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Abstract – In this paper, we consider a communication connectivity problem involving a primary user (transmitter, for
example, a Ground Control Station (GCS)) servicing a group of secondary users (receivers, for example, drones) under hostile
interference. We formulate this multi‑link communication connectivity problem, where the channels are affected by Rayleigh
fading, as a zero‑sum power resource allocation game between a transmitter and an adversary (jammer). The transmitter’s
objective is to maximize the probability of communication connectivity with all the receivers. It is proven that the problem
has unique equilibrium in power allocation strategies, and the equilibrium is derived in closed form. Moreover, we reduce
the problem of designing the equilibrium in power resource allocation strategies to the problem of ϔinding a ϔixed point of a
real‑valued function. An algorithm based on the bisection method to ϔind the ϔixed point (and so equilibrium strategies) is
developed, and its convergence is proven.
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1. INTRODUCTION
Communication between a transmitter and a receiver un‑
der hostile interference is a well‑studied problem in the
wireless literature (see, for example, the survey in [1]).
Such problems are multi‑objective problems since they
deal with different agents (say, a transmitter and an ad‑
versary (jammer)), and each of these agents has its own
objective. Game theory supplies concepts for analyzing
and solving such multi‑objective problems [2], and, thus,
game theory has been widely used to model jamming
problems. Typically, jamming problems can be catego‑
rized according to two frameworks: (i) maintaining com‑
munication reliability and (ii) maintaining communica‑
tion connectivity. In communication reliability problems,
the transmitter’s payoff is a function of throughput or
Signal‑to‑Interference‑plus‑Noise Ratio (SINR) at the re‑
ceiver, and the transmitter intends to maximize such pay‑
off [3, 4, 5, 6, 7, 8, 9, 10, 11]. Meanwhile, in communi‑
cation connectivity problems the transmitter must keep
its SINR greater than or equal to a threshold value to en‑
sure a connection can be sustained [12, 13, 14, 15, 16, 17,
18, 19]. In this paper, we consider the communication
connectivity problem under hostile interference involv‑
ing a transmitter servicing a groupof secondary users (re‑
ceivers)with the channels affected byRayleigh fading. We
formulate and solve this Multi‑Link Communication Con‑
nectivity (MLCC) problem as a zero‑sum power allocation
problem between the transmitter and the jammer, where
the transmitterwants tomaximize the Probability of Com‑
munication Connectivity (PCC) with all the receivers.
One of the core difϐiculties in communication connectiv‑
ity problems is that the transmitter has to keep its SINR

of the transmitted signal at the receiver greater or equal
to a threshold value, which we refer to as the Threshold of
Communication Connectivity (TCC). This leads generally
to to thenon‑existence of equilibria in power‑level assign‑
ment strategies, i.e., pure strategies, even in a Single‑Link
Communication Connectivity (SLCC) problem [14, 17], and
it may cause destabilization of communication. One of
the ways to stabilize such systems, i.e., to make them
have equilibrium, is to extend the set of feasible strategies
to mixed strategies (in other words, to assign the equi‑
librium strategy via randomization (lottery) over pure
strategies). Although using a lottery introduces a factor of
uncertainty for the decision maker it allows it to ϐind an
equilibrium in such mixed strategies for the MLCC prob‑
lem via the Colonel Blotto game approach [12, 13, 16, 18,
19, 17] and for the SLCC problem via a war of attrition
game approach [17].
To avoid introducing a random factor in decision making,
in [14, 15], another approach was suggested to stabilize
such communication. In [14, 15], it was proven that if
channels are affected by Rayleigh fading and background
noise at the receiver is negligible, then an equilibrium in
power‑level assignment strategies (i.e., pure strategies)
exists and is unique for an SLCC problem.
The goal of this paper is to prove that if channels are af‑
fected by Rayleigh fading and any background noise, a
random factor can be eliminated in decision making for
communication stabilization even in MLCC systems. To
the best of the authors’ knowledge this problem has not
been considered before.
The main contributions of this paper are as follows:
(1) A problem of multi‑link communication connectivity
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under jamming of a transmitter with a group of receivers
when the channels are affected by Rayleigh fading ismod‑
eled as a zero‑sum power power allocation game.
(2) Existence and uniqueness of the equilibrium in power
allocation strategies are proven. Thus, in contrast to
Colonel Blotto games, if channels are affected by Rayleigh
fading, then stability of communication connectivity in a
multi‑link system can be maintained without introducing
a random factor for a decision maker.
(3) We reduce the problem of ϐinding the equilibrium in
power resource allocation strategies to the problem of
solving a ϐixed point equation in a scalar variable. An al‑
gorithm based on the bisection method to ϐind the ϐixed
point (and so equilibrium strategies) is developed, and its
convergence is proven. This algorithm can be considered
to be a learning algorithm since it allows one to reduce the
zone of uncertainty for the equilibrium by a factor of two
on iteration.
The organization of this paper is as follows. In Section 2,
a short summary of an SLCC model is given. In Section 3,
its generalization for the MLCC scenario is suggested as a
zero‑sum game between the transmitter communicating
with a group of receivers and the jammer. In Section 4, the
equilibrium strategies are designed and the uniqueness
of the equilibrium is proven. In Section 5, the equilibrium
strategies are established in closed form for the bound‑
ary cases of network parameters: (a) for small or large
TCC, (b) for small or large total jamming and transmission
power budgets and (c) for small background noise at the
receivers. In Section 6, an algorithm to design the equilib‑
rium in the general case is presented and its convergence
is proven. Finally, in Section 7, illustrations of the results
are given, and, in Section 8, conclusions are offered. All
proofs are provided in the appendix.

2. SHORT OVERVIEW OF A SINGLE‑LINK
COMMUNICATION CONNECTIVITY
MODEL

In this section following [14, 15] we give a short overview
of the SLCC model with one transmitter communicating
directly to a single receiver. This communication is af‑
fected by hostile interference from a jammer. Let 𝐺 and
𝐻 be the channel power gains from the transmitter to the
receiver and the jammer to the receiver, respectively. In
practice, the channel power fading gains depend on dis‑
tances, fading and antenna characteristics. In general, the
channel power gains are random variables (e.g., repre‑
senting channel fading)withmeans 𝐼𝐸[𝐺] = 𝑔 and 𝐼𝐸[𝐻] =
ℎ. Let 𝑝 and 𝑞 be the power levels used by the transmitter
and the jammer, respectively. Thus, ℝ+ is the set of fea‑
sible strategies for the transmitter as well as for the jam‑
mer. The receiver also is affected by noise power𝑁. Thus,
the SINR at the receiver is given by

SINR(𝑝, 𝑞) = 𝐻𝑝
𝑁 + 𝐺𝑞 . (1)

We say that the communication from the transmitter to
the receiver is maintained if and only if the SINR at the
receiver is greater than or equal to a given TCC 𝜖, i.e., the
following condition holds:

SINR(𝑝, 𝑞) ≥ 𝜖. (2)

This TCC 𝜖 depends on the system’s requirements, such as
bit rate and bit error rate (BER).
Then, since𝐺 and𝐻 are randomvariables, the probability
that the link between the transmitter and the receiver is
maintained, i.e., PCC, is given by

𝐼𝑃(𝑝, 𝑞) = 𝐼𝑃 (SINR(𝑝, 𝑞) ≥ 𝜖) . (3)

For the case when the channels are affected by Rayleigh
fading (i.e., 𝐺 and 𝐻 are exponential random variables
with means 𝐼𝐸[𝐺] = 𝑔 and 𝐼𝐸[𝐻] = ℎ, respectively), by
[14, 15], the probability (3) can be represented as follows:

𝐼𝑃(𝑝, 𝑞) = 𝑒
−𝜖 𝑁ℎ𝑝

1 + 𝜖𝑔𝑞ℎ𝑝
. (4)

Note that 𝐼𝑃(𝑝, 𝑞) is continuous in 𝑝 ≥ 0 and 𝑞 ≥ 0 and
𝐼𝑃(0, 𝑞) = 0 for 𝑞 ≥ 0.

3. A MULTI‑LINK COMMUNICATION CON‑
NECTIVITY MODEL

In this section, we generalize the SLCC problem to the
MLCC problem involving a transmitter with 𝑛 receivers as
follows:

• We assume that the transmitter is equipped with 𝑛
directed antennas to communicate with 𝑛 receivers.

• Let 𝑝 = (𝑝1, … , 𝑝𝑛) be the strategy of the transmitter
where 𝑝𝑖 is the power assigned to communicate with
the receiver 𝑖 and


𝑖∈𝒩

𝑝𝑖 = 𝑃 and 𝑝𝑖 ≥ 0, 𝑖 ∈ 𝒩 (5)

with 𝑃 is the transmitter’s total power budget and
𝒩 ≜ {1,… , 𝑛}. Denote by 𝒫 the set of all feasible
strategies for the transmitter.

• Let the jammer also be equipped with 𝑛 directed an‑
tennas.

• Let 𝑞 = (𝑞1, … , 𝑞𝑛) be strategy of the jammer, where
𝑞𝑖 is the power assigned to jam the communication
between the transmitter with receiver 𝑖, and


𝑖∈𝒩

𝑞𝑖 = 𝑄 and 𝑞𝑖 ≥ 0, 𝑖 ∈ 𝒩 (6)

with𝑄 is the total jamming power budget. Denote by
𝒬 the set of all feasible strategies for the jammer.
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• By (4), the PCCwith the receiver 𝑖 is given as follows:

𝐼𝑃𝑖(𝑝𝑖 , 𝑞𝑖) =
𝑒
−𝜖 𝑁𝑖

ℎ𝑖𝑝𝑖

1 + 𝜖𝑔𝑖𝑞𝑖ℎ𝑖𝑝𝑖

, (7)

where ℎ𝑖 and 𝑔𝑖 are channel gains and𝑁𝑖 is the back‑
ground noise.

• The PCC with all the 𝑛 receivers is given as follows:

𝜋(𝑝, 𝑞) =ෑ
𝑖∈𝒩

𝐼𝑃𝑖(𝑝𝑖 , 𝑞𝑖) =ෑ
𝑖∈𝒩

𝑒
−𝜖 𝑁𝑖

ℎ𝑖𝑝𝑖

1 + 𝜖𝑔𝑖𝑞𝑖ℎ𝑖𝑝𝑖

. (8)

The goal of the transmitter is to maximize this PCC, while
the jammer wants to minimize this probability. Such
a problem could arise in military operations where one
radio station (say, GCS) must transmit data to 𝑛 mili‑
tary units (e.g., drones) under hostile interference. Thus,
𝜋(𝑝, 𝑞) is the payoff to the transmitter, while for the jam‑
mer 𝜋(𝑝, 𝑞) is the cost function. Thus, here we deal with a
zero sum game. We look for the Nash equilibrium [2]. Re‑
call that (𝑝∗, 𝑞∗) is a Nash equilibrium in a zero‑sum game
if and only if the following inequalities hold:

𝜋(𝑝, 𝑞∗) ≤ 𝜋(𝑝∗, 𝑞∗) ≤ 𝜋(𝑝∗, 𝑞) for all (𝑝, 𝑞) ∈ 𝒫 × 𝒬.
(9)

Let

𝑣(𝑝, 𝑞) = ln(𝜋(𝑝, 𝑞))

= 
𝑖∈𝒩

lnቆ ℎ𝑖𝑝𝑖
ℎ𝑖𝑝𝑖 + 𝜖𝑔𝑖𝑞𝑖

ቇ − 𝜖
𝑖∈𝒩

𝑁𝑖
ℎ𝑖𝑝𝑖

. (10)

Since ln(⋅) is an increasing function, the problem to ϐind
the Nash equilibrium with payoff 𝜋(𝑝, 𝑞) to the transmit‑
ter is equivalent to ϐinding theNash equilibriumwith pay‑
off 𝑣(𝑝, 𝑞) to the transmitter, i.e., such (𝑝∗, 𝑞∗) that

𝑣(𝑝, 𝑞∗) ≤ 𝑣(𝑝∗, 𝑞∗) ≤ 𝑣(𝑝∗, 𝑞) for all (𝑝, 𝑞) ∈ 𝒫 × 𝒬.
(11)

Denote this game by Γ = Γ(𝑣, 𝒫, 𝒬).
Note that the transmitter’s equilibrium strategy also re‑
ϐlects the most fair power resource allocation to main‑
tain communicationwith all the receivers under theworst
hostile interference since the utility 𝑣 given by (10) can
also be considered as a proportional fairness utility [20,
21].
Theorem 1 The game Γ(𝑣, 𝒫, 𝒬) has at least one Nash
equilibrium.

The proof can be found in Appendix 9.1.
Note that, generally in resource allocation problems even
if the payoffs are concave the game might have multiple
equilibria (see, for example, [22]). In this paper we es‑
tablish uniqueness of the equilibrium as a side effect of
solving the best response equations associated with (11).

4. SOLUTION OF THE GAME
In this section we ϐind equilibrium strategies in closed
form using a constructive approach via ϐinding all solu‑
tions of the best response equations. Recall that, by (11),
(𝑝, 𝑞) is a Nash equilibrium if and only if each of these
strategies is the best response to the other, i.e., (𝑝, 𝑞) is
a solution of the best response equations:

𝑝 = argmax{𝑣(𝑝, 𝑞) ∶ 𝑝 ∈ 𝒫}, (12)
𝑞 = argmin{𝑣(𝑝, 𝑞) ∶ 𝑞 ∈ 𝒬}. (13)

Note that (12) and (13) are Non‑Linear Programming
(NLP) problems.

4.1 Explicit form for the equilibriumstrategies
In this section we ϐind in closed form all of the possible
solutions of the best response equations, i.e., equilibrium
strategies, as functions of two auxiliary parameters𝜔 and
𝜈 (Lagrange multipliers for the NLP problems (12) and
(13) correspondingly).

Proposition 1 Each equilibrium (𝑝, 𝑞) of the game
Γ(𝑣, 𝒫, 𝒬) has to have the following form

𝑝𝑖 = 𝑝𝑖(𝜔, 𝜈)

≜

⎧
⎪
⎪

⎨
⎪
⎪
⎩

ට 𝜖𝑁𝑖
ℎ𝑖𝜔 ,

𝜖𝑔2𝑖
𝑁𝑖ℎ𝑖𝜔 ≤ 𝜈2,

1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇ

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ
, 𝜖𝑔2𝑖

𝑁𝑖ℎ𝑖𝜔 > 𝜈2

(14)

and

𝑞𝑖 = 𝑞𝑖(𝜔, 𝜈)

≜

⎢
⎢
⎢
⎢
⎢
⎣

1
𝜈 −

ℎ𝑖
𝜖𝑔𝑖

1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇ

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ

⎥
⎥
⎥
⎥
⎥
⎦+

, (15)

where 𝑖 ∈ 𝒩 and ⌊𝜉⌋+ ≜ max{𝜉, 0}. Thus, ⌊𝜉⌋+ = 𝜉 if 𝜉 ≥ 0
and ⌊𝜉⌋+ = 0 otherwise. Moreover, 𝜔 > 0 and 𝜈 > 0 are
solutions of the following equations:

𝑃(𝜔, 𝜈) ≜ 
𝑖∈𝒩

𝑝𝑖(𝜔, 𝜈) = 𝑃, (16)

𝑄(𝜔, 𝜈) ≜ 
𝑖∈𝒩

𝑞𝑖(𝜔, 𝜈) = 𝑄. (17)

The proof can be found in Appendix 9.2.
Note that, by Theorem1 and Proposition 1, the non‑linear
equations (16) and (17) have at least one solution. To ϐind
this solution and to establish its uniqueness we cannot
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apply a non‑linear modiϐication for the Gaussian elimi‑
nation method suggested in [23] of a search game, and,
further, in [24], applied for an Orthogonal Frequency‑
DivisionMultiplexing (OFDM) jamming game and, in [22],
for a multi‑user OFDM game. The issue is that although
we can establish monotonicity in one direction by both
variables for one of the functions (in our case, 𝑃), the
other function (in our case, 𝑄) generally is not mono‑
tonic in opposite directions of its variables. Instead of that
approach, we reduce the non‑linear equations (16) and
(17) to a ϐixed point equation on 𝜈 and prove that it has
a unique solution and then develop an algorithm to ϐind
this ϐixed point.

4.2 Auxiliary monotonicity properties
In this section we establish monotonicity properties of
𝑃(𝜔, 𝜈)with respect to its parameters and derive a bijec‑
tive relation between 𝜔 and 𝜈 based on (16).
Proposition 2 Function𝑃(𝜔, 𝜈) has the following proper‑
ties:

(a) 𝑃(𝜔, 𝜈) is continuous in 𝜔 > 0 and 𝜈 ≥ 0;1

(b) for a ϔixed 𝜈 > 0, 𝑃(𝜔, 𝜈) is decreasing in𝜔 from inϔin‑
ity for 𝜔 ↓ 0 to zero for 𝜔 ↑ ∞;

(c) for a ϔixed 𝜔 > 0, 𝑃(𝜔, 𝜈) is decreasing in 𝜈 from

𝑃(𝜔, 0) = 1
2𝜔 

𝑖∈𝒩
ቌ1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖

𝜔ቍ for 𝜈 = 0

(18)
to

𝑃(𝜔,∞) = 
𝑖∈𝒩

ඨ 𝜖𝑁𝑖
ℎ𝑖𝜔

for 𝜈 ↑ ∞; (19)

(d) for a ϔixed 𝜈 ≥ 0 there exists the unique𝜔 = Ω(𝜈) such
that

𝑃(Ω(𝜈), 𝜈) = 𝑃. (20)

Moreover, Ω(𝜈) ∈ [Ω∞, Ω0] and Ω(𝜈) can be found via
the bisection method;

(e) Ω(𝜈) is continuous and decreasing from Ω0 for 𝜈 = 0
to Ω∞ for 𝜈 ↑ ∞, where Ω0 is the unique root of the
equation:

1
2Ω0


𝑖∈𝒩

ቌ1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
Ω0ቍ = 𝑃 (21)

and

Ω∞ = 𝜖
𝑃
2 ቌ

𝑖∈𝒩
ඨ𝑁𝑖ℎ𝑖

ቍ

2

. (22)

The proof can be found in Appendix 9.3.
1𝜉 ↓ 𝑎 denotes that 𝜉 tends to 𝑎 decreasingly. Similarly, 𝜉 ↑ 𝑎 denotes
that 𝜉 tends to 𝑎 increasingly.

4.3 An auxiliary ϐixed point equation
In this sectionwe reduce Equation (16) and Equation (17)
to a ϐixed point equation. First note that multiplying both
sides of Equation (17) by 𝜈 implies that Equation (17) is
equivalent to

�̃�(𝜔, 𝜈) = 𝑄𝜈, (23)

where

�̃�(𝜔, 𝜈) ≜ 𝜈𝑄(𝜔, 𝜈). (24)

Moreover, by (15) and (24), we have that

�̃�(𝜔, 𝜈) ≜ 
𝑖∈𝒩

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −

ℎ𝑖
𝜖𝑔𝑖

𝜈 ቌ1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇቍ

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ

⎥
⎥
⎥
⎥
⎥
⎥
⎦+

.

(25)

In the following propositionwe establishmonotonicity of
�̃�(𝜔, 𝜈) on parameters𝜔 and 𝜈, and reduce Equation (16)
and Equation (17) to a ϐixed point equation.

Proposition 3 Function �̃�(𝜔, 𝜈) has the following proper‑
ties:

(a) �̃�(𝜔, 𝜈) is continuous in 𝜔 > 0 and 𝜈 ≥ 0;

(b) for a ϔixed𝜔 > 0, �̃�(𝜔, 𝜈) is decreasing in 𝜈 from 𝑛 for
𝜈 = 0 to zero for 𝜈 ≥ 𝜈 where 𝜈 is the unique positive
root of the equation

𝐴 + 𝐵𝜈 = 𝐶𝜈3/2 (26)

with

𝐴 = 2Ω0, 𝐵 = 2max
𝑖∈𝒩

ℎ𝑖
𝜖𝑔𝑖

and 𝐶 = min
𝑖∈𝒩

ℎ𝑖𝑁1/2
𝑖

𝜖𝑔3/2𝑖
;

(27)

(c) for a ϔixed 𝜈 > 0, �̃�(𝜔, 𝜈) is increasing in 𝜔 and tends
to 𝑛 for 𝜔 ↑ ∞;

(d) function

𝜑(𝜈) ≜ �̃�(Ω(𝜈), 𝜈) (28)

is decreasing in 𝜈 from 𝑛 for 𝜈 = 0 to zero for 𝜈 ≥ 𝜈,

(e) The following ϔixed point equation has the unique pos‑
itive root 𝜈∗:

𝜑(𝜈∗)/𝑄 = 𝜈∗. (29)

This root can be found via the bisection method with
[0, 𝜈] as the initial localization interval for such 𝜈∗.

The proof can be found in Appendix 9.4.
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4.4 Equilibrium and its uniqueness
In this section we ϐind the equilibrium and establish its
uniqueness.

Theorem 2 In the game Γ(𝑣, 𝒫, 𝒬), Nash equilibrium
(𝑝, 𝑞) is unique. Moreover, this Nash equilibrium is
(𝑝(𝜔, 𝜈), 𝑞(𝜔, 𝜈)) given by (14) and (15), where 𝜈 = 𝜈∗
uniquely given by (29) and 𝜔 = Ω(𝜈∗) uniquely given by
(20).

The proof can be found in Appendix 9.5.

5. THE BOUNDARY CASES
In this sectionwe ϐind the equilibrium strategies in closed
form for boundary cases of network parameters such
as the TCC, the total jamming/transmission power re‑
sources and background noise at the receivers.

5.1 Negligible background noise at the re‑
ceivers

In this section we consider the scenario with negligible
background noise at the receivers.

Proposition 4 Let the background noise at the receivers
be negligible, i.e.,

𝑁𝑖 = 0 for 𝑖 ∈ 𝒩. (30)

Then the unique Nash equilibrium (𝑝, 𝑞) is given as follows:

𝑝𝑖 =
𝑔𝑖𝑄/(𝜖𝑔𝑖𝑄 + ℎ𝑖𝑃)

∑𝑗∈𝒩 𝑔𝑗𝑄/(𝜖𝑔𝑗𝑄 + ℎ𝑗𝑃)
𝑃, (31)

𝑞𝑖 =
𝑔𝑖𝑄/(𝜖𝑔𝑖𝑄 + ℎ𝑖𝑃)

∑𝑗∈𝒩 𝑔𝑗𝑄/(𝜖𝑔𝑗𝑄 + ℎ𝑗𝑃)
𝑄, 𝑖 ∈ 𝒩. (32)

The proof can be found in Appendix 9.6.
Proposition 4 implies that, for negligible background
noise at the receivers, the equilibrium strategies of the
transmitter and the jammer areproportional to ratio𝑃/𝑄.
Note that, in the SLCC problem solved in [14, 15] for
negligible background noise at the receiver, equilibrium
strategies are given in closed form. Proposition 4 also
supplies the equilibrium strategies in closed form for the
MLCC problem. Thus, an increase in the number of com‑
munication links does not lead to an increase in the com‑
plexity involved in designing the equilibrium strategies.

5.2 Large and small total transmission power
In this section we consider the cases where total trans‑
mission power is either large or small.

Proposition 5 Let the total transmission power 𝑃 be
large. Then the Nash equilibrium (𝑝, 𝑞) can be approxi‑

mated as follows:

𝑞𝑖 ≈
𝑔𝑖
ℎ𝑖
𝜏 − 𝑁𝑖ℎ𝑖

𝑔2𝑖

+
, (33)

𝑝𝑖 ≈
𝑃
𝑇 ൞

ට𝑁𝑖ℎ𝑖 , 𝜏 ≤ 𝑁𝑖ℎ𝑖
𝑔2𝑖

,

√𝜏
𝑔𝑖
ℎ𝑖
, 𝜏 > 𝑁𝑖ℎ𝑖

𝑔2𝑖
,

(34)

where 𝜏 is the unique positive root of the equation:


𝑖∈𝒩

𝑔𝑖
ℎ𝑖
𝜏 − 𝑁𝑖ℎ𝑖

𝑔2𝑖

+
= 𝑄 (35)

and

𝑇 = 
𝜏≤𝑁𝑖ℎ𝑖/𝑔2𝑖

ඨ𝑁𝑖ℎ𝑖
+ √𝜏 

𝜏>𝑁𝑖ℎ𝑖/𝑔2𝑖

𝑔𝑖
ℎ𝑖
. (36)

The proof can be found in Appendix 9.7.
Proposition 6 Let the total transmission power 𝑃 be
small. Then the Nash equilibrium (𝑝, 𝑞) can be approxi‑
mated as follows:

𝑝𝑖 ≈
ඥ𝑁𝑖/ℎ𝑖

∑𝑗∈𝒩 ඥ𝑁𝑗/ℎ𝑗
𝑃, (37)

𝑞𝑖 ≈ 𝑄/𝑛 for 𝑖 ∈ 𝒩. (38)

The proof can be found in Appendix 9.8.
In particular, Proposition 5 and Proposition 6 imply that
for large or small total transmission power the transmit‑
ter’s strategies and the jammer strategy are insensitive to
the TCC.

5.3 Large or small total jamming power
In this section we consider the cases where the total jam‑
ming power is either large or small.
Proposition 7 Let the total jamming power 𝑄 be large.
Then, the Nash equilibrium (𝑝, 𝑞) can be approximated as
follows:

𝑝𝑖 ≈ 𝑝𝑖(Ω0, 0) =
1
2Ω0


𝑖∈𝒩

ቌ1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
Ω0ቍ , (39)

𝑞𝑖 ≈ 𝑄/𝑛 for 𝑖 ∈ 𝒩, (40)

where Ω0 is given by (21).

The proof can be found in Appendix 9.9.
Proposition 8 Let the total jamming power 𝑄 be small.
Then, the Nash equilibrium (𝑝, 𝑞) can be approximated as
follows:

𝑝𝑖 ≈
ඥ𝑁𝑖/ℎ𝑖

∑𝑗∈𝒩 ඥ𝑁𝑗/ℎ𝑗
𝑃 for 𝑖 ∈ 𝒩 (41)

𝑞 ∈ 𝒬 such that supp(𝑞) ⊂ ℐ, (42)
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where Ω0 is given by (21), and

supp(𝑞) ≜ {𝑖 ∈ 𝒩 ∶ 𝑞𝑖 > 0}, (43)
ℐ ≜ {𝑖 ∈ 𝒩 ∶ 𝑁𝑖ℎ𝑖/𝑔2𝑖 = min

𝑗∈𝒩
𝑁𝑗ℎ𝑗/𝑔2𝑗 }. (44)

The proof can be found in Appendix 9.10.
In particular, Proposition 7 and Proposition 8 imply that
with large or small total jamming power resources, the
jammer’s strategy and the transmitter’s strategy are in‑
sensitive to the TCC.

5.4 Large or small threshold of communica‑
tion connectivity

In this section we consider the cases where the TCC is ei‑
ther small or large.

Proposition 9 (a) Let the TCC 𝜖 be large. Then the Nash
equilibrium (𝑝, 𝑞) can be approximated by (37) and
(38) of Proposition 6.

(b) Let the TCC 𝜖 be small. Then, the Nash equilibrium
(𝑝, 𝑞) can be approximated by (34) and (33) of Propo‑
sition 5.

The proof can be found in Appendix 9.11.

6. ALGORITHM TO ARRIVE AT THE EQUI‑
LIBRIUM

In this section, an algorithm based on superposition of
two bisection methods to arrive at equilibrium strategies
is given.
Algorithm 1 The algorithm for deriving the equilibrium
strategies 𝑝(𝜔, 𝜈) and 𝑞(𝜔, 𝜈), where 𝛿 > 0 is a tolerance for
the algorithm.

Procedure Strategies()
let 𝜈𝐿 = 0 and 𝜈𝑅 = 𝜈
repeat

let 𝐹𝐿 = �̃�(Ω(𝜈𝐿), 𝜈𝐿) − 𝑄𝜈𝐿
let 𝐹𝑅 = �̃�(Ω(𝜈𝑅), 𝜈𝑅) − 𝑄𝜈𝑅
let 𝜈𝐶 = (𝜈𝐿 + 𝜈𝑅)/2
let 𝐹𝐶 = �̃�(Ω(𝜈𝐶), 𝜈𝐶) − 𝑄𝜈𝐶
if 𝐹𝐶𝐹𝐿 < 0 then

let 𝜈𝑅 = 𝜈𝐶
else

let 𝜈𝐿 = 𝜈𝐶
end if

until 𝜈𝑅 − 𝜈𝐿 > 𝛿
return strategies 𝑝(Ω(𝜈𝐶), 𝜈𝐶) and 𝑞(Ω(𝜈𝐶), 𝜈𝐶)
End Procedure
ProcedureΩ(𝜈)
let 𝜔𝐿 = Ω∞
let 𝜔𝑅 = Ω0
repeat

let 𝐹𝐿 = 𝑃(𝜔𝐿 , 𝜈)
let 𝐹𝑅 = 𝑃(𝜔𝑅 , 𝜈)
let 𝜔𝐶 = (𝜈𝐿 + 𝜈𝑅)/2
let 𝐹𝐶 = 𝑃(𝜔𝐶 , 𝜈)
if (𝐹𝐶 − 𝑃)(𝐹𝐿 − 𝑃) < 0 then

let 𝜔𝑅 = 𝜔𝐶
else

let 𝜔𝐿 = 𝜔𝐶
end if

until𝜔𝑅 −𝜔𝐿 > 𝛿
return 𝜔𝐶
End Procedure

Proposition 10 Algorithm 1 converges to an equilibrium.

The proof can be found in Appendix 9.12.
The complexity involved in designing the equilibrium
strategies by Algorithm1 is log2(𝜈/𝛿) log2((Ω0−Ω∞)/𝛿).

7. DISCUSSION OF THE RESULTS
In this section we illustrate Algorithm 1 using a system
consisting of 𝑛 = 5 receivers, with fading gains from
the transmitter to the receivers ℎ = (1, 2, 3, 4, 5), fading
gains from the jammer to the receivers 𝑔 = (3, 2, 1, 4, 1),
the background noises at the receivers 𝑁 = (3, 2, 1, 4, 1),
the total transmitter power budget 𝑃 = 2 and the to‑
tal jamming power budget 𝑄 = 3. Fig. 1(a) illustrates
that an increase in the total transmission power leads to
an increase in the PCC (i.e., in 𝜋), while an increase in
the jamming power reduces the PCC. Fig. 1(b) illustrates
the transmitter’s normalized strategies, i.e., 𝑝/𝑃, while
Fig. 1(c) illustrates the jammer’s strategies for the total
power transmitter budget 𝑃 ∈ {0.1, 1, 10, 100}. It shows
that the jammer’s strategy for a small total transmitter
power budget 𝑃 tends to a uniform strategy (Proposi‑
tion 6), while for a large total transmitter power budget
𝑃 the jammer’s strategy tends to waterϐilling‑form strate‑
gies given by (33). Due to the waterϐilling form of Equa‑
tion (33), smaller 𝑁𝑖ℎ𝑖/𝑔2𝑖 calls for applying larger jam‑
ming efforts. Here we have that

𝑁ℎ/𝑔2 = (0.3, 1, 3, 1, 5). (45)

For this reason, the largest jamming effort is focused on
receiver 1 while receiver 2 and receiver 4 face approxi‑
mately equal‑level of interfering signals. Fig. 2(a) illus‑
trates that an increase in the total jamming power leads
to a decrease in the PCC, while an increase in the to‑
tal transmission power reduces such negative effect from
jammer’s interference. Fig. 2(c) illustrates normalized
jammer’s strategies, i.e., 𝑞/𝑄, while Fig. 2(b) illustrates
transmitter’s strategies for total jamming power budget
𝑄 ∈ {0.1, 1, 10, 100}. By (44) and (45), we have that
ℐ = {1}. That is why, jamming efforts for small total
power jamming budget𝑄 is focused on receiver 1 (Propo‑
sition 8), while jamming efforts for large total jamming
power budget𝑄 tends to uniform distribution over all the
receivers (Proposition 7). Fig. 3(a) illustrates that an in‑
crease in the TCC 𝜖 leads to a decrease in the PCC, while
Fig. 3(b) and Fig. 3(c) illustrate that the jammer’s strat‑
egy focuses jamming efforts on receiver 1 due to a wa‑
terϐilling form of Equation (33) and (45) for a small TCC.
For a large TCC, jammer’s strategy tends to a uniform one
(Proposition 9). In all of the cases, the transmitter tries
to communicate with each receiver (i.e., 𝑝𝑖 > 0 for all
𝑖). This observationmakes theMLCCproblemremarkably
different from standard OFDM communication scenarios
where the transmitter, lacking sufϐicient transmission re‑
sources, must avoid transmission in some of the channels.
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(a) (b) (c)

Fig. 1 – (a) The PCC 𝜋, (b) normalized transmitter’s strategy 𝑝 with 𝑄 = 3 and (c) jammer’s strategy 𝑞 with 𝑄 = 3 as functions of 𝑃.

(a) (b) (c)

Fig. 2 – (a) The PCC 𝜋, (b) transmitter’s strategy 𝑝 and (c) normalized jammer’s strategy 𝑞 as functions of 𝑄.

(a) (b) (c)

Fig. 3 – (a) The PCC 𝜋, (b) normalized transmitter’s strategy 𝑝 with 𝑄 = 3 and (c) jammer’s strategy 𝑞 with 𝑄 = 3 as functions of 𝑃.
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Also, in OFDM communication, the transmitter’s strategy
becomes uniform in a high SINR mode, i.e., large trans‑
mission power, [25], while in the MLCC problem the jam‑
mer’ strategy tends to auniformone if either the total jam‑
ming resource budget is large, or the total transmission
resource budget is small.

8. CONCLUSIONS
A problem of multi‑link communication connectivity un‑
der jamming of a transmitter with a group of receivers
when the channels are affected by Rayleigh fading has
been formulated as a zero‑sum power resource alloca‑
tion game. Existence and uniqueness of the equilibrium
in power allocation strategies have been proven. Thus,
in contrast to Colonel Blotto games, if channels are af‑
fected by Rayleigh fading, then the stability of commu‑
nication connectivity in a multi‑link system can be main‑
tainedwithout introducing a random factor for a decision
maker. Also, the problem of designing the equilibrium
power allocation strategies has been reduced to the prob‑
lem of ϐinding a ϐixed point of a real‑valued function. An
algorithm based on the bisection method for ϐinding the
ϐixed point has been developed and its convergence has
been proven.
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9. APPENDIX

9.1 Proof of Theorem 1
Note that 𝑣(𝑝, 𝑞) is an additively separable function of
(𝑝𝑖 , 𝑞𝑖), 𝑖 ∈ 𝒩 and

𝜕𝑣2(𝑝, 𝑞)
𝜕𝑝2𝑖

= −𝜖𝑞𝑖𝑔𝑖(𝜖𝑔𝑖𝑞𝑖 + 2ℎ𝑖𝑝𝑖)
(𝜖𝑔𝑖𝑞𝑖 + ℎ𝑖𝑝𝑖)2𝑝2𝑖

− 2𝜖𝑁𝑖
ℎ𝑖𝑝3𝑖

< 0 (46)

and
𝜕𝑣2(𝑝, 𝑞)
𝜕𝑞2𝑖

= 𝜖2𝑔2𝑖
(𝜖𝑔𝑖𝑞𝑖 + ℎ𝑖𝑝𝑖)2

> 0. (47)

Thus,𝑣(𝑝, 𝑞) is concave in𝑝 andconvex in𝑞, and the result
follows from the Nash’s theorem [2] since sets𝒫 and 𝒬 of
feasible strategies of the transmitter and the jammer are
compact.

9.2 Proof of Proposition 1
By (46), theNLPproblem (12) is a concave problem. Thus,
to solve the NLP (12) we introduce Lagrangian ℒ𝑇,𝜔(𝑝)
with 𝜔 is a Lagrange multiplier: ℒ𝑇,𝜔(𝑝) = 𝑣(𝑝, 𝑞) +
𝜔 ቀ𝑃 − ∑𝑛

𝑖=1 𝑝𝑖ቁ . Then, for a ϐixed 𝑞 ∈ 𝒬, following [21]
and the KKT Theorem, 𝑝 ∈ 𝒫 is the best response if and

only if the following condition holds:

𝜕ℒ𝑇,𝜔(𝑝)
𝜕𝑝𝑖

= 𝜖𝑔𝑖𝑞𝑖
(𝜖𝑔𝑖𝑞𝑖 + ℎ𝑖𝑝𝑖)𝑝𝑖

+ 𝜖𝑁𝑖
ℎ𝑖𝑝2𝑖

−𝜔 ൝= 0, 𝑝𝑖 > 0,
≤ 0, 𝑝𝑖 = 0.

(48)
By (47), the NLP (13) is a convex problem. Thus, to solve
the NLP (13) we introduce Lagrangian ℒ𝐼,𝜈(𝑞) with 𝜈 is
a Lagrange multiplier as follows: ℒ𝐽,𝜈(𝑞) = −𝑣(𝑝, 𝑞) +
𝜈 ቀ𝑄 − ∑𝑛

𝑖=1 𝑞𝑖ቁ . Then, similarly, for a ϐixed 𝑝 ∈ 𝒫, 𝑞 ∈ 𝒬
is the best response if and only if the following condition
holds:

𝜕ℒ𝐽,𝜈(𝑞)
𝜕𝑞𝑖

= 𝜖𝑔𝑖
𝜖𝑔𝑖𝑞𝑖 + ℎ𝑖𝑝𝑖

− 𝜈 ൝= 0, 𝑞𝑖 > 0,
≤ 0, 𝑞𝑖 = 0. (49)

By (48), we have that
𝑝𝑖 > 0 for any 𝑖. (50)

Then, by (48) and (49),𝜔 > 0 and 𝜈 > 0 correspondingly.
By (48), only two cases arise to consider: (I)𝑝𝑖 > 0, 𝑞𝑖 = 0
and (II) 𝑝𝑖 > 0, 𝑞𝑖 > 0.
(I) Let 𝑝𝑖 > 0 and 𝑞𝑖 = 0. Then, by (48),

𝑝𝑖 = ඨ 𝜖𝑁𝑖
ℎ𝑖𝜔

. (51)

Substituting (51) into (49) implies
𝜖𝑔2𝑖
𝑁𝑖ℎ𝑖

𝜔 ≤ 𝜈2. (52)

(II) Let 𝑝𝑖 > 0 and 𝑞𝑖 > 0. Then, by (48) and (49), we have
that 𝜖𝑔𝑖𝑞𝑖

(𝜖𝑔𝑖𝑞𝑖 + ℎ𝑖𝑝𝑖)𝑝𝑖
+ 𝜖𝑁𝑖
ℎ𝑖𝑝2𝑖

= 𝜔 (53)

and
𝜖𝑔𝑖𝑞𝑖 + ℎ𝑖𝑝𝑖 =

𝜖𝑔𝑖
𝜈 . (54)

Thus,
𝑞𝑖 =

1
𝜈 −

ℎ𝑖
𝜖𝑔𝑖

𝑝𝑖 . (55)

Substituting (55) into (53) implies
1
𝑝𝑖
+ 𝜖𝑁𝑖
ℎ𝑖𝑝2𝑖

= 𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈. (56)

Solving (56) on 𝑝𝑖 implies that

𝑝𝑖 =
1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖

ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ
. (57)

Thus,

𝑞𝑖 =
1
𝜈 −

ℎ𝑖
𝜖𝑔𝑖

1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇ

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ
. (58)
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By (57), 𝑝𝑖 > 0. By (58), 𝑞𝑖 > 0 if and only if

2
𝜈 ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇ > ℎ𝑖

𝜖𝑔𝑖
ቌ1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖

ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇቍ .

The last inequality is equivalent to

1
𝜈 ቆ2𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇ > ℎ𝑖

𝜖𝑔𝑖
ඨ1 + 4𝜖𝑁𝑖ℎ𝑖

ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ. (59)

A straightforward calculation shows that (59) is equiva‑
lent to

𝜖𝑔2𝑖
𝑁𝑖ℎ𝑖

𝜔 > 𝜈2. (60)

Thus, 𝑞𝑖 , given by (58), is positive if and only if (60) holds.
Finally, combining (I) and (II) implies the result.

9.3 Proof of Proposition 2

A straightforward substituting 𝜖𝑔2𝑖
𝑁𝑖ℎ𝑖𝜔 = 𝜈2 into (14) im‑

plies (a).
Let

𝜂(𝑥) = 1 + √1 + 𝑎𝑥
𝑥 = 1

𝑥 +
ඨ 1
𝑥2 +

𝑎
𝑥 , (61)

where 𝑎 is a positive parameter. It is clear that

𝜂(𝑥) is decreasing in 𝑥 > 0. (62)

Let
𝑥 = 𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈 and 𝑎 = 4𝜖𝑁𝑖ℎ𝑖

. (63)

Substituting (63) into (61), by (14) and (62), yields (b) and
(c). (d) follows from (b). (e) follows from (a) and (b),
while (21) and (22) follow from (18), (19) and (20).

9.4 Proof of Proposition 3
(a) follows from (25).
Let

𝑓(𝜈) = 𝜈
𝑐 + 𝑎𝜈 +

ඥ1 + 𝑏(𝑐 + 𝑎𝜈)
𝑐 + 𝑎𝜈 , (64)

where 𝑎 = ℎ𝑖/(𝜖𝑔𝑖), 𝑏 = 4𝜖𝑁𝑖/ℎ𝑖 and 𝑐 = 𝜔. Then

𝑑𝑓(𝜈)
𝑑𝜈 = 𝑐

(𝑐 + 𝑎𝜈)2 +
(𝑎2𝑏𝜈2 + 3𝑎𝑏𝑐𝜈 + 2𝑏𝑐2 + 2𝑐)
2(𝑎𝜈 + 𝑐)2√𝑎𝑏𝜈 + 𝑏𝑐 + 1

> 0.

(65)

Nowwe establish that

�̃�(𝜔, 𝜈) = 0 for 𝜈 ≥ 𝜈 and 𝜔 ∈ [Ω∞, Ω0] (66)

By (25), �̃�(𝜔, 𝜈) = 0 if and only if for all 𝑖 the following
inequality holds:

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ ≤ ℎ𝑖
𝜖𝑔𝑖

𝜈 ቌ1 + ඨ1 + 4𝜖𝑁𝑖ℎ𝑖
ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇቍ .

(67)
Since 𝜔 ≥ Ω∞ > 0, substituting 𝜔 = Ω∞ into the right‑
side of (67) implies that if the following inequality holds
then (67) also holds:

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ ≤ ℎ𝑖
𝜖𝑔𝑖

𝜈ඨ4𝜖𝑁𝑖ℎ𝑖
ℎ𝑖
𝜖𝑔𝑖

𝜈. (68)

Taking into account notations (27) and that 𝜔 ≤ Ω0, (68)
holds for all 𝑖 if the following inequality holds:

𝐴 + 𝐵𝜈 ≤ 𝐶𝜈3/2 (69)

with 𝐴, 𝐵 and 𝐶 given by (27). It is clear that Equation
(26) has the unique positive root 𝜈 = 𝜈. Then, (69) holds
for 𝜈 ≥ 𝜈, and (66) follows.
Thus, (25), (64), (65) and (66) imply (b). (c) follows
from (25) and (61)‑(63). Also, (b), (c), (66) and Propo‑
sition 2(e) imply (d).
Since the right‑side of Equation (23) is increasing from
zero for 𝜈 = 0 to inϐinity for 𝜈 ↑ ∞while, by (d), the right‑
side of Equation (23) is decreasing and reaches zero for
𝜈 ≥ 𝜈, (e) follows.

9.5 Proof of Theorem 2
By Proposition 1, all the equilibrium strategies have to
have the form given by (14) and (15), where (𝜔, 𝜈) is a
positive solution of (16) and (17). By Proposition 2, (14)
establishes a bijection relation between 𝜔 and 𝜈 given by
function 𝜔 = Ω(𝜈). Substituting this function into (15)
yields into Equation (23) of one variable 𝜈. By Proposi‑
tion 3, this equation has the unique root. Thus, the equi‑
librium also is unique, and the result follows.

9.6 Proof of Proposition 4
By (30), (52) cannot hold for any 𝑖. Thus, by (14) and (15),
𝑝𝑖 > 0 and 𝑞𝑖 > 0 for any 𝑖. Substituting (30) into (14)
and (15) implies

𝑝𝑖(𝜔, 𝜈) =
1

𝜔 + 𝜈ℎ𝑖/(𝜖𝑔𝑖)
, (70)

𝑞𝑖(𝜔, 𝜈) =
𝜔/𝜈

𝜔 + 𝜈ℎ𝑖/(𝜖𝑔𝑖)
for any 𝑖. (71)

Dividing (71) by (70) implies that

𝑞𝑖(𝜔, 𝜈) = (𝜔/𝜈)𝑝𝑖(𝜔, 𝜈). (72)

Summing up (72) by 𝑖 and taking into account that 𝑝 ∈ 𝒫
and 𝑞 ∈ 𝒬 we have that

𝑄 = (𝜔/𝜈)𝑃. (73)
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Thus, 𝜈 = 𝑃𝜔/𝑄. Substituting this 𝜈 into (70) implies that

𝑝𝑖(𝜔, 𝜈) = 1/(𝜔(1 + ℎ𝑖𝑃/(𝜖𝑔𝑖𝑄))). (74)

Since 𝑝 ∈ 𝒫, summing up (74) yields that 𝜔 =
∑𝑖∈𝒩 1/(𝑃(1 + ℎ𝑖𝑃/(𝜖𝑔𝑖𝑄))). This and (74) yield (31),
while (32) follows from (31) and (72).

9.7 Proof of Proposition 5
Since 𝑃 ↑ ∞ there is at least one 𝑖 such 𝑝𝑖 ↑ ∞. Then, by
(54), 𝜈 ↓ 0 and for large 𝑃 we have that

𝑝𝑖 ≈ 𝜖𝑔𝑖/(ℎ𝑖𝜈). (75)

By (56), for large 𝑝𝑖 we have that

1/𝑝𝑖 ≈ 𝜔 + (ℎ𝑖/𝜖𝑔𝑖)𝜈. (76)

Thus, 𝜈 ↓ 0while 𝑃 ↑ ∞. Moreover, by (75) and (76),

𝜔/𝜈 ↓ 0 for 𝑃 ↑ ∞. (77)

Then, since √1 + 𝑎𝑥 ≈ 1 + 𝑎𝑥/2 for small 𝑥, (15) implies
that

𝑞𝑖 ≈
⎢
⎢
⎢
⎢
⎣

1
𝜈 −

ℎ𝑖
𝜖𝑔𝑖

2 + 2𝜖𝑁𝑖ℎ𝑖
ቆ𝜔 + ℎ𝑖

𝜖𝑔𝑖
𝜈ቇ

2ቆ𝜔 + ℎ𝑖
𝜖𝑔𝑖

𝜈ቇ

⎥
⎥
⎥
⎥
⎦+

=  𝜔
𝜈2(𝜔/𝜈 + ℎ𝑖/(𝜖𝑔𝑖))

− 𝑁𝑖
𝑔𝑖

+
. (78)

By (77) and (78), we have that

𝑞𝑖 ≈
𝑔𝑖
ℎ𝑖
𝜖𝜔𝜈2 − 𝑁𝑖ℎ𝑖

𝑔2𝑖

+
. (79)

Let 𝜏 = 𝜖𝜔/𝜈2. Substituting this 𝜏 into (79) and taking
into account that 𝑞 ∈ 𝒬 imply (33) and (35).
By (14) and (75), we have that

𝑝𝑖 ≈ ൞
ට 𝜖𝑁𝑖
ℎ𝑖𝜔 , 𝜏 ≤ 𝑁𝑖ℎ𝑖

𝑔2𝑖
,

𝜖𝑔𝑖
𝜈ℎ𝑖 , 𝜏 > 𝑁𝑖ℎ𝑖

𝑔2𝑖
.

(80)

Summing up (80) and taking into account that
𝑝 ∈ 𝒫 yields the following relation: 𝑃 =
ට 𝜖
𝜔 ቆ∑𝜏≤𝑁𝑖ℎ𝑖/𝑔2𝑖 ට

𝑁𝑖
ℎ𝑖
+ √𝜏∑𝜏>𝑁𝑖ℎ𝑖/𝑔2𝑖

𝑔𝑖
ℎ𝑖
ቇ . This allows to

deϐine ඥ𝜖/𝜔. Substituting this ඥ𝜖/𝜔 into (80) implies
(34) and (36), and the result follows.

9.8 Proof of Proposition 6
Note that 𝑝𝑖 ↓ 0 since 𝑃 ↓ 0. Then, by (53),

𝜔 ↑ ∞. (81)

Since 𝑞 ∈ 𝒬, by (55), 𝜈 is upper‑bounded on 𝜔. This, (14)
and (15) imply that 𝑞𝑖 > 0 for any 𝑖. Then, by (55),

𝑞𝑖 ≈ 1/𝜈 for all 𝑖 and small 𝑃. (82)

Since 𝑞 ∈ 𝒬, summing up (82) by 𝑖 ∈ 𝒩 implies that

𝜈 ≈ 𝑛/𝑄. (83)

Then, (82) and (83) imply (38).
Substituting (83) into (53), by (81), implies that for small
𝑃 the following approximation holds:

𝑝𝑖 ≈ ඥ𝜖𝑁𝑖/(ℎ𝑖𝜔). (84)

This and the fact that 𝑝 ∈ 𝒫 implies (37).

9.9 Proof of Proposition 7
Since 𝑞 ∈ 𝒬, 𝑄 ↑ ∞ implies that 𝑞𝑖 ↑ ∞ for at least one
𝑖. Then, by (55), 𝜈 ↓ 0. Thus, by (55), for large 𝑄 we have
that

𝑞𝑖 ≈ 𝜈 for all 𝑖. (85)

Taking into account that 𝑞 ∈ 𝒬 summing up (85) yields
that 𝜈 = 𝑄/𝑛. Substituting this 𝜈 into (85) implies (40).
While substituting 𝜈 = 𝑄/𝑛 into (14) and taking into ac‑
count that 𝑄 ↑ ∞ imply (39), and the result follows.

9.10 Proof of Proposition 8
First prove that 𝜈 cannot tend to inϐinity while 𝑄 tends to
zero. Assume that 𝜈 ↑ ∞. Then, by (55), 𝑝𝑖 ↓ 0 where
𝑞𝑖 > 0. Thus, by (53), 𝜔 ↑ ∞. So, by (14), 𝑝𝑖 ↓ 0 also
for 𝑞𝑖 = 0. This contradicts the fact that 𝑝 ∈ 𝒫. Thus,
𝜈 cannot tend to inϐinity while 𝑄 ↓ 0. Then, since 𝑞𝑖 ↓ 0
while 𝑄 ↓ 0, by (55), we have that

𝜈 ≈ 𝜖𝑔𝑖/(ℎ𝑖𝑝𝑖) for 𝑞𝑖 > 0. (86)

While, by (53), since 𝑞𝑖 ↓ 0, we have that,

𝑝𝑖 ≈ ඥ𝜖𝑁𝑖/(ℎ𝑖𝜔) for 𝑞𝑖 > 0. (87)

By (14), 𝑝𝑖 = ඥ𝜖𝑁𝑖/(ℎ𝑖𝜔) for 𝑞𝑖 = 0. This, (87) and the
fact that 𝑝 ∈ 𝒫 implies (41).
Substituting (87) into (86) implies (42), and the result fol‑
lows.

9.11 Proof of Proposition 9
By (8), since 𝑝 ∈ 𝒫, the equilibrium strategies are deϐined
by ratio 𝑃/𝜖, and the result follows.
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9.12 Proof of Proposition 10
First note that procedure Ω(𝜈) reϐlects the bisection
method to solve equation 𝑃(𝜔, 𝜈) = 𝑃 for a ϐixed 𝜈.
By Proposition 2, this procedure converges. Procedure
Strategies() reϐlects the bisection method to solve equa‑
tion �̃�(Ω(𝜈), 𝜈)−𝑄𝜈 = 0.ByProposition 3, this procedure
also converges. Thus, Algorithm 1 converges as a super‑
position of two converging procedures.
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