Assessing the Economic Impact of Artificial Intelligence
Assessing the Economic Impact of Artificial Intelligence
Legal notice

This paper is published in English, in electronic version only, and is distributed free-of-charge on ITU’s website under a Creative Commons License Attribution-Non-Commercial-ShareAlike 4.0 international license (CC BY-NC-SA 4.0). Contributions to this paper by the authors are made on a pro bono basis.

The International Telecommunication Union (ITU) is not responsible for the content of external sources including external websites referenced in this paper. Neither ITU nor any person acting on its behalf is responsible for the use that might be made of the information contained in this paper.

Disclaimer

The content in this paper represent the views of the authors, which are not endorsed by or intended to represent the views of ITU or any organization that the authors may be employed by or affiliated with. Mention of and references to specific countries, companies, products, initiatives or guidelines do not in a way imply that they are endorsed or recommended by ITU, the authors or any other organization that the authors are affiliated with, in preference to others of a similar nature that are not mentioned.

If you have any comments, please contact the Corporate Strategy Division, International Telecommunication Union, at strategy@itu.int
We are on the cusp of a digital revolution that will change fundamentally the way we live, work, and communicate. The transformation happening inside the telecommunication/ICT industry has a big impact on the outside world, with the emergence of new promising digital technologies.

Artificial intelligence (AI) is one of them. It is early days, but the family of technologies that encompass AI have narrowed the gap with, matched, or in some cases exceeded human performance in different areas. Computer vision systems are getting more accurate, detecting objects at large scales better than the average human performance. Speech recognition systems can now identify language from phone calls and voice records with accuracy levels that match human abilities. AI solutions have the potential to transform areas as diverse and critical as education, healthcare, finance, mobility, and energy – promising to help accelerate progress towards the 2030 Agenda for Sustainable Development.

As AI continues to progress, one of the challenges we face is to ensure that its benefits are widely distributed and fairly shared. We have prepared this paper to assess the impact of AI on the world economy – by modeling how AI technologies could be adopted and absorbed by different players, and by simulating the economic disruptions that countries, companies, and individuals could experience as they transition to greater use of AI.

We would like to thank the McKinsey Global Institute, the economic and business research arm of McKinsey & Company, for preparing this research together with world-leading AI experts. This paper contributes to ITU’s new series of Issue Paper on Emerging Trends, which aims to identify and recognize emerging trends in the telecommunication/ICTs environment, and share the information with all ITU membership to enhance our capacity to understand the force transforming our society with the development of telecommunication/ICT.

Mr Houlin Zhao
Secretary-General
International Telecommunication Union
The role of artificial intelligence (AI) tools and techniques in business and the global economy is a hot topic. This is not surprising given recent progress, breakthrough results, and demonstrations of AI, as well as the increasingly pervasive products and services already in wide use. All of this has led to speculation that AI may usher in radical—arguably unprecedented—changes in the way people live and work, and even help to accelerate progress toward meeting the United Nations’ Sustainable Development Goals (SDGs).

Contributed by the McKinsey Global Institute (MGI), the economic and business research arm of McKinsey & Company, this paper offers a framework for thinking about how to model the economic impact of AI, putting this exercise in the context of the research on the dynamically changing world of work in the light of automation, the need for a skills revolution, and the increasing and potential use of AI by companies. This paper focuses largely on the results of new economic modeling and simulation of the impact of AI on the world economy. As such, it should help to broaden collective understanding of how AI may impact economic activity, and potentially touch off a competitive race with implications for firms, labor markets, and economies.

Three key findings emerge:

• **AI has large potential to contribute to global economic activity.** AI is not a single technology but a family of technologies. This paper focuses on five broad categories of AI technologies: computer vision, natural language, virtual assistants, robotic process automation, and advanced machine learning. Companies will likely use these tools to varying degrees. Some will take an opportunistic approach, testing only one technology and piloting it in a specific function. Others may be bolder, adopting all five and then absorbing them across their entire organization. For the sake of the modeling, the first approach is defined as adoption and the second as full absorption. Between these two poles will be many companies at different stages of adoption; the model captures partial impact, too. By 2030, the average simulation shows, 70 percent of companies may have adopted at least one type of AI technology, but less than half may have fully absorbed the five categories.

• **The pattern of adoption and full absorption may be relatively rapid—at the high end of what has been observed with other technologies.** However, several barriers may hinder rapid adoption. For instance, late adopters may find it difficult to generate impact from AI because AI

1 This research was conducted by Jacques Bughin, MGI Director and Senior Partner of McKinsey & Company, Jeongmin Seong, Senior fellow, MGI, and MGI’s expert members.

2 More can be read and downloaded at (mckinsey.com/mgi/our-research/technology-and-innovation).

3 Key publications relevant to this paper include A future that works: Automation, employment, and productivity, McKinsey Global Institute, January 2017; Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute, December 2017; Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018; and Skill shift: Automation and the future of the workforce, McKinsey Global Institute, May 2018. For a data visualization of AI and other analytics, see Visualizing the uses and potential impact of AI and other analytics, McKinsey Global Institute, April 2018 (mckinsey.com/featured-insights/artificial-intelligence/visualizing-the-uses-and-potential-impact-of-ai-and-other-analytics).

4 In this paper, the terms “adoption,” “diffusion,” and “absorption” are used. Adoption is defined as investment in a technology, diffusion as how adoption spreads—the process by which an innovation is communicated over time among the participants in a social system—and absorption as how technology is used within a firm. “Full absorption” is when a company uses the adopted technology for all operational purposes across its broad workflow system. These definitions align with those in academic literature. See, for instance, Tomaž Turk and Peter Trkman, “Bass model estimates for broadband diffusion in European countries,” Technological Forecasting and Social Change, 2012, Volume 79, Issue 1; David H. Wong et al., “Predicting the diffusion pattern of internet-based communication applications using bass model parameter estimates for email,” Journal of Internet Business, 2011, Issue 9; and Kenneth L. Kraemer, Sean Xu, and Kevin Zhuk, “The process of innovation assimilation by firms in different countries: A technology diffusion perspective on e-business,” Management Science, October 1, 2006.

5 These percentages need to be understood not in terms of numbers of firms per se, but in terms of their share of economic activity.
opportunities have already been captured by front-runners, and they lag behind in developing capabilities and attracting talent. Nevertheless, at the average level of adoption implied by the simulation, and netting out competition effects and transition costs, AI could potentially deliver additional global economic activity of around $13 trillion globally by 2030, or about 16 percent higher cumulative GDP compared with today. This amounts to about 1.2 percent additional GDP growth per year. If delivered, this impact would compare well with that of other general-purpose technologies through history. Consider, for instance, that the introduction of steam engines during the 1800s boosted labor productivity by an estimated 0.3 percent a year, the impact from robots during the 1990s around 0.4 percent, and the spread of IT during the 2000s 0.6 percent.

