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Abstract – Multi-scale decomposition is a signal description method in which the signal is decomposed into multiple
scales, which has been shown to be a valuable method in information preservation. Much focus on multi-scale decom-
position has been based on scale-space theory and wavelet transform. In this article, a new powerful method to perform
multi-scale decomposition exploiting Independent Component Analysis (ICA), called MSICA, is proposed to translate
an original signal into multiple statistically independent scales. It is proven that extracting the independent components
of the even and odd samples of a digital signal results in the decomposition of the same into approximation and detail.
It is also proven that the whitening procedure in ICA is equivalent to a filter bank structure. Performance results of
MSICA in signal denoising are presented; also, the statistical independency of the approximation and detail is exploited
to propose a novel signal-denoising strategy for multi-channel noisy transmissions aimed at improving communication
reliability by exploiting channel diversity.
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1. INTRODUCTION
Overview: Multi-scale decomposition is an invaluable
tool in digital signal processing with applications such
as those in [1, 2, 3, 4, 5], where an original signal is de-
composed into a set of signals, each of which provides
information about the original signal at a different scale.
A major signal-processing task where multi-scale decom-
position has been shown to be very useful is denoising,
based on the intuition that information pertaining to the
noise would be accurately characterized in certain scales
that are separate from the scales of the signal. The
main literature works in multi-scale decomposition have
focused on scale-space decomposition [6, 7, 8, 9, 10],
empirical mode decomposition [11, 12, 13], and wavelet
transform [14, 15, 16, 17, 18].
In scale-space theory [19], a signal is decomposed into a
single-parameter family of 𝑛 signals with a progressive
decrease in fine scale signal information between suc-
cessive scales. This allows analyzing signals at coarser
scales without the influence of finer scales such as those
pertaining to noise. Knowing this, one can employ scale-
space theory to suppress noise by performing scale-space
decomposition on the signal and then treating one of
signals at a coarser scale as the noise-suppressed sig-
nal. However, selecting the scale that represents the
noise-suppressed signal can be challenging. Moreover,
noise suppression using scale-space theory does not fa-
cilitate the fine-grained noise suppression at the individ-
ual scales, which limits its overall flexibility in striking a
balance between noise suppression and signal structural
preservation [20].
In Discrete Wavelet Transform (DWT), the original sig-
nal is decomposed into approximation and detail by

passing the signal through a low-pass filter and high-
pass filter, respectively, followed by a downsampling by
a factor of 2. This results in a decomposition of the
signal into different scales, which can be considered as
low and high frequency bands. Multi-scale decomposi-
tion by wavelet transforms has a number of advantages
over the scale-space decomposition and empirical mode
decomposition [20]. First, since the signal information
at one scale is not contained in another scale, signal in-
formation at different scales are better separated in the
wavelet domain. Second, scale selection when perform-
ing noise suppression using wavelet decomposition is less
critical than that for noise suppression using scale-space
decomposition as all the scales are considered in noise
suppression using wavelet decomposition as opposed to a
single scale as done in scale-space decomposition. How-
ever, there are a number of limitations pertaining to
noise suppression using wavelet transform [20]. For in-
stance, signals processed using wavelet transforms can
exhibit oscillation artifacts related to wavelet basis func-
tions used in the wavelet transform, which is particularly
noticeable in low Signal-to-Noise Ratio (SNR) regimes.
Moreover, in DWT the approximation and detail are
not statistically independent, which may cause a poor
performance in signal denoising.

