
SEAMLESS COMMUNICATION TECHNIQUES IN MOBILE CLOUD COMPUTING: A SURVEY

Pagoui Lagabka Constant1, Ahyoung Lee1, Kun Suo1, Donghyun Kim2
1Department of Computer Science, Kennesaw State University, Marietta GA 30060, USA, 2Department of Computer

Science, Georgia State University Atlanta GA 30303, USA

NOTE: Corresponding author: Ahyoung Lee, alee146@kennesaw.edu

Abstract – Achieving seamless communication and smooth service provision between the cloud and enduser’smobile device
is one of the main challenges existing in mobile cloud environments. Mobile Cloud Computing (MCC) allows cloud environ‑
ments to mitigate resource limitation problems for mobile devices. The most popular mobile devices such as smartphones,
autonomous vehicles, drones, and other smart electronic equipment are in constant motion and frequently change their point
of connection (base station or edge) to mobile computing networks. In these situations of mobility, the data being transmit‑
ted, and the services being provided to the device should not be interrupted as the proper function of the device depends on
these services. Applications that rely heavily on data and services stored in the cloud environment should be available even
when the device hasmoved from one pole to another. Various existing generic surveys emphasize important solutions to some
of the challenges faced in MCC. Different solutions were proposed to achieve seamless communication in MCC, presenting the
taxonomy of the interworking and mobility techniques and their possibilities. However, they have not provided a clear evalu‑
ation of MCC techniques for achieving seamless communication and service provision, and have not taken into consideration
current technological advances such as 5G, femtocell, etc. In this paper, we provide a survey of the different solutions proposed
to achieve seamless communication in MCC by taking current technological advances into account. Furthermore, some short‑
comings associated with the presented methods are outlined, along with the current issues and research challenges faced
in MCC. However, for the purposes of data protection and security, previously proposed schemes already achieve the goal of
protecting users’ attribute privacy and they have the same access policy; some can even achieve full security, but they are just
limited in decryption efϔiciency.
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1. INTRODUCTION
Mobile CloudComputing (MCC) is built based on concepts
of cloud computing and mobile computing as the combi‑
nation of cloud computing technologies with mobile de‑
vices to bring rich computational resources and services
to mobile users, network operators, and cloud comput‑
ing providers. The exponential growth and expansion of
mobile networks with an approximate 12.3 billion of in‑
terconnectedmobile devices throughout theworld [1] de‑
mandmore than just conventional network capabilities to
operate ϐlawlessly. There is an obvious and urgent need
to maintain seamless communication between the user
equipment and the edge cloud while the user is mobile
and guaranteeing the user’s data security and privacy.
Also, with the deployment of ϐifth generation, 5G, wire‑
less networks, which is expected to lead the mobile net‑
working technology and the proliferation of IoT devices,
most of the mobile network’s parameters have changed
as follows: bandwidth has increased, throughput has got‑
ten better, latency has been reduced, and a wider range
coverage is now provided. With these changes comes a
range of challenges, such as adapting existing solutions
and techniques formaintaining seamless communication,
to the new MCC environment and providing high avail‑
ability and reliability froma rich volumeof computational
resources.

Several techniques to provide seamless communication
in MCC environments have been introduced over the
years. And then, there are various existing generic sur‑
veys that emphasize the importance of MCC, the different
approaches to achieve seamless communication in MCC,
and the challenges and the taxonomy for the classiϐication
of the interworking and mobility techniques. However,
they have not provided a clear evaluation of MCC tech‑
niques for achieving seamless communication and ser‑
vice provision, and have not taken into consideration cur‑
rent technological advances.
Although current research advances in networking have
provided a plethora of solutions, achieving seamless com‑
munication between the user equipment (UE) and MCC
environments remains one of themain challenges inMCC.
Most mobile devices such as smart phones, autonomous
vehicles, drones, and other smart electronic equipment
are in constant motion and may lose connectivity to the
edge cloud for a short amount of time changing their
point of connection (base station or edge). In such situ‑
ations, the data being transmitted, and the services being
provided to the device should not be interrupted as the
proper function of the device depends on these services.
Unfortunately, seamlessly executing computation‑
intensive applications in MCC environments is still com‑
plex. Several factors must be taken into consideration in
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order to achieve efϐicient and seamless communication
in MCC; besides, the security and privacy of data must be
maintained as well. The main contribution of this study
is to present an evaluation of the existing techniques for
seamless communication in MCC, a classiϐication of the
different solutions, and future directions for research by
taking into account current technological advances.
The rest of this paper is structured as follows. Section 2
presents background information including an architec‑
ture overview, performance metrics and resource man‑
agement ofMCC. Section 3 describes the relatedwork and
Section 4 outlines existing techniques and solutions for
achieving seamless communication. In Section 5, we dis‑
cuss the challenges and future research directions; then,
the conclusion is given in Section 6 of the paper.

2. BACKGROUND INFORMATION

2.1 Overview of mobile cloud computing ar‑
chitecture

A mobile cloud computing environment consists of a
cloud server structure andmobile network structure. Mo‑
bile UEs communicate with the cloud server through a
mobile network. Mobile device data and services are
migrated to the edge cloud to improve the performance
of the real‑time intensive mobile applications. For the
cloud to achieve smooth service provision, a very well de‑
ϐined MCC architecture is needed. Furthermore, achiev‑
ing seamless communication in MCC environments re‑
quires an architecture that allows effortless computation
ofϐloading of data and computation‑intensive tasks on the
edge servers.
The MCC stakeholders ecosystem involves different par‑
takers such as mobile users, network operators, Internet
Service Providers (ISP), application services and Cloud
Service Providers (CSP). These partakers are all intercon‑
nected through several networks from the edge to the
cloud’s data centers. Mobile users are the consumers that
represent the mobile terminal of the cloud; network op‑
erators and ISP provide network infrastructure and data
services to access the cloud environment, that is the In‑
frastructure as a Service (IaaS) part of the cloud. Appli‑
cation developers and CSP offer a software licensing and
delivery model in which users purchase their software li‑
censes on a subscription basis anduse the software on the
platform. Such business model is known as Software as a
Service (SaaS) [2].

MCC Networking: There are two ways through which
mobile devices can access cloud services, either via a Mo‑
bile Network (MN) or Access Points (AP).

• Mobile Network (MN): It provides a connection be‑
tween the mobile device and the cloud environment
through base stations or satellites. It has evolved
from the GSM (2G Global System for mobile commu‑
nications) that uses circuit‑switched with ϐixed slots

allocated for transmission over the air, to 3G uni‑
versal mobile telecommunication systems, 4G Long
Term Evolution (LTE) and 5G core network [3]. The
mobile network architecture consists of UE or a
mobile device, radio access network, core network,
inter‑network and radio channel. In [4], UEs can be
connected with multiple links through mobile net‑
works and/or satellite; if a satellite module is not
integrated into the UE, then external satellite com‑
munication devices are used. MNs are linked to the
Internet, they also provide Internet access to their
users. Thus, the UE receives cloud services through
the Internet.

• Access Point (AP): APs are edge devices that are con‑
nected to Internet service providers and provide an
Internet connectivity to mobile devices through Wi‑
Fi. Once mobile devices are connected to the Inter‑
net, they can access cloud services. APs are com‑
monly used to access a cloud as they provide a Wi‑
Fi‑based connection, which has lower latency com‑
pared to MN.

FromHoangT. Dinh et al. [2], the communication between
the UE and cloud environment in network systems prior
to 5G and LTE is done as follows. The UE’s requests and
information are transmitted to the processors of the data
centers through the edges that are connected to servers
responding to mobile network services’ requests. Ser‑
vices such as authentication, authorization, speciϐic band‑
width and pay‑as‑you‑go‑based Internet services are pro‑
vided to mobile users by mobile service operators or In‑
ternet service providers. Requests are then delivered to
the cloud through the Internet; these requests are pro‑
cessed by controllers in the cloud to providemobile users
the appropriate services.
Fig. 1 illustrates the difference between cloud computing
communications as a traditional cloud computing archi‑
tecture in Fig. 1(a) and as a hierarchical 5G‑enabled MEC
architecture in Fig. 1(b). The traditional cloud computing
paradigm faces substantial challenges, such as great com‑
munication overhead or long latency, due to the limited
computational capability of IoT devices and geographi‑
cally remote servers from the cloud, which is hard to sat‑
isfy the requirement of delay‑sensitive tasks or resource‑
constrained IoT sensing devices. To solve those prob‑
lems in traditional cloud computing with mobile users,
the edge cloud was proposed as an extension of cloud
computing. In this environment, the edge computing net‑
work was designed with cellular and other mobile de‑
vices, which enables computation and communication re‑
sources to be dispersed to the edge network closer to the
end users, to provide efϐicient and low‑latency services.
Moreover, 5G mobile networks present slightly different
architecture and functionality, such that edge devices in‑
cluding base stations and wireless access points provide
rich computation and storage resources that are sufϐicient
to enable ubiquitous mobile computing [4]. 5G systems
support communications, computing, control and content
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Fig. 1 – Overview of cloud communications: (a) A traditional cloud computing architecture provides access to resources between remote servers in the
locally central cloud and the end users. (b) A hierarchical 5G‑enabledMEC architecture provides access to resources to the end users from remote serves
both in the locally central cloud and more than one mobile‑edge clouds.

delivery for real‑time and computation‑intensive applica‑
tions with Virtual Reality (VR) and Ultra‑High Deϐinition
(UHD) video features.