- **The economic impact may emerge gradually and be visible only over time.** The impact of AI may not be linear, but may build up at an accelerating pace over time. AI’s contribution to growth may be three or more times higher by 2030 than it is over the next five years. An S-curve pattern of AI adoption is likely—a slow start due to substantial costs and investment associated with learning and deploying these technologies, but then an acceleration driven by the cumulative effect of competition and an improvement in complementary capabilities. The fact that it takes time for productivity to unfold may be reminiscent of the Solow Paradox. Complementary management and process innovations will likely be necessary to take full advantage of AI innovations. It would be a misjudgment to interpret this “slow-burn” pattern of impact as proof that the effect of AI will be limited. The size of benefits for those who move into these technologies early will build up in later years at the expense of firms with limited or no adoption.

- **A key challenge is that adoption of AI could widen gaps between countries, companies, and workers.** AI could deliver a boost to economic activity, but the distribution of benefits is likely to be uneven:

 - **Countries.** AI may widen gaps between countries, reinforcing the current digital divide. Countries may need different strategies and responses because AI adoption levels vary. AI leaders (mostly in developed countries) could increase their lead in AI adoption over developing countries. Leading countries could capture an additional 20 to 25 percent in net economic benefits compared with today, while developing countries may capture only about 5 to 15 percent. Many developed countries may have no choice but to push AI to capture higher productivity growth as their GDP growth momentum slows, in many cases partly reflecting the challenges related to aging populations. Moreover, wage rates in these economies are high, which means that there is more incentive than in low-wage, developing countries to substitute labor with machines. Developing countries tend to have other ways to improve their productivity, including catching up with best practices and restructuring their industries, and may therefore have less incentive to push for AI (which, in any case, may offer them a smaller economic benefit than advanced economies). However, this does not necessarily mean that developed economies are set to use AI better and developing economies are destined to lose the game. Depending on the choices that countries make...
to strengthen AI related foundation and enablers as well as capabilities to manage the transition countries can proactively change their paths. Some countries are already trying to shape bold paths for the future. For instance, China, as noted, has a national strategy in place to become a global leader in the AI supply chain, and is investing heavily.12

- **Companies.** AI technologies could lead to a performance gap between front-runners on one side and slow adopters and non-adopters on the other. At one end of the spectrum, front-runners (companies that fully absorb AI tools across their enterprises over the next five to seven years) are likely to benefit disproportionately. By 2030, they could potentially double their cash flow (economic benefit captured minus associated investment and transition costs), which implies additional annual net cash flow growth of about 6 percent for more than the next decade.13 Front-runners tend to have a strong starting digital base, a higher propensity to invest in AI, and positive views of the business case for AI. Although the simulation treats front-runners as one group, in reality this category is not homogeneous. Some current AI innovators and creators have big starting endowments of data, computing power, and specialized talent. Other early adopters may not engage in creating these technologies but may be innovative in how they deploy them. At the other end of the spectrum is a long tail of laggards that do not adopt AI technologies at all or that have not fully absorbed them in their enterprises by 2030. This group may experience around a 20 percent decline in their cash flow from today’s levels, assuming the same cost and revenue model as today. One important driver of this profit pressure is the existence of strong competitive dynamics among firms, which could shift market share from laggards to front-runners and may prompt debate on the unequal distribution of the benefits of AI.

- **Workers.** A widening gap may also unfold at the level of individual workers. Demand for jobs could shift away from repetitive tasks toward those that are socially and cognitively driven and others that involve activities that are hard to automate and require more digital skills.14 Job profiles characterized by repetitive tasks and activities that require low digital skills may experience the largest decline as a share of total employment, from some 40 percent to near 30 percent by 2030. The largest gain in share may be in non-repetitive activities and those that require high digital skills, rising from some 40 percent to more than 50 percent. These shifts in employment would have an impact on wages. The modeling simulates that around 13 percent of the total wage bill could shift to categories requiring non-repetitive and high digital skills, where incomes could rise, while workers in the repetitive and low digital skills categories may potentially experience stagnation or even a cut in their wages. The share of the total wage bill of the latter group could decline from 33 to 20 percent.15 Direct consequences of this widening gap in employment and wages would be an intensifying war for people, particularly those skilled in developing and utilizing AI tools, and structural excess supply for a still relatively high portion of people lacking the digital and cognitive skills necessary to work with machines.

13 Large firms have a competitive advantage in adopting and absorbing AI ahead of industry peers. MGI’s econometric simulation suggests that they have adoption rates around ten percentage points higher than the average. Similarly, organizations that have a more established digital culture (including elements such as institutionalized user experience design thinking, a nimble organization, scaled and integrated agile ways of working across business and IT domains, and a leadership culture that fosters and enables a network of empowered teams to reach defined goals) are in a better position to accelerate the adoption of AI: their adoption rates are around eight percentage points higher than those of companies that do not have a digital culture. In fact, early corporate adopters will benefit from the exponential impact, potentially gaining three times more economic benefits from AI than followers.
14 Assessment of the impact of AI on individuals in this research mainly focuses on workers. A more complete view of the impact on individuals would include discussion of the effect of AI on users, citizens, and consumers.
15 For more detail on the impact of automation on wages, see Daron Acemoglu and Pascual Restrepo, Low-skill and high-skill automation, NBER working paper number 24119, December 2017.
Gaps may be widening among firms, workers, and countries, but measures can be taken to manage the transition and steer economies toward higher productivity and job growth. The disruption that comes with AI may lead to some firms leaving the market and some workers losing jobs. There will be major challenges for individuals transitioning to new jobs. However, if they are given the support they need to develop and refresh their skills and return to the labor market, then resources can be redeployed to more productive parts of the economy.
Table of Contents

Foreword iii

Executive Summary iv

Chapter 1. The AI revolution 1

Chapter 2. An approach to assessing the economic impact of AI 5

Chapter 3. AI has the potential to be a significant driver of economic growth 9

1. The research examined seven possible channels for AI impact 12
 1.1 Production channels 12
 1.2 Externality dimensions 15

2. Of the seven channels of impact, three stand out 17
 2.1 Automation of labor could add up to about 11 percent or around $9 trillion to global GDP by 2030 17
 2.2 Innovation in products and services could deliver up to about 7 percent or around $6 trillion of potential GDP by 2030 20
 2.3 Negative externalities and transition costs could reduce the gross GDP impact by about nine percentage points, or around $7 trillion 20

3. The impact of AI builds up over time, gathering pace after five to ten years 22

4. Micro and macro factors each contribute to the impact of AI 23
 4.1 Micro factors influence AI adoption and absorption 23
 4.2 Macro drivers can affect the adoption, absorption, and economic impact of AI, and potentially lead to a new AI divide 25

Chapter 4. Along with large economic gains, AI may bring wider gaps 29

1. In terms of readiness for AI, countries appear to fall into four groups 29

2. The gap between leading and lagging country groups is significant and may grow further 32

3. More digitally savvy, dynamic sectors may experience greater impact from AI 36
 3.1 Retail 38
 3.2 Healthcare 41
 3.3 High tech and telecommunications 43
 3.4 Automotive and assembly 44