Motivation and Approach: Given these limitations
of both space-scale and wavelet decomposition in terms
of signal denoising, we were motivated to explore al-
ternative approaches. We investigate the problem of
decomposing a signal into multiple scales from a differ-
ent point of view, i.e., we propose a new approach that
takes a statistical perspective on multi-scale decomposi-
tion according to which a signal is considered as a mix-
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ture of statistically independent signals, each character-
izing signal information at a different scale. Having this
perspective in multi-scale decomposition can be benefi-
cial in signal denoising for two reasons. First, since most
of the signal information in one scale is not included in
the other scales, such decomposition provides the ad-
vantage of noise suppression at the individual scales in
order to trade off noise suppression for signal-quality
preservation. Second, since the noise signal is statisti-
cally independent from the original signal, by decompos-
ing the noisy signal into statistically independent scales,
the noise is expected to be separated in finer scales.
Our Contribution: Given this motivation and per-
spective, we propose a new method for Multi-Scale de-
composition exploiting Independent Component Anal-
ysis (ICA), called MSICA, in which the original digital
signal is decomposed into approximation and detail with
statistically independent components. Specifically, we
extract two correlated signals from the original signal
and apply a linear transformation to the extracted sig-
nals so as to decompose the original signal into multiple
scales. Since we need a suitable transform to decompose
the original signal into statistically independent compo-
nents, we consider our problem as a Blind Source Sepa-
ration (BSS) problem in which the extracted signals are
considered as the observations of the source separation
problem. To relate this problem with the concept of
multi-scale decomposition, we introduce an equivalent
filter-bank structure for the proposed method, which is
similar to the structure introduced in [14] for the DWT
implementation. We also propose a method for multi-
channel transmission in which MSICA outperforms com-
mon wavelet transforms in denoising of the received sig-
nal. We show that if the even and odd samples of
the original signal are transmitted through two Addi-
tive White Gaussian Noise (AWGN) channels, MSICA
is able to extract and filter out the noise from the noisier
channel. This key property of MSICA—which exploits
channel diversity and generalizes to the case in which
more than two channels are available—can be used to
increase the transmission efficiency in noisy communi-
cation channels, although the marginal return dimin-
ishes as the number of channels increases. It should be
noted that, although single-channel ICA has been used
in previous works [21, 22, 23, 24, 25] (including the spa-
tial case of using even and odd samples), in this work
single-channel ICA has been studied as a technique for
signal decomposition into statistically independent ap-
proximation and detail and its performance in denoising
has been compared with other wavelet transforms.
Article Organization: In Section 2, we provide some
background on BSS and ICA. In Section 3, we propose
our ICA-based transform for multi-scale decomposition.
In Section 4, we examine the performance of MSICA in
signal denoising and show how to increase transmission
efficiency when multiple (noisy) channels are available.
Finally, in Section 5, we draw the main conclusions and
wrap up the article by discussing future work.

2. BLIND SOURCE SEPARATION
In BSS, a set of mixtures of different source signals is
available and the goal is to separate the source signals
when we have no information about the mixing system
or the source signals (hence the name “blind”) [26, 27].
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Fig. 1 – Mixing and separating systems in Blind Source Separa-
tion (BSS).

As in Fig. 1, the mixing and separating systems can be
represented as,

x(𝑛) = As(𝑛),
y(𝑛) = Bx(𝑛), (1)

where s(𝑛) = [𝑠1(𝑛), … , 𝑠𝑁(𝑛)]𝑇 is the vector of sources
that are mixed by the mixing matrix A and create the
observations vector x(𝑛) = [𝑥1(𝑛), … , 𝑥𝑁(𝑛)]𝑇. Let A
be a square matrix (𝑁 × 𝑁) of full column rank, which
means that the number of sources is equal to the num-
ber of observations and that the sources are linearly in-
dependent. The goal of BSS is to find the separating
matrix B such that y(𝑛) = [𝑦1(𝑛), … , 𝑦𝑁(𝑛)]𝑇 is an es-
timation of the sources.
A method to solve the BSS problem is via ICA, which
exploits the assumption of source independence and es-
timates B such that the outputs 𝑦𝑖’s be statistically in-
dependent [28]. As studied in [28, 29], the ICA can be
performed by two steps: 1) whitening (or decorrelating)
and 2) rotation. To illustrate the ICA model, we con-
sider two independent components, 𝑠𝑖, 𝑖 = 1, 2, with a
uniform distribution,

𝑝(𝑠𝑖) = { 1 if |𝑠𝑖| ≤ 0.5,
0 otherwise, (2)

where the joint density of 𝑠1 and 𝑠2 is uniform on a
square, as illustrated in Fig. 2(a). This follows from
the definition that the joint density of two independent
variables is the product of their marginal densities. Let
us now mix these two independent components by the
following mixing matrix A,

[ 𝑥1
𝑥2

] = [ 1 2
2 1 ]

⏟⏟⏟⏟⏟
A

[ 𝑠1
𝑠2

] , (3)

where the mixed variables 𝑥1 and 𝑥2 have a uniform
distribution on a parallelogram, as shown in Fig. 2(b).
Note that 𝑥1 and 𝑥2 are not independent anymore. To
show this consider whether it is possible to predict the
value of one of them, say 𝑥2, from the value of the other;
it is clear that if 𝑥1 attains one of its maximum or min-
imum values, then this completely determines the value
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Fig. 2 – Illustration of Independent Component Analysis (ICA) algorithm. (a) Joint distribution of the independent components 𝑠1 and
𝑠2 with uniform distribution; (b) Joint distribution of the observed mixtures 𝑥1 and 𝑥2; (c) Joint distribution of the whitened mixtures,
𝑧1 and 𝑧2; (d) Joint distribution of the independent output components, 𝑦1 and 𝑦2, as determined by the ICA.

