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Abstract – Software Deϔined Networking (SDN) has emerged as a promising solution to revolutionize network deployment,
operations and economic growth. This paradigm aims to address management and conϔiguration complexities in legacy
networks so as to reduce the total cost associatedwith deploying and running telecommunication infrastructures. At the heart
of SDN is a controller which oversees orchestration of resources. An important problem that must be addressed during the
initial design of an SDN‑based network deployment is to ϔind the optimal number of controllers and their locations, to achieve
desired operational efϔiciency. This problem constitutes competing objectives such as latency, load balancing, and reliability.
We apply Silhouette Analysis, Gap Statistics and the Partition Around Medoids (PAM) algorithms and, unlike previous work,
we add a newmethod for solving the controller placement problem using an emulation orchestration platform. Our approach
aims to optimize controller‑to‑node latency, alleviate control‑plane signalling overhead and ensure control‑plane resiliency.
Our results for South African national research network (SANReN) reveal that deploying two controllers yields the lowest
latency, reduces control‑plane signalling overhead and guarantees control‑plane resiliency. Our approach can be used by
network operators as a guideline to start integrating SDN or plan a new SDN deployment, by helping them make quick
automatic decisions regarding optimal controller placement.

Keywords – Controller placement, Gap Statistics, Partition Around Medoids, Silhouette, Software Deϐined Networks,
South African National Research and Education Network

1. INTRODUCTION

Over the past decade, the use of information and 
communication technology has reached the upper 
bounds of Internet penetration [1]. According to a Cisco 
White paper [2], Internet usage is anticipated to continue 
on an upward trajectory in the foreseeable future. This 
strong appetite for Internet access is causing a high 
demand for bandwidth and putting signiϐicant pressure 
on the existing telecommunication infrastructure. 
There is a consensus that the current infrastructure 
will not sufϐice to cater for these exploding demands 
[3]. This is primarily attributed to the rigidity of the 
legacy infrastructure, especially because of vendor 
lock‑in (the use of proprietary silicon hardware) which 
stiϐles innovation and makes it difϐicult to scale the 
network on the ϐly. As a result of vendor lock‑in, the cost 
associated with upgrading the infrastructure to cater 
for the changing trafϐic patterns is very high, meaning 
adding new features ad hoc is virtually impossible [4]. 
Therefore, network operators desiring new features to 
address their market needs end up beholden to a vendor’s 
upgrade timelines and costs. To cater for the increase 
in Internet demand, the infrastructure has to evolve 
from its current monolithic nature to a vendor‑agnostic, 
programmable, cost‑effective (in terms of deployment 
(CapEx) and operational costs (OpEx)) and more ϐlexible 
infrastructure.

Software Deϐined Networking (SDN) has emerged 
as a promising candidate to revolutionize future 
telecommunication landscapes. Contrary to the 
traditional network architecture where the control 
and data‑plane of packet processing devices are tightly 
coupled, SDN presents a paradigm shift in networking by 
decoupling the control‑plane logic from the underlying 
physical infrastructure [5]. The control‑plane is then 
logically centralized in an external entity called a 
controller and interacts with the physical infrastructure 
via its southbound interface. By decoupling the 
control logic from the physical hardware, operators 
can programme new trafϐic engineering policies (such 
as bandwidth management, security, protection and 
restoration policies) without worrying about the 
constraints of closed proprietary hardware and ϐirmware. 
Moreover, the abstraction of lower level functionality 
provided by SDN enables convergence of heterogeneous 
hardware thereby fostering a vendor‑neutral ecosystem. 
In addition to enabling centralized network provisioning 
and holistic network management, SDN promises 
beneϐits such as security granularity (by providing a 
central point of control to holistically and consistently 
disseminate security information), savings in operational 
costs (by automating network administrative tasks), 
savings in capital expenditures (by capitalizing on 
commodity hardware) and cloud abstraction (which is 
critical to consolidate and facilitate the management of 
massive data centers) [6]. According to [7] a huge portion 
of operational expenditure is from costs related to the
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management and conϐiguration of the telecommunication 
infrastructure. Therefore, leveraging SDN to automate 
management and conϐiguration tasks is likely to improve 
the return on investment (ROI).

This work presents a framework which can be used 
by network operators to optimize their SDN controller 
placement during the deployment phase.

The paper is organized as follows: Section 2 presents 
the problem being addressed by this work, Section 
3 describes related work and their drawbacks, and 
highlights our contributions, Section 4 describes 
the algorithms (based on mathematical modelling) 
used to solve the controller placement problem, 
Section 5 provides implementation details of the 
algorithms, Section 6 presents results from our 
mathematical modelling, Section 7 describes the 
emulation experiments conducted to verify the outcome 
of the mathematical modelling, Section 9 concludes the 
paper. Lastly, Section 10 describes future work.

2. PROBLEM STATEMENT
Although Local Area Networks (LANs) like Data Center 
Networks (DCNs) have already beneϐited from SDN, 
deploying SDN in real Wide Area Networks (WANs) still 
poses several design challenges. As the centralized 
brain of the network, an SDN controller must be able 
to respond to control requests promptly. Moreover, 
control tasks such as data‑plane monitoring, must 
be performed as efϐiciently as possible to maintain 
up‑to‑date state information. This requires optimization 
on the southbound interface. Due to the signiϐicant 
inϐluence of propagation latency (switch‑to‑controller 
latency) on WAN performance, controller placement has 
emerged as a crucial design problem that inϐluences 
SDN’s southbound performance. Controller placement 
deϐines the location of SDN controllers relative to 
the data‑plane elements, that yields better network 
perfomance.

Another aspect to controller placement has to do with 
the number of controllers deployed in a given WAN. 
Deploying a certain number of controllers has an impact 
on several objectives such as propagation latency and 
reliability. Even though the number of controllers may 
be known in advance, the location of these controllers 
usually needs to be optimized to meet user requirements 
and contraints.

Therefore, the overall problem that must be addressed 
is: given a real SDN‑enabled WAN, how many SDN 
controllers are needed and where should they go to 
optimize user‑deϐined requirements and constraints 
while maintaining an acceptable runtime and accuracy. 
This is a multi‑objective optimization problem and 
constitutes competing objectives. It is necessary to 
address this problem during the early stages of SDN 
planning.

3. STATE OF THE ART
This section presents an analysis of state–of–the–art 
controller placement solutions.

3.1 Related work
To date, there has been numerous research studies 
directed towards addressing the controller placement 
problem in SDN. These can be broadly classiϐied into 
two categories: (i) studies that implemented exhaustive 
algorithms, as exampled by [8] –[9] and (ii) studies that 
implemented heuristic algorithms, as exampled by [16] 
–[30].

The controller placement problem was ϐirst introduced 
by Heller et al. [8] in 2012. The authors study 
the controller placement problem by investigating the 
impact of uncapacitated controller location on average 
and worst–case latency. The algorithm used in this 
study is k–center. To maintain realism, the authors 
tested their algorithm on the Internet2 OS3E topology 
[10]. Their results indicate that increasing the number 
of controllers decreases the overall network latency 
with a signiϐicant trade‑off between worst–case and 
average latency. The authors conclude that deploying 
one controller often sufϐices to meet existing latency 
requirements in campus networks. Expectantly, they also 
argue that one controller is not sufϐicient for large‑scale 
deployments with fault tolerant requirements.

Hu et al. [11] proposes the use of multiple controllers 
to ensure reliability in the control‑plane. To optimize 
controller placement, the authors carry out a comparative 
evaluation of optimization algorithms, namely random 
placement, l–w greedy and brute force. They focus 
their reliability metric on the ”expected percentage of 
valid control paths”, where a control path is deϐined 
as the interface between the switch and controller 
(southbound interface) as well as the connection between 
controllers (east/westbound interface). The algorithms 
were evaluated on Internet2 topology as well as various 
ISP topologies from the Rockefuel database [12]. From 
their simulations, random placement produced the least 
optimal results, while brute force produced optimal 
results after a signiϐicantly long runtime. As a result, 
the authors recommend the l–w greedy as the most 
optimal solution. This work is similar to Gong et al.
[13] in that they both aim to optimize reliability in
the event of node or link failure. However, latency
(both switch–to–controller and inter–controller latency)
and load balancing are not considered in these research
works. Moreover, the number of controllers is assumed
to be known in advance.

Tanha et al. [9] study the controller placement problem 
to optimize network resilience in the event of controller
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failure while considering network deployment costs and
satisfying switch–to–controller latency. In order tomimic
a production scenario, the authors take into account the
capacity of the controller and assume a varying switch
load. To maintain realism, they assessed their algorithms
on real tier–1 service provider topologies. The outcome
of their experiments demonstrated that controller
resiliency is topology dependent. The drawback of this
solution is that it is resource intensive and only ideal for
small and medium network instances. The algorithm
used in this study is the capacitated k–center algorithm.

The research work of Yao et al. [14] proposes a
heuristic algorithm for capacitated controller placement
in consideration of the switch–to–controller latency
and trafϐic load of switches. The main objective
of this work is to optimize controller load balancing
under heterogeneous data‑plane load while minimizing
switch–to–controller latency. Resiliency is handled by
deploying additional controllers in the network. The
main shortcoming of this solution is that it is less accurate
in larger deployments and therefore applicable only for
small–scale networks.

Jimenez et al. [15], also proposes a capacitated
controller placement solution to optimize load balancing.
Contrary to Yao et al., this work is not limited to
the size of the network and propose a divide and
conquer philosophy to achieve scalability and robustness.
Moreover, authors assume homogeneous trafϐic load on
the data‑plane. The solutions proposed by Jimenez
et al. and Yao et al. optimize controller placement
based on ϐixed trafϐic observed initially, but do not
adapt to the changing trafϐic load. This shortcoming
is addressed by Bari et al. [16] and Jourjon et al.
[17] who propose a heuristic algorithm for dynamic
controller placement i.e. controller placement based on
current data‑plane load. The metrics considered are
switch–to–controller latency and controller processing
load. The solutions proposed rely on trial and error
and are not as reliable. Sanner et al. [18] propose a
genetic algorithm leveraging the Non‑dominated Sorting
Genetic Algorithm (NSGA) II framework to optimize load
balancing and inter–controller latency. Authors conclude
that their solution consumes a lot of CPU resources and is
only ideal for small and medium–sized networks.

Rath et al. [19] propose a Non–Zero–Sum game
theory approach to optimize controllers’ utilization.
In this solution, controllers can be added or removed
dynamically and can also go to sleep mode occasionally
based on the trafϐic load on the controllers. This solution
is intended to reduce network deployment costs (by
minimizing the number of controllers deployed) and
operational costs (by optimizing energy consumption
through on–demand controller deployment). This
solution ignores controller placement in the network.
Sallahi et al. [20] propose a mathematical formulation
to ϐind the optimum number of controllers to deploy.

However, their approach suffers the same shortcoming as
that proposed by Rath et al. in that it does not determine
the optimal controller placement. Furthermore, both
these researchworks are limited to small–scale networks.

Wendong et al. [21] study the trade‑off between
reliability and latency using random placement, l–w
greedy and simulated annealing. The results suggest that
simulated annealing yields the most optimal solution in
comparison with the other approaches. The outcome
of the trade‑off analysis indicate a signiϐicant trade‑off
between reliability and latency. Authors argue that the
number of controllers must be chosen carefully. They
demonstrate that using too fewcontrollers has an adverse
effect on reliability while using too many controllers
can result in a broadcast storm on the east/westbound
interface.

Hock et al. [22] and Lange et al. [23] advocate for careful
consideration of latency (controller–to–controller) and
reliability (deϐined as resiliency in the event of a node
or link failure and control‑plane load balancing) during
controller placement. This work proposes a resilient
Pareto–based Optimal Controller placement framework
to achieve optimal controller placement. The authors
use load imbalance as the key metric, which is the
difference between the controller having more switch
assignments and the controller having fewer switches
under its supervision. The results from this work
indicate that the optimal solution is achieved when 20%
of all network nodes are controllers. The downside
of this solution is that, instead of partitioning the
network into small administrative domains, the authors
treat the network as a whole with controllers working
collaboratively. This means the controllers frequently
share their network state information with their peers
to maintain an accurate global view. This increases
the probability of incurring a network broadcast storm
which increases inter–controller latency. Therefore, this
solution is restricted to small andmedium–scale network
instances. Furthermore, this solution ignores the average
switch–to–controller latencywhich is a critical parameter
in SDN.

Ksentini et al. [24] consider three objectives in optimizing
controller placement: (i) switch–to–controller latency,
(ii) inter–controller latency and (iii) control‑plane
load balancing simultaneously. The authors propose a
bargaining game–based algorithm to optimize controller
placement. Authors claim that their results outperform
other mono–objective–based controller placement
results. However, their algorithm is only suitable for
small–scale networks and is less accurate for larger
network instances.

Last but certainly not least, He et al. [26] formulate a
controller placement model to optimize ϐlow setup time,
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where ϐlow setup time is the total amount of time taken by
the controller to install a ϐlow instruction on the switch’s
ϐlow table. The authors argue that dynamic controller
placement is necessary to help reduce ϐlow setup time.
The results from this work reveal that, for low ϐlow
densities, dynamic controller placement can reduce the
ϐlow setup time by up to 50% in comparison with static
controller placement. However, for high ϐlow densities,
static controller placement produced better results.

As demonstrated by Heller et al. [8], Hock et al. [22] and
Wendong et al. [21], there exists a signiϐicant trade‑off
between load balancing, reliability (also known as
resiliency) and latency. Therefore it is almost impossible
to optimize one objective without sacriϐicing the other.
This study attempts to address the controller placement
problem in consideration of switch‑to‑controller latency
metric. This metric has emerged as an important
QoS determinant in SDN. This is primarily because the
communication between the controller and data‑plane
has to be seamless to ensure an accurate view of the
network state and prompt data‑plane ϐlow installations.

Table 1 provides a summary of the state of the art in
research pertaining to SDN controller placement.

3.2 Contribution
From the state‑of‑the‑art review, it is apparent that most
studies (with the exception of the work by Sallahi et al.
[20]) assume the number of controllers to be known in
advance. However, the model proposed by Sallahi et
al. is ideal to plan a small–scale SDN and runs out of
memory when solving larger instances. Moreover, most
studies relied on heuristic algorithms to reduce algorithm
runtime. However, this is achieved at the expense
of solution accuracy. To the best of our knowledge,
the only research studies that implement exhaustive
algorithms are by Heller et al. [8] and Tanha et al.
[9]. Both Heller et al. and Tanha et al. propose
the use of k‑center to solve the controller placement
problem. However, k‑center is sensitive to outliers and
does not always consistently yield accurate results [27].
Perhaps more importantly, there is currently no analysis
of the controller placement problem purely using an
emulation platform to mimic a real SDN deployment.
Most studies relied onmathematicalmodelling to address
the controller placement problem, making it difϐicult to
verify validity and reliability of the results.

Controller placement is a network planning problem,
and is normally not time sensitive. Consequently,
this study proposes exhaustive algorithms to optimize
solution accuracy. In order to ϐind the best locations

Table 1 – Classiϐication of existing controller placement solutions

Solution Topology(s) Scale of Network Environment Algorithm(s) Placement Metric(s) Network
Partitioning

Heller et al. [8] Internet2 OS3E Large–scale Static k–center average switch–to–controller latency
worst–case latency No

Hu et al.[11] Internet2 OS3E Small and
medium‑sized Static l–w greedy Reliability No

Tanha et al. [9]
Sprint
ATT NA
PSINET
UUNET

Large‑scale Static Capacitated
k‑center

switch–to–controller latency
Reliability No

Yao et al. [14] Internet Zoo Large–scale Dynamic Linear
relaxation

switch–to–controller latency
Load balancing No

Jimenez et al. [15]
Sparse
Medium
Dense

Large–scale Dynamic k–critical Load balancing Yes

Bari et al. [16] RF‑I Large–scale Dynamic DCP‑GK switch–to–controller latency
Load balancing Yes

Jourjon et al. [17] Not discussed Large–scale Dynamic LiDy+ switch–to–controller latency
Load balancing Yes

Sanner et al. [18] Internet2 OS3E Large–scale Dynamic NSGA inter–controller latency
load balancing Yes

Rath et al. [19] Random network
with 28 switches small‑scale Dynamic Non–zero–

Sum Game Load balancing No

Sallahi et al. [20]
Random network

with 10, 20, 30, 40, 50,
75, 100, 150 switches

small‑scale Dynamic CPLEX Load balancing No

Wendong et al. [21] Internet2 OS3E Large–scale Static l–w greedy switch–to–controller latency
Reliability No

Hock et al. [22] Internet2 OS3E Small and medium–sized Static POCO
switch–to–controller latency

Reliability
Load balancing

No

Lange et al. [23] Internet2 OS3E
Internet Zoo Large–scale Dynamic Simulated

Annealing
switch–to–controller latency

Reliability
Load balancing

No

Ksentini et al.[24] Ring
Binary Tree Large–scale Static No speciϐic

name
switch–to–controller latency

Inter–controller latency
Load balancing

Yes

Mamushiane et al.[25] SANReN Small‑scale Static

Partition Around Medoids (PAM)
Gap Statistics

Silhouette Analysis
Johnson’s Algorithm

Emulation

average switch–to–controller latency
worst–case latency

switch‑to‑controller balancing
propagation +queuing + processing latency

signalling overhead

Yes
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to place SDN controllers, this study proposes the use of
a classical machine learning algorithm called Partition
Around Medoids (PAM) [28]. To determine the optimal
number of controllers to deploy given a wide area
network, this study proposes the use of Silhouette [29]
and Gap Statistics [30] algorithms. To mimic a real SDN
deployment, the controller placement problem is studied
using an emulation orchestration platform. This is
something that to the best of our knowledge has not been
done, and we consider it necessary to verify the outcome
of the mathematical modelling. Finally, a mechanism to
manage control‑plane overhead is proposed.

The key performance indicators used to gauge network
performance are: (i) network latency (propagation +
queuing + processing latency), (ii) reliability (in the
event of link and/or node failure) and (iii) control‑plane
signalling overhead.

4. MATHEMATICAL MODELLING
In order to compute the optimal number of controllers,
we propose two ”unsupervised” machine learning
approaches, namely Silhouette and Gap Statistics.
Unsupervised algorithms learn from input data that
has no labeled responses [31]. These algorithms are
classically used to analyze cluster quality through the
metric of minimum distances between data points.
In the context of controller placement, we leverage
these algorithms to ϐind the number of controllers that
minimizes overall network propagation latency (i.e.
switch‑to‑switch latency). To ϐind the best locations for
these controllers, we extend and apply a facility location
algorithm called Partition Around Medoids algorithm
(PAM),with propagation latency (i.e. controller‑to‑switch
latency) as our main objective function. For realism, we
use the South African National Research Network
(SANReN) as a case study. The choice of this topology
was mainly motivated by the fact that it represents the
emerging market case study which is the key use case of
this study.

Since the links between SANReN’s switches are known to
be ϐibrewhere speed is approximately the speedof light in
ϐibre (i.e. 2 × 108 𝑚/𝑠), we compute propagation latency
by taking the ratio of average distance (between nodes)
to speed of light in ϐibre. The distances are calculated
using the Harvesine approach [32]. The results from our
simulations and discussions are also presented in this
section.

4.1 Assumptions
The following assumptions apply to the proposed
algorithms:

• Switch‑to‑controller communication is assumed to
happen out‑of‑band (control and regular trafϐic do
not share the same links) ;

• The bandwidth for all connection links is constant;

• Control path security and reliability has been
perfectly solved;

• Controllers are co‑locatedwith some of the switches;

• Switches incur a ϐixed load.

4.2 Optimal number of controllers
This section introduces the algorithms used to ϐind the
optimal number of controllers to deploy given awide area
network. Table 2 deϐines some of the notation used in this
section.

Table 2 – Mathematical symbols

Symbol Deϐinition
𝐶𝑘 𝑘𝑡ℎ cluster

𝐿(𝐶𝑘)
Intra‑cluster propagation latency

variation
G(V,E,X) Network topology graph

V Data‑plane nodes
E Links between nodes
X Geographic locations of nodes
𝜑 Latitude of a node
𝜆 Longitude of a node
𝑟 Radius of the earth
𝑘 Number of clusters
𝐵 Randomly generated reference

data set of network topology
𝑠 Standard deviation

4.2.1 Silhouette analysis
Silhouette Analysis is a method of interpretation within
existing clusters, used to measure the quality of a cluster
(how close each point in a cluster is to its adjacent
clusters) for a varying number of partitions [33]. In the
context of the controller placement problem, we adopt
and extend this algorithm to answer this question: given
a wide area network topology, how many controllers are
needed to achieve minimum intra‑cluster propagation
latency variation? Eq. (1) shows our objective function.

𝑋 = 𝑚𝑖𝑛
𝑛


𝑘=2

𝐿(𝐶𝑘) (1)

Algorithm 1 outlines the Silhouette approach. The
algorithm requires three input parameters, namely
a clustering algorithm (clustAlg) to cluster network
data‑plane nodes, distance function handle (disfun),
network topology graph (G(V,E,X)), where V denotes
data‑plane nodes (switches), E denotes edges (links
between nodes), and X denotes the geographic locations
(longitude, latitude) of nodes), and maximum number
of controllers (maxNumControllers). The clustering
algorithm used is called Partition AroundMedoids (PAM)
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Algorithm 1 Silhouette Analysis
Require: 𝐺(𝑉, 𝐸, 𝑋), 𝑚𝑎𝑥𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠, 𝑑𝑖𝑠𝑓𝑢𝑛, 𝑐𝑙𝑢𝑠𝑡𝐴𝑙𝑔
1: 𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑠 ← 𝐺(𝑉, 𝐸, 𝑋).𝑠𝑖𝑧𝑒()
2: 𝑘 ← 2
3: for 𝑘 ← 2 𝑡𝑜 𝑚𝑎𝑥𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 do
4: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟.𝑡𝑟𝑎𝑖𝑛( 𝐺(𝑉, 𝐸, 𝑋), 𝑘, 𝑑𝑖𝑠𝑓𝑢𝑛, 𝑐𝑙𝑢𝑠𝑡𝐴𝑙𝑔)
5: for 𝑗 ∈ 𝐺(𝑉, 𝐸, 𝑋) do
6: 𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑉𝑎𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠.𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑠𝑡(𝑗)/𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑠
7: 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑒𝑠 ← 𝑠𝑐.𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑒(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠.𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑒𝑟𝑠)
8: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 ← 𝐶𝑙𝑢𝑠𝑡𝑒𝑟.𝑡𝑟𝑎𝑖𝑛(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑒𝑠)
9: 𝑖𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑉𝑎𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠.𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑠𝑡(𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑒𝑠)/𝑘

10: end for
11: 𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 ← (𝑖𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑉𝑎𝑟 − 𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑉𝑎𝑟)/𝑚𝑎𝑥(𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑉𝑎𝑟, 𝑖𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑉𝑎𝑟)
12: end for

described in Section 4.3.2 [33]. The Harvesine distance
approach was used to compute the great circle distances
between pairs of switches [34]. The great circle distance
is the shortest distance between two locations on a
sphere, measured along the surface of the sphere (as
opposed to the ordinary Euclidean distance)[35] [36] .
An alternative method to compute geographic distances
is the Law of Cosines, which is optimal for shorter
distances and is not as accurate for longer distances
[37]. To compute the great circle distance, Eq. (2) which
deϐines the Harvesine approach is used, where 𝜑1 and 𝜑2
are the latitudes of points 1 and 2 respectively, 𝜆1 and
𝜆2 is the longitudes of point 1 and 2 respectively and 𝑟
denotes the radius of the earth, a constant equal to 6371
km.

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 2(𝑟)𝑎𝑟𝑐𝑠𝑖𝑛 ቌඨ𝑠𝑖𝑛2ቆ𝜑2−𝜑1
2 ቇ + 𝑐𝑜𝑠(𝜑1)𝑐𝑜𝑠(𝜑2)𝑠𝑖𝑛2ቆ

𝜆2−𝜆1
2 ቇቍ (2)

The procedure to compute the optimal number of
controllers using Silhouette (with steps/instructions
enumerated from 1 to 12 in Algorithm 1) is as follows:
First, a cluster model is created from input network
data using PAM and Harvesine approach (Instruction
4). Next, the average propagation latency from each
switch to its cluster centroid is calculated (Instruction
6), to ϐind the intra‑cluster propagation latency
variation (intraClustVar). To this end, a model from
the centroids is created (Instruction 7). Next, the average
propagation latency between each centroid to the global
centre (Instruction 8‑9) is calculated. In this way we
obtain the inter‑cluster propagation latency variation
(interClustVar). The last step is to calculate the silhouette
coefϐicient (Instruction 11). This procedure is repeated
as speciϐied by the maxNumControllers input parameter
in order to calculate the silhouette coefϐicient for each
number of controllers. Moreover, for each number of
controllers (Instruction 3), the number of iterations was
set to 20 to maximize accuracy of the results.

The optimal number of controllers is one that yields the
maximum silhouette coefϐicient. This coefϐicient has a

range of [‑1,1]. Therefore a value closer to +1 is preferred
as it indicates better cluster conϐiguration.

4.2.2 Gap statistics
Similar to Silhouette Analysis, Gap Statistics is a partition
algorithm typically used in neural networks, to measure
the quality of clustering measure based on average
intra‑cluster variation [38] [30]. We adopt and enhance
this algorithm to verify the results from our Silhouette
Analysis. Therefore our goal is to determine the optimal
number of SDN controllers to deploy given a network
topology, and compare the outcome of the simulation
with the results from the Silhouette Analysis.

The Gap Statistics algorithm constitutes the following
steps (enumerated by instructions from 1 to 12 in
Algorithm 2): First the network topology is partitioned
(using the PAM algorithm), by varying the number of
controllers 𝑘 (which corresponds to the number of
clusters) from 2 to the maximum user‑deϐined value
(Instruction 3).
Algorithm 2 Gap Statistics
Require: 𝐺(𝑉, 𝐸, 𝐿), 𝑚𝑎𝑥𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠, 𝑑𝑖𝑠𝑓𝑢𝑛,

𝑐𝑙𝑢𝑠𝑡𝐴𝑙𝑔, 𝑛𝑟𝑒𝑓𝑠
1: 𝑔𝑎𝑝𝑠 ← [ ] {Intialize empty array}
2: 𝑘 ← 2
3: for 𝑘 ← 2 𝑡𝑜 𝑚𝑎𝑥𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠 do
4: 𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑉𝑎𝑟 ← 𝑐𝑙𝑢𝑠𝑡𝐴𝑙𝑔(𝐺(𝑉, 𝐸, 𝐿),

𝑚𝑎𝑥𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠, 𝑑𝑖𝑠𝑓𝑢𝑛)
5: for 𝑖 ∈ 𝑛𝑟𝑒𝑓𝑠 do
6: 𝑟𝑅𝑒𝑓 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝐺(𝑉, 𝐸, 𝐿)
7: 𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑉𝑎𝑟𝑅𝑒𝑓 ← 𝑐𝑙𝑢𝑠𝑡𝐴𝑙𝑔( 𝑟𝑅𝑒𝑓, 𝑑𝑖𝑠𝑓𝑢𝑛)

8: 𝑔𝑎𝑝 ← 𝑙𝑜𝑔(𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑉𝑎𝑟𝑅𝑒𝑓 −
𝑖𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑉𝑎𝑟)

9: end for
10: 𝑠𝑘 ← 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣(𝑟𝑅𝑒𝑓, 𝑘, 𝑑𝑖𝑠𝑓𝑢𝑛)
11: return 𝑔𝑎𝑝 ← 𝑔𝑎𝑝.𝑎𝑟𝑔𝑚𝑎𝑥 {Take maximum gap

value}
12: end for
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This is followed by the computation of the average
intra‑cluster propagation latency variation (intraClusVar
denoted by 𝐿(𝐶𝑘) in Eq. (3)) between the switches
(Instruction 4). Next a reference data set (𝑟𝑅𝑒𝑓
denoted by 𝐵 in Eq. (4)) of the network topology
is randomly generated (Instruction 6). The average
intra‑cluster latency variation of the reference data set
(intraClusVarRef denoted by 𝐿∗(𝐶𝑘𝑏) in Eq. (4)) is
computed (Instruction 7). The Gap Statistics is calculated
using Eq. (3) and (4). Finally, the standard deviation of
B Monte Carlo replicates is calculated [30]. The optimal
number of controllers is one that meets the condition in
Eq. (5), where 𝑠𝑘+1 denotes the standard deviation of B
Monte Carlo replicates.

𝑔𝑎𝑝𝑛(𝑘) = 𝐸∗𝑛𝑙𝑜𝑔(𝐿∗(𝐶𝑘)) − 𝑙𝑜𝑔(𝐿(𝐶𝑘)) (3)

where

𝐸∗𝑛𝑙𝑜𝑔(𝐿∗(𝐶𝑘)) =
1
𝐵 

𝑏
𝑙𝑜𝑔(𝐿∗(𝐶𝑘𝑏)) (4)

𝑔𝑎𝑝(𝑘) ≥ 𝑔𝑎𝑝(𝑘 + 1) − 𝑠𝑘+1 (5)

4.3 Optimal controller location
This section describes the algorithmsused to ϐind the best
locations to place SDN controllers.

4.3.1 Johnson’s algorithm

In order to determine the best locations to place SDN
controllers in a WAN, the shortest paths between each
pair of switchesmust be known. Johnson’s algorithm [39]
provides ameans to ϐind the shortest paths between node
pairs and has become a popular method for addressing
SDN optimization problems [40]. Therefore, we used the
results from this algorithm alongside the PAM algorithm
to determine the best places to deploy controllers. A
pseudocode of this algorithm is as shown in Algorithm 3
and consists of the following steps: First a new arbitrary
switch (denoted by 𝑞) is added to the network graph,
connected by zero‑weight links to all other switches
(denoted by 𝑣) in the network graph (Instructions 1‑5).
If this step detects a negative weight‑cycle (i.e. a cycle
whose weight sums to a negative number), the algorithm
is terminated (Instruction 6‑7). Second, a single source
shortest path algorithm called Bellman‑Ford algorithm is
evoked, to ϐind the shortest path ℎ(𝑣) from each switch
𝑣 in the network to the new switch (Instructions 9‑11).
Next, the graph is reweighted to ϐind new link weights
𝑤𝑛𝑒𝑤 (Instruction 12‑14). Finally, the new switch is
removed, and Dijkstra’s algorithm is used to compute the
shortest paths 𝑝(𝑢, 𝑣) from each each node to every other
node in the reweighted graph (Instructions 15‑22).

Algorithm 3 Johnson’s Algorithm
Require: 𝐺(𝑉, 𝐸) {undirected weighted network graph}
1: Compute 𝐺′ 𝑤ℎ𝑒𝑟𝑒 𝑉[𝐺′] ← 𝑉[𝐺] ∪ 𝑞 {𝐺′ is a new

graph containing 𝑞}
2: for 𝑣 ∈ 𝑉[𝐺] {for all switches (𝑣) in the original

graph} do
3: 𝐸[𝐺′] ← 𝐸[𝐺] ∪ (𝑞, 𝑣) ∶ 𝑣 ∈ 𝑉[𝐺]
4: 𝑧(𝑞, 𝑣) ← 0
5: end for
6: if 𝐵𝐸𝐿𝐿𝑀𝐴𝑁 − 𝐹𝑂𝑅𝐷(𝐺′, 𝑤) == 𝐹𝑎𝑙𝑠𝑒 then
7: print Error! Negative cycle detected.
8: else
9: for 𝑣 ∈ 𝑉[𝐺] do

10: set ℎ(𝑣) ← 𝛿(𝑞, 𝑣) compute shortest path using
Bellman‑Ford

11: end for
12: for (𝑢, 𝑣) ∈ 𝐸[𝐺′] do
13: 𝑤𝑛𝑒𝑤 ← 𝑤(𝑢, 𝑣) + ℎ(𝑢) − ℎ(𝑣)
14: end for
15: for 𝑢 ∈ 𝑉[𝐺] do
16: execute 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺,𝑤𝑛𝑒𝑤 , 𝑢) to compute

𝛿𝑛𝑒𝑤(𝑢, 𝑣) for all 𝑣 ∈ 𝑉[𝐺]
17: for 𝑣 ∈ 𝑉[𝐺] do
18: 𝑝(𝑢, 𝑣) ← 𝛿𝑛𝑒𝑤(𝑢, 𝑣) + ℎ(𝑢) − ℎ(𝑣)
19: end for
20: end for
21: end if
22: return shortest path matrix

4.3.2 Partition around medoids (PAM)

After determining the optimal number of controllers
to use given a WAN topology, the next step is to ϐind
the best locations to place the controllers such that the
QoS is maximized. This can be achieved by leveraging
”unsupervised” machine learning heuristic algorithms
(such as Simulated Annealing [41] and Clustering LARge
Applications (CLARA)[42]) or exhaustive algorithms
(such as k‑means [43] [44] and PAM [45] [46][47].
However, heuristic algorithms are suboptimal in the
sense that they are primarily focused on optimizing
runtime over solution accuracy. Therefore, heuristic
algorithms are more ideal for scenarios requiring
dynamic controller placement. However, this study
explores static controller placement, where the controller
placement problem is addressed during network
planning. Therefore, the accuracy of the optimization
algorithm is signiϐicantly more important than the
speed of computation. From the available exhaustive
algorithms, we opted for the PAM algorithm. This is
mainly because the k‑means algorithm is very sensitive
to outliers which can lead to solution inaccuracy [48].
Unlike k‑means, PAM is more stable and more accurate
[49].
Algorithm 4 describes the steps we followed to compute
the optimal locations of SDN controllers. Our approach
assumes co‑location of controllers and switches. First, 𝑘
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arbitrary switches (where 𝑘 is the number of controllers
toplace)) are selected as thepotential controller locations
(Instruction 3). This is followed by the association of each
switch to the closest controller (Instructions 4‑6). While
the cost of conϐiguration (the overall propagation latency)
decreases, the controller location 𝑅𝑖 and switch 𝑆𝑜 are
swapped (Instructions7‑9), and each switch is reassigned
to their closest controller location (Instructions 4‑6).
Algorithm 4 Partition Around Medoids (PAM)
Require: 𝐺(𝑉, 𝐸), 𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠, 𝑑𝑖𝑠𝑓𝑢𝑛,

𝑐𝑙𝑢𝑠𝑡𝐴𝑙𝑔, 𝑒𝑑𝑔𝑊𝑒𝑖𝑔𝑡𝑠
1: Compute shortest path matrix using Johnson’s

algorithm
2: 𝑘 ← 𝑁𝑢𝑚𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟𝑠
3: 𝑅𝑖 (𝑖∈[1..𝑘]) ← randomly select 𝑘 objects from 𝐺(𝑉, 𝐸, )

4: for 𝑆𝑜 ∈ 𝐺(𝑉, 𝐸) do
5: Compute similarity score of 𝑆𝑜 with each 𝑅𝑖 (𝑖∈[1..𝑘])

using 𝑑𝑖𝑠𝑓𝑢𝑛
6: Associate 𝑆𝑜 to the most similar 𝑅𝑖
7: end for
8: for 𝑆𝑜 𝑎𝑛𝑑 𝑅𝑖 do
9: 𝑠𝑤𝑎𝑝𝐶𝑜𝑠𝑡 ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐶𝑜𝑠𝑡(𝑆𝑜 , 𝑅𝑖)

10: end for
11: if 𝑠𝑤𝑎𝑝𝐶𝑜𝑠𝑡 ≤ 0 then
12: 𝑆𝑜 ⇆ 𝑅𝑖

Go back to step 4
13: else
14: for 𝑆𝑜 ∈ 𝐺(𝑉, 𝐸) do
15: Compute similarity score of 𝑆𝑜 with each

𝑅𝑖 (𝑖∈[1..𝑘])
16: Assign 𝑆𝑜 to the most similar 𝑅𝑖
17: end for
18: end if
19: return 𝑐𝑙

If an increase in conϐiguration cost is detected, the swap is
undone and the optimal controller locations that optimize
QoS are found (Instructions 12‑18). Two QoS parameters
are considered in our solution, that is the average
propagation latency (which is the overall propagation
latency) and the worst‑case propagation latency (which
is the maximum network latency). Eq. (6) and (7) deϐine
how these parameters are deϐined, where 𝐿𝑎𝑣𝑔(𝑍′) is the
average latency, 𝐿𝑤𝑐(𝑍′) is the worst‑case latency, 𝑑(𝑣, 𝑧)
is the shortest distance from the switch (node 𝑣 ∈ 𝑉) to
the controller (node 𝑧 ∈ 𝑍 ),𝑁 = |𝑉| denotes the number
of nodes and 2 × 108 is the speed of light in ϐibre.

𝐿𝑎𝑣𝑔(𝑍′) =
1

(2𝑋108)𝑁 
𝑣∈𝑉

min
𝑧∈𝑍′

𝑑(𝑣, 𝑧) (6)

𝐿𝑤𝑐(𝑍′) = max
𝑣∈𝑉

min
𝑧∈𝑍′

𝑑(𝑣, 𝑧) (7)

5. IMPLEMENTATION OF MATHEMATICAL
MODELLING

This section explains our implementation for solving
the controller placement problem using the algorithms
described in sections 4.2 and 4.3. These algorithms
are implemented in MATLAB 2018b. The primary
objective is to establish the number of controllers for
the achievement of minimum propagation latency and to
determine the best locations to place these controllers
in a WAN topology. The results from our simulation
experiments are also presented in this section.

5.1 Topologies
To maintain realism, our proposed solution is applied
on a real‑world WAN called South African Research
Network (SANReN), operated by CSIR’S Next Generation
Enterprises and Institutions (NGEI) cluster [50]. The
reason for choosing the SANReN network was so that we
could demonstrate our proposed solution on an emerging
market use case. However, it may be noted that our
solution is topology‑agnostic and caneasily beused to test
other networks of different conϐigurations and sizes.

The SANReN network constitutes a core national
backbone, with each Point of presence (PoP) connecting
a metropolitan network. This work only focuses on
the PoP‑level instead of the router‑level view of the
SANReN network. This is because the router‑level view
is proprietary and not publicly available. Moreover,
the PoP‑level view has been deemed more useful [51]
for several points: it provides a larger scale view of
network links, which are most interesting for network
optimization; it shows end users where they can connect
to the network and it’s the level where resiliency and
redundancy are critical. The PoP‑level geographical map
of the SANReN topology comprises 7 nodes and 7 ϐibre
links conϐigured in a ring topology. The data set of this
topology was downloaded from a repository called The
Internet Topology Zoo [52]. The format of the data set
is in Geography Markup Language (GML) and includes
geographic locations (longitude, latitude) of nodes and
topological conϐiguration of the SANReN network.

5.2 Hardware and software used for
modelling

All the experiments have been executed under an Ubuntu
Desktop 16.04 LTS‑64 bit on a PC with the following
speciϐication: Intel(R) Core(TM) i7‑5600U CPU, with 4
cores (8 threads), a clock speed of 2.60 GHz, RAM amount
of 8 GB and a storage capacity of 250 GB.

5.3 Flowchart of proposed solution
The ϐlowchart depicted in Fig. 1 summarizes the steps
in our proposed controller placement solution. First,
network graph modelling is used to model the network
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Fig. 1 – Flow chart of proposed method.

topology as an undirected graph 𝐺(𝑉, 𝐸), where 𝑉
denotes network switches and 𝐸 represents ϐibre links
(edges) connecting the switches. This is followed by
the extraction of the geographic location data using
the input data set. Next, the Harvesine approach is
applied on the location data to generate the distance
matrix. To determine edge weights, an adjacency matrix
is implemented between all connected switches. Then,
computation of the number of controllers that minimize
intra‑cluster latency is carried out using the Silhouette
algorithm as described in Section 4.2.1, Algorithm 1.
To verify the results from Silhouette, Gap Statistics is
implemented as described in Section 4.2.2, Algorithm
2. This is followed by computation of the shortest
path matrix by applying Johnson’s algorithm outlined in
Algorithm 3. The results from Silhouette, Gap Statistics
and Johnson’s algorithm, are used as inputs to the
PAM algorithm discussed in Section 4.3.2, Algorithm 4,
which is used to ϐind the best locations that minimize
propagation latencies, namely the average latency and
worst‑case latency deϐined in Section 4.3.2 (Eq (6) and
(7)). The key factor in our mathematical formulation
is the distance (under the assumption of constant
bandwidth across all ϐibre links). Therefore under
constant bandwidth, propagation latency is directly
proportional to distance.

6. RESULTS FOR MATHEMATICAL
MODELLING

This section presents and discusses the results obtained
after applying the approaches described in Section 4.

6.1 Optimal number of controllers

6.1.1 Silhouette analysis

In order to determine the optimal number of controllers
to deploy on the SANReN backbone, we applied our
enhanced Silhouette algorithm with propagation latency
as our key performance indicator. The results from our
Silhouette analysis are as depicted in Fig. 2.

(a)

(b)

(c)

Fig. 2 – Silhouette analysis to determine optimal number of controllers
for (a) 𝑘 = 2(b) 𝑘 = 3(c) 𝑘 = 4.

These plots show the clustering quality when a different
number of SDN controllers are deployed. For instance,
Fig. 2 (𝑎) illustrates the clustering quality when 2
controllers are deployed. The metric used to measure
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clustering quality is the average intra‑cluster propagation
latency. Each blue horizontal bar in the plots represent
a switch and its corresponding silhouette score. A
silhouette score reveals the proximity of a switch to all
other switches outside and within its cluster. Silhouette
scores lie in the range of [‑1,1]. The desired score is
one that is closer to +1 as it indicates high proximity
of switches within the same cluster. On the other
hand, silhouette scores near ‑1 indicate high dissimilarity
within a cluster and is a sign of poor clustering quality. A
value of 0 shows that the switch is on or very close to the
decision boundary between two adjacent clusters [53].

Our results indicate that deploying 3 or 4 controllers
(shown in Fig. 2 (𝑏) and (𝑐), respectively) would result
in poor clustering quality due to the presence of clusters
with very low silhouette scores and the high ϐluctuations
in the size of the silhouette plots. The increase in average
silhouette score from 3 to 4 controllers (as shown in Fig.
3(a) ) is caused by the high proximity of nodes in the
same cluster. Given that SANReN constitutes 7 nodes,
deploying 4 controllers would result in the following
network partitions:

• 2 clusters with 1 node per cluster ;
• 1 cluster with 2 nodes; and
• 1 cluster with 3 nodes.

On the other hand, deploying 3 controllers would result
in the following network partitions:

• 2 clusters with 3 nodes per cluster ; and
• 1 cluster with 1 node.

Given the sparse locations of the SANRen topology, it
only makes sense that partitioning the network into 4
clusters would yield a higher average silhouette score
than 3 clusters since there are fewer nodes per cluster
and fewer outliers. Therefore, 2 controllers are the
ideal number of controllers to deploy on the SANReN
network as this will ensure lower propagation latency
and a fair switch‑to‑controller distribution. This is
seen from the high silhouette score obtained when the
number of controllers is set to 2. Although deploying 4
controllers would yield a fairly good clustering quality
and improve network reliability, it is likely to result
in high inter‑controller latency (due to the frequent
state information exchange between controllers) and
require high CapEx. However, if latency and cost are
topmost priority, then 2 controllers are recommended.
Moreover, 2 controllers would still sufϐice to meet
reliability requirements unless the network has stringent
requirements. However, different results are observed
for different topologies.

6.1.2 Gap statistics
To verify the results from our Silhouette algorithm, we
applied the Gap Statistics algorithm on the SANReN

Fig. 3 – (a) Silhouette and (b) Gap Statistics evaluation summary.

topology. With Gap Statistics the optimal number of
controllers corresponds to the highest gap value with
the statistical deviation, as it reϐlects a low intra‑cluster
propagation latency. Fig. 3(b) indicates that the optimal
number to deploy on SANReN is 2 controllers. These
results match the outcome of our Silhouette analysis.

6.1.3 Cost‑latency trade‑off analysis
Another factor that inϐluences the decision regarding the
number of controllers to deploy, is the cost associated
with installing new controllers in a given network.
This metric is critical as it contributes to the overall
CapEx and determines how much return on investment
(ROI) network operators generate. However, there
exists a considerable trade‑off between cost and the
QoS delivered by the network. Our intention here is
to quantify this trade‑off so as to provide a practical
guideline to network operators, regarding the ideal
number of controllers to use taking into account cost
and latency. This trade‑off is termed ”cost factor”
and is deϐined in Eq. (8), where 𝑘 is the number of
controllers, 𝐶𝑃𝑋𝑘 is the normalised cost of deploying a
single controller and 𝐿𝑎𝑣𝑔 is the average latency when
𝑘 controllers are deployed. The normalised cost of
deploying a single controller was kept at a constant value
of 1$ per controller (assuming that a company plans to
install the same model of an SDN controller).

𝑐𝑜𝑠𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 = 𝑘 ∗ 𝐶𝑃𝑋𝑘
𝐿𝑎𝑣𝑔

ቈ $
𝑚𝑠  (8)

The average latency is the overall propagation latency
computed using the PAM algorithm described in Section
4.3.2 for a varying number of controllers. Fig. 4 shows
our results from analyzing the trade‑off between cost
and network performance. As expected, the results
indicate that deploying 1 controller is an ideal choice
to ensure minimal trade‑off between cost and network
performance. However, to ensure network scalability
and failover, we recommend using 2 controllers. This
is primarily because 2 controllers are the second
best option that provides the least trade‑off, and our
Silhouette and Gap Statistics analysis recommend 2
controllers as the optimal number to deploy on SANReN.
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It is important to note that our proposed approach does
not provide a comprehensive cost analysis, but only
provides a basis for one.

Fig. 4 – Trade‑off between cost and latency for varying number of
controllers.

6.2 Optimal controller locations
After determining the optimal number of controllers
using the Silhouette analysis and Gap Statistics, the
next step is to determine the best locations to place
the recommended two SDN controllers. To ϐind these
locations, we use our proposed PAM algorithm described
in Section 4.3.2. The results (depicted in Fig. 5) indicate
that the optimal locations to place two controllers are
Pretoria and East London with the average propagation
latency of 𝐿𝑎𝑣𝑔 = 1.81. The selection of these locations
guarantees the best network performance with respect
to the southbound communication in the SANReN
network. In contrast, deploying the controllers in Port
Elizabeth andBloemfonteinwould result in poor network
performance, with the worst‑case propagation latency
being 𝐿𝑤𝑐 = 3.92.

Fig. 5 – Best and worst placements of two controllers on SANReN
backbone.

Table 3 presents the effect of increasing the number
of controllers (𝑘) on average and worst‑case latency.
These results were obtained by applying the PAM
algorithm. The results indicate that, varying the number
of controllers from 𝑘=1 to 𝑘=2 signiϐicantly reduces
propagation latency (approximately 38% reduction

of average latency and 42% reduction of worst‑case
latency). A further reduction is observed when the
number of controllers is set to 𝑘=3. However, increasing
the number of controllers beyond 3 controllers has a
much less signiϐicant impact on latency (as depicted in
Fig. 6).

Fig. 6 – Relation between number of controllers and latency.

7. CONTROLLER PLACEMENT ON
EMULATEDWAN

The controller placement results presented in Section
6 relied strictly on mathematical modelling. In this
section, we describe a method for ϐinding optimal and
worst locations of SDN controllers using an emulation
orchestration platform called Mininet, which is able to
include many of the practical implementation effects
and so critical to mimic a real SDN deployment. We
use controller‑to‑node latency (propagation + queuing
+processing latency) as a key performance indicator. Our
main goal is to match and verify the outcome from our
mathematical formulation regarding the best locations to
place the controller in a wide area network (WAN). To
further optimize network performance, we also consider
control‑plane resiliency, as well as propose a means to
alleviate signalling overhead on the control channel.
For the control‑plane, we implement an ONOS controller
(version 1.14) because of its distributed core which
improves the robustness of the control‑plane, by
providing backup control in the event of network
failure [54]. Moreover, ONOS’ distributed core is
self‑coordinating and enables load sharing through
fragmentation of the data‑plane. This controller has
an advanced east/westbound interface to ensure high
inter‑controller communication efϐiciency. Finally,
employing a geographically distributed core reduces the
node‑to‑controller latency, thus improving the controller
reactivity as perceived by the network nodes. Last but
not least, our decision to choose ONOS is inϐluenced
by the results from our ealier controller benchmarking
experiments in [55] which conϐirm ONOS scalability
features making it ideal for carrier grade deployments.

The evaluation of the proposed emulation approach is
carried out on amodel of a local national backbone called
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Table 3 – Average (𝐿𝑎𝑣𝑔) and worst‑case (𝐿𝑤𝑐) latency for varying number of controllers

𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4
𝐿𝑎𝑣𝑔 (𝑚𝑠) 2.9 1.81 1.2 0.98
𝐿𝑤𝑐 (𝑚𝑠) 6.8 3.92 5 5.3

Names of locations for 𝐿𝑎𝑣𝑔 Durban Pretoria
East London

Pretoria
Johannesburg
Port Elizabeth

Johannesburg
Durban

East London
Port Elizabeth

Names of locations for 𝐿𝑤𝑐 Bloemfontein Port Elizabeth
Bloemfontein

Cape Town
East London

Durban

Pretoria
Cape Town

Bloemfontein
Port Elizabeth

SANReN, the same network we used in Section 5. It may
however be noted that our approach is generic and can be
used to optimize any other network.

7.1 Experimental setup
The experiment setup is as illustrated by Fig. 7 and Fig.
8 (captured from Miniedit). Node c0 and c1 are ONOS
SDN controller instances running on a dedicated remote
machine (with 8 CPUs, 16 GB RAM and 1 TB HDD and
no swap partition), and h0‑h6 are hosts attached to SDN
Open Virtual Switches (OVS 2.9.90) running OpenFlow
version 1.3. A built‑in application for reactive ϐlow
instantiation is activated to set the ONOS controller to
reactive operational mode. The red dash‑dotted lines
show connection (over WiFi) between switches and
controllers and the blue solid lines are links between
the switches. The switch‑to‑controller communication is
assumed to happen out‑of‑band. Since the links between
the switches are known to be ϐibre, where speed is
approximately the speed of light in ϐibre i.e. about 2 ×
108𝑚/𝑠, we use the latency formula Eq. (9) to conϐigure
the link properties.

𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑠𝑒𝑐) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚)
𝑠𝑝𝑒𝑒𝑑 ቀ 𝑚

𝑠𝑒𝑐ቁ
(9)

The distances between nodes are calculated using the
Harvesine great circle approach and the actual GPS
coordinates of the nodes.

The data‑plane emulated on Mininet version 2.2.2 (with
default settings, for all experiments) is running on
a separate machine (with 8 CPUs, 16 GB RAM and
1 TB HDD). Each switch in the data‑plane has a
unique data path ID (DPID). The connection between
the control‑plane and data‑plane is via port 6633 of
the controller over a slow WiFi router. The control
link parameters are conϐigured using the Linux Trafϐic
Control (TC) utility (installed on the machine used for
data‑plane emulation) under the assumption that the
optimal controller placement is co‑locatedwith one of the
switches. The programming language used to develop the
software is Python 2.7.14.

Fig. 7 – Experiment setup with one ONOS controller

Fig. 8 – Experiment setup with two self‑coordinating ONOS controllers
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7.2 Methodology
This work constitutes two independent experiments.
The ϐirst experiment is carried out with the intention
to address the controller placement problem leveraging
emulation. The ϐirst experiment analyses two scenarios:
(1) when only one controller is used and (2) when two
controllers are used. The second experiment presents
different approaches through which signalling overhead
on the control channel can be reduced, in consideration
of control‑plane resiliency.

7.2.1 Controller placement

On example of one controller case, Fig. 9 summarizes our
approach in a ϐlow chart (where 𝑛 is the total potential
controller placement locations, i.e. the total number of
nodes in a given topology). For the SANReN network, 𝑛
is 7, meaning there are a total of 7 potential controller
placement locations in the network.

The following procedure (outlined in Fig. 9) is used for
each node to determine average latency: To ϐind optimal
controller locations, ϐirst we install the ONOS controller
in the same geographic location as the ϐirst OpenFlow
switch node (using the Harvesine great circle approach
and the Linux TC utility). The next step is to trigger
a packet‑In message to the controller. This is done by
generating trafϐic ϐlows between all pairs, i.e. between
this node and all other nodes in the SANReN topology. To

do this we generate an ICMP packet using the ping utility
for each pair. This is followed by computation of the
ICMP pinging results to obtain the total average latency
(round‑trip time) from the node to all other nodes in the
network. This step is repeated for all nodes in the SANReN
topology. To ensure valid and reliable results, we repeat
the above procedure 5 times under a soft idle timeout for
the controller entry of 5 seconds (the soft idle timeout
deϐines the expiry time of a controller ϐlow rule when
there is no ϐlow activity) and compute the average results.
The soft idle timeout is set to ensure generation of control
trafϐic upon pinging reiterations.

For the case of two controllers (see Fig. 10), the network
is partitioned into two smaller administrative domains,
namely cluster one and cluster two, each supervised by
a dedicated ONOS instance. The parameters 𝑛1 and 𝑛2
denote the total number of switches in cluster one and
two, respectively. After executing themastershipmodule,
the partition results are as follows: The ϐirst ONOS
instance (𝑐1) is assigned three switch nodes in region
Pretoria, Bloemfontein andDurban, while the otherONOS
instance constitutes switches located in Johannesburg,
Cape Town, East London and Port Elizabeth. In order
to optimize the placement of these two controllers, an
exhaustive search is carried out by iterating through all
possible combinations (within the limits deϐined by each
controller domain). In other words, 𝑐1 is placed at
different regions within its domain. For each placement
of 𝑐1, 𝑐2 is then placed at different regions within its

Fig. 9 – Flow chart of proposed method for one controller[56].
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Fig. 10 – Flow chart of proposed method for two controllers.

domain. For each set of placement, the average latency
is computed following the same procedure as described
above.

7.2.2 Control‑plane signalling overhead and
failover

The centralized control scheme adopted by SDN puts
the control channel at risk of incurring very high
signalling overhead generated during data‑plane
monitoring (e.g. Stats‑Request and Stats‑Reply) and
reactive ϐlow instantiation (such as packet‑In, packet‑Out
and Flow‑Removed). In order to manage this rapid
inϐlux of trafϐic on the control channel, the following
procedure is used: First we conϐigure a cluster of
two ONOS instances each managing a segment of the
network. The cluster is conϐigured using the REST API
of each separate ONOS. Upon data‑plane instantiation,
the switch‑to‑controller placement (in terms of the
number of switches per cluster) is imbalanced. This is
because switch‑to‑controller placement is based solely
on best effort (meaning the controller that completes
the handshake with the switch ϐirst, gets mastership

of the switch). By partitioning the data‑plane into two
clusters, the trafϐic induced by data‑plane monitoring
(code‑named polling) is reduced. Speciϐically, after
clustering, the controller sends and receives monitoring
data from just a fraction of data‑plane nodes. To balance
the switch‑to‑controller placement, we activate the ONOS
mastership management module. This results in a more
balanced monitoring load which we expect to further
decrease control‑plane overhead.

To quantify the impact of switch‑to‑controller placement,
we generate variable trafϐic between two virtual hosts
(the client connected to Johannesburg and the server
connected to Cape Town), a distance of 1399 km from
each other. This is carried out using the Distributed
Internet Trafϐic Generator (D‑ITG) tool. The transport
protocol is set to UDP and the number of packets
per second is varied from 50 000 to 200 000 in
increments of 50 000. The packet size is set to 512
bytes. The link bandwidth was kept at 10 Mb/s.
The duration for the generation process is set to 5
minutes. The key performance indicators are delay,
jitter and packet loss all monitored at the server end.
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This procedure is carried out for two scenarios: 1)
when the switch‑to‑controller placement is imbalanced
(switch‑to‑controller assignment is two and ϐive switches
for controller one and two respectively) and 2) for
the scenario where switch‑to‑controller placement is
balanced (switch‑to‑controller assignment is three and
four for controller one and two respectively).

In addition to switch‑to‑controller balancing, the
control‑plane has several tuneable parameters in the
control‑plane, such as polling frequency and soft idle
timeout [57]. Polling frequency is a parameter that
speciϐies how frequently statistics requests are sent to
the data‑plane. Soft idle timeout speciϐies the total time
an inactive ϐlow entry is stored in the ϐlow tables before
deletion. Tuning these parameters impacts control‑plane
overhead. In other words, increasing polling frequency is
likely to decrease the control‑plane overhead (of course
at the expense of data‑plane protection and restoration)
while increasing the soft idle timeout results in more
ϐlow rules in the ϐlow tables and reduces control‑plane
overhead (with the switch resource (e.g. memory and
storage) exhaustion as a trade‑off). In an operational
environment, OpenFlow switches with TCAM (Ternary
Content Addressable Memory) support are typically
preferred for fast processing [58]. However, TCAM is
very expensive with very limited memory space [59].
Therefore, the soft idle timeout can only be increased up
to a certain threshold to maintain the switch memory
utilization around acceptable levels.

To determine how the soft idle timeout affects
control‑plane overhead, we gradually increase the
soft idle timeout and polling frequency (from 5 s to 40 s
in increments of 5 s) and measure the number of packets
(i.e. Packet‑In, Packet‑Out, Flow‑Mod, Stats‑Request and
Stats‑Reply). In order to evoke control trafϐic we generate
200 000 packets between two hosts (one connected to
the node in Johannesburg and the other connected to
a node in Cape Town). The duration, packet size and
bandwidth are the same as for the switch‑to‑controller
placement experiment. This experiment leveraged the

results from the controller placement experiment (for the
case when two control instances are deployed). In other
words, two control instances were deployed at optimal
locations to minimize propagation latency. Additionally,
the ONOSmastership management module was activated
to balance the switch‑to‑controller placement.

Failover is evaluated by shutting down one controller in
the cluster and calling the “pingall” function. If no packet
loss is observed, then it means all hosts can reach each
other and switch reassignment to the active controller
was successful. We also take note of the time it takes for
the controller to take mastership of the “controller‑less”
switches.

7.3 Results and discussion
This section presents and discusses the results obtained
from following the procedures described above.

7.3.1 Controller placement
Fig. 11 and Fig. 12 present the results obtained from
our analysis of the SANReN network. As per Fig. 11,
our results show that the optimum controller location
when one controller is deployed is Cape Town since this
node has the lowest average latency (𝐿𝑎𝑣𝑔=88.78 ms).
Similarly, the worst location to place the controller when
one controller is deployed is Bloemfontein since this
location yields the highest average latency (𝐿𝑎𝑣𝑔=164.4
ms).

Fig. 12 presents the results obtained when two
controllers are deployed. These results are intepreted
as follows: the blue bars indicate a scenario where one
controller is placed in Pretoria (a region belonging to
cluster one as described in Section 7.2.1), while the other
controller’s location is iterated between Johannesburg,
East London, Port Elizabeth and Cape Town (regions
belonging to cluster two). Similarly, the red and
green bars indicate controller placement in Durban and
Bloemfontein (regions belonging to cluster one)while the
other controller is placed in all regionswithin cluster two.

Fig. 11 – Total average latency for the ONOS controller without clustering.
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Fig. 12 – Total average latency for ONOS controller when network is partitioned into two clusters.

Our results shows thatwhen two controllers are deployed
and the mastership management module is activated, the
optimum controller locations are Pretoria for cluster one
and East London for cluster two, with 𝐿𝑎𝑣𝑔=48.9 ms. The
worst locations are Bloemfontein and Port Elizabeth for
cluster one and cluster two respectively, with 𝐿𝑎𝑣𝑔=118.4
ms. These results coincide with the results from our
mathematical formulation in Section 6.2.

7.3.2 Control‑plane failover and signalling
overhead

The outcome of our failover tests was positive in that
all nodes could reach each other regardless of the failed
control node. This means that the switch nodes under
the supervisionof the failed controllerwere automatically
reassigned to the active controller in the other cluster.
The reassignment took approximately 0.5 seconds. The
reassignment time was measured by carrying out the
ONOS performance benchmark test case provided in [60].
The failure recovery time increases signiϐicantly with the
number of disconnected switches [61]. The recovery
time can potentially be improved by usingmore powerful
servers with more RAM and CPU resources [62].

Fig. 13 and and Fig. 14 depict the results we obtained
both before and after switch‑to‑controller placement
balancing. As expected (see Fig. 13), the average delay
is in overall lower after switch‑to‑controller placement
balancing compared to the case of imbalance. We
believe this is primarily because, after balancing the
switch‑to‑controller placement, data‑plane monitoring
trafϐic is fairly divided between the controller nodes thus
improving overall network performance.

The decline in average delay (both before and after
switch‑to‑controller balancing) is a result of an increased
matching probability of preserved ϐlow rules with newly
arriving packets, which reduces the number of packet‑In
messages to the controller, resulting in a reduction in
network delay. When the number of packets is increased
to 150 000 packets, an increase in average delay is

Fig. 13 – Average latency.

observed. This is likely because during the transmission
of the ϐirst 150 000 packets, the switch has matching
entries in its ϐlow tables on how to route trafϐic, which
eliminates the need to forward incoming packets to the
control‑plane for routing decisions. After a certain time
(from 150 000 packets upwards), the switch reaches
a hard timeout and clears its ϐlow tables leading to an
additional processing delay. The additional processing
delay is likely the cause of the increase in average
delay. Similar results are observed with regards to
network jitter (as shown in Fig. 14). Last but certainly
not least, when the number of packets is increased
to 150 000 and 200 000, we observe a percentage

Fig. 14 – Average jitter.
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Fig. 15 – Impact of soft idle timeout on control‑plane overhead.

packet drop of 0.19% and 0.53% (respectively) before
switch‑to‑controller placement balancing, and 0.14%
and 0.07% (respectively) after switch‑to‑controller
placement balancing.

Fig. 15 depicts the impact of tuning the soft idle timeout
and polling frequency on control‑plane overhead. The
results indicate that, increasing the polling frequency and
soft idle timeout decreases the number of control packets
(synonymous with control‑plane overhead) generated
during reactive ϐlow instantiation. However, from 20
seconds forward, the number of control packets remains
constant. Therefore, we can conclude that conϐiguring
the polling interval and idle timeout to 20 seconds
would be the sufϐicient choice to achieve an acceptable
control overhead and a potentially lower switch memory
utilization. Increasing the timeout beyond 20 seconds
would not change the load on the control channel but will
potentially lead to a higher memory utilization.

8. SOURCE CODES
The source codes for the proposed solution
have been made publicly available on Github,
a world’s leading code repository. The source
codes can be downloaded from this link:
https://github.com/Lusani/SDN‑Controller‑Placement

9. CONCLUSION
This study considers determining the number and
location of SDN controllers in a wide area network,
and associated performance and cost implications and
is intended to be used to address the SDN controller
placement problem. The work is applied to a national
network from a developing country, SANReN. The work
includes mathematical modelling and a method for
obtaining the results through emulation on a popular
controller suitable for real world deployments. The
emulation conϐirmed the modelling and is also used
to derive important practical limits. The modelling
included Silhouette, Gap and PAM approaches. Using
graph modelling, two ”unsupervised” machine learning

algorithms, namely Silhouette and Gap Statistics
algorithms were applied to optimize the number of
controllers to deploy in a given topology. Given the fact
that network operators are more concerned about the
cost associated with network deployment, this study also
takes into consideration the trade‑off between the cost
of installing a new SDN controller and performance. This
is necessary to facilitate decision making regarding the
number of controllers to deploy, based on performance
requirements and cost constraints. To determine the
optimal locations to install the controllers, a classical
algorithm called PAM was used. The applied algorithms
are exhaustive making them ideal for static controller
placement with minimal to no time constraints. In
order to mimic a real SDN deployment and also to
verify the outcome from our mathematical model,
we use exhaustive search on an emulator to address
the controller placement problem. This approach
also takes into account resiliency and control‑plane
overhead metrics. We use the ONOS SDN controller
due to its inherent self‑coordinating distributed core.
Our emulation results show that running a single
controller yields high reaction times as some switches
are located too far away from the controller. Moreover,
running a single controller is not enough to meet
resiliency requirements. When the number of controllers
was increased to two, the reaction time was reduced
considerably since the network was subdivided into two
administrative domains. Moreover, the two controllers
worked collaboratively to alleviate control overhead
and ensure resiliency in the network. Leveraging our
controller placement results as well as balancing the
switch‑to‑controller placement, we also investigated
the impact of soft idle timeout and polling frequency on
control‑plane overhead. Our ϐindings suggested that a
large soft idle timeout and polling frequency reduces
the overall control‑plane overhead. In reading the above
conclusions, it should be noted that the solution to the
controller placement problem is topology dependent
and thus the results presented by this work only apply
to the SANReN topology studied. However, the proposed
approach is “protocol” agnostic and can be adopted
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to solve controller placement in any SDN‑enabled
data‑plane (such as data‑planes that support protocols
such as P4 Runtime, a successor to OpenFlow). We
believe that our method and analysis would be beneϐicial
for operators and service providers, not only during the
initial design, but also during the incremental design of
the SDN‑enabled networks.

10. FUTUREWORK
In future we intend to extend our work to address
dynamic controller placement which is necessary to
meet 5G requirements such as ultra‑reliable low latency
communications achievable through dynamic placement
of the mobile edge computing node. We also plan
to evaluate the security aspect of SDN controllers.
This is motivated by the fact that centralizing the
network control intelligence presents a single point of
attack/failure.

The assumption that the bandwidth for all connection
links is constant (see Section4.1) is not valid for the actual
SANReN network. This assumption was made to simplify
the mathematical model formulation. In future, a more
complicated scenario with different link bandwidths will
be considered.

In this work, trafϐic load was set to 512 bytes which does
not reϐlect the actual trafϐic exchanges between SANReN
nodes. As future work, a characterization of the actual
trafϐic proϐiles combined with a rerun of the evaluation in
Section 7 will be considered. We also intend to use the
proposed approach to optimize data‑planes running P4
Runtimeprotocol. Last but not least, we intend to develop
a dynamic control trafϐic load balancing application based
on current switch resource (RAM, CPU, and storage)
utilization.
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