4. Among firms, performance gaps between front-runners and nondiffusers may widen 46

5. There may be large shifts in demand for certain skills, potentially widening gaps between workers 48

6. AI is likely to disrupt labor markets but may have a neutral to modestly negative impact on long-term employment overall 51

Chapter 5. Conclusion 54

Technical appendix 55

I. Micro-to-macro approach 55

II. Survey data 56

III. Econometrics of firms’ absorption of AI and the impact on their profit growth 57

IV. Sources for country heat map 63

V. Simulating country-level economic impact 63

VI. Stress testing the economic impact of AI 65
List of Tables, Figures and Boxes

Figures

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibit 1</td>
<td>AI's net economic impact has seven dimensions</td>
<td>18</td>
</tr>
<tr>
<td>Exhibit 2</td>
<td>Substantial transitional costs and negative externalities may accompany the transition to an AI-enabled economy</td>
<td>21</td>
</tr>
<tr>
<td>Exhibit 3</td>
<td>The economic impact of AI can build up at an accelerating pace</td>
<td>22</td>
</tr>
<tr>
<td>Exhibit 4</td>
<td>AI absorption by firms may reach about 50 percent by 2030—taking ten years to match today’s level of digital technologies</td>
<td>24</td>
</tr>
<tr>
<td>Exhibit 5</td>
<td>High digital maturity can accelerate AI adoption and absorption</td>
<td>25</td>
</tr>
<tr>
<td>Exhibit 6</td>
<td>Competitive pressure can accelerate the pace of AI absorption</td>
<td>26</td>
</tr>
<tr>
<td>Exhibit 7</td>
<td>Varying conditions among countries imply different degrees of AI adoption and absorption, and therefore economic impact</td>
<td>30</td>
</tr>
<tr>
<td>Exhibit 7 (continued)</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>Exhibit 8</td>
<td>Gaps in AI absorption levels between groups may increase over time</td>
<td>33</td>
</tr>
<tr>
<td>Exhibit 9</td>
<td>The economic impact of AI is likely to be much larger in developed economies</td>
<td>34</td>
</tr>
<tr>
<td>Exhibit 10</td>
<td>AI adoption and absorption could make a large contribution to growth in slow-growing developed economies</td>
<td>34</td>
</tr>
<tr>
<td>Exhibit 11</td>
<td>The impact of AI adoption and absorption can vary among country groups</td>
<td>35</td>
</tr>
<tr>
<td>Exhibit 12</td>
<td>Sector analysis indicates that AI relies on a proceeding digital wave</td>
<td>36</td>
</tr>
<tr>
<td>Exhibit 13</td>
<td>AI absorption curves can vary by sector, leading to different levels of economic impact</td>
<td>38</td>
</tr>
<tr>
<td>Exhibit 14</td>
<td>The potential value of AI by sector</td>
<td>39</td>
</tr>
<tr>
<td>Exhibit 15</td>
<td>AI in retail adds the most value in pricing and promotion, and other marketing and sales areas</td>
<td>40</td>
</tr>
<tr>
<td>Exhibit 16</td>
<td>AI in healthcare adds the most value in workplace productivity and efficiency</td>
<td>42</td>
</tr>
<tr>
<td>Exhibit 17</td>
<td>AI in telecoms adds the most value by increasing the acquisition and retention of customers, and more efficient and productive service delivery</td>
<td>43</td>
</tr>
<tr>
<td>Exhibit 18</td>
<td>AI in automotive and assembly adds the most value in supply-chain management and manufacturing value flow</td>
<td>45</td>
</tr>
<tr>
<td>Exhibit 19</td>
<td>Faster adoption and absorption by front-runners can create larger economic gains for these companies</td>
<td>47</td>
</tr>
<tr>
<td>Exhibit 20</td>
<td>AI adoption and absorption can change the employment mix and distribution of wages</td>
<td>51</td>
</tr>
<tr>
<td>Exhibit 21</td>
<td>AI adoption and absorption can affect employment in five key ways</td>
<td>52</td>
</tr>
<tr>
<td>Exhibit A1</td>
<td>Regression results for AI technology cluster corporate absorption</td>
<td>61</td>
</tr>
<tr>
<td>Exhibit A1 (continued)</td>
<td></td>
<td>62</td>
</tr>
<tr>
<td>Exhibit A2</td>
<td>Heat map of influence of AI technologies on corporate absorption</td>
<td>62</td>
</tr>
<tr>
<td>Exhibit A3</td>
<td>Factors considered for country simulation</td>
<td>64</td>
</tr>
<tr>
<td>Exhibit A4</td>
<td>Countries have different degrees of sensitivity</td>
<td>66</td>
</tr>
</tbody>
</table>

Boxes

<table>
<thead>
<tr>
<th>Box</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Box 1</td>
<td>More countries are taking measures to advance AI</td>
<td>3</td>
</tr>
<tr>
<td>Box 2</td>
<td>Current technical limitations to leveraging AI, and some early progress</td>
<td>4</td>
</tr>
<tr>
<td>Box 3</td>
<td>Modeling approach and limitations</td>
<td>6</td>
</tr>
<tr>
<td>Box 4</td>
<td>AI may aid progress toward meeting the SDGs</td>
<td>10</td>
</tr>
<tr>
<td>Box 5</td>
<td>Catalysts for the creation of new jobs</td>
<td>19</td>
</tr>
<tr>
<td>Box 6</td>
<td>Digitization by sector in three major economies</td>
<td>37</td>
</tr>
<tr>
<td>Box 7</td>
<td>Categorizing skill shifts</td>
<td>50</td>
</tr>
</tbody>
</table>
Chapter 1. The AI revolution

THE AI REVOLUTION IS NOT IN ITS INFANCY, BUT THE MAJORITY OF THE ECONOMIC IMPACT OF AI IS YET TO COME

Substantial progress in many areas has accelerated the development of AI, which has the potential to reshape the competitive landscape of companies, jobs, and the economic development of countries. Over the past few years, there have been many breakthrough results and announcements in natural language processing, machine vision, and games like Go. In addition, many products and services already in wide use employ advances in AI such as personal assistants and facial recognition systems. Much of this progress has been the result of progress in three areas:

1. **Step-change improvements in computing power and capacity.** At the silicon level, there has been continuous progress from central processing units to graphics processing units (GPUs). Today’s GPUs can be 40 to 80 times faster than the quickest versions available in 2013. Silicon-level development may put early movers (front-runners in this analysis) at an advantage because they have the resources to drive breakthroughs. Companies such as Google are pushing further with tensor processing units. Many more silicon-level developments are underway. At the cluster level, cloud solutions offer much cheaper computing and storage services on demand. Microsoft offers a hybrid solution combining the public and private cloud that helps companies rapidly ramp up their computing resources and handle spikes in need without large capital outlays.