of 𝑥2. However, the situation for variables 𝑠1 and 𝑠2
is different: from Fig. 2(a) it is clear that knowing the
value of 𝑠1 does not help predict the value of 𝑠2.
The problem of source separation is now to estimate the
mixing matrix A and multiply its inverse (B = A−1) to
the vector of the mixtures to retrieve the sources (𝑠1 and
𝑠2). As studied in [28, 29], the ICA can be considered as
a two-step procedure where, in the first step, the mixed
data gets whitened (uncorrelated) by multiplying the
whitening matrix by the vector of mixtures, i.e.,

[ 𝑧1
𝑧2

] = W [ 𝑥1
𝑥2

] ; (4)

and then, in the second step, the independent compo-
nents are separated by applying a rotation matrix, i.e.,

[ 𝑦1
𝑦2

] = R [ 𝑧1
𝑧2

] . (5)

Fig. 2(c) illustrates the effect of whitening in which the
data in Fig. 2(b) has been whitened. Also, Fig. 2(d)
shows how rotating the whitened data can return the
statistical independency to the outputs and recover the
independent components. Therefore, the separation ma-
trix B can be considered as the product of the whitening
and rotation matrices, i.e.,

B = RW, (6)

where W is the whitening matrix and R is the rotation
matrix. Note that in the case whitened components are
statistically independent, the rotation matrix R will be
the identity matrix and no rotation will be needed.

3. MSICA: MULTI-SCALE DECOM-
POSITION BY INDEPENDENT
COMPONENT ANALYSIS

Generally, neighboring/consecutive samples of a com-
mon signal are highly correlated and differ slightly from
each other. This slight difference of neighboring samples
comes from the details of the signal. If we consider the
detail scale of the original signal to be statistically in-
dependent from the approximation scale, it is expected

that decomposing the neighboring samples of the sig-
nal into their independent components would decom-
pose the signal into its approximation and detail. Given
this motivation, we propose an ICA-based method for
multi-scale decomposition in which the approximation
and details are statistically independent. Our algorithm
consists of two steps: 1) extracting the observation sig-
nals from the original signal and 2) decomposing the
original signal into approximation and detail by apply-
ing a linear transformation to the observation signals.
Suppose that 𝑥(𝑛) is a Wide Sense Stationary (WSS)
signal. We consider even and odd samples of 𝑥(𝑛) as
𝑥1(𝑛) and 𝑥2(𝑛), respectively, i.e.,

𝑥1(𝑛) = 𝑥(2𝑛), 𝑥2(𝑛) = 𝑥(2𝑛 − 1). (7)

We prove that, if 𝑥1(𝑛) and 𝑥2(𝑛) are the observations
signals (mixtures) of the ICA, the outputs of the ICA
will be the approximation and detail of 𝑥(𝑛), which
are statistically independent. We define the observation
vector x as,

x = [ 𝑥1(𝑛)
𝑥2(𝑛) ] = [ 𝑥(2𝑛)

𝑥(2𝑛 − 1) ] , (8)

where the even and odd samples of the original signal
are the first and second rows of the observation vector,
respectively. If we apply the ICA to the observation
vector, the output is,

y = Bx = [ 𝑦1(𝑛)
𝑦2(𝑛) ] , (9)

where B is the separation matrix estimated by the ICA,
and 𝑦1(𝑛) and 𝑦2(𝑛) are statistically independent.
To prove our claim, we need to show that 𝑦1(𝑛) and
𝑦2(𝑛) are the approximation and detail of the original
signal. As explained in Section 2, ICA involves two
steps: 1) whitening (or decorrelating) and 2) rotation,
and the separation matrix B can be considered as the
product of the whitening and rotation matrices (i.e.,
B = RW). Now, let us consider the whitened vector z
and the whitening matrix W as follows,

z = [ 𝑧1(𝑛)
𝑧2(𝑛) ] = Wx, W = [ 𝑤11 𝑤12

𝑤21 𝑤22
] . (10)
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Fig. 3 – Whitening process in ICA as a filter-bank structure.