Mobile Edge Computing: Mobile Edge Computing
(MEC), also referred to as multi‑access edge computing,
is a standard that deϐines a network architecture inwhich
cloud computing capabilities and services are enabled at
the edge of the mobile network. When cloud services are
provided closer to the mobile UE, latency and network
congestion are reduced and the applications running on
UE perform better. The design of mobile edge computa‑
tion networks is conceptualized by taking into considera‑
tion the aftermath of both communication and computa‑
tion. Edge cloud servers are implemented directly at base
stations using a generic computing platform for allowing
the execution of applications closer to the end‑user equip‑
ment; they act as cache servers as well as transcoding
servers with a given storage capacity and computing abil‑
ities [5]. Themore detailed important roles of MEC archi‑
tecture in 5G networking systems are described in [6] and
its main services can be summarized as shown below.

• Storage: Since the storage capacity of UE is limited,
the edge cloud handles a large amount of delay sen‑
sitive data generated by UEs in a real‑time manner
as accessing cloud computing systems directly in‑
creases latency.

• Computation Ofϔloading: Computational tasks and
processes requested by UEs are ofϐloaded from the

UE to the edge cloud; MEC integrates computing sys‑
tems that provide on‑site computation and informa‑
tion processing, which help to reduce latency and
achieve real‑time responses from the cloud. Com‑
putation ofϐloading provides computation solutions
to data intensive applications that require high com‑
putational processes. The following parameters are
considered when performing tasks or data ofϐload‑
ing: the transmission status between the UE and its
edge server and the current edge server load status
[7].
Tasks in MCC eligible for ofϐloading can be classi‑
ϐied into two categories: computation‑intensive and
data‑intensive. Computation‑intensive tasks are the
type of tasks that need heavy computations with rel‑
atively fewer amounts of data transfers. The ofϐload‑
ing decision of these tasks depends on the amount
of required computations. Data‑intensive tasks are
the type of tasks that need a large amount of data
transfers. These ofϐloading tasks to the MCC envi‑
ronment are vital for the performance of the applica‑
tions, and the ofϐloading decision of these tasks heav‑
ily depends on the network bandwidth, since a net‑
workwith lowerbandwidthwill increase latency and
waste the UE energy [8].
This can be observed in the following mathemati‑
cal relation, by considering a wireless access base‑
station 𝑠, which can be either a Wi‑Fi access point,
femtocell, or macrocell in cellular networks.
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In [9], the uplink data rate 𝑅𝑖(𝑎) for computation of‑
ϐloading of mobile device user 𝑖 is deϐined for the
computation ofϐloading decision 𝑎𝑖 ∈ {0,1}, where
𝑎𝑖 = 1 if user 𝑖 chooses to ofϐload the computation to
the cloud, otherwise 𝑎𝑖 = 0 if user 𝑖 decides to com‑
puter its task locally on themobile device. Hence, the
uplink data rate 𝑅𝑖(𝑎) is

𝑅𝑖(𝑎) = 𝑊𝑙𝑜𝑔2(1 + 𝑃𝑖𝐻𝑖,𝑠
𝑤𝑖 + ∑𝑚∈𝑁\{𝑖}∶𝑎𝑚=1 𝑃𝑚𝐻𝑚,𝑠

),

(1)
where 𝑊 is the channel bandwidth, 𝑃𝑖 is the user’s
transmission channel, 𝐻𝑖,𝑠 is the channel gain be‑
tween the mobile device user 𝑖 and the base station
𝑠, and 𝑤𝑖 is the background interference power.
Besides, the maximum rate of channel capacity 𝐶 in
an AdditiveWhite Gaussian noise (AWGN) channel is
deϐined in [10] as:

𝐶 = 𝐵 𝑙𝑜𝑔2(1 + 𝑃
𝑁0𝐵 ), (2)

where𝐵,𝑃 and𝑁0 are the channel bandwidth, trans‑
mit power, and power spectral density of the noise,
respectively. Thus, providing enough bandwidth for
data‑intensive tasks is vital in order to minimize en‑
ergy consumption and latency in MCC networks.

• Data Analysis: Data gathered from UEs can be pro‑
cessed and analyzed at the edge level to extract es‑
sential information. This reduces the latencyof send‑
ing and receiving data to the cloud for analysis.

• Security: Edge computing enhances cloud environ‑
ment’s security at the edge of the networks through
micro‑service management, hardware‑assisted,
caching systems, Software Deϐined Networking
(SDN) and the use of machine‑learning‑based tech‑
niques. Several techniques have been proposed to
protect vulnerable systems against various attacks
such as Distributed Denial of Service attacks (DDoS),
wireless jamming, spooϐing and man‑in‑the‑middle
attacks.
Security solutions that apply reinforcement learn‑
ing techniques to provide secure ofϐloading to the
edge nodes were proposed by [11]. A deep learning‑
based physical layer authentication that uses spa‑
tial heterogeneity ofwireless channelswas proposed
by [12], and their techniques distinguishmulti‑users
such as legitimate edge nodes from attackers and
malicious nodes without a test threshold.

In order to improve performance of mobile cloud com‑
puting, edge computing can be enabled in 5G networks
through SDN, network function virtualization, massive
MIMO, dynamic radio technologies access, D2D Com‑
munication, etc. However, the resources and services
provided by the edge cloud are limited and can only
support a ϐinite number of devices.

Layers of the MCC Architecture: MCC architecture in‑
cludes ϐive main layers: the application layer, the per‑
ception layer, the network infrastructure layer, the Inter‑
net communication layer, and the computation layer [13].
The application layer correlates different mobile applica‑
tions; it demands high computational power and is re‑
sponsible for delivering end user resource‑demanding
services. The perception layer handles the physical con‑
nection with mobile devices; it relies on the network in‑
frastructure layer to establish a smooth connection to ac‑
cess more computation and cloud applications services.
The network infrastructure layer corresponds to the layer
that handles the conϐiguration of the physical mobile net‑
work. Besides, it serves as a connection gateway from
the perception layer to the computation layer and rep‑
resents the cloudlet infrastructure, which is used as an
edge’s link between UE and the cloud environment. The
Internet layer coordinates the interconnectivity and com‑
munication of themobile devices and the Internet; it plays
the role of the link using Transmission Control Protocol
(TCP), User Datagram Protocol (UDP) and Internet Proto‑
col (IP) suite to connect mobile devices to the cloud en‑
vironment. The computation layer is associated with the
computation phase for ofϐloadedmobile tasks ‑ it includes
massive storage resources, servers and task ofϐloading
managers and is in charge of decision making and data
analysis/other real‑time services provided to the UE. An
illustration of the ϐive‑layers architecture for MCC is pre‑
sented in Fig. 2.

Fig. 2 – The layered architecture of mobile cloud computing.

2.2 Performance metrics of MCC
Several parameters should be considered when evaluat‑ 
ing the performance of MCC. Performance metrics are 
determined based on cloud service providers and end 
users’ needs. The end user needs seamless network 
connectivity, reliable and uninterrupted service provi‑
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sion while moving around, and faster responses from
the cloud servers. On the other end, the cloud service
provider needs to meet user’s requirements while it pro‑
vides fast and reliable services and reduces the overall
cost of servers and infrastructures. Therefore, the follow‑
ing metrics are major determinant factors of MCC envi‑
ronment performance.

Latency: Latency is the cause of delays noticed by end
users. There are several techniques to reduce latency
from the UE point of view, among which we have dis‑
played local animations, background loading to hide la‑
tency or pre‑fetching and parallel connections on multi‑
ple threads. Latency occurs as well within the MCC en‑
vironment, delays can arise anywhere from the edge to
the data centers. Besides, there are techniques for reduc‑
ing the average end‑to‑end delay in theMCC environment
including machine learning and adaptive priorities based
onwhen the request was initiated. The average latency of
a device 𝑖 to upload its computation task to a base station
𝑗 is deϐined by [14]

𝐿𝑡𝑟𝑎𝑛,𝑑
𝑗,𝑖 = 𝐿𝑗,𝑖 ∗ 𝑇

𝑅𝑗,𝑖 ∗ 𝜏𝑗,𝑖
, (3)

where 𝐿𝑗,𝑖 is the input data‑size (in bits) for processing
the computation task of the 𝑖 − 𝑡ℎ device, 𝑇 is the length
of one Time‑Division Multiple Access (TDMA) frame, 𝑅𝑗,𝑖
is the expected channel capacity, and 𝜏𝑗,𝑖 is the time slot
resource for each device.

Energy Consumption: Network energy consumption
in UEs is mainly observed during task ofϐloading, task ex‑
ecution or computation. If an edge cloud, associated with
the base station to which the UE is connected, executes
its UE’s task, then the computation energy consumption
is proportional to the changed capacity of the edge cloud.
If the central cloud executes the task, then the consumed
energy can be deϐined by the energy consumption of the
cloud which the edge cloud is associated to[15]. The en‑
ergy consumed by a node 𝑖 is deϐined by [16]

𝐸𝑐(𝑖) = 𝑁𝑇 ∗ 𝐴 + 𝑁𝑅 ∗ 𝐵, (4)

where 𝐸𝑐(𝑖) is the absorbed energy by the node 𝑖 after a
given time,𝑁𝑇 and𝑁𝑅 are the number of transmitted and
received packets, respectively, 𝐴 and 𝐵 are constant fac‑
tors based on the energy model.

Bandwidth Utilization: Bandwidth is the measure of
the capacity of a channel to transfer data in a network.
The wider or greater the bandwidth, the greater the
amount of data that can be transferred and the number
of users that can be handled by the network. Therefore,
it is vital to maintain high bandwidth in order to achieve
seamless communication inMCC networks. The available
bandwidth of a channel 𝑖 is deϐined by [10]

𝐵𝑖 = 𝑏𝑖(𝑡)
∑𝐼

𝑖=1 𝑏𝑖(𝑡)
(𝐵𝑡𝑜𝑡 − 𝛽), (5)

where 𝑏𝑖 is the bid vector given by the gateway, 𝐵𝑡𝑜𝑡 is the
total maximum bandwidth in the Cloud Service Provider
(CSP), 𝛽 is the reserved bid for the CSP, and 𝐼 the total
number of gateways.

Reliability: It is the probability that a mobile device
will perform as intended, so that its functions are satis‑
factorily executed for a given period of time under speci‑
ϐied operating conditions in MCC. Thus, the reliability of a
MCC setting is deϐined by the equation below:

𝑃 =
𝐾

∑
𝑖=0

𝜋 ∗ (1 − 𝑃(𝑁 + 𝑖 − 𝐾, 𝑀, 𝑖)), (6)

where
𝑃 (𝑁 + 𝑖 − 𝐾, 𝑀, 𝑖) = 𝐶𝑀

𝑖
𝐶𝑀

𝑁+𝑖−𝐾
, (7)

with
𝐶𝑀

𝑖 = ( 𝑖
𝑀) = 𝑖!

𝑀!(𝑖 − 𝑀)! (8)

and

𝐶𝑀
𝑁+𝑖−𝐾 = (𝑁 + 𝑖 − 𝐾

𝑀 ) = (𝑁 + 𝑖 − 𝐾)!
𝑀!(𝑁 + 𝑖 − 𝐾 − 𝑀)! (9)

for 𝑖 > 𝑀 and 0otherwise. Here,𝑁 is thenumberof avail‑
able paths, 𝑀 is the number of actually used paths, 𝐾 is
the maximum number of failure paths, and 𝑖 the number
of failed paths [17].

Service Availability: It refers to the state of being used
or obtained, such that MCC availability is directly propor‑
tional to its number of active edges and BS. It is essential
for every MCC systems and mandatory for cloud service
providers. Besides, it is actually one of the key factors
to procure seamless data exchange in MCC environments,
thus there can be interruptions of services or ϐlow of data
if the system is not 100% available.

Quality of Service (QoS): It is the measurement of the
response of a system to different requirements, stan‑
dards, and objectives expected by end users. Thus, it de‑
notes the level of performance, reliability, and availabil‑
ity offered by a system. Moreover, QoS is sometimes as‑
sociated with Quality of Experience (QoE), which is de‑
ϐined by techniques such as Mean Opinion Score (MOS),
Net Promoter Score (NPS) or Standard deviation of Opin‑
ion Scores(SOS).

Security: Most of mobile devices contain end‑user per‑
sonal information such as pictures, a list of contacts, fre‑
quent locations, payment information, etc., which are tar‑
geted by attackers. Unfortunately, most mobile devices
are unprotected and vulnerable due to their limited re‑
sources in terms of computation and storage, so that they
cannot run powerful protection systems.
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2.3 Resource management and allocation in
mobile cloud computing

The cloud model consists of three service models ac‑
cording to the NIST cloud computing reference architec‑
ture [18]: Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), and Software as a Service (SaaS).
Computing resources provided by the cloud systems are
brought closer to end users through architectural‑based
and implementation‑based techniques, such that these
resources include computation power, storage, network
infrastructure, data partitioning and scaling, security, and
location through IaaS. Other resources are managed by
PaaS such as computing platform, which includes the op‑
erating system, programming language execution envi‑
ronment, database, and web server. Applications and
software are also provided as resources through the SaaS
branch. From these cloud computing services, cloud com‑
puting resources can be classiϐied in two categories: data
center resources including storage, network bandwidth
and available servers, and computing resources provided
directly to mobile devices. Data centers comprise mul‑
tiple branches for resource allocation and optimization,
while computer resources include super computers, clus‑
ters, virtual machines, and operation system disk images.
Therefore, we can deϐine a resource allocation as the pro‑
cess of allocating available cloud resources to variousmo‑
bile applications running in the cloud environment. It is
performed with the objective of minimizing the costs of
executing tasks and performing data exchange [19].

3. RELATEDWORK

Several survey research papers have been published in
the domain of MCC regarding the overall architectures
and technical approaches to reduce latency, improve
security, and provide reliable services and seamless
communication to end users.
For instance, Othman et al. [4] proposed a generic
survey of MCC application models and its different
aspects including MCC architectures and its ofϐloading
decision affecting entities. The article also presents
a comparison of MCC application models based on
criteria such as bandwidth utilization, privacy, la‑
tency, generality, security, programming abstrac‑
tion, scalability, complexity, and execution resource.
Furthermore, the survey categorizes MCC applica‑
tion models by performance‑based, energy‑based,
constraint‑based, and multi‑objective applications.
A. Gani et al. [20] presented a review on mobility tech‑
niques for seamless connectivity in MCC to highlight
issues and challenges faced when providing computa‑
tional cloud services in MCC environments. Also, they
discussed a comparison and classiϐication of different
seamless connectivity schemes in MCC. The mobility
techniques were classiϐied based on a connectivity
approach, interworking method, mobility operation, net‑
work topology, and inter‑working architecture. However,

from the study, it should be noted that the use of a similar
strategy and development idea of inter‑operational and
mobility techniques to overcome the challenges faced in
intensive distributed mobile computing networks can be
considered an efϐicient solution for achieving seamless
connectivity.
MCC issues and research directions were discussed by
Shon et al.[21], and different cloud computing systems
and models were reviewed as well. They discussed MCC
issues such as smartphone data slinging, access control
and identity management, risk of multiple cloud tenants
and security threats associated with authentication and
authorization, and emergence of cloud standards and cer‑
tiϐications. However, they didn’t mention performance
criteria that can be used to evaluate and highlight the
MCC performance issues, and the scope of the study was
not well deϐined as a broad overview of cloud computing.
A survey on data ofϐloading techniques in cellular
networks proposed by Rebecchi et al. [22] unveiled
different ofϐloading techniques and the principal re‑
quirements to embed data ofϐloading abilities in mobile
networks. Hence, the survey categorized existing ofϐload‑
ing techniques based on their requirements in terms
of assurance of content delivery, summarized existing
works, described general architecture to enable mobile
data ofϐloading, and discussed open research issues. In
order to achieve a state where there are adequate deliv‑
ery conditions, there are twomain ofϐloading approaches
considered in the survey: latency‑free ofϐloading inwhich
every packet has a strict delivery latency constraint de‑
ϐined by the application, and impeded ofϐloading where
the reception of contents may be delayed on purpose up
to a certain point in time.
Ejaz Ahmed et al. [23] proposed a comprehensive survey
on seamless application execution frameworks in MCC
in which they revealed state‑of‑the‑art approaches
proposed in order to achieve seamless execution of MCC
applications. Hence, the survey classiϐied the frameworks
based on their implementation locations, and types such
as cloud‑based, cloudlet‑based and hybrid, and presented
categorical approaches that are used by the frameworks
to achieve seamless execution of MCC applications.
M. Chiang et al. [24] presented an overview of research
opportunities in the area of fog and IoT focusing on
the network context of IoT in a survey. The survey
discussed a group of different challenges in the ϐield of
IoT and barriers that are found when trying to overcome
these challenges using computational resources. The
challenges listed in the area of IoT include constraints
and limitations of factors such as network bandwidth,
latency, seamless services provision with intermittent
connection to the cloud environment, resources con‑
strained devices and IoT security challenges. They also
highlighted the potential and challenges of a fog data
plane and control plane such as the control, interface,
conϐiguration, and management of networks.
Yuyi Mao et al. [25] presented a comprehensive survey
of the state‑of‑the‑art mobile edge computing focusing
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on its communication perspective including joint radio 
and computational resource management. Hence, the 
proposed work equally highlighted interesting topics on 
MEC   such    as    deployment    of   edge   cloud   systems, 
cache‑enabled MEC, management of mobility for edge 
cloud, and privacy aware edge cloud. In addition a mobile 
computing platform for 5G is presented, as well as the 
comparison between MCC and MEC, MEC computation 
and communication models, resource management in 
MEC and a list of issues and research directions.
Issues and challenges encountered in MCC computation 
ofϐloading have been highlighted by Akherϐi et al. [26]. 
Hence, they presented state‑of‑the‑art data ofϐloading 
techniques, computation ofϐloading methods, and an 
analysis of the techniques along with their principal 
issues. They additionally explored the major parameters 
on which the frameworks are based and implemented 
such as ofϐloading method and grade of partitioning. In 
addition, the MCC computation ofϐloading was deϐined 
as the task of sending computation intensive application 
components to a remote server, which handles and 
executes the computational tasks. Different ofϐloading 
approaches, framework mechanisms and classes were 
also presented along with an insightful comparison of the 
frameworks for computational ofϐloading. Some of the 
approaches that were presented in the paper use static 
ofϐloading unlike others that utilize dynamic ofϐloading. 
However, all the techniques were aimed to improve 
the potentialities of mobile devices by saving energy, 
reducing response time, or minimizing the execution 
cost.
In the same perspective, Shakarami et al. [27] proposed 
a survey of the stochastic‑based computation ofϐloading 
approaches in MCC environments including a taxon‑ omy 
of the techniques categorized into three ϐields, which are 
Markov process, Markov chain, and Hidden Markov 
models. The article deϐined Markov chain as a 
mathematical tool to model a transition from one state to 
another based on speciϐic probabilistic rules. In addition, 
the survey highlighted a comparison of the Markov chain 
ofϐloading mechanisms and open is‑ sues and challenges 
associated with different approaches.