2. **Explosion of data.** The world creates an unprecedented amount of data every day, feeding algorithms the raw material needed to produce new insights. International Data Corporation estimates that there may be 163 zettabytes (one trillion gigabytes) of data by 2025, or ten times the data generated in 2016. Enormous diversity in the data being generated means that organizing and analyzing these data are extremely challenging, but that there is an unprecedented opportunity to extract value from data that were not available in the past.

3. **Progress in algorithms.** The techniques and algorithms underlying AI have continued to be developed. Recent advances in deep learning techniques are delivering step changes in the accuracy of classification and prediction. Deep learning uses large-scale neural networks (the most common are convolutional and recurrent neural networks) that learn through the use of training data and backpropagation algorithms. Also emerging are meta-learning techniques that are attempting to automate the design of machine-learning models and neural networks by classifying images in large-scale data sets. Also notable is the development of reinforcement learning, an unsupervised technique that allows algorithms to learn tasks by trial and error, improving their performance through repetition and, in many cases—the game of Go being one example—surpassing human capabilities. In one-shot learning, an AI model can learn about a

1. For instance, Eric Horvitz and colleagues at Microsoft Research have demonstrated in-stream supervision in which data can be labeled in the course of natural usage. See Eric Horvitz, “Machine learning, reasoning, and intelligence in daily life: Directions and challenges,” Proceedings of Artificial Intelligence Techniques for Ambient Intelligence, Hyderabad, India, January 2007. AlphaGo Zero used a new form of reinforcement learning to defeat its predecessor AlphaGo after learning to play the game Go from scratch. See Demis Hassabis et al., AlphaGo Zero: Learning from scratch, deepmind.com. DeepMind researchers have had promising results with transfer learning where training is simulated and then transferred to physical robots. See Andre A. Rusu et al., Sim-to-real robot learning from pixels with progressive nets, arxiv.org, October 2016. For more, see Michael Chui, James Manyika, and Mehdi Miremadi, “What AI can and can’t do (yet) for your business,” McKinsey Quarterly, January 2018.

3. Behavioral, transactional, environmental, and geospatial data are available from sources including the web, social media, industrial sensors, payment systems, cameras, wearable devices, and human entry, for example. See The age of analytics: Competing in a data-driven world, McKinsey Global Institute, December 2016.

Assessing the Economic Impact of Artificial Intelligence

...topic even where there is only a small number—even one—of real-world examples, reducing the need for large data sets.6

While many of the most public breakthroughs have largely been associated with a relatively small group of individuals, companies, and institutions and have mainly, but not exclusively, been US-led, this is changing fast. An increasing number of countries are now starting to put more emphasis on AI initiatives, with China in particular making huge strides (see Box 1, “More countries are taking measures to advance AI”).

Most companies currently face significant limitations on their ability to leverage AI (see Box 2, “Current technical limitations to leveraging AI, and some early progress”). However, the AI revolution is certainly no longer in its infancy. These technologies are already widely used in business. Analysis of more than 400 cases in which companies and organizations could potentially use AI found that AI is already relatively applicable to real business problems and can have significant impact in areas including marketing and sales, supply chain management, and manufacturing. The research found that three deep learning techniques—(1) feed forward neural networks; (2) recurrent neural networks; and (3) convolutional neural networks—together could enable the creation of between $3.5 trillion and $5.8 trillion in value each year in nine business functions in 19 countries. This is the equivalent of 1 to 9 percent of 2016 sector revenue.7

A broad range of companies already use AI tools in a wide variety of ways and functions. As of early 2018, AI was used in supply chains (for instance, Amazon’s Kiva robot automation in retail logistics); fixed assets (for example, preventive maintenance of assets by companies such as Neuron Soundware, which uses artificial auditory cortices to simulate human sound interpretation, and can therefore automate the detection and identification of causes of potential breakdown of equipment); R&D (for instance, Quantum Black’s use of AI to streamline R&D in Formula 1 racing); and sales and marketing (for example, AI-powered search by Baidu, and Digiday’s AI-based predictive sales target of business-to-business salespeople).8

As funding becomes more widely available, the skills to deploy and manage AI are likely to spread to a broader swath of companies and take hold across economies.

6 Yan Duan et al., One-shot imitation learning, arxiv.org, December 2017.
7 Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018.
Box 1. More countries are taking measures to advance AI

A number of countries have announced initiatives and plans to drive the use of AI in their economies. Here are just a few examples as of mid-2018:

- **China.** The government is prioritizing AI, including its promotion in, for instance, its 13th Five-Year Plan (which runs from 2016 to 2020), its Internet Plus and AI plans from 2016 to 2018, and a “new generation AI plan.” China has stated that it aims to create a domestic AI market of 1 trillion renminbi ($150 billion) by 2020 and become a world-leading AI center by 2030. The private sector is pushing actively for AI, too. Three of China’s internet giants—Alibaba, Baidu, and Tencent—as well as iFlytek, a voice recognition specialist, have joined a “national team” to develop AI in in areas such as autonomous vehicles, smart cities, and medical imaging.

- **Europe.** European Union (EU) member states have announced their intention to collaborate on AI more actively across borders to ensure that Europe is competitive in these technologies and that they can tackle their social, economic, ethical, and legal ramifications together. The EU has called for $24 billion to be invested in AI research by 2020. A number of European countries have also been driving national initiatives. The French government has announced an initiative to double the number of people studying and researching AI projects, set new boundaries for data sharing, and invest $1.85 billion to fund research and startups. The United Kingdom has published a comprehensive plan to strengthen the core foundation of AI in an “artificial intelligence sector deal” and has stated its aim to lead in the field of AI ethics.

- **Asia (outside China).** The government of South Korea set up a Presidential Fourth Industrial Revolution Committee in 2017 and announced that it would invest $2 billion by 2022 to strengthen its capabilities in AI R&D. Singapore has launched an AI Singapore national initiative to enhance AI capabilities by forming a partnership of government institutions.

- **Canada.** International research institute CIFAR is leading the government’s Pan-Canadian Artificial Intelligence Strategy with three new AI institutes: the Alberta Intelligence Institute in Edmonton, the Vector Institute in Toronto, and MILA in Montreal; these three cities are Canada’s major AI centers.

