large data centers, thus making it a possible tool for MEC 
experimentation.

1https://www.silecs.net/
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7. CONCLUSION
In this paper, we have reviewed mission‑critical and time‑ 
critical applications using MEC. We present their architec‑ 
tures and the edge services they use. We then reviewed 
work on MEC resource allocation, highlighting their mod‑ 
elling, goals and methods and do the the same for mobile 
resource deployment schemes. We ϐinish by providing 
some open challenges and research direction. With this 
work, we hope to assist the researcher designing MEC re‑ 
source management schemes that ϐit highly dynamic ap‑ 
plications, like mission‑critical and time‑critical applica‑ 
tions, and fully leveraging MEC potential.
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des recherches (HDR) in 2011
from Université Lille 1. She
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