4. EXISTING TECHNIQUES AND SOLUTIONS

The most common infrastructural solutions and tech‑ 
niques proposed by scholars to achieve seamless service 
provision in mobile cloud computing include fog, edge 
computing, handover techniques and femtocell technolo‑ 
gies. Several algorithms have been proposed to deter‑ 
mine the optimal edge computing point, reduce latency of 
data trafϐic, improve data  ofϐloading  speed  and  enhance 
security in the MCC environment. Studies on MCC sys‑ 
tems highlight that researchers in the ϐield of mobile 
com‑ puting, software engineering, cloud computing, and 
arti‑ ϐicial intelligence have successfully utilized MCC 
architec‑ tural models and infrastructures to improve the 
perfor‑ mance of MCC systems through its software.

4.1 Fog architecture‑based solutions 
for seamless handover

Wan et al. [28] proposed a novel fog computing 
archi‑ tecture that includes new schemes and 
techniques for symmetric inter‑ϐile coded cache 
placement, handling the inter‑SBS communication 
phase, and a new asymmetric and optimal cache 
placement that performs ϐile sub packaging according 
to the network structure.

Fog computing is known as a favorable 
architecture for computing and resource management 
that provides cloud services closer to end users, that is 
at the network edge. It includes both the data plane 
and control plane and aids applications in the area of 
IoT, in 5G systems and artiϐicial intelligence. Fog 
computing reduces the need for specialized 
applications deployed just for the cloud, endpoints or 
edge devices, by enabling the same application to run 
anywhere and allowing applications from different 
suppliers to run on the same hardware without 
interference [29].

Luan et al. [30] outlined the main features of fog 
computing and described its concept, architecture and 
design goals in an article. Fog computing is an architec‑ 
ture that enables the deployment of virtualized cloud‑like 
devices closer to mobile users. Edge computing is a dis‑ 
tributed computing paradigm that enables cloud services 
closer to the location where it is needed, it extends cloud 
abilities at the edge of the computing network to execute 
high‑demanding computational tasks and save a very 
signiϐicant amount of data at the surroundings of user 
equipment [6]. Communication between fog nodes is 
optimized through the handover process. Handover (HO) 
is a process of passing on an ongoing data session or 
service from one base station within the core network 
into another base station; it is a cross‑layer concept to 
support user mobility.

A fog‑aided architecture for seamless handover was 
proposed by [31]; the proposed architecture includes 
a general integration of all types of mobile devices 
and networks and assists Vehicle‑to‑Everything 
(V2X) distributed applications by responding to their 
latency minimization related needs, data privacy and 
security critical network related requirements. The 
proposed architecture is leveraged on 5G 
architecture, along with SDN and NFV to achieve 
proactive, context‑aware, and secure handover 
mechanisms. Hence, fog‑enabled architecture and 
SDN‑enabled architecture have been combined in this 
approach; the authors assumed that connected 
vehicles are fog devices with distributed 
intelligence since vehicles mobility can be predicted 
and they are computing resource rich, they are thus 
equipped with satellite and terrestrial communication 
capabilities. For the SDN enabled architecture part,
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distributed controllers are implemented in fog‑enabled
vehicles and base stations to ensure fast and efϐicient
handover. Handover decision should be kept local thus it
important to implement the proposed SDN architecture
in fog enabled devices that only respond to events taking
place in their vicinity.

Kapsalis et al. [32] presented a cooperative model,
a fog architecture where the tasks to be completed by
the nodes are characterized by their computational
characteristics and are assigned to the appropriate host
subsequently. The model consists of different layers
including a hub layer, device layer, fog layer, and cloud
layer. The Device layer includes actual physical devices
that have small computational power and low storage,
the hub layer contains gateways and is in charge of cre‑
ating fog messages and forwarding them to the fog layer
acting as mediator, the fog layer includes the computing
edges that function in collaborative way to execute tasks
and the cloud layer provides a guaranteed execution
environment to the tasks. The proposed solution allows
fog networks to be optimal in executing time critical
tasks. It integrates into edge computing architectures,
the communication between devices in edge networks
via the MQTT messaging protocol and the inclusion of
nearby access points or mobile edges in a collaborative
way for speciϐic types of tasks, to allow better efϐiciency,
coverage and QoS. However, this solution omitted to take
into account some cases where the expected participa‑
tion of some edge devices cannot be guaranteed.

To enhance the scalability of fog‑computing and aug‑
ment its computational power and storage power in
mobile cloud computing, Sookhak et al. [33] proposed
a fog architecture‑based solution called Fog Vehicular
Computing (FVC). In this solution, it is suggested that a
pool of parked smart vehicles can be used as a source
of computing resources, referred to as FVC zone. The
maximum capacity of an FVC zone is determined from the
predicted need of computational power and resources in
the area. The FVC architecture has three main layers, the
policy management layer, the application and services
layer and the abstraction layer. The application and
services layer is responsible for providing real‑time
applications to end users according to collected data
from the deployed sensors in the inertial navigation
system; it provides services such as information and
entertainment as a service, network as a service, storage
as a service and entertainment as a service. The policy
management layer allocates appropriate computation
and storage resources to different tasks, deals with issues
such as monitoring the system state dynamically, and
includes policy, fog, and vehicular cloud. The abstraction
layer protects the security and privacy of data; It conceals
the FVC heterogeneous platform and reveals a monotonic
interface for monitoring, delivering, and maintaining
the physical resources, such as memory, processor unit,
and networking. FVC’s architecture’s decision process

includes a decision manager that computes the comple‑
tion time of a task and assigns the task to the required
sub‑layer which also includes a resource manager. This
solution relies entirely on the supposition that there will
always be a gathering of smart vehicles with enough com‑
putational power and resources to operate as fog devices
in high‑trafϐic area; however, that is not always the case.
Currently, the ratio of smart vehicles to the regular ones
is not signiϐicant, thus a group of parked vehicles might
not be a considerable source of computational resources.

Besides, Bruschi et al. [34] also proposed a frame‑
work that leverages fog computing, SDN and NFV
capabilities to respond to the necessity of bringing
services to the edges and make them more accessible
to users to reduce latency during service provision, and
reinforce the personalization of services. The proposed
framework operates by considering three main stake‑
holders including CSPs, telecommunication operators,
and end users; it includes several functional blocks and
interfaces to allow future cloud applications to perform
efϐiciently and provide more than standard services, and
enable end users and telecommunication operators to
beneϐit by providing application services. Its architecture
leverages tools such as OpenVolcano, which manages
functionalities of the data plane and control plane associ‑
ated with real‑time analytics, an external controller that
provides decisions on the long‑term.

To add additional support to user mobility, allow
service differentiation and help applications achieve
seamless service provision in the MEC environment,
Bruschi et al. [35] presented a policy regarding virtual
object clustering and migration; the proposed policy
takes into consideration end users proximity, and in‑
volves a parameter of the subscription‑based proximity
ranging to enable service differentiation between users.
The authors considered a network of fog‑hosted virtual
objects with a variety of proximity distances and re‑
quirements where an individual user belongs to a given
set of virtual objects. User proximity is computed and
classiϐied in different levels according to the different
requirements and subscription‑based parameters; vir‑
tual objects clustering is performed according to their
inter‑afϐinities, which are classiϐied in different levels,
and are merged based on the maximum path lengths and
proximity levels; after the merging of different clusters,
C clusters and their corresponding minimum proximity
requirements are obtained. The next step involves cluster
migration, in which quality of service is maintained while
the end user moves from one location to another as some
of the proximity requirements are no longer met; thus,
migrations are performed based on user’s previous and
new locations, access point time, and shortest path length
from the device. This solution is however limited due to
the fact that multiple afϐinity levels and computational
power and capabilities of different access points and data
centers were not considered.
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Santa J. et al. [36] proposed a framework called MI‑ 
GRATE to provide an efϐicient and seamless handover of 
application services to mobile devices and support UEs’ 
operations. MIGRATE leverages MEC’s capabilities and 
the dynamic creation of virtual mobile devices to perform 
data processing and caching given the limited capabilities 
of physical mobile devices, and allow mobile devices to 
maintain MEC services while moving to a new network 
domain with virtualisation capabilities. To provide MEC 
services closer to mobile devices, the authors considered 
edge virtualization domains, in which mobile devices 
are deployed and whose data is updated using a local 
access to a cluster‑based database. Then, the services are 
deployed in the cloud domain as virtual functions, and 
the devices continuously pass on data to the platform 
thanks to an SDN switch that is used as an entry point to 
the wired network. The migration of services from one 
access point to another is instantiated when the switch 
detects a packet coming from the same mobile device 
address to a new port; when this happens, the switch 
reports it to the SDN controller, which either re‑routes 
the trafϐic towards the initial mobile device or requests 
the preparation of a new virtualization domain to host 
a new virtual mobile device that inherits the behavior 
and characteristics of the initial one. After that, the SDN 
waits for a notiϐication conϐirming the completion of the 
action to establish a new route in the switch and send 
data through the new virtual mobile device. This solution 
can be further extended to reduce the latency of service 
migration and use an SDN multi‑controller solution.

4.2 Edge server and base station placement      
           solutions

To solve the edge server placement problem in MCC,
Wang et al. [37] proposed a solution that uses mixed in‑
teger programming to determine the optimal placement
location of the edge. The problemwas ϐirst formulated as
amulti‑objective restraint optimization that incorporates
edge servers in some appropriate locations to stabilize
the workloads of edge servers and minimize the access
latency. In the article, the authors considered a network
G with a set 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑘 of 𝐾 edge servers to be
placed in 𝐾 optimal places; the edge server executes
all the tasks assigned to the base stations, that is, the
amount of requests performed by mobile users at each
base station 𝑏𝑗 ∈ 𝐵. The locationsmust be chosen in such
a way that the workloads are balanced, and the access
delay reduced, taking into consideration the following
constraints: No two edge servers share the same base sta‑
tion, each base station is co‑located with an edge server
which will execute all mobile user task requests from the
base station. The weighting sum method was adopted
in this solution to change the problem of edge server
placement into a signal objective optimization problem
with a Pareto optimal solutionwhich is obtained by trans‑
forming the multi‑objective into a single optimization

problem. However, in this solution, the authors assumed
edge servers are homogeneous, that is, they have the
same computational resources power, and it is not not
the case in practical environments; thus, this approach
is limited to an environment with a homogeneous setting.

Lee, Daewon, et al. [38] proposed an MCC proxy‑
based architecture to improve link performance between
mobile hosts and an algorithm to optimize bandwidth
usage. The proxy‑based algorithm includes three parts,
which are denoted as initial part, proxy election part,
and sub‑proxy election part. In the article, the network
congestion problem is solved by improving the link
performance using proxy as a cache server. The proxy
server is selected based on four parameters, which in‑
clude the type of host, the state of the host, the hardware
performance of the host and the available amount of
concurrent connections. These four parameters are
constantly checked by the proxy manager to perform
proxy selection. Also, information from network layer
3 is used to select the optimal access network. The
following information is required to ϐind the appropriate
access network: the state of the network, the hop count
to the selected proxy, the highest capacity of the network,
the expected network load and the location or the depth
of network hierarchy.

A cooperative edge caching approach to reduce de‑
lays in clustered mobile networks by optimizing content
placement, small cell base stations, and bandwidth allo‑
cation in large‑scale user‑centric mobile networks based
on the stochastic network information, was proposed
by [29]. The proposed solution solves two problems,
the problem of content placement and that of small
cell base stations clustering. The article considered a
homogeneous mobile network with edge caching, where
content is partially or completely stored at each small
cell base stations after being coded into segments, the
user is served by a cluster of candidate base stations after
raising a content request. The mobile device seeks coded
segments from candidate base stations in increasing
order of transmission distance, if the requested content
is cached. Also, in case where the segments obtained
from the caches of all candidate base stations are not
sufϐicient to decode the segments, the closest base station
will fetch the rest of the bases from remote servers via
backhaul, and send them to the user through wireless
transmission. If the requested content is not stored in
cache, the nearest SBS will fetch the whole content from
remote servers.

Guo et al. [39] proposed a solution to the edge placement
problem in order to optimally allocate workload to edge
clouds andminimize communication latency between the
edge server and mobile devices. The proposed approach
is based on K‑means and mixed‑integer quadratic pro‑
gramming; to solve this problem, the authors considered
a mobile edge network including several base stations
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and potential locations for edge clouds placement and
represented it by a graph 𝐺 = 𝑉 ∪ 𝑆, 𝐸 where 𝑉 repre‑
sents the base stations, 𝑆 is the set of potential locations
for edge clouds placement and 𝐸 is the connection
between two base stations. The steps to solve the edge
placement problem are established according to the
minimum communication latency between two base
stations and the minimum workload of each edge cloud.
The scheme takes as input a set of base stations and
edge clouds, and returns the optimal locations of edge
clouds. It ϐirst ϐinds out if there is an edge located at a
given location, if a base station is allocated to a given
edge cloud and if the base station is associated with an
edge cloud; then, it deϐines a ϐitness function such that
the edge placement problem is transformed into a single
objective optimization problem by using a weighted
sum method. This problem is solved by selecting the
locations with minimal communication delay using K‑
Means algorithm and simplifying the workload allocation
problem using a mixed integer quadratic programming
algorithm, and then solving it using the Boolean Quadric
Polytope cutting plane method. The proposed approach
is however not the most efϐicient; change of workload
size during the allocation is not taken into consideration,
which makes the solution less reliable.

4.3 Energy consumption and latency mini‑
mization during data ofϐloading

A system that minimizes execution latency during the
migration of a mobile web worker from mobile device to
an edge server and provides its seamless ofϐloading was
proposed by Jeong, Hyuk‑Jin, et al. [40]. In the system,
the intact web app that has computation‑intensive codes
executed in a web browser, is run by a mobile client.
When accessible edge servers are detected by the client,
the mobile web worker manager is responsible for ϐind‑
ing the best server to process the worker, which reduces
the delay between the time at which a request is sent by
the main thread to the worker and the time at which a
result is received from the worker. Thus, the HTML5 web
worker is migrated across the cloud, the client, and the
edge, and keeps the ofϐloading states while the mobile
client switches its objective server. Web snapshots are
used to move web workers by the system, by a script
written in JavaScript to restore the run‑time state of a
web worker when this one is executed. The authors also
highlighted issues of generating a snapshot code that
restores both JavaScript objects and native data such as
web assembly functions and built‑in objects.

To reduce energy consumption and latency in fog com‑
puting architecture, Quang Duy La et al. [41] proposed
an approach that uses device‑driven and human‑driven
intelligence as key enablers; it performs adaptive low
latency Medium Access Control (MAC)‑layer scheduling
among sensor devices, and detects user behaviors, by
applying machine learning techniques. The authors

equally developed an algorithm to perform efϐicient
ofϐloading decision in the presence of multiple fog nodes.
Achieving device‑driven intelligence refers to equipping
devices with smarter functionalities such as sensing,
computing, storage, smart data processing, networking
services and communication; human‑driven intelligence
associates human domain data with network‑domain
decisions that will beneϐit the network [41].

The article presents two case studies, user‑behavior‑
driven healthcare monitoring and device‑driven adaptive
task ofϐloading. The ϐirst case study involves using a
machine learning technique‑based health monitoring
module to create a non‑complex ML model that detects
human activities driving the sampling of an adaptive sen‑
sor and scheduling scheme of MAC using some data and
accelerometer sensors. The second case study depicts an
environment involving an end user with N independent
tasks, where each task has the possibility to be ofϐloaded
to a computer processor of any of the available fog nodes
or processed locally by the end user’s computer proces‑
sor; for each task, the user must decide the appropriate
CPU to be used to process it with the objective to reduce
delay and energy consumption. The energy consumption
and latency minimization problem is a mixed‑integer
nonlinear programming that is solved by ϐirst transform‑
ing the problem into a corresponding uniform Quadratic
Constrained Quadratic Programming (QCQP), dropping
the rank‑one limitation, which makes the QCQP problem
SemiDeϐinite Programming (SDP) convex and can be
cleared up using the interior point method, and then
constructing a number of reasonable solutions based
on Gaussian randomization, and ϐinally choosing the
solution, which minimizes the objective function over all
solutions. The shortcoming associated with this solution
is the fact that intelligence in fog computing is still in
its infancy and the assumptionsmade are not realistic yet.

Amir Erfan Eshratifar et al. [42] introduced Bottle‑
Neck, a new deep learning architecture to reduce the
workload size to be sent from the UE to the cloud, along
with a training method to compensate for the poten‑
tial accuracy loss that arises during the compression
of the workload before its transmission to the cloud.
BottleNeck is basically an auto‑encoder in which the
agent handles the responsibility of learning a compact
representation of the features in a transitional layer. It is
a novel partitioning method that initializes a bottleneck
in a neural network using the suggested BottleNeck unit.
Spatial, channel‑wise reduction units and compressor
units are used in its architecture on the mobile device
to generate a compact representation of the tensor
that is transmitted to the cloud. BottleNeck’s algorithm
comprises three steps, which include training, proϐiling
and selection. For a given number of locations in the
network, BottleNeck is placed on an arbitrary selected
layer. Different architectures associated with degrees of
dimensionality reduction are trained along the channel
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of spatial dimensions; then, the best partitioning that
minimizes the device’s energy consumption is chosen.
The problem with this architecture, however, is the lack
of accuracy in loss, it does not accurately provide the
amount of data loss.

To minimize the consumption of energy during task
ofϐloading and computation under both the main and
edge processing delay limitations, Xianyan Hu et al. [15]
proposed a computing architecture that comprises both
hybrid edge and central cloud, one macrocell with a
Macro‑Base‑Station (MBS) and several small cells each
with a small base station, and a continual algorithm to
ϐind a solution to the combinatorial mixed‑integer and
non‑convex optimization problems. In this solution, the
authors considered the delay of synchronizing end user’s
tasks, the end users’ tasks are assumed to already be syn‑
chronized in the problem formulation. To guarantee the
quality of services provided by the edge clouds, the edge
processing latency constraints require the corresponding
latency to not exceed a targeted threshold. Furthermore,
to further reduce the complexity of solving the optimiza‑
tion problem for reducing the total energy consumption
of the network during task ofϐloading and computation,
massive multiple‑input multiple‑output technology is
applied at the multi‑antenna macro‑base‑station.

An energy‑efϐicient architecture based on service
provision was proposed by Hani et al.[43] to improve the
quality of service of the handover process in MCC. The
proposed architecture implies four layers, the media con‑
nectivity layer, the application layer, the Internet protocol
multimedia subsystem (IPMS) layer, and the communi‑
cation layer, and was implemented in C++. The Media
Connectivity Layer (MCL) is responsible for connectivity
andmedia related operations and services, it includes the
Media Resource Agent (MRA) and Media Resource Func‑
tion Controller (MRFC). The application layer connects
to the IPMS layer to assure data communication and to
the cloud computing servers as an enterprise server.
The IPMS layer is responsible for offering services such
as web browsing, video streaming, videoconferencing,
email, the Internet, and handles the registration process
used to obtain users’ location. This layer also integrates
a Call Session Control Function (CSCF) to associate the
users identity to the IP address; the function has three
parts known as Proxy‑CSCF, serving CSCF, and interro‑
gating CSCF. The communication layer carries the data
and binds the media layer to the IPMS layer; besides, it
includes a Media Gateway Controller Function (MGCF),
Media Resource Function Controller (MRFC) and Break‑
out Gateway Control Function (BGCF). In addition, it
includes an energy‑efϐicient detection model to ascertain
the energy of nodes when initiating the handoff process.
The energy consumed during the handover process is
proportional to the distance between the mobile device
and its access point and the time required to complete
the handover process. Thus, minimizing the distance

between the UE and the handover time reduces energy
consumption. Also, when the access point is changed,
the re‑registration and reattachment process necessitate
additional energy and the previous energy consumed
has to be taken into account in the calculation of the total
energy consumed. The proposed architecture is more
suitable for mobile phones when initiating the handover
process in a cloud computing environment and has not
been assessed for potential vulnerabilities yet.

Ren et al. [44] proposed an efϐicient technique to ϐind the
optimal resource allocation solution that minimizes la‑
tency in amulti‑usermobile edge computation ofϐloading
system by developing a sub‑gradient algorithm. In this
solution, the authors ϐirst determined data segmentation
methods by considering 𝑁 mobile devices {1, 2, 3, ⋯ , 𝑁}
and a base station 𝐵𝑆 that links the devices to the
cloud, the CPU and edge cloud compression capacity of
the CPU 𝑉 𝑑

𝑛 and 𝑉 𝑐 respectively, and the compression
capacity of each device 𝑉 𝑐

𝑛 with the following constraint
∑𝑁

𝑖=1 𝑉 𝑐
𝑛 <= 𝑉 𝑐. Two compression models were ϐirst

considered, the Multi‑Access Model where one time slot
is divided into several portions, reducing the data rate of
each portion; and Partial Compression Ofϐloading Model
where each ϐile can be partitioned in two parts with
one part compressed locally and the other in the edge
cloud. The proposed algorithm, which is based on the
sub‑gradient method for similar non‑differential convex
problems, ϐinds the optimal resource to be allocated
with the aim to reduce the weighted sum latency of the
compression in all devices.

With the goal of reducing the delay of handling tasks
execution and tasks failure of data partitioned based
applications, Nguyen et al. [45] proposed a fuzzy based
logic mobile edge orchestrator to segment tasks from
UEs and associate them to the appropriate edge servers.
The proposed framework gets as input the network
and resources information such as bandwidth, size of
the task being processed, the characteristic of the edge
server’s virtual machine being used, and the latency
sensitivity associated with each task. It also involves a
fuzziϐication step where membership functions are set
accordingly to transform the inputs into fuzzy values, and
a defuzziϐication stepwhere fuzzy values are transformed
to normal values. The strategy to divide the execution of
tasks includes the fact that the orchestrator determines
if the task has to be collaboratively processed by the edge
and cloud servers or the edge server alone by computing
and choosing the environment with the smaller fuzzy
values of input parameters, and crisp output value; if the
crisp output value is greater than the threshold, the task
is executed by the cloud server alone.
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4.4 Latency minimization through load bal‑
ancing and ofϐloading

To reduce high data trafϐic in edge networks, Zhao et
al. [46] proposed a solution based on their Enumera‑
tion based Optimal Placement Algorithm (EOPA) and
Divide‑and‑Conquer based Near Optimal Placement
Algorithm (DCNOPA) to efϐiciently distribute virtual
machine replica copies (VRCs) of applications to the
edge network. In this solution, a graph 𝐺(𝑉 , 𝐸) is
used to model the physical edge network. The 𝑉 in
the graph is deϐined as {𝑉 = {𝑣, 𝑣 = 1, 2, … , ∣ 𝑉 ∣}
and represents the set of edge servers, and 𝐸 the set of
connections between edge servers with the assumption
that all mobile users are assigned in the edge network
randomly. Also, the assignment of virtual machines is
done according to the following constraints: each virtual
machine replica of an application can only be associated
with one edge server, similarly, each edge server only
holds one virtual machine replica of an application.
The optimal placement algorithm ϐinds the placement
𝑆′ = {𝑙𝑢,𝑠, ∀𝑢 ∈ 𝑉 , ∀𝑠 ∈ 𝑆} among all potential place‑
ments of 𝑘 VRCs, to obtain a reduced data trafϐic for each
request by considering all potential placement cases for
𝑘 VRCs, and computing the average data trafϐic for each
placement case. The divide‑and‑conquer based near
optimal placement algorithm divides all edge servers
into 𝑘 clusters and deploys only one VRC for each cluster,
thus reducing the original problem of ϐinding 𝑘 VMs to
a problem of determining an efϐicient placement for one
virtual machine replica in each cluster, which reduces its
complexity considerably.

Mobile data ofϐloading schemes based on a Finite
Horizon Markov Decision Process (FHMDP) to reduce
the communication cost for delivering mobile data with
different latency sensitivities through several wireless
networks were proposed by Dongqing and al.[47], where
FHMDP plans data ofϐloading decisions at each decision
epoch. In the model, mobile data is initially delivered to
one or more device through cellular and Wi‑Fi networks.
The data being sent from the cloud environment is
divided into a sequence of data units, which are pre‑
determined by the mobile network operator. Also, the
access point station that carries a copy of the data can
transmit it to the user using D2D communication. The
approachwas embedded in a hybrid ofϐloading algorithm
that can support different delay requirements with lower
computational complexity. The algorithm computes
the optimal policy through three phases: initialization,
planning and ofϐloading. The expected number of mobile
access points in different locations is calculated in the
initialization phase and is used to indicate the availability
of D2D action in the planning phase, the ofϐloading action
at each decision epoch is determined in the last phase.

Aral, Atakan, et al. [48] proposed an algorithm for
distributed data dissemination and replicas across IaaS;

it relies on dynamic creation and withdrawal of replicas
guided by continuousmonitoring of data requests coming
from edge nodes of the underlying network. The pro‑
posed algorithmuses geographical locationof data during
the distribution process resulting from the plethora of
ordinary data requests that stem from the clients within
surroundings. The cost of storing replicas as well as
expected delay improvement to make a migration or
duplication decision to one of the neighboring nodes
is evaluated through the algorithm, which also enables
users to handle the balance between cost minimization
and delay optimization. Also, a replica discovery method
where the important nodes are identiϐied and notiϐied of
replica creations or removals is provided by the proposed
work. The algorithm is complemented with a replica
discovery method where concerned nodes are notiϐied of
nearby replicas. On the other hand, experimental results
show that communication overhead and miscommuni‑
cation errors caused by replica placement and discovery
are not signiϐicant, which is not always true. Also,
the proposed solution is not appropriate for real‑time
systems, which require real‑time performance guarantee.

A task scheduling algorithm for MCC based on a heuristic
ant colony optimization algorithm was proposed by
Wang et al. [49], taking into consideration four types of
time constrained tasks, adapting to several MCC elements
such as Cloudlet, mobile device cloud and incorporating
a variety of objectives including efϐicient load balancing,
minimization of energy consumption, and improvement
of reliability and proϐit. The proposed algorithm is
embedded in a system that involves a task tracker, which
is responsible for gathering resource consumption and
ofϐloaded tasks information and using the algorithm to
determine which task should be executed on a given
service provider. It considers four phases or models
for the resolution of the task scheduling problem. The
task graph model involves a set of interactive tasks
represented by a graph 𝐺 = (𝑉 , 𝐿) with 𝑉 representing
tasks nodes and 𝐿 the relationships between them, with
a ϐlow that includes tree structure, independent node,
regular mesh structure and linear chain topology. The
communication model incorporates the channel state
determined by the channel gain and classiϐied as good or
bad depending on a given threshold, the communication
delay deϐined as the ratio of the length of each task
over the channel state. The execution model includes
mobile execution phase that considers the computational
resource consumption and execution time of each task
deϐined by the computing capacity of the device and the
task length, and completion time phase that sums up the
different execution delays of the task. The task scheduling
model considers reduction of resource consumption and
proϐit maximization for users. The algorithm is divided
into three parts, known as task selection, which selects
each task to be executed based on the relative pheromone
ratio, service provider selection, which is responsible for
selecting the provider that should execute the selected
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task based on the load ratio of each provider, and 
task scheduling, which initializes main parameters, and 
uses the precedent parts of the algorithm to ϐind the 
best ob‑ jective function for each task. The main issue 
associated with this solution is the fact that it is a 
static algorithm and it is suitable for batch scheduling 
only.

Li et al. [50] proposed a computation 
partitioning technique to improve the performance of 
big data en‑ vironments in MCC. In this technique, 
two computation partitions are considered; the ϐirst 
one is responsible for monitoring the changes in 
resources including bandwidth, CPU, etc., while the 
other partition deter‑ mines the computation 
location where a given task should be executed. 
The main goal of this methodology is to enhance the 
application performance on UE by improving the 
computation partitioning decision. For this, it is 
important to ϐind an efϐicient way to solve the 
single‑frame execution time problem, then 
establish the partitioning scheme for multi‑frame 
execution, as the single‑frame execution alone is 
inefϐicient. These calculations depend on the network 
bandwidth and the changes in the environment of the 
system. The model includes three types of tasks that 
are local, transferring and cloud tasks. A graph is used 
to represent the tasks’ data ϐlow, and the adjacency 
matrix of the graph is used to perform task selection. 
For the single‑frame task execution problem, the 
efϐicient partitioning scheme is determined by a 
Genetic Algorithm (GA) due to its strong search 
capabilities. Additional optimization and adjustments 
are performed to settle the total execution time of 
multi‑frame data. However, for this solution to be 
effective, data‑frames congestion, instability of data 
during transfer, and limitation of resources should 
be considered.

4.5 Solutions for data security and privacy
Qiu, Tie, et al. [51] proposed SIGMM, a machine 
learning algorithm for spammer identiϐication in 
industrial MCC. The framework makes use of data, 
where each user node is classiϐied into one class in 
the construction process of the model, the data 
includes the relationship with other users, user’s 
identiϐication, the time‑stamped post record, and the 
activity in the past three months. A Pearson 
correlation coefϐicient and Principal Component 
Analysis (PCA) were employed to characterize 
different features and model the parameters 
accurately. SIGMM ϐits the behavior data of regular 
users and spammers, in which the behavior data of 
ordinary users and spammers are mixed by random 
sampling. However, this solution is not suitable for 
large networks since the algorithm is based on 
binary classiϐication, the types of users are varied and 
complex in large networks and thus more than two 
categories are required to classify the nodes 
accurately.

Xiao et al. [11] presented security solutions that apply 
reinforcement learning techniques to protect edges 
from spooϐing, malware, jamming, and eavesdropping 
attacks that might occur during data ofϐloading to edges 
nodes. The radiocommunication channels of edges nodes 
are vulnerable to attacks launched from the physical 
layer or Medium Access Control (MAC) layers during data 
ofϐloading in MCC environment. Most of the solutions 
include the use of Q‑learning to prevent attacks; the main 
reason is the fact that Q‑learning‑based security schemes 
do not require any prior knowledge of the network, they 
apply the iterative Bellman equation to update Q‑values, 
and only use two parameters, which are the learning 
rate and the discount factor, to control their learning 
performance. Nonetheless, security schemes based on 
Q‑learning require exploring all the possible states and 
pairs of actions before signiϐicantly changing the network 
policies, resulting in a slower reaction in case of an 
imminent attack.

Nguyen et al. [53] proposed a method based on deep 
learning to prevent and detect cyberattacks in MCC: a 
training dataset is used to train the neural networks of 
the framework that implements the technique ofϐline, 
then, once the model is ready, it is integrated in the 
MCC environment to detect and prevent attacks online. 
The model involves two major phases which are feature 
analysis and learning process. Feature analysis includes 
the extraction and examination of abnormal attributes in 
the dataset to identify traits associated with malicious 
packets, and dimensionality reduction using the Prin‑ 
cipal Component Analysis (PCA) technique to remove 
irrelevant features or attributes that are not needed for 
the detection of attacks. The learning process comprises 
three types of layers including the input layer, some 
hidden layers and the output layer. The features are 
fed directly to the input layer; then, a Gaussian Binary 
Restricted Boltzmann Machine (GRBM) is used to convert 
them into binary codes, which are used in the hidden 
layers. A series of learning steps are performed to adjust 
the weights of each layer. However, only theoretical 
evaluation of the model was performed, even though high 
accuracy was obtained, the model was not evaluated in a 
practical and real time environment.

To improve the efϐiciency of encryption and decryp‑ 
tion schemes in MCC and make them suitable for mobile 
devices, Zhang et al. [52] introduced a system archi‑ 
tecture of anonymous attribute‑based access control in 
mobile cloud computing, a decryption method called 
match‑then‑decrypt where a matching phase is added 
before the decryption phase. The technique involves a 
basic anonymous Cyphertext Policy ‑ Attribute‑Based 
Encryption (CP‑ABE) construction and the procurement 
of security‑enhanced extension using the reasonable 
Canetti–Halevi–Katz technique based on one‑time signa‑ 
tures. In Canetti –Halevi –Katz transformation, a test can 
be made during the decryption process before complet‑ 
ing it and the subsequent decryption is completed if and
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Table 1 – Qualitative review of different solutions proposed to achieve seamless communication in MCC.

Proposed Approach Analysis Summary Shortcoming

Seamless handover &
service provision
[28, 29, 30, 31, 32]

Technique Vehicular Computing, V2X, FVC, Edge
Selection, etc.

• Mobile vehicles cannot act as fog‑enabled
devices yet.

Description • The proposed solutions aremainly based on fog‑enabled vehicles, FVC, and base stations
to ensure fast and efϐicient handover.
• Proposed a fog computing platform that enables the allocation and management on the
set of computational resources for executing effectively IoT tasks.

Placement of
Edge Servers &
Base Stations
[29, 37, 38, 39]

Technique Mixed‑integer quadratic program‑
ming, K‑Means, Caching at edge,
Proxy‑based and Greedy content
placement algorithm, etc.

•Limited to an environment with homogeneous
setting.
• Do not include load balancing management.
• Expensive solutions since caching hardware
must be integrated on each edge cloud.

Description • The proposed solutions are mainly based on mixed‑integer quadratic programming and
K‑Means algorithms to compute optimal placement locations of edges such that the work‑
loads are balanced and the access delay reduced.
• The proxy server is selected based on four parameters, which include the type of host,
the state of the host, the hardware performance of the host and the available amount of
concurrent connections.
• Proposed a homogeneous mobile network with edge caching where the mobile device
fetches coded segments directly from candidate SBSs in ascending order of transmission
distance, if the requested content is cached.

Reducing Latency &
Energy Consumption,
Improvement of
handover QoS
[15, 40, 41, 42, 43, 44]

Technique Web worker migration, machine
learning, Gradient algorithm, Data
segmentation Mixed‑integer non
linear programming, Gaussian ran‑
domization, Subgradient algorithm,
etc.

• Solution is very limited.
• Mainly suitable for web applications only.
• Intelligence in fog computing is still
in its infancy, and the assumptions made
are not realistic yet.
• Lack of accuracy in loss.
• Latency in links is not the only major
parameter to be considered.

Description • A hybrid edge and central cloud computing architecture was proposed, including one
macro cell with a Macro Base Station (MBS) and multiple small cells each with an SBS,
and an iterative algorithm used to solve the combinatorial mixed‑integer and non‑convex
optimization problems.
• Web worker migration techniques and machine learning were proposed to detect user’s
behaviors, ϐind optimal servers and make efϐicient ofϐloading decision.
• Spatial and channel‑wise reduction units were applied to create a compressed represen‑
tation of the feature tensor which is transmitted to the cloud.
• Energy consumed during the handover process can be reduced by computing the mini‑
mum distance between the UE and the handover BS.
• Subgradient algorithmwas applied to compute theminimum latency between links in an
edge and perform resource allocation accordingly.

Data Ofϐloading &
Load Balancing
[46, 47, 48, 49]

Technique Finite Horizon Markov Decision
Process, Ant Colony Optimization,
Divide‑and‑conquer based near
optimal placement algorithms, etc.

• The solution only reduces the complexity
of the problem.
• Not appropriate for real time systems which
require real time performance guarantee.
• Static algorithm based and suitable
for batch scheduling only.

Description • Optimal placement (EOPA) and divide‑and‑conquer based near optimal placement algo‑
rithms (DCNOPA) were proposed to efϐiciently distribute virtual machine replica copies
(VRCs) of applications to the edge network to reduce high data trafϐic in edge networks.

ITU Journal on Future and Evolving Technologies, Volume 2 (2021), Issue 2, 31 May 2021



• A Finite Markov Decision Process was proposed to minimize the communication cost
for delivering mobile data with different delay sensitivities through multiple wireless net‑
works and manage replicas by monitoring data requests.
• A Task tracker approach was proposed that can gather resource consumption and of‑
ϐloaded tasks information and determines which task should be executed on a given ser‑
vice provider.

Data Security &
Privacy
[11, 51, 52, 53, 54]

Technique Machine Learning, cryptography,
deep learning, Gaussian Binary Re‑
stricted Boltzmann Machine, etc.

• Not suitable for large networks
since the algorithm is based on
binary classiϐication.
• Requires exploring all the possibles
states and pairs of actions.
• Model not evaluated in practical
and real time environment.
• Not suitable for ϐile sharing systems.

Description • Machine learning algorithms were applied for spammer identiϐication in industrial MCC.
• Reinforcement learning techniques, especially Q‑learning, were applied to protect edges
from spooϐing, malware, jamming, and eavesdropping attacks thatmight occur during data
ofϐloading to edges nodes.
• Deep learning‑based solutions were applied to prevent and detect cyberattacks in MCC
online.
• Encryption and decryption techniques were proposed to achieve data security.
• Match‑then‑decrypt technique was proposed in which a matching phase is added before
the decryption phase, to improve encryption and decryption in security schemes.
•A data encryption solutionwas proposed betweenmobile devices and private and public
clouds environments.

only if the test passes, which is more suitable for per‑ 
forming matching before decryption. The transformation 
is applied to obtain a chosen cyphertext (CCA2) secure 
extension. The whole architecture is embedded in the 
four algorithms of the anonymous attribute‑based access 
control system known as Setup, KeyGen, AnonEncrypt, 
AnonDecrypt. The matching phase returns the symbol 
to terminate decryption with overwhelming probability, 
it ends with the initiation of the next decryption phase; 
the decryption phase returns the original message. The 
solution focuses on decryption because the full decryp‑ 
tion cost linearly increases with the complexity of access 
policies.

With the same vision of enhancing data security in 
an MCC environment, Yang et al. [54] proposed an 
encryption scheme known as File Remotely keyed En‑ 
cryption and Data Protection (FREDP)that performs 
data encryption between mobile devices and private and 
public cloud environments. In the proposed scheme, 
the computation resources of private clouds are used 
to remotely encrypt mobile devices data; however, the 
encryption key is not shared with the private cloud envi‑ 
ronment which performs data integrity veriϐication; the 
encrypted data is encrypted by block then shared with 
the public cloud to store it. To enforce security in high 
trafϐic systems, the mobile devices and private clouds 
are assumed to have shared authentication key pairs and 
public keys of each other. User’s sensitive information

is ϐirst encrypted by the mobile device using the private 
cloud’s public key, and sent to the private cloud, which 
decrypts it using its own private key and performs user’s 
authentication. When the authentication is completed, 
the mobile device partially computes the cipher text 
of the remaining data block by block using the private 
cloud’s public key and sends it to the private cloud, which 
completes the remainder of the encryption and decrypts 
it using its private key. A data ϐingerprint is generated 
for every metadata block, which is sent to the public 
cloud from the private cloud; the public cloud decrypts 
the message using its private key and performs data 
authentication, if the authentication is successful, the 
public cloud sends back an acknowledgment message. 
The proposed scheme enhances the conϐidentiality of the 
ϐiles and the security of the encryption key. However, 
with this method, only the data owner can access the 
ϐile which is not suitable for ϐile sharing systems. Table 
1 gives a qualitative overview of different solutions with 
their proposed techniques and their shortcomings.

5. OPEN CHALLENGES AND ISSUES
Most of the challenges existing in the MCC environment 
today are associated with reducing latency, increasing 
bandwidth, achieving uninterrupted communication be‑ 
tween a mobile device and the cloud environment with in‑ 
termittent connectivity, assuring constant network avail‑ 
ability and heterogeneity, providing data access efϐiciency 
and security and privacy during exchange of data, and
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overcoming constraints associated with limited sources
of energy. These challenges can be classiϐied in two cate‑
gories, MCC infrastructural challenges andmobile devices
related constrains.

• Network Bandwidth: Adequate network bandwidth
is essential for achieving seamless communication
in the MCC environment. Unfortunately, in the MCC
environment, some wireless networks provide low
bandwidth, intermittent signal availability or less re‑
liable transmission, which cause critical issues re‑
sulting in quality of service degradation, additional
latency and hangs in applications.

• Network Availability: To achieve seamless commu‑
nication in an MCC environment, one should assure
that there is a continuous Internet connectivity and
exchange of data between the mobile device and the
cloud. Unfortunately, network coverage is nonexis‑
tent in some areas due to a lack of infrastructure, or
interference with other signal blockers. This causes
major delays and applications’ hangs since most of
mobile applications need to be always linked to the
cloud from any place to function properly.

• Heterogeneity Management: Heterogeneity is de‑
ϐined as the existence of various types of mobile de‑
vices, clouds and wireless networks with different
hardware, architectures, infrastructure, and tech‑
nologies. Available edge technologies expected to
initiate and facilitate collaboration of heterogeneous
computing devices toward unrestricted mobile com‑
puting are unfortunately limited, thus making het‑
erogeneity in the MCC environment challenging for
achieving seamless communication in MCC as varia‑
tions of network and its related technologies affect
the delivery of cloud services.

• Latency Reduction: Reducing latency in MCC net‑
works is critical for achieving seamless service pro‑
vision, latency constitutes a signiϐicant barrier that
limits the solutions proposed in MCC and it is not a
new problem in MCC. Several different types of so‑
lutions are proposed by scholars to reduce latency
in MCC but it remains one of the major challenges in
the area. The latency of a system in MCC is propor‑
tional to the processing time of computational oper‑
ations, the downloading and ofϐloading time and the
rate at which operations are performed in the sys‑
tem. Long WANs are one of the causes of latency
in MCC, ofϐloading mobile intensive applications to
distant cloud resources, for instance, creates a bot‑
tleneck in the network. To reduce interaction la‑
tency, proposals such as Cloudlet, MOMCC, and SAMI
are proposed to create a proximate cloud to access
nearby remote resources, but further advancement
to achieve crisper response is required [55].

• Energy Consumption: A limited amount of energy in
mobile devices is one of the issues encountered in

MCC when considering intensive computational so‑
lutions to achieve seamless service provision. Devel‑
opers and operators deployed applications and sys‑
temswith the goal to conservemobile battery power;
however, resource and data intensive tasks ofϐloaded
from themobile device to the cloud requiremore en‑
ergy. Estimating energy efϐiciency of computation of‑
ϐloading is complex because of the heterogeneity of
wireless technologies and infrastructures.

• Mobility Management: In the MCC environment, the
ability of mobile devices to move around constitutes
an obstacle for achieving seamless connectivity to
the cloud. Most of the time, intermittent connec‑
tivity, unreliable services, degradation of quality of
service, and disruption are caused by user equip‑
ment mobility. The solutions to this problem in‑
volve handover between service areas or base sta‑
tions and location prediction as the device moves
around, to route the data to the intended destina‑
tion and re‑synchronization of service provision if
for some reason the device is disconnected from the
network. However, handover also comes with other
challenges such as handover failure and handover la‑
tency, which become important issues when deal‑
ing with wireless heterogeneity and intensive traf‑
ϐic applications in MCC; these issues depend as well
on choosing the right network based on application
requirement, user preferences, services offered and
environment. Also, most handover techniques are
deϐined in IP layers, which makes it challenging to
properly deϐine the role of each layer handover for
achieving low latency.

• Security and Privacy: Protection of users’ data re‑
mains one of the greatest concerns in MCC. Most
mobile devices store users’ conϐidential informa‑
tion such as medical records, banking information,
location and other personal information, which is
shared with cloud infrastructures as some applica‑
tions use it to provide appropriate services. Stor‑
ing private information in the cloud environment
and accessing it through Internet services and wire‑
less networksmake it vulnerable to numerous cyber‑
attackers. Identity provisioning and access manage‑
ment through different environments are a sample
of the security keys, which manifest the necessity
of secure intercommunication in MCC [55]. Thus,
cloud service providers need to increase security
by providing strong authentication and authoriza‑
tion methods. For instance, data migration or tasks
ofϐloading across multiple clouds should be highly
secured as these communication processes involve
personally identiϐiable data. However, adding pro‑
tection such as data encryption to computational
tasks shared on the network increases processing
overhead, which causes latency.
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6. CONCLUSION
Although MCC already mitigates the computational re‑
sources needed bymobile devices to provide services and
run applications smoothly, the communication and ser‑
vice provision between the cloud environment the mo‑
bile device are sometimes not the best. In this survey, we
presented an overview of the MCC environment and in‑
vestigated different techniques recently proposed in the
literature to achieve seamless communication in the MCC
environment, by taking into consideration recent techno‑
logical advances in networking and MCC in general such
as the deployment of 5G systems and availability of new
techniques in artiϐicial intelligence. We provided a brief
overview of solutions in Table 1 with their shortcomings.
A lot of progress has been made in the MCC ϐield, espe‑
cially to achieve reliable and seamless communication be‑
tween the cloud and the mobile device, but there are still
some overwhelming challenges faced by the operators
and service providers. Some of these challenges are pre‑
sented in this paperwith the hope that scholars arework‑
ing to overcome them. We believe this paper will serve as
a guide for future research works for achieving seamless
data exchange and application ofϐloading in MCC.
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