2. *EU member states sign up to cooperate on artificial intelligence*, European Commission, April 10, 2018.
5. *Artificial Intelligence Sector Deal, HM Government, 2018; and UK can lead the way on ethical AI, says Lords Committee, UK Parliament, April 16, 2018.*
7. *AI Singapore (aisingapore.org/about-ai-singapore/).*
8. *Pan-Canadian Artificial Intelligence Strategy, CIFAR (cifar.ca/ai/pan-canadian-artificial-intelligence-strategy).*
Box 2. Current technical limitations to leveraging AI, and some early progress

Businesses have recorded much progress in making AI applicable to them. However, the following five technical factors are arguably limiting the application of AI:1

Labeled training data. In supervised learning, machines do not learn by themselves but need to be taught, which means that humans must label and categorize the underlying training data. However, promising new techniques are emerging to reduce time spent on such efforts, including reinforcement learning and in-stream supervision such as generative adversarial networks, a supervised learning method in which two networks compete with each other to improve their understanding of a concept.2

Obtaining sufficiently large data sets. In many business use cases, it can be difficult to create or obtain data sets large enough to train algorithms. One example is the limited pool of the clinical-trial data necessary to predict healthcare treatment outcomes more accurately. Players with access to vast quantities of data may have an advantage. At present, the availability of labeled data is critical since most current AI models are trained through supervised learning, and categorizing data correctly requires a huge amount of human time. This may change as technologies and algorithms develop. One technique that could reduce the need for large data sets is one-shot learning, in which an AI model is pretrained in a set of related data and can then learn even from a small number of real-world examples.

Difficulty explaining results. It is often difficult to explain results from large, complex neural-network-based systems. One development—still at an early stage—that could improve the ease of explaining or transparency of models is local interpretable model agnostic explanations, which attempt to identify which parts of input data a trained model relies on most to make predictions. Another technique that is becoming relatively well established is the application of generalized additive models. They use single-feature models, which limit interactions between features and enable users to interpret each one more easily.

Difficulty generalizing. AI models still have difficulty carrying their experiences from one set of circumstances to another, which leaves companies having to commit resources to training new models even if use cases are relatively similar to previous ones. Transfer learning, in which an AI model is training to apply learning from one task to the next one, is showing promise.3

Risk of bias. The first four limitations may be solved as technology advances, but bias—in data in particular, but also in algorithms—has raised broad social concerns and may be challenging to resolve.4 A great deal of academic, nonprofit, and private-sector research is now underway on this issue.

1 “What AI can and can’t do (yet) for your business,” McKinsey Quarterly, January 2018.
4 For more, see Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018.
Chapter 2. An approach to assessing the economic impact of AI

The “new spring” for AI has prompted a great deal of research on the economic impact of AI, and consensus is emerging that it may offer substantial benefits. Thus far, research finds that a broad range of AI technologies could boost productivity levels and elevate GDP growth trajectories. The exact numbers vary because researchers have used different methodologies—for instance, considering a narrow or broad set of drivers of economic impact.\(^9\)

While research to date has provided some early insights, the methodologies deployed have exhibited some shortcomings and limitations. First, estimates have tended to concentrate on developed economies such as Europe and the United States, plus China; outside these three economies, insights have tended to be limited.\(^10\) Second, the channels through which the macroeconomic impact occurs have not been clearly explained or exhaustive. For instance, research has largely focused on new AI investment demand that substitutes hours worked by humans. However, the reality is that a large share of AI use cases relate to retrofitting or replacing old capital investment by, for instance, embedding equipment with smart monitoring and preventive maintenance. Third, the link between microeconomic behavior and the impact of AI has not been made clearly. It is important to consider the link given the fact that the impact of AI depends on the level of its adoption by corporations and government entities, and that this pace of adoption is closely linked to microeconomic factors such as competition and the ability of organizations to deploy new technologies. Last but not least, research has tended to estimate the gross potential of AI, not taking into account the cost of implementation of these technologies into the socioeconomic system or negative externalities such as the impact of major disruptions on economic groups. The latter can be material. Consider, for instance, the cannibalization of old business models through AI-based innovation, or potentially extensive job reallocation due to the adoption of AI. Such negative externalities may be sufficiently large, and affect enough entities, to create the risk of a societal backlash against AI that could limit the full potential anticipated from these technologies.\(^11\)

This research attempts to take a deeper and more detailed view of the impact of AI. (For a brief summary of the scope of the research, drawing on extensive analysis of AI and applying a simulation-based approach, see Box 3, “Modeling approach and limitations.”) This analysis leverages the 2017 research conducted by MGI on automation to assess tasks and jobs that are at risk of being replaced by AI and automation technologies.\(^12\) On the issue of new jobs that may be created as AI becomes adopted and absorbed, this analysis relies on early estimates in a set of countries highlighted in the research in 2017.\(^13\) This paper mainly focuses on the effect of AI on employment, by drawing on what we learned from analyzing more than 400 AI use cases to assess the potential of AI in analytics, as well as its possible role in reducing costs and enhancing the generation of revenue.\(^14\) What is new about this analysis is its attempt to gauge the macroeconomic impact of AI globally, and the fact that included in the estimate of economic impact is both the cost of implementing AI and the effect of a competitive race for adoption and absorption of these technologies. First, it builds on an understanding of the behavior of firms and the dynamics of various sectors to develop a bottom-up view of how AI technologies are adopted and absorbed (see more in the description of the seven-step micro-to-macro

\(^11\) Other social concerns about AI, including those related to privacy and security, could also mitigate against AI adoption and therefore limit its economic impact.

\(^12\) See, for instance, \textit{A future that works: Automation, employment, and productivity}, McKinsey Global Institute, January 2017.

\(^13\) Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute, December 2017.

\(^14\) Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018.
Assessing the Economic impact of Artificial Intelligence

The primary goal of this research is to move the discussion forward by presenting an approach to simulating the economic benefits and challenges that AI creates, rather than producing specific forecasts. The numbers presented in this paper will inevitably change as the analysis is updated, more is learned about AI technologies and their use on the ground, and new data sets are accumulated. Therefore, readers should take this analysis not as a conclusion but as a guide to the potential economic impact of AI based on the best knowledge available at this stage.

Box 3. Modeling approach and limitations

This research focuses on AI’s potential impact on global economic activity at the country, sector, company, and worker levels, using a simulation. It does not consider other important aspects including ethics and cybersecurity, or the effect of these technologies on sustainability. Nor does it quantify aspects of the consumer surplus that may arise out of using AI technologies, such as saving time or living a healthier life. Some clarifications that may be useful include:

• **Definition of AI.** AI is notoriously difficult to define due to the conceptual ambiguities of “intelligence.” For this research, we take a broad view on intelligence as “the quality that enables an entity to function appropriately and with foresight in its environment.”¹ AI then can be considered an umbrella term covering a group of technologies that are capable of autonomously performing tasks that, if performed by a human being, would be considered to require intelligence.² Characterizing AI precisely is also difficult because the definition tends to change depending on the specific context of research and application. For the purposes of the modeling in this paper, several data sources were used, including MGI’s previous research and survey analytics on automation.³ However, the data used in this research may include some variations at the detailed technical level. In the future of work and automation database and the survey used for the modeling of AI adoption and absorption, an expansive view of AI has been taken that includes not only computer vision, natural language processing, and deep learning, but also robotics and other automation systems (the five generic AI technologies). However, the analysis of potential AI use cases employed a narrower view of AI, focusing on deep learning techniques (especially feed forward neural networks, recurrent neural networks, and convolutional neural networks).⁴

⁴ Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018.
• **Data sources.** This research used both AI-specific and macroeconomic data sets. For AI-specific data, three sources were used. The first combined MGI’s regular survey of approximately 3,000 corporations in 14 sectors on digital technologies, undertaken for the VivaTechnology conference in Paris in June 2017, and the McKinsey annual survey on the extent of digitization in corporations worldwide. The second was MGI’s proprietary database of 400 potential AI use cases across industries and functions, used in this research to assess the impact on business. The third was MGI’s database that analyzes the potential to automate individual jobs — looking at activities rather than entire jobs — in 46 countries: this work assessed 800 existing occupations and around 2,000 activities undertaken within these occupations. For macroeconomic data, the research used statistics from international organizations, including the International Telecommunication Union (ITU), the World Intellectual Property Organization (WIPO), the World Bank, the Organisation for Economic Co-operation and Development (OECD), and the World Economic Forum (see the detailed list in the Technical Appendix).

