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Abstract – In this paper, we focus on the most relevant Error Correcting Codes (ECCs): the Hamming code and the Reed‑ 
Solomon code in order to meet the trade‑off between the low implementation complexity and the high error correction capac‑ 
ity in a short‑frame OFDM communication system. Moreover, we discuss and validate via simulations this trade‑off between 
complexity (Hamming is the easiest to code) and error correction capability (Reed‑Solomon being the most effective). There‑ 
fore, we have to either improve the correction capacity of the Hamming code, or decrease the complexity cost for the Reed‑ 
Solomon code. Based on this analysis, we propose a new design of parallel Hamming coding. On the one hand, we validate 
this new model of parallel Hamming coding with numerical results using MATLAB‑Simulink tools and BERTool Application 
which makes easier the Bit Error Rate (BER) performance simulations. On the other hand, we implement the design of this 
new model on an FPGA mock‑up and we show that this solution of a parallel Hamming encoder/decoder uses a few resources 
(LUTs) and has a higher capability of correcting when compared to the simple Hamming code.

Keywords – error correcting codes, FPGA, Hamming code, parallel Hamming coding, OFDM communication systems, 
Reed‑Solomon code, short‑frame, sensor’s network, VHDL simulation

1. INTRODUCTION
Nowadays, Orthogonal Frequency Division Multiplexing
(OFDM) systems are increasingly used in several applica‑
tions such as: digital radio, television broadcasting sys‑
tems, mobile communication systems and Power‑Line
Communications (PLC). OFDM is a convenient modula‑
tion scheme which combines the advantages of high data
rates and easy implementation.
However, the main challenge associated with OFDM com‑
munication systems today remains related to Error Cor‑
recting Codes (ECCs) implementation [2]. Encoding and
decoding are very important blocks in OFDM systems in
which redundant information is added to the signal to
allow the receiver to detect and correct errors that may
have occurred in transmission. There are many tech‑
niques for error detection and correction such as: the
Hamming code [3], Turbo code [4], Bose, Chaudhuri, and
Hocquenghem (BCH) code [5], Reed‑Solomon code [6],
Convolutional code/ Viterbi [7], and LDPC [8].
One way to compare the efϐiciency of several ECCs is to
compare their performance in terms of their complexity
of implementation and their error detection or/and cor‑
rection capability. Hamming and Reed‑Solomon codes
have proved to be a good compromise between efϐiciency
and complexity. Hamming is very easy to implement and
does not consumemany resources, and it is a robust ECC,
but the Bit Error Rate (BER) performance is not the most
effective. The Reed‑Solomon is more optimal to elimi‑
nate errors (especially for burst errors), but it is alsomore
complex to implement.
Our domain of application is PLC based on OFDM systems

for aeronautic sensor’s network [9, 10]. According to [10],
a PLC channel hasmajor limitations especially in terms of
bandwidth, impedance mismatches and noise.
Since power consumption has been a critical factor in the
design of sensor’s network, we consider sensor’s network
with short periods of activity, in which some sensors’ de‑
vices go into standby mode. This consideration and the
need for low latency access [11] to sensor data under‑
scores the need for a short‑frame OFDM and fast commu‑
nication protocol.
In this paper, we focus on a low‑powered short‑frame
OFDM communication systemwhere the sensors’ devices
send only one OFDM symbol per frame on the PLC chan‑
nel. We simulate and model the design of this low‑
powered short‑frame OFDM communication system in
terms of error correction. As mentioned previously, the
complexity of the chosenECC is oneof the studied criteria:
the ECC has to be effective and fairly easy to implement at
the same time.
Usually, to have better performance in terms of error cor‑
rection and/or error detection, we have to add several er‑
ror correcting codes (ECCs) in serial either at the encoder
or on the decoder level. Our case of applications requires
a very simple ECC in order to implement it on a High Tem‑
perature (HT)ASICwhosenumber of cabled ϐlip‑ϐlops and
multipliers are limited by the HT technology.
Therefore, the novelty of this paper lies in the perfor‑
mance analysis of a new design based on the parallel
Hamming coding which meets the trade‑off between the
low implementation complexity and the high error cor‑
rection capacity. In the literature, the closestwork to ours
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is [12] in which the authors used parallel ϐilters with only
one Hamming code as an error correcting code. Their
scheme allows more efϐicient protection when the num‑
ber of parallel ϐilters is large.
Our contributions can be summarized as follows:

• The design of this low‑powered short‑frame OFDM
communication system in terms of error correction
is modelled by MATLAB‑Simulink tools.

• We analyse and choose the adapted Error Correcting
Codes (ECCs); such as Hamming and Reed‑Solomon
for this low‑powered short‑frame OFDM communi‑
cation model.

• We discuss the trade‑off between the low implemen‑
tation complexity and the high error correction ca‑
pacity.

• Moreover, we propose a new model of parallel Ham‑
ming coding in order to increase the error correction
capability of our model and we illustrate its perfor‑
mance in terms of Bit Error Rate (BER) vs. EB/N0.

• Finally, we validate the performance of parallel Ham‑
ming encoder/decoder in terms of complexity of im‑
plementation on an FPGA board using VHDL simula‑
tions.

The remainder of this paper is organized as follows: First,
a brief description of the communication model in Sec‑
tion 2. Then, we study the trade‑off between the twoECCs
(Hamming code and Reed‑Solomon code)which aremore
adapted to our communicationmodel. We propose a new
design of a parallel Hamming coding in the case of a short‑
frame OFDM sensor network in Section 3. Moreover, we
illustrate theperformanceof theseECCs in termsofBit Er‑
ror Rate (BER) for different scenarios using BERTool ap‑
plication in Section 4. In Section 5, we validate the per‑
formance of parallel Hamming encoder/decoder in terms
of complexity of implementation on an FPGA board using
VHDL simulations. Finally, we conclude this paper in Sec‑
tion 6.

2. DESCRIPTION OF THE COMMUNICATION
MODEL

Here, we consider a sensor’s network which is composed
of one master device and several slave‑sensor node de‑
vices (𝑆1, 𝑆2, ..., 𝑆20) using Time DivisionMultiple Access
(TDMA) to share the PLC channel illustrated in Fig. 1.

Fig. 1 – Shared bus architecture for our sensor’s network

Since low‑power consumption is a critical factor in the
design of sensor’s network, we consider a low‑powered

short‑frame OFDM communication system where sen‑
sors’ devices send only one OFDM symbol per frame on
the PLC channel. Each time slot is composed of an OFDM
symbol which represents a communication between the
master device and each slave‑sensor node device.
In Table 1, we denote our short‑frame OFDM parameters
that are considered later in our MATLAB‑Simulink simu‑
lations:
Table 1 – Scenarios and short‑frame OFDM parameters used in our
MATLAB‑Simulink simulations

Parameters Value

𝑁𝐹𝐹𝑇 : FFT size 64
𝑁𝑆𝐶 : Used sub‑carriers 30/32
𝑓𝑠: Sampling frequency 1.6 MHz
Δ𝑓 : Sub‑carrier spacing 25 KHz
𝑇𝑠: Total Symbol dura‑
tion 45𝜇𝑠
𝑀 : Modulation size 4 (QPSK)
𝐿: Packets of L bits 50 bits
𝐸𝐶𝐶: Error correcting
codes Hamming, Reed‑Solomon
𝐶𝑅: Coding rates 𝐶𝑅1 = (4/7), 𝐶𝑅2 = (11/15),

𝐶𝑅3 = (23/31) , 𝐶𝑅4 = (26/31),
𝐶𝑅5 = (57/63), 𝐶𝑅6 = (56/64)

𝐵𝐸𝑅𝑇 𝑜𝑜𝑙: BER Perfor‑
mance Analyser GUI 𝑁𝑒𝑟𝑟𝑜𝑟𝑠 = 106;

𝑁𝑏𝑖𝑡𝑠 = 1010 ;
𝐸𝑏
𝑁0

= 0 ∶ 15 dB

In this paper, we use MATLAB‑Simulink tools in order to
model this low‑powered short‑frame OFDM communica‑
tion system as shown in Fig. 2.

Fig. 2 – Short‑frame OFDM communication model using MATLAB‑
Simulink tools: General model

Next, we will describe each block represented in Fig.
2 representing our general low‑powered short‑frame
OFDM communication model:

2.1 Random input generation
In this block, the input data is randomized by a ”Bernouilli
Binary” block in order to spread the energy over all the
bits before being encoded by the following block.

2.2 Error correcting code (ECC)
The purpose of this block is to add enough redundancy
to the data packets being sent, so that even if some of the
received data includes errors, there will be enough infor‑
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mation provided to the receiver to reconstruct the data
from its origin. In our communicationmodel, we suppose
that the ECC will be in charge of correcting all the errors
created by the OFDM communication model.

• ECC encoder: This block is the transmitter side of the
ECC. The communication channel alters the signal,
which introduces errors. We can use error correct‑
ing codes to add redundancy in the transmitted data.
Many encodingmethods have been studied in the lit‑
erature, such as theHamming and the Reed‑Solomon
codes, which are detailed in Section 3.

• ECC decoder: This block is on the reception side of
the model, receiving the information that has passed
through the channel and that has already been de‑
modulated. The decoder has to decode the message
and translate it back into its’ original formby exploit‑
ing the redundant bits thatwere added previously by
the encoder and that allows the decoder to detect an
error and correct it. In general, the decoder is more
complex than the encoder, especially concerning its
implementation (for example Viterbi decoder [7]).

2.3 Mapping/De‑Mapping
This block takes the coded messages and builds a con‑
stellation in an I/Q plane, in order to transmit our digital
streamof bits through the analog channel, under the form
of frequencies.

• Mapping: This block takes a binary stream and out‑
puts a point in the I/Q plane. There are many types
of modulation: such as shifting the phase of the sig‑
nal ’Phase‑Shift Keying (PSK)’, modulate only the am‑
plitude of the signal ’Amplitude Modulation (AM)’,
or both ’Quadrature amplitude modulation (QAM)’.
In our communication model, we use a Quadrature
phase‑shift keying (QPSK) modulation. There are
𝑀 = 4 possible points in the constellation and it can
encode 𝑛𝑏 = log2(𝑀) = 2 bits per symbol.

• De‑Mapping: This block does the inverse of the pre‑
vious mapping block. It takes the signal in the time
domain after the Fast Fourier transform (FFT) block
(which is inside the OFDM modulator block), and
with the constellation reference point it restores the
original binary message corresponding to a given
point.

2.4 Orthogonal Frequency Division Multiplex‑
ing (OFDM) MoDem

OFDM is a type of digital transmission and a method
of encoding digital data on multiple carrier frequencies.
In OFDM, multiple closely spaced orthogonal sub‑carrier
signals with overlapping spectra are transmitted to carry
data in parallel.

• OFDM Modulator: This block introduces the pilot
signals (which are used later in the channel estima‑

tion block to correct the effects of the channel), the
guard bands, the cyclic preϐix and a raised cosine ϐil‑
ter (which serves as windowing to focus our study
on the used frequencies). Then, it includes also an
Inverse Fast Fourier transform (IFFT) module which
allows the information to be transmitted in orthogo‑
nal frequencies through the communication channel.

• OFDMDemodulator: This block does the reverse op‑
eration of the previous one. An FFT module trans‑
forms the information back into the time domain,
the pilot signals are used for the channel estimation,
then they are removed to restore the original mes‑
sage (the guard bands and cyclic preϐix are removed
as well).

2.5 The communication channel
Here, the communication channel is modelized by an Ad‑
ditive White Gaussian Noise (AWGN) block. We induce
noise by using the 𝐸𝑏

𝑁𝑜 which represents a normalized Sig‑
nal toNoiseRatio (SNR)bybit, and iswell adapted to com‑
pare the Bit Error Rate (BER) of different ECCs. The rela‑
tion between these two parameters is given by:

𝑆𝑁𝑅 = 𝐸𝑏
𝑁𝑜 ∗ 𝐵𝑖𝑡 𝑅𝑎𝑡𝑒

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ (1)

The deviation (which is equal to 10𝑚𝑉 in our case) repre‑
sents the thermal noise in our real Power Line Communi‑
cation (PLC) channel [9, 10]. We have estimated this devi‑
ation on LT Spice tools by adding the quantiϐication noise
and converting the sine wave by the ADC/DAC block. In
order to make the channel block more realistic, we ϐixed
these parameters of the AWGNblock the closest to reality.

In the following Section, we will focus only on the ECC
blocks which are described in Section 2.2 and adapted to
our short‑frame OFDM communication system.

3. TRADE‑OFF BETWEEN SIMPLE HAM‑
MING CODE AND REED‑SOLOMON CODE

In this Section,wewill focuson twoerror correcting codes
(ECCs) that meet a trade‑off between the low implemen‑
tation complexity and the high error correction capacity.
Since we have considered a short‑frame OFDM commu‑
nication model, we will study Hamming code and Reed‑
Solomon code which are the most adapted in our case.

3.1 The Hamming code
The Hamming code is one of the error correcting codes
that can be used to detect and correct bit errors that can
occur when data is moved or stored. Like other error cor‑
recting codes, the Hamming code makes use of the con‑
cept of parity bits which are bits that are added to data so
that the validity of the data can be checkedwhen it is read
or after it has been received in a data transmission.
The Hamming code method is based on two methods
(even parity, odd parity) for generating redundancy bits.
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The number of redundancy bits are generated using the
following formula:

2𝑟 = 𝐷 + 𝑟 + 1, (2)

where, 𝑟 represents the number of redundancy bits and
𝐷 the number of information data bits.
For example, if we calculate the number of redundancy
bits for a 𝐷 = 11 bits then it comes to add 𝑟 = 4 redun‑
dancy bits. These parity/redundancy bits (𝑃1, 𝑃2, 𝑃4, 𝑃8)
are added to the information bits (𝐷1, ..., 𝐷11) at the
transmitter (Hamming encoder) and then removed at the
receiver (Hamming decoder) which is able to detect and
correct errors.

Bit po‑
sition 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Encoded
data
bits

𝑃1 𝑃2 𝐷1 𝑃4 𝐷2 𝐷3 𝐷4 𝑃8 𝐷5 𝐷6 𝐷7 𝐷8 𝐷9 𝐷10 𝐷11

𝑃1 x x x x x x x x
𝑃2 x x x x x x x x
𝑃4 x x x x x x x x x
𝑃8 x x x x x x x x

Table 2 – The encoded bits for Hamming code [15, 11]

TheHamming encoder calculates theseparity bits accord‑
ing to Table 2, and outputs a 15 bits message. The Ham‑
ming Decoder calculates the parity bits:

• If each parity bit is equal to zero, i.e.,
(𝑃1, 𝑃2, 𝑃4, 𝑃8) = 0000, there are no errors in
this OFDM communication model.

• If not, the position of the error is displayed in the four
parity bits (𝑃1, 𝑃2, 𝑃4, 𝑃8). The decoder ϐlips then
the concerned bit and returns the 11 bits message
(𝐷1, ..., 𝐷11).

Next, we will simulate the Hamming code [𝑛, 𝑘] for sev‑
eral coding rates: 𝐶𝑅1 = (4/7), 𝐶𝑅2 = (11/15), 𝐶𝑅4 =
(26/31), where each coding rate 𝐶𝑅 = 𝑘/𝑛 is the ratio
between the code dimension 𝑘 and the code length 𝑛, in
order to study its inϐluence on the system’s performance.

The theoretical point of view “the longer the code, the bet‑
ter the error performance” is proved in Fig. 3 and Fig. 4.
Fig. 3 shows that the coding rate is crucial to obtain a good
performance. When 𝐸𝑏

𝑁0
≤ 9 dB, the Hamming code curve

with the coding rate 𝐶𝑅4 is very close to the Hamming
code curve with the coding rate 𝐶𝑅2 in terms of BER.

3.2 The Reed‑Solomon code
The Reed‑Solomon code operates on a block of data
treated as a set of ϐinite‑ϐield elements called symbols.
Reed–Solomon code is able to detect and correct multi‑
ple symbol errors especially burst errors. Since the Reed‑
Solomon code is a non‑binary code, the code has symbols
from𝔽𝑞 withparameters (𝑞−1, 𝑘), which is used tomakea
mapping of primitive polynomial with binary coefϐicients,

0 2 4 6 8 10 12E
b
/N

0
 (dB)

10-6

10-4

10-2

100

B
E

R Hamming CR
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Fig. 3 –BERperformance of theHamming code for different coding rates
𝐶𝑅1, 𝐶𝑅2, 𝐶𝑅4

frequently we have 𝑞 = 2𝑚 to use them as binary codes,
each element being represented as a binary m‑tuple.
In terms of complexity, the Reed–Solomon encoder is
fairly simple in terms of blocks and only involvesmultipli‑
ers and adders in the Galois Field. We can either create a
multiplication module or use RAM slots and create multi‑
plication tables, However, the Reed–Solomon decoder in‑
cludes several algorithms that consume a lot in resources,
especially the Berlekamp algorithm.
Next, we will simulate the Reed‑Solomon code (𝑛, 𝑘) for
several coding rates: 𝐶𝑅1 = (4/7), 𝐶𝑅2 = (11/15),
𝐶𝑅3 = (23/31), where each coding rate 𝐶𝑅 = 𝑘/𝑛 rep‑
resents the ratio between 𝑘 the code dimension and the
code length 𝑛 = 𝑞 − 1, in order to study its inϐluence on
the system’s performance.
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Fig. 4 – BER performance of the Reed‑Solomon code for different coding
rates 𝐶𝑅1, 𝐶𝑅2, 𝐶𝑅3

Once again, it is a trade‑off between performance and
complexity with different coding rates: as the most ef‑
fective coding is the highest, but also the most complex.
Fig. 4 shows that the three curves converge faster to zero
when compared to the hamming code curves in Fig. 3. In
fact, the Reed‑Solomon curvewith the highest coding rate
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𝐶𝑅3 manages to converge to no errors for 𝐸𝑏
𝑁0

= 8dB,
which represents the noise level that we will ϐind in the
real PLC channel.

3.3 Discussion and comparison
As we discussed before, the complexity and the capacity
of error correction of the chosen ECC are themost impor‑
tant criteria: the ECC has to be effective and fairly easy to
implement at the same time.
The capacity of error correction of each ECC is known and
depends on its structure and their way of coding the in‑
formation. Table 3 summarizes the detection and correc‑
tion capability of each ECC scheme. We denoted here by
SED/DED/MED: the Single/Double/Multiple ErrorDetec‑
tion, and by SEC/DEC/MEC: the Single/Double/Multiple
Error Correction.
Table 3 – The capability of error detection or/and error correction for
each ECC.

ECC SED SEC DED DEC MED MEC

Hamming
code x x
Extended
Hamming x x x
Reed‑
Solomon
Code

x x x x x x

BCH Code x x x x x x

While the Hamming code can be implemented creating
just two fairly simple modules (encoder/decoder) based
on XOR gates, the Reed‑Solomon code requires a higher
number of blocks. In fact, the Reed Solomon encoder
needs: Adder in Galois Field, Multiplier in Galois Field,
Multiplex and Registers [13]. The Reed‑Solomon decoder
needs algorithms to decode the code word such as: Syn‑
drome calculator; Berlekamp‑Massey algorithm (or Eu‑
clid algorithm)which ϐinds the location of the errors by
creating an error locator polynomial; Chien Search Algo‑
rithm which ϐinds the roots of the previous polynomial;
Forney’s algorithm where the symbol’s error values are
found and corrected. Thus, these blocks are complex and
use multiplications (or RAMmemory if we use tables).
Here, we have simulated in Fig. 5 the Hamming code and
the Reed‑Solomon code for the same coding rate 𝐶𝑅2 in
order to compare their BER performance.
The Hamming and Reed‑Solomon codes have proved to
be a good compromise between efϐiciency and complex‑
ity. Hamming is very easy to implement and does not con‑
sume many resources, and it is a robust ECC, but the Bit
Error Rate (BER) performance (in Fig. 5) shows that it is
not the most effective ECC. Reed‑Solomon is more opti‑
mal to eliminate errors, but it is also more complex than
the Hamming code.
In the following Section, we will propose a new model of
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Fig. 5 – Comparing the simple Hamming code to the Reed‑Solomon code

parallel Hamming coding in order to increase the error
correction capability of our model.

4. PARALLEL HAMMING CODING RE‑
SULTS USING MATLAB‑SIMULINK AND
BERTOOL

In this Section, we have selected only a few of the most il‑
lustrative and interesting scenarios to be presented here.
In order to plot the Bit Error Rate (BER) function of the
𝐸𝑏
𝑁0

which is given in equation (1), we have used the Mat‑
lab tools called ”BERTOOL”.

4.1 BER performance analyser for MATLAB‑
Simulink models

Here, we use the Bit Error Rate (BER) analysis GUI (called
BERTool) from Matlab application. The BERTool appli‑
cation is able to analyze the BER performance of differ‑
ent communications systems as a function of signal‑to‑
noise ratio 𝐸𝑏

𝑁0
given in equation (1). It analyzes perfor‑

mance either with Monte‑Carlo simulations of MATLAB
functions andMATLAB‑Simulinkmodels orwith theoreti‑
cal closed‑form expressions for selected types of commu‑
nication systems[14].

Fig. 6 – Bertool Interface: steps to plot the BER vs EB/No simulations
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On the Monte Carlo window in Fig. 6, we have speciϐied
the BERTool parameters (which are detailed in Table 1)
based on our scenarios. In order to generate BER data for
each communication system using the Simulink models,
we follow ϐive steps based on the following BERTool pro‑
cess [15]:

1. We calculate Bit Error Rate (BER) as a function of the
energy per bit to noise power spectral density ratio
(𝐸𝑏

𝑁0
).

2. We ϐix the number of errors (𝑁𝑒𝑟𝑟𝑜𝑟𝑠 = 106) and the
number of bits (𝑁𝑏𝑖𝑡𝑠 = 1010) in order to make ac‑
curate error rate. We have chosen this number of
bits value to prevent the simulation from running too
long, especially at large values of 𝐸𝑏

𝑁0
.

3. We have speciϐied the 𝐸𝑏
𝑁0

range based on our PLC
channel model: 𝐸𝑏

𝑁0
= 0 ∶ 15 dB.

4. We generate the BER data for a chosen Simulink
model. This Simulink Model is displayed and run in
real time on the models being simulated window (as
shown in Fig. 6) for each value of the energy per bit
to noise ratio 𝐸𝑏

𝑁0
. BERTool iterates over our choice of

the energy per bit to noise ratio 𝐸𝑏
𝑁0

value and collects
the results on a list of simulations.

5. Finally, we run the simulation in order to plot the es‑
timated BER values function of the previous steps.
The plot of simulation window is displayed and
shows each curve for each Simulink model. We save
later in the list of simulations each curve in order to
compare graphically the different models.

In the following paragraphs, we will describe the most
interesting models that we have simulated with the
BERTool application interface as shown in Fig. 6.
As we have discussed in the previous Section, Hamming
seems to be the most appropriate ECC for our scenario,
but the small correction capacity could be an obstacle if
there are several errors in the 50 bit package. For in‑
stance, we consider the Hamming code [𝑛, 𝑘] with coding
rate 𝐶𝑅 = 𝑘/𝑛 where 𝑛 represents the code length and 𝑘
the code dimension.

• Model 1: We cut the message on 1 time when we
are coding with Hamming coding rate𝐶𝑅5 = 57/63;
Since in Model 1, the Hamming code has length 63
and dimension 57, we have to append 7 zeros to 50
information bits and then do encoding.

• Model 2: We cut the message on 2 times when we
are coding with Hamming coding rate𝐶𝑅4 = 26/31;
Since in Model 2, the Hamming code has length 62
and dimension 52, we have to append only 2 zeros to
50 information bits before encoding.

• Model 3: We cut the message on 5 times when we
are coding with Hamming coding rate 𝐶𝑅2 = 11/15.
Since in Model 3, the Hamming code has length 75
and dimension 55, we have to append 5 zeros to 50
information bits before encoding.

Model 1: Simple Hamming code [63, 57]

(a)
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Fig. 7 – Model 1: (a)Short‑frame OFDM communication model using
MATLAB‑Simulink tools (b) BER performance plotted on BERTool ap‑
plication

We use MATLAB‑Simulink tools in order to model the
simple Hamming code communication system [63, 57] as
shown in Fig. 7.
We generate the BER data for a simple Hamming code
communication system model [63, 57]. This MATLAB‑
Simulinkmodel (see Fig. 7 (a)) is displayed and run in real
time on themodels being simulatedwindow (as shown in
Fig. 6) for each value of the energy per bit to noise ratio
𝐸𝑏
𝑁0

. Then, we obtain the plot in Fig. 7 (b) as the BER per‑
formance vs. 𝐸𝑏

𝑁0
for this model.

For Model 1, we have a very long coding rate (around 50
bits for the input message). In the following, wewill com‑
pare to the concatenation of several encoders/decoders
with shorter coding rates in order to prove that parallel
Hamming has better performances than Hamming sim‑
ple, while keeping the same simplicity of implementation.
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Fig. 8 – Model 2: (a)Short‑frame OFDM communication model using
MATLAB‑Simulink tools (b) BER performance plotted on BERTool ap‑
plication

Model 2: Parallel Hamming code 2*[31,26]

In order to improve the correction capacity of Model 1:
Simple Hamming code Model [63, 57]. Here, we propose
to implement 2 couples of encoders/decoders in parallel
respectively, so we can improve the correction capability
of the Hamming code; which will be 2 bits out of 52 bits
(20% of the total message), and detection would be 4 out
of 52, while the ϐirstmodel could only detect 2 and correct
1. We use MATLAB‑Simulink tools in order to model the
parallel Hamming code communication system 2×[31, 26]
as shown in Fig. 8.

Model 3: Parallel Hamming code 5*[15,11]

For Model 3, we can cut the message on 5 times, each of
𝑁 = 11 bits, which would be coded by 5 encoders Ham‑
ming 5 × [15, 11]. Thus, the capacity of correction in this
case would be of 5 bits out of 55 (10% of the total mes‑
sage), and detection would be 10 out of 55, while the ϐirst
model could only detect 2 and correct 1. We useMATLAB‑
Simulink tools in order to model the parallel Hamming
code communication system 5 × [15, 11] as shown in Fig.
9.
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Fig. 9 – Model 3: (a)Short‑frame OFDM communication model using
MATLAB‑Simulink tools (b) BER performance plotted on BERTool ap‑
plication

4.2 Comparison between parallel Hamming
and simple Reed‑Solomon

In this subsection, we will compare the previous mod‑
els that are adapted to our technical requirements: Ham‑
ming (Model 1, Model 2, Model 3) to Reed‑Solomon 𝐶𝑅6
(Model 4). Wewant to verify if there is a signiϐicant differ‑
ence in BER performance: since parallel Hamming coding
is very interesting in terms of simplicity and robustness,
however Reed‑Solomon is very interesting in terms of er‑
ror correction capability.

In this scenario, we choose Model 4 where 𝐶𝑅6 = 56/64
is the simple Reed‑Solomon coding rate (around 50 bits).
Then we repeat the same simulations done for Model 1,
Model 2 and Model 3 and for Reed‑Solomon (Model 4)
several times for each model and we calculate the aver‑
age points for each value of 𝐸𝑏

𝑁0
. We plot then the results

in Fig. 10.
As we can see in Fig. 10, the parallel coding represents a
gain in correction capacity, and bothModel 2 andModel 3
converge faster to no errors than its equivalent with sim‑
ple Hamming (Model 1). In our application case, and es‑
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Fig. 10 – Comparing simple, parallel Hamming andReed‑Solomon codes
for the same total size (around 50 bits).

pecially through our PLC channel, we have an average er‑
ror probability almost equal to 3 errors for a packet of 50
bits. That ’s why, Model 3 seems to be slightly better, es‑
pecially towards the end, which can seem logical given the
fact that Model 3 can have a correction of up to 5 errors,
while Model 2 can only correct 2 errors.
Even if the Reed‑Solomon code is apparently more efϐi‑
cient, we can see at the end of the Reed‑Solomon simula‑
tion curve that the BER converges suddenly to zero: this
is due to the complexity of the Reed‑Solomon algorithm,
MATLAB‑Simulink tools couldn’t simulate for long peri‑
ods of time and we could only send a ϐinite amount of bits
before it made the simulation stop. The two last points of
the Reed‑Solomon simulation curve are stagnant because
it’s the limit of the simulation given its complexity.
However, Hamming curves (for Model 1, Model 2 and
Model 3) can go to lower values of BER ≤ 10−6, which
proves that it’s easier and robust.
To give an order of magnitude: for Model 1 (simple Ham‑
ming code), we simulated 2 million bits (for each value of
𝐸𝑏
𝑁0

), while for Model 4 (simple Reed‑Solomon) we could
only simulate 700 thousand bits which shows the com‑
plexity of the Reed‑Solomon code when compared to the
Hamming code.
Concerning their performance, in Fig. 10, we remark that
Reed‑Solomon is better, especially for 𝐸𝑏

𝑁0
≥ 8 dB andwith

a high value of 𝐸𝑏
𝑁0

there are few errors to be corrected.
Nevertheless, this gain in effectiveness for Reed‑Solomon
has a cost in complexity when compared toModel 3 of the
Parallel Hamming coding.

Based on the previous analysis, we have discussed and
validated via simulations the trade‑off between complex‑
ity (Hamming is the easiest to code) and error correction
capability (Reed‑Solomonbeing themost effective). Table
4 summarizes the advantages and disadvantages of each
ECC. Therefore, we have chosen to improve the correction
capacity of the Hamming code instead of decreasing the
complexity cost for the Reed‑Solomon code sincewe have

Table 4 – ECCs comparison in terms of complexity of implementation
and capacity of correction

ECCs Advantages Disadvantages

Simple
Reed‑
Solomon

Very effective
especially with
burst errors;
High correction
capacity: can
correct mul‑
tiple errors
simultane‑
ously.

Complex and
need more re‑
sources (LUT)
than Hamming
code.

Parallel
Ham‑
ming 5 ×
[15, 11]

Easy to imple‑
ment;
Correction
capacity: cor‑
rect 5 of 10
detected errors
for a 50 bits
packet.

Not themost ef‑
fective in terms
of BER.

shown in Fig. 10, the curve ofModel 3, which represents a
new design of parallel Hamming coding, is closer to Reed‑
Solomon than the other models of Hamming coding.
For these reasons, we have chosen parallel Hamming
5×encoder/decoder 𝐶𝑅2 (Model 3) to be implemented
next inVHDL in order to show that this solution uses a few
resources and has a higher capability of correcting com‑
pared to the simple Hamming code.

5. IMPLEMENTATION OF PARALLEL HAM‑
MING ENCODER/DECODER

In this Section, we will analyse and validate the low com‑
plexity of Model 3 by implementing the design of the par‑
allel enCOde/DECoder (CODEC) on an FPGAmock‑up and
simulating this design on VHDL code.

5.1 Parallel Hamming CODEC design
As we discussed before, the idea here is to make a trade‑
off between Hamming simplicity of implementation and
Reed Solomon’s capacity of correction and performance.
In fact, with parallel Hamming encoder/decoder (Model
3), we will consume ϐive times more resources than with
simple one Hamming encoder/decoder, but we will have
a notable improvement in terms of BER performance.
In Fig. 11, Hamming encoder/decoder [15, 11] module
is the base module to create our parallel Hamming en‑
coder/decoder (Model 3), which is composed of 5×Ham‑
ming encoders/decoders [15, 11] added toDemux/Mux to
concatenate the messages respectively.
The encoder/decoder circuit to compute the parity bits of
the Hamming encoder/decoder (11, 15) is shown in Fig.
11. These parity bits (𝑃1, 𝑃2, 𝑃4, 𝑃8) are added to the in‑
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Fig. 11 – Design in terms of logic ports of: (a) One Hamming encoder
[15, 11]; (b) One Hamming decoder (15,11)

formation bits (𝐷1, ..., 𝐷11) at the transmitter (Hamming
encoder) and then removed at the receiver (Hamming de‑
coder) which is able to detect and correct errors.

5.2 VHDL functional simulations
Next, wewill create the VHDL functional simulation of the
Hamming encoder/decoder [15, 11]module based on two
VHDL ϐiles, one for the encoder which calculates parity
bits and outputs the original message with the parity bits
added in speciϐic positions and one for the decoder which
recalculates the parity bits to locate the error, correct it,
and outputs the original 11 bit message.
Therefore, we make a test bench for each ϐile in order
to test their encoding and correction capability. In the
Fig. 12, we can see the simulation in ModelSim of the test
benches of both the encoder and the decoder. The input
is the 2048 values that the 11 bit message can take, the
output is this same ϐile so our encoder [15, 11] works cor‑

(a)

(b)

Fig. 12 – VHDL functional simulation output of: (a) Hamming encoder
[15, 11]; (b) Hamming decoder (15, 11)

rectly.
Next, once this step has been simulated successfully in
ModelSim, wewewill implement and synthesize the code
in Vivado which represent the Xilinx software for this
FPGA mock‑up.

5.3 Performance and experimental results
As we have seen before, we conclude our study of the
Hamming encoder/decoder [15, 11] by synthesizing and
implementing the VHDL code using Vivado. We have used
a Xilinx Spartan 7mock‑up for the implementation. Using
the same code thatwas validatedpreviously byModelSim,
we create one project for each module (encoder and de‑
coder) and we seek to verify the consumed and utilized
resources in the FPGA mock‑up.
As we can see in Fig. 11, the synthesis was successful and
we manage to create a logic port scheme of both encoder
and decoder.
We denoted by 𝐿𝑈𝑇 : a Look‑up table which represents
a small asynchronous SRAM used to implement combina‑
tional logic and by 𝐼𝑂: an Input/Output Buffer.
Table 5 shows the amount of look‑up tables that are taken
by our encoder and decoder. With a total of 6 + 10 = 16
𝐿𝑈𝑇 𝑠 for the couple encoder/decoder, we conϐirm Ham‑
ming’s code simplicity that was supposed in our analysis
in Section 3.
Furthermore, knowing how much one Hamming en‑
coder/decoder module would consume, we can deduce
that our parallel coding with ϐive couples of encoders/de‑
coders would consume 5 × 16 = 80 𝐿𝑈𝑇 𝑠, which is
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still fewer than Reed‑Solomon’s and without recurring to
multiplication or RAM‑consuming tables. This amount of
𝐿𝑈𝑇 𝑠 consumed is a trivial and negligible amount com‑
pared to the available 𝐿𝑈𝑇 𝑠 in our board.

Table 5 – Parallel Hamming and Reed‑Solomon encoder/decoder re‑
sources

ECC Resource type Utilisation

Hamming Encoder 5 × [15, 11] LUT 30
IO 130

Hamming Decoder 5 × [15, 11] LUT 50
IO 130

Reed‑Solomon Encoder (64, 56) LUT 90
FDRE 20

Reed‑Solomon Decoder (64, 56) LUT 260
FDRE 230

While ourparallelHamming code5×[15, 11] canbe imple‑
mented using only 30 LUTs for the encoders and 50 LUTs
for the decoders, Reed‑Solomon code requires a higher
number of blocks which are complex and uses more re‑
sources for the Reed‑Solomon encoder/decoder up to 3×
parallel Hamming encoder and 5×parallel Hamming de‑
coder. For more details, we have made the comparison
between Hamming code and Reed‑Solomon coding based
on the aspects ofmemory occupation and running time in
our work [13].

6. CONCLUSION
This paper deals with the design of an Error Correct‑
ing Code in a short‑frame OFDM communication system.
In order to respond favourably to the requirements of
the low‑powered sensor network, we have analysed the
performance of several Error Correcting Codes (ECCs):
such as Hamming code and Reed‑Solomon code based
on different parameters. Moreover, we have discussed
the trade‑off between the low implementation complex‑
ity (Hamming is the easiest to implement) and the high
error correction capacity (Reed‑Solomon being the most
effective). Therefore, we have to: either improve the cor‑
rection capacity of Hamming code, or decrease the com‑
plexity cost for Reed‑Solomon code. That ’s why, we pro‑
pose a new design of parallel Hamming Coding. The par‑
allel Hamming Code is chosen as ϐive blocks of simple
Hamming Code [15, 11]. Each encoder takes 11 bytes date
block and generate 15 byte code block to be transmitted
on the communication channel. After an implementation
of this solution on an FPGAmock‑up, we have shown that
this parallel hamming encoder/decoder uses a few LUTs
and has the capability of correcting up to ϐive errors per
message (packet with 55 bits). The encoder and decoder
coding is done in VHDL on Xilinx tool. This process is im‑
plemented on Xilinx Spartan 7 FPGA.
Future work will include modelling the analog part of the
PLC channel by the Matlab toolbox Simscape [16] instead
of the AWGN channel estimation. Moreover, wewill study
also the possibility of decreasing the complexity cost [13]
for the Reed‑Solomon code by removing the multiplica‑

tions on an FPGA processes and simplifying the complex‑
ity of the Reed‑Solomon encoder/decoder design [17].
We will include then the implementation of the complete
chain OFDM Tx‑Rx on an FPGA.
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