Using (8) and (10), we can write,

𝑧1 (𝑛) = 𝑤11𝑥1(𝑛) + 𝑤12𝑥2 (𝑛) ,
𝑧2 (𝑛) = 𝑤21𝑥1(𝑛) + 𝑤22𝑥2 (𝑛) . (11)

Also, 𝑥1(𝑛) and 𝑥2(𝑛) can be written as,

𝑥1(𝑛) = 𝑥(2𝑛) = [𝑥(𝑛) ∗ 𝛿(𝑛)] ↓ 2,
𝑥2(𝑛) = 𝑥(2𝑛 − 1) = [𝑥(𝑛) ∗ 𝛿(𝑛 − 1)] ↓ 2,

(12)
where ∗ and ↓ 2 denote convolution and downsampling
by a factor of 2, respectively, and 𝛿(𝑛) is the unit impulse
signal. Using (11) and (12), we can rewrite 𝑧1(𝑛) and
𝑧2(𝑛) as,

𝑧1 (𝑛) = 𝑤11𝑥(2𝑛) + 𝑤12𝑥 (2𝑛 − 1)
= 𝑤11 [𝑥(𝑛) ∗ 𝛿(𝑛)] ↓ 2 + 𝑤12 [𝑥(𝑛) ∗ 𝛿(𝑛 − 1)] ↓ 2
= [𝑥(𝑛) ∗ (𝑤11𝛿(𝑛) + 𝑤12𝛿(𝑛 − 1))] ↓ 2,

𝑧2 (𝑛) = 𝑤21𝑥(2𝑛) + 𝑤22𝑥 (2𝑛 − 1)
= 𝑤21 [𝑥(𝑛) ∗ 𝛿(𝑛)] ↓ 2 + 𝑤22 [𝑥(𝑛) ∗ 𝛿(𝑛 − 1)] ↓ 2
= [𝑥(𝑛) ∗ (𝑤21𝛿(𝑛) + 𝑤22𝛿(𝑛 − 1))] ↓ 2.

(13)
Note that, if we consider the low-pass filter 𝑔(𝑛) and
high-pass filter ℎ(𝑛) as,

𝑔(𝑛) = 𝑤11𝛿(𝑛) + 𝑤12𝛿(𝑛 − 1),
ℎ(𝑛) = 𝑤21𝛿(𝑛) + 𝑤22𝛿(𝑛 − 1), (14)

(13) can be rewritten in a simpler form as,

𝑧1(𝑛) = [𝑥(𝑛) ∗ 𝑔(𝑛)] ↓ 2,
𝑧2(𝑛) = [𝑥(𝑛) ∗ ℎ(𝑛)] ↓ 2. (15)

From (15), we observe that the whitening process can be
modeled as a filter-bank structure, as shown in Fig. 3.
Now, we need to show that 𝑔(𝑛) and ℎ(𝑛) are indeed
low-pass and high-pass filters. In order to do so, we
consider the covariance matrix of x as follows,

C𝑥 = 𝐸{xx𝑇} = QDQ𝑇, (16)

where Q is an orthogonal matrix of eigenvectors and D
is a diagonal matrix of eigenvalues. Interestingly, the
covariance matrix of z = Q𝑇x can be written as,

C𝑧 = 𝐸 {zz𝑇} = 𝐸 {Q𝑇xx𝑇Q} = Q𝑇𝐸 {xx𝑇} Q. (17)

Given (16) and (17), we can write,

C𝑧 = Q𝑇Q⏟
I

D Q𝑇Q⏟
I

= D. (18)

Since D is a diagonal matrix, we conclude that multi-
plying Q𝑇 by the observation vector x results in uncor-
related outputs. Hence, the whitening matrix W can be
considered to be equal to Q𝑇.
Now, we need to find the elements of matrix W so as to
determine finally the 𝑔(𝑛) and ℎ(𝑛) filters. Since 𝑥(𝑛)
is a WSS signal, we have,

𝑅𝑥(0) = 𝐸 {𝑥2 (2𝑛)} = 𝐸 {𝑥2 (2𝑛 + 1)} = 𝜎2
𝑥,

𝑅𝑥(1) = 𝐸 {𝑥 (2𝑛) 𝑥 (2𝑛 − 1)} = 𝜎2
𝑥𝜌. (19)

Hence, with regard to (8), we can recast C𝑥 as,

C𝑥 = 𝐸 {xx𝑇} = [ 𝜎2
𝑥 𝜎2

𝑥𝜌
𝜎2

𝑥𝜌 𝜎2
𝑥

] = 𝜎2
𝑥 [ 1 𝜌

𝜌 1 ], (20)

where the eigenvalues and eigenvectors of C𝑥 are,

𝜆1 = 𝜎2
𝑥 (1 + 𝜌) 𝜆2 = 𝜎2

𝑥 (1 − 𝜌) ,

q1 = [
1√
2

1√
2

] q2 = [
− 1√

2
1√
2

] . (21)

Hence, the whitening matrix W can be presented as,

W = Q𝑇 = [ q1 q2 ]𝑇 = [
1√
2

1√
2

− 1√
2

1√
2

] . (22)

Comparing (14) and (22), 𝑔(𝑛) and ℎ(𝑛) can be written
as,

𝑔(𝑛) = 1√
2 𝛿(𝑛) + 1√

2 𝛿(𝑛 − 1),
ℎ(𝑛) = − 1√

2 𝛿(𝑛) + 1√
2 𝛿(𝑛 − 1). (23)

From (23), it is clear that 𝑔(𝑛) and ℎ(𝑛) are a low and
high-pass filter, respectively, as we wanted to demon-
strate. Hence, we can conclude that the whitening pro-
cess in the ICA (presented as a filter-bank structure in
Fig. 3) decomposes the observation signals into uncorre-
lated approximation and detail. Moreover, the rotation
process in the ICA makes sure that the approximation
and the detail are statistically independent1. Hence,
if the even and odd samples of a one-dimensional sig-
nal are considered as the observations of the ICA, we
ensure the approximation and detail to be statistically
independent. As we will see in the next section, the sta-
tistical independency between the approximation and
detail can be very beneficial in signal denoising, espe-
cially when the even and odd samples are transmitted
through different (noisy) channels.
Fig. 4 showcases a signal decomposition by different
wavelet transform and MSICA, where a Piece-Regular
signal is decomposed into the approximation and detail.
As shown in Fig. 4(h), like all the other wavelet trans-
forms, MSICA is also able to decompose the original
signal into approximation and detail, where the approx-
imation and detail coefficients contain the low and high-
frequency components, respectively. As said earlier, to
1Based on our simulations, the separation matrix was always close
to (22), which means that the rotation matrix was always close
to the identity matrix.
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Fig. 4 – Comparison of MSICA with different wavelet transforms in decomposing a Piece-Regular signal. (a) Original Signal. Approxi-
mation and detail by (b) Daubechies 3 wavelet; (c) Haar wavelet; (d) Biorthogonal 2.2 wavelet; (e) Coiflets 4 wavelet; (f) Fejer-Korovkin
4 wavelet; (g) discrete Meyer wavelet; and (h) our proposed MSICA.
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Fig. 5 – Reconstructed signal by MSICA using the approximation
and detail in Fig. 4(h).

reconstruct the original signal we need to multiply the
inverse of the separation matrix (B−1) by the vector of
approximation and detail y so as to obtain the obser-
vation vector x and reconstruct the original signal 𝑥(𝑛)
from x, i.e.,

[ 𝑥1(𝑛)
𝑥2(𝑛) ] = x = B−1y, (24)

𝑥(𝑛) = (𝑥1(𝑛) ↑ 2) + (𝑥2(𝑛) ↑ 2) ∗ 𝛿(𝑛 + 1), (25)

where 𝑥𝑖(𝑛) ↑ 2, 𝑖 = 1, 2, denotes the upsampling of
𝑥𝑖(𝑛) by a factor of 2. Fig. 5 shows the reconstructed sig-
nal using (24) and (25). This figure shows that MSICA
can successfully reconstruct the original signal from the
approximation and detail obtained in the decomposition
procedure.

4. MSICA FOR SIGNAL DENOISING
We discuss now how MSICA can be beneficial in sig-
nal denoising. Specifically, we compare MSICA with
the other wavelet transforms and show how MSICA can
suppress the noise via a simple wavelet thresholding.
We also show that, in the case of multi-channel trans-
mission, MSICA outperforms the other wavelet trans-
forms and is able to extract and filter out the noise of
the noisier communication channel by exploiting chan-
nel diversity.
Let us assume that the original signal is passed through
an AWGN channel, the noisy output signal is then,

𝑟 (𝑛) = 𝑥 (𝑛) + 𝑤 (𝑛) , 𝑛 = 1, … , 𝑁, (26)

where 𝑥(𝑛) is the original signal and 𝑤(𝑛) is the AWGN
with zero mean and variance of 𝜎2

𝑤. The goal of sig-
nal denoising is to remove the noise and obtain an es-
timate ̂𝑥(𝑛) of 𝑥(𝑛) that minimizes the Mean Squared
Error (MSE), defined as,

MSE ( ̂𝑥) = 1
𝑁

𝑁
∑
𝑛=1

( ̂𝑥(𝑛) − 𝑥(𝑛))2. (27)

Note that the model presented in (26) is not general
since the noise may be non-additive, and the relation
between the noisy observed signal and the original signal
may be stochastic. Nevertheless, (26) is a widely used
model in many practical situations as it serves well as
a motivating example to give a good sense as to what
happens in more realistic channels.
Let us emphasize that there are many existing ap-
proaches in the literature to perform signal denoising,
which can be roughly divided into two main categories:
1) denoising in the original signal domain (e.g., in time
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or space [30]) and 2) denoising in the transform domain
(e.g., using Fourier or a wavelet transform [31, 32]).
Since the wavelet transform provides information in
both the time and frequency domain, and the infor-
mation in one scale is not contained in another scale,
approaches in this second category can strike a balance
between noise suppression and signal structural preser-
vation, and have therefore been used widely in signal de-
noising. It is interesting to note that, usually, the detail
coefficients of a noiseless signal are sparse. This means
that in the wavelet transform most of the detail coeffi-
cients of a noiseless signal are very small/close to zero
(as can be seen, for instance, in Fig. 4). So, the detail
coefficients with a small magnitude can be considered as
a noise component and can be set to zero. This is the
basic idea of wavelet thresholding approaches, which are
employed in signal denoising where the coefficients are
compared with a threshold to determine whether they
contain only noise or not.
It should be noted that since the approximation coeffi-
cients contain the low-frequency/important information
of the signal, the thresholding is usually applied only
to the detail coefficients (high-frequency components).
The thresholding methods retain the significant compo-
nents by setting to zero only the detail coefficients whose
absolute values are less than a certain threshold. Most
of the thresholding approaches try to find the optimal
threshold value. The SureShrink method [33], proposed
by Donoho and Johnstone, is an effective wavelet thresh-
olding method for signal denoising that fits a level-
dependent threshold to the wavelet coefficient. To show
the performance of MSICA with respect to the other
wavelet transforms, we extract the first and second-
level detail coefficients of the noisy signal and use the
SureShrink method for signal denoising. In our exper-
iments, we also employ the FastICA method [34] and
use the different standard test signals given in [35], i.e.,
Piece-Regular, Blocks, Doppler, and HeaviSine.
We consider now two scenarios for signal transmis-
sion and compare the signal denoising performance of
MSICA in single and multi-channel transmissions.
Single-channel Transmission: In the first scenario,
i.e., in the case of single-channel transmission as de-
scribed in (26), if we divide the noisy signal into the
even and odd samples, we obtain the vector of noisy
observations as,

r = [ 𝑟1(𝑛)
𝑟2(𝑛) ] = [ 𝑟(2𝑛)

𝑟(2𝑛 − 1) ] = [ 𝑥(2𝑛) + 𝑤(2𝑛)
𝑥(2𝑛 − 1) + 𝑤(2𝑛 − 1) ] ,

(28)
where 𝑤(2𝑛) and 𝑤(2𝑛 − 1) have the same variance, 𝜎2

𝑤.
The covariance matrix of r can be written as,

C𝑟 = 𝐸{rr𝑇} = 𝜎2
𝑟 [ 1 𝜌′

𝜌′ 1 ] , (29)

where,

𝜎2
𝑟 = 𝜎2

𝑥 + 𝜎2
𝑤, 𝜌′ = 𝜌𝜎2

𝑥
𝜎2

𝑥 + 𝜎2
𝑤

. (30)
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Fig. 6 – MSICA Mean Square Error (MSE) compared to well-
known wavelet transforms.

Comparing (29) and (20), it is clear that the whitening
matrix for the vector of noisy observations r is like the
one in (22),

W = [
1√
2

1√
2

− 1√
2

1√
2

] . (31)

Fig. 6 shows the performance of MSICA in the first sce-
nario in terms of MSE against well-known wavelet trans-
forms. As expected, MSICA shows similar performance
compared to the other wavelet transform in suppressing
the noise level and enhancing the quality of the signal
as it is able to decompose the signal into approxima-
tion and detail. However, in the following we will ex-
plain how MSICA can have extraordinary performance
when the odd and even samples of the original signal
are passed through different channels.
Multi-channel Transmission: Let us consider now
the second scenario where we investigate the perfor-
mance of MSICA in a multi-channel transmission. As-
sume that two AWGN channels, named CH1 and CH2,
are available to transmit the signal where, for exam-
ple, we assume the variance of the noise in CH1 to be
smaller than in CH2, which means that CH1 is more re-
liable and has better quality than CH2. In this case, if
we transmit the even and odd samples through different
channels, see Fig. 7(a), no matter through which one,
then MSICA shows an extraordinary performance as it
is able to filter out the noise of a noisier channel. In
such a scenario, the even and odd samples of the noisy
signal are,

𝑟1(𝑛) = 𝑥(2𝑛) + 𝑤1(𝑛), (32)a
𝑟2(𝑛) = 𝑥(2𝑛 − 1) + 𝑤2(𝑛), (32)b

where 𝑤1(𝑛) and 𝑤2(𝑛) are the AWGN in CH1 and CH2,
respectively, and 𝜎2

𝑤2
= 𝐾𝜎2

𝑤1
(𝐾 > 1). In this case, the

covariance matrix of the vector of noisy observations r
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Fig. 7 – (a) Proposed multi-channel transmission where the even and odd samples of the original signal are transmitted through different
channels and the receiver reconstructs the signal from the two outputs (𝑧−1 and 𝑧+1 indicates time shift by n=1 to the right and left,
respectively); (b) Mean Squared Error (MSE) vs. 𝜎𝑤2
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= 0.1); (c) Performance of MSICA in terms of Signal-to-Noise Ratio
Improvement (SNRI).
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Fig. 8 – Comparison of MSICA with different wavelet transforms in decomposing a noisy PieceRegular signal. (a) Original Signal; (b)
Approximation and detail by Daubechies 3 wavelet; (c) Approximation and detail by Haar wavelet; (d) Approximation and detail by
Biorthogonal 2.2 wavelet; (e) Approximation and detail by Coiflets 4 wavelet; (f) Approximation and detail by Fejer-Korovkin 4 wavelet;
(g) Approximation and detail by discrete Meyer wavelet; (h) Approximation and detail by MSICA.

is,

C𝑟 = 𝜎2
𝑟 [

1 𝜌′

𝜌′ 1 + (𝐾−1)𝜎2
𝑤1

𝜎2
𝑟

] , (33)

where,

𝜎2
𝑟 = 𝜎2

𝑥 + 𝜎2
𝑤1

, 𝜌′ = 𝜌𝜎2
𝑥

𝜎2
𝑥 + 𝜎2

𝑤1

. (34)

As it is clear from (33), in the case that the variance of
the noise in CH1 and CH2 are different, the eigenvalues
and eigenvectors of Cr are dependent to the parameter
𝐾. This means that the low-pass and high-pass filters in
the whitening process will be adaptive to the parameter
𝐾. In the following we will show that this adaptive filter
is able to reject the effect of CH2 almost entirely. Fig-
ure 7(b) shows the performance of MSICA with respect
to the other wavelet transforms when the original signal
is passed through two different channels. As shown in
Fig. 7(b), MSICA performance does not depend on the

variance of CH2, which means that MSICA is able to
reject the AWGN of the CH2 from the noisy signal.
Moreover, to evaluate better the noise suppression per-
formance, we have also examined the performance of
MSICA in terms of Signal-to-Noise Ratio Improve-
ment (SNRI),

SNRI = SNR𝑜𝑢𝑡−SNR𝑖𝑛 = 10 log
⎛⎜⎜⎜⎜
⎝

𝑁
∑
𝑛=1

(𝑟(𝑛) − 𝑥(𝑛))2

𝑁
∑
𝑛=1

( ̂𝑥(𝑛) − 𝑥(𝑛))2

⎞⎟⎟⎟⎟
⎠

,

(35)
where SNR𝑜𝑢𝑡 and SNR𝑖𝑛 are the SNR of the denoised
signal (output) and of the noisy signal (input), respec-
tively. As shown in Fig. 7(c), the wavelet transforms
have almost a fixed SNRI, whereas MSICA shows higher
SNRI when the CH2 becomes noisier. This is because
in MSICA the approximation and detail are statisti-
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Fig. 9 – Comparison of MSICA with different wavelet transforms in decomposing a PieceRegular signal corrupted by impulse noise. (a)
Original and Noisy Signal; (b) Approximation and detail by Daubechies 3 wavelet; (c) Approximation and detail by Haar wavelet; (d)
Approximation and detail by Biorthogonal 2.2 wavelet; (e) Approximation and detail by Coiflets 4 wavelet; (f) Approximation and detail
by Fejer-Korovkin 4 wavelet; (g) Approximation and detail by discrete Meyer wavelet; (h) Approximation and detail by MSICA.

cally independent; hence, MSICA is able to extract the
noise signal from CH2 (via channel diversity), while the
wavelet transforms are not able to do so.
Fig. 8 shows a signal decomposition where 𝜎𝑤2

= 0.2,
𝜎𝑤1

= 0.05. As it can be seen, the approximation ob-
tained using MSICA is less noisy than the one obtained
using the other wavelet transforms (Daubechies 3, Haar,
Biorthogonal 2.2, Coiflets 4, Fejer-Korovkin 4, and
Meyer). This result confirms our statement and shows
that, because of the statistical independenc between the
approximation and detail, MSICA is able to extract the
AWGN from the noisier channel.
In the other experiment, in order to show visibly that
MSICA is able to extract the noise of CH2, we have ex-
plored its performance when the odd samples, passed
through CH2, are corrupted by impulse noise. The
Probability Density Function (PDF) of the impulse
noise is given as,

𝑃 (𝑤) =
⎧{
⎨{⎩

𝑃𝑎 𝑤 = 𝑎,
𝑃𝑎 𝑤 = −𝑎,

1 − 2𝑃𝑎 𝑤 = 0,
(36)

where 2𝑃𝑎 is the probability of existence of impulse noise
in the received samples. In Fig. 9(a), the noisy signal
is obtained by passing the even samples of the original
signal through CH1 with AWGN with zero mean and
𝜎2

𝑤2
= 0.004, while the odd samples were passed through

CH2 with impulse noise (𝑃𝑎 = 0.01 and 𝑎 = 1.5).
Fig. 9(b)-(h) show the performance of MSICA com-
pared to a number of well-known wavelet transforms.
As it is clear from Fig. 9(b)-(g), the traditional wavelet
transforms (i.e., Daubechies 3, Haar, Biorthogonal 2.2,
Coiflets 4, Fejer-Korovkin 4, Meyer) are not able to ex-
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Fig. 10 – Impulse noise rejection in terms of Minimum Square Er-
ror (MSE); MSICA performance does not depend on 𝑃𝑎, whereas
the performance of the other transforms decreases when 𝑃𝑎 in-
creases.

tract accurately the impulse components from the noisy
signal. However, as it is shown in Fig. 9(h), MSICA is
successful as the detail contains all the impulse compo-
nents. This is because in MSICA the approximation and
detail are statistically independent and, since the im-
pulse noise is statistically independent from the original
signal, MSICA can extract it in the detail coefficients.
Fig. 10 shows the performance of MSICA compared with
different wavelet transforms when various values of 𝑃𝑎,
as in (36), are considered. Here, the detail coefficients
obtained by different methods have been set to zero to
denoise the noisy signal. Since MSICA is able to extract
the impulse noise, its performance does not depend on
𝑃𝑎, whereas the performance of the other transforms
decreases when 𝑃𝑎 increases.
To show that MSICA works on real signals too, we
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Fig. 11 – Approximation and detail coefficients obtained from an audio signal by some well-known wavelet transforms and MSICA.
(a) Original audio Signal. Approximation and detail by (b) Daubechies 3; (c) Haar; (d) Biorthogonal 2.2; (e) Coiflets 4; (f) Fejer-Korovkin 4;
(g) discrete Meyer; (h) MSICA.

have examined its performance on the signal depicted
in Fig. 11(a), which is an audio signal with a sampling
frequency equal to 16 KHz. Fig. 11(b)-(g) show the
performance of the considered wavelet transforms in de-
composing this signal into approximation and detail. As
it is clear from Fig. 11(h), like the other transforms,
MSICA is also able to decompose this audio signal into
approximation and detail.

5. CONCLUSIONS
We presented MSICA, a new method for Multi-Scale
decomposition based on Independent Component Anal-
ysis (ICA), where the approximation and detail are sta-
tistically independent. First, we extracted two corre-
lated signals from the original digital signal by separat-
ing their even and odd samples; then, we proved that ex-
tracting the independent components of the correlated
signals leads to the decomposition of the original sig-
nal into the approximation and detail. We showed that
MSICA outperforms well-known wavelet transforms in
signal denoising when transmitting a signal over mul-
tiple (noisy) channels as it exploits channel diversity.
This property makes MSICA useful in many critical
scenarios such as transmitting multimedia content reli-
ably through underwater acoustic channels. Since these
channels may vary quickly over time, it is difficult to
estimate them, which makes transmitting multimedia
content underwater a very challenging task.
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