• **Simulation and econometrics approach.** Economic modeling and simulation were used to see how the impact of AI may change in response to certain assumptions and inputs. Rather than forecasting outcomes, based on the best evidence collected so far, the research simulates the likely impact from AI given different contexts at the country, sector, and company levels. For the econometric simulation of firm-level AI adoption and absorption, a double blind and multi-sample approach was used to ensure that the results were solid. MGI’s econometrics team and a team from the Free University of Brussels independently analyzed both surveys mentioned above. Both teams estimated and converged on the dynamics of propensity to adopt and absorb technologies. Each team found that the consistent dynamics of adoption and absorption were visible in both samples used. The simulation of economic impact and competitive dynamics also drew on academic literature (for further detail on the econometric approach, see the Technical Appendix).

1. *Artificial intelligence: The next digital frontier?* McKinsey Global Institute, June 2017. The online survey was conducted from June 20 to July 10, 2017, and garnered responses from 1,619 C-level executives and senior managers representing the full range of regions, industries, company sizes, and functional specialties. See *How digital reinventors are pulling away from the pack*, McKinsey & Company survey, October 2017.

2. Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.

• **Approach to AI adoption and full absorption.** The concepts of adoption and (full and partial) absorption have been used in various contexts. In this research, an economic entity—notably a company—and its activities is used as a unit for adoption. Adoption of AI is when that entity chooses to invest in one of the five generic AI technologies: computer vision, natural language, virtual assistants, robotic process automation, and advanced machine learning, either for experimentation or for a narrow functional use.\(^1\) Full absorption means that all five generic AI technologies are adopted and integrated into broad enterprise workflows. Full absorption is the stage at which economic benefits tend to kick in and recur.\(^2\) However, full absorption does not mean that there is a fixed range of technologies. New technologies and applications will continue to emerge. Therefore, in this paper, the term “full” as opposed to “partial” is used to indicate much broader use of AI technologies than is the case in adoption or a pilot.

• **Limitations and sensitivities.** The firm-level simulation is dependent on the quality of data from the surveys used as inputs, and it should be acknowledged that this approach has two potential limitations. First, survey answers depend on the knowledge and perceptions of respondents, and their understanding of AI may vary, possibly affecting the quality of the insights and data gathered in this way. Second, the data set from our survey results may be skewed toward early movers. Extrapolating insights from the survey may therefore lead us to overestimate the economic impact because the next wave of companies adopting AI may display different behavior in terms of AI adoption. For these reasons, the result of the simulation should be interpreted as being the upper bound of estimates of AI’s economic impact. However, competitive pressure is a key factor driving up the level of AI adoption. If new companies that are more agile join the AI race more quickly than expected, this could push up the adoption curve.\(^3\) Notwithstanding, the findings in this research are directionally consistent with the previous research conducted by MGI. Finally, it should be noted that the simulation is highly sensitive to the results of corporate surveys on AI absorption. The adoption and absorption of AI by companies are the foundation of several dimensions of impact modeled, including labor augmentation, substitution, and innovation, as well as transition costs. When new data are gathered, the adoption and full absorption curve and the results of the simulation could also change.

Important note: While simulated figures are given that emerge from the above methods, the numbers presented in this paper should not be read as exact forecasts, but rather are intended to provide a directional perspective on the potential impact of AI.

\(^1\) This is based on MGI and McKinsey surveys. Generic AI technologies include machine learning, robotics, and other AI application tools such as virtual assistants, computer vision, and voice recognition.

\(^3\) Stephen J. Andriole, “Implement first, ask questions later (or not at all),” *MIT Sloan Management Review*, April 13, 2018
Chapter 3. AI has the potential to be a significant driver of economic growth

Predicting the economic impact of AI or any disruptive technology is a highly speculative exercise. This is a world of near-continuous discontinuity. It has already been highlighted in many analyses that the scope and pace of automation deployment depend on several variables—some more predictable than others—including technical feasibility, the cost of developing and deploying technologies for specific uses in the workplace, labor-market dynamics including the quality and quantity of labor and associated wages, the benefits of automation beyond labor substitution, and regulatory and social acceptance. Similar factors are likely to determine the pace of AI adoption. In addition to these factors, competitors enabled by digital technologies can burst upon the scene, seemingly from nowhere, putting apparently well-protected and robust incumbent businesses under attack. Vast new markets can rise at a rapid pace. Consider, for instance, that only ten years ago, China accounted for 1 percent of global e-commerce transactions, but today, its share is over 40 percent. Technology has accelerated and intensified the natural forces of market competition, and developments are extremely hard to read. It is because of such considerations that this research has built scenarios and extends those through the use of simulations.

The results of the simulation of AI’s gross and net effect on GDP and labor markets show that AI could add around 16 percent to global output by 2030, or about $13 trillion, compared with today. This would be incremental value created in addition to current global output. This simulation is a combination of a large increase of 26 percent in GDP growth driven by AI, and costs related to the transition to these technologies (for instance, labor displacement) and their implementation (for example, the deployment of AI solutions), as well as negative externalities for the baseline of economic activity (such as loss of consumption during unemployment). Together these elements may produce an annual average net contribution of about 1.2 percent of activity growth between now and 2030.

The impact on economies would be significant if this scenario were to materialize. In the case of steam engines, it has been estimated that, between 1850 and 1910, they enabled productivity growth of 0.3 percent per year. Research has found that the introduction of robots in manufacturing and the introduction of IT accounted for 0.4 percent and 0.6 percent in annual productivity increases, respectively. Recent estimates put the productivity impact of information and communications technology (ICT) and early digital technologies such as broadband at 0.6 percent annually during the 2000s. AI may contribute to progress toward meeting the United Nations’ SDGs (see Box 4, “AI may aid progress toward meeting the SDGs”).

Assessing the Economic impact of Artificial Intelligence

Box 4. AI may aid progress toward meeting the SDGs

In 2015, the 193 UN Member States adopted the 17 Sustainable Development Goals (SDGs), containing 169 specific targets and covering the world’s most pressing needs, with the aim of achieving them by 2030.1 The United Nations defines “sustainable development” as achieving in a balanced manner, economic development, social development and environmental protection.2 AI has great potential to advance sustainable development in each of these three pillars, and below are some examples.

Economic prosperity. Using AI to supplement efforts to eradicate hunger could help to lift output and productivity in areas such as agriculture, food production, and other logistics (Goal 2).3 One example is FarmView, developed by AI researchers at Carnegie Mellon University, which incorporates AI, robotics, and sensor technologies to improve plant breeding and crop management.4 This project is focused on crop varieties—such as Sorghum, a heat-tolerate grain grown in Africa—in developing countries where the need is greatest. AI can also be used to develop more precise indications of where poverty is distributed, how quickly it is spreading, and help to determine where resources should be allocated (Goal 1).5 For example, a US-based research team is overlaying night images with high-resolution daytime images, and using machine learning techniques to estimate consumption expenditure and asset wealth in African nations.6

Using AI in transportation is becoming popular, in particular to ensure safety. AI is expected to help improve current signaling on tracks through applications of smart sensor technology and advanced analytics (Goal 9).7 One example of AI being applied in this way is the Starling Crossing, which stands for STigmergic Adaptive Responsive LearnING Crossing.8 This is an AI-controlled pedestrian crossing that uses a number of cameras and neural networks to monitor pedestrians, vehicles, and other moving objects, analyzing their patterns of movements, and providing motorists with clear LED warning signs in real time.9

Social equity. AI can bring forth new opportunities that all students have access to high quality education whatever the student’s inherited circumstances (Goal 4).10 Mind AI, for instance, uses AI-powered education technologies, including those that specialize in learning assessments or task-specific improvements.11

1 The UN Sustainable Development Goals are available at https://www.un.org/sustainabledevelopment/sustainable-development-goals/
4 FarmView: CMU researchers working to increase crop yield with fewer resources, Carnegie Mellon University (https://www.cmu.edu/work-that-matters/farmview/).
8 Starling Crossing: Responsive road infrastructure, Umbrellium (http://umbrellium.co.uk/initiatives/starling-crossing/)
9 "AI-controlled LED pedestrian crossing adapts in real-time," The Engineer, October 10, 2017.
UNICEF Innovation has partnered with UN San Diego’s Big Pixel Initiative and Development Seed to harness high-resolution satellite imagery and deep learning techniques in an attempt to map every school in the world.¹

AI can also help accelerate progress toward gender equality by developing objective and efficient ways to identify and respond to gender bias, discrimination, and violence (Goal 5).² For example, Textio’s predictive index references data from more than 45 million job posts and hiring outcomes to gauge the gender tone of job postings.³ The index highlights seemingly innocuous words such as “fearless”, “competitive”, and “enforcement” that have proven to result in more male hires.

Just like wearable health monitors can reinforce healthy habits, the AI-based financial advisor can monitor users’ financial vitals to improve their financial condition (Goal 10).⁴ IBM Research, for example, has demonstrated how an AI-powered advisor can provide personalized recommendations to (low-income) individuals.⁵ By learning from historical data, the advisor can predict the account balances of individuals for a future period, identify recurring charges in their spending, determine unexpected large expenses, and analyze the spending behavior of user groups by category. Such small, but meaningful, changes can add up, and empower the economically weaker in society.

Environmental protection. There are opportunities to improve the efficient management of natural resources and the accountability of harmful activities by using AI (Goal 6).⁶ For example, Pluto is an AI analytics platform that uses modern sensors in water treatment plants to discern insights that save time, money, and water.⁷ The platform uses a combination of supervised and unsupervised learning to analyze reams of structured and unstructured performance data.

A project led by the US Department of Energy, called the Grid Resilience and Intelligence Project, uses AI to identify precise locations where the electrical grid is vulnerable to disruption.⁸ The system is able to identify and predict areas that need mechanical reinforcement, which enables quicker recovery when failures do occur. The longer-term objective of this project is to create an autonomous energy grid that reliably absorbs power fluctuations such as major weather events or downtime periods from renewable energy sources (Goal 7).⁹

¹ Project Connect (https://www.projectconnect.world/).
³ Rachel Cougan, *These weird, wonderful recruiting emails*, textio word nerd, August 21, 2018.
⁵ AI-based financial advisor for low-wage workers, IBM, October 10, 2017.
⁸ Glennda Chui, *Project will use AI to prevent or minimize electric grid failures*, phys.org, September 14, 2017.
The intersection of AI with climate science is assisting researchers to better identify, understand, and predict atmospheric processes (Goal 13). For example, US researchers are using AI to analyze the masses of data captured by light-based radar systems, and to generate accurate maps of coastal regions and wetlands. Microsoft is using machine learning and geospatial systems to address pollution from water run-off. This project builds interactive maps, identifying key ecological details, to help inform, empower, and prioritize projects that protect local shoreline areas.

International cooperation. As the UN specialized agency for telecommunication/ICT, ITU has developed the AI for Good Global Summit as the leading UN platform for international dialogue on AI. Building on the first summit in 2017, the 2018 summit, conducted in partnership with 32 UN sister agencies and other global stakeholders, identified global strategies to ensure trusted, safe, and inclusive development of AI technologies and equitable access to their benefits. This summit series solidifies the UN-wide commitment to partnership and cooperation to scale up AI-enabled innovative solutions to advance the SDGs (Goal 17). The 2019 AI for Good Global Summit will take place on May 28 to 30 in Geneva.

1. The research examined seven possible channels for AI impact

Several factors affect AI-driven productivity growth, including labor automation, innovation, and new competition. Micro factors, such as the pace of adoption of AI, and macro factors such as a country’s global connectedness and labor-market structure, contribute to the size of the impact. The simulation for this research examined seven possible channels of impact: (1) augmentation; (2) substitution; (3) product and service innovation and extension; (4) economic gains from increased global flows; (5) wealth creation and reinvestment; (6) transition and implementation costs; and (7) negative externalities. The first three relate to the impact of AI adoption on the need for, and mix of, production factors that have direct impact on the productivity of firms. The other four are externalities linked to the adoption of AI and related to the broad economic environment and the transition to AI. These seven channels are not definitive or necessarily comprehensive, but rather a starting point based on current understanding and trends currently underway. As AI continues to develop, approaches to understanding the implications of AI will need to continue to evolve.

1.1 Production channels

The first production channel considered was additional complementary inputs to improve productivity—what economists call labor and capital "augmentation." The inputs needed to operate new

1. Acemoglu and Restrepo, Artificial intelligence, automation and work, NBER working paper number 24196, January 2018.
AI capacity include new engineers and big data analysts who will develop and deploy AI solutions. Second, investment in AI technologies will save not only on labor as machines take over tasks that humans currently perform, but also on old capital, for instance by enabling preventative maintenance that increases the life span of assets and thereby reduces the need to invest in new equipment. Third, the research looked at more and better innovation associated with AI technologies. In general, process innovation should enable firms to produce the same output with lower inputs, while product and service innovation tends to boost output and the level of inputs such as employment and capital.

Channel 1: Augmentation

The first dimension relates to increased use of labor and capital. The surveys conducted by McKinsey in 2016 and 2017 suggest that companies are devoting only 10 to 20 percent of their digital investment budgets to AI tools, but this could increase as they adopt and fully absorb AI technologies. If this were to happen, it could lead to a large increase in annual investment levels. New labor would be deployed and capital invested in economies, potentially leading to higher efficiency.

Investment in AI has complementarities for other factors including jobs. For instance, many jobs are likely to be needed to build the AI infrastructure and monitor its operation to ensure its full use—although most of the time airplanes can be flown automatically, they still have humans on the flight deck. Today, Google has an army of 10,000 “raters” who, among other tasks, look at YouTube videos or test new services. Microsoft operates a Universal Human Relevance System, a crowdsourcing platform that handles micro and administrative tasks. Facebook has announced that it will increase the number of moderators from 4,500 to 7,500.20

In the United States, between 1980 to 2000, about 4 to 9 percent of the workforce were employed in job categories that did not exist 10 to 15 years earlier.21 Increased capital investment in AI can create demand for jobs—in both existing occupations and new ones—contributing to output growth. For currently demonstrable narrow AI technologies, human beings are needed to manage and transfer insights from one area of narrow AI to another, in contrast to the necessary capabilities of artificial general intelligence.22 This additional labor complements the increased capital invested in AI.

AI will likely also redefine many existing occupations, augmenting human capabilities and making workers more productive. The 2017 research on the future of work conducted by MGI suggested that, on average, 60 percent of occupations have at least 30 percent of activities that theoretically could be automated by adapting and integrating technologies that exist today—numbers that clearly vary from occupation to occupation.23 As machines take over certain activities, workers are freed up to engage in higher-value tasks using AI tools to be more productive or in other tasks that machines are not yet able to perform, regardless of their value. In call centers, for instance, some processes can be automated entirely while others can be handled by humans much more effectively; AI tools can categorize unaddressed queries accurately, direct callers to the right person to deal with questions, and prepare customized solutions for callers.

Channel 2: Substitution

Technologies that offer better results, cost effectiveness, or both tend to substitute other factors of production. This is the source of much of the current fear about the adoption of AI coming at the expense of labor as basic and repetitive tasks can increasingly be automated.

22 “Narrow” AI performs one narrow task, while artificial general intelligence seeks to be able to perform any intellectual task that a human can do. Narrow AI is already here, while AGI has yet to arrive. For further discussion, see William Vorhies, “Artificial general intelligence—the Holy Grail of AI,” DataScienceCentral.com, February 23, 2016.
The 2017 research conducted by MGI on the impact of automation on work suggests that roughly half of the time spent on various tasks could theoretically be automated by adopting existing technology. The picture could, of course, change depending on technological progress. Simulation in the previous research on the future of work found that a midpoint scenario for automation of activities could, on average, substitute around 15 percent of existing time worked globally by 2030. The simulation conducted for this research arrived at a directionally similar, but possibly somewhat more aggressive, global result — the midpoint automation potential might be two to three percentage points higher. The difference in these results is due to the fact that the midpoint scenario in the previous research reflected the median adoption speed of a large set of benchmarked technologies, but it did not explicitly model the pace of AI adoption taking into account factors such as competition and the development of digital capabilities at the firm level as has been done in this analysis.

Another reason why this latest research simulates faster adoption and absorption of AI may be that the corporate survey data sets that are one input to the simulation may be skewed toward early movers. The intensity of substitution depends on the relative costs of inputs. This research modeled the labor-substitution effect — how AI technology automates human activities and effectively substitutes labor with capital, maintaining the output of goods and services but reducing the labor hours required to achieve that output. The substitution also generates additional productivity gains over time as capital becomes more efficient and productive as it "learns."

Channel 3: Product and service innovation and extension

Investment in AI beyond what is needed strictly for labor substitution can produce additional economic output by expanding firms’ portfolios, increasing channels for products and services, developing new business models, or some combination of the three. This research suggests that firms’ motivation for adopting and absorbing AI relates as much to a desire to develop new products and services as to a bid to boost efficiency through automation. The survey, conducted by MGI in 2017, found that about one-third of companies were investing in AI to improve their offerings of current offerings, to expand their offerings of products and services, or both — possibly at the expense of their rivals.

Innovation often creates new value for an economy as new products and services for underserved markets stimulate consumption. However, in reality, funding for incremental spending needs to come from somewhere. The modeling assumes that the overall economic pie can grow to capture the upside of new value. Nevertheless, innovation may also substitute existing products and services, and innovative firms take share from others; therefore, not all the value that companies create and capture from innovation is likely to be "new" to the economy. Anecdotal evidence suggests that a sizable portion of innovation gains come as a result of competition that shifts market share from non-adopters to front-runners. Consider how Uber has substituted incumbent taxi rides, or how AI-based recommendations have tilted sales toward platforms such as Amazon rather than offline channels.

Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018.

1.2 Externality dimensions

In combination, the augmentation and substitution of inputs and extra innovative output produce new economic activity and productivity gains that researchers tend to take as the measure of the effect of AI on an economy. However, to develop a fuller picture of the economic impact, other factors need to be taken into account. For instance, the use of AI tools and techniques can contribute to global flows between countries and facilitate more efficient cross-border commerce. In this regard, countries that are more connected and participate more in global flows would clearly benefit more from AI. Gains in economic activity can be reinvested and continue to produce growth. However, expanded economic activity can also imply negative externalities arising out of transition costs from implementing AI technologies and more structural costs linked to loss of competitiveness in firms that do not adopt AI or workers being displaced because they lack the skills to operate in an AI-based economy. To draw a more complete picture of the economic impact of AI, four additional dimensions, both positive and negative, were modeled.

Channel 4: Economic gains from increased global flows

Economies are not insular; they interact in a global marketplace. Digital data now make up a larger share than in the past of international cross-border flows in the form of knowledge and information exchange, and direct transactions such as cross-border e-commerce. These data flows have already given globally connected, digitally advanced economies a material boost. It has been estimated that global data flows boosted global GDP by about 3 percent a year in 2014. This finding implied that digital and data flows could contribute about 7 percent to GDP growth by 2030 compared with today. The simulation suggests that AI could contribute up to 20 percent of the contribution of data and digital flows, or an impact of 1.5 percent by 2030 compared with today.

AI can contribute to digital flows in two ways. The first is by facilitating more efficient cross-border commerce. About one-third of digital data flows are estimated to be related to cross-border e-commerce, and 30 to 40 percent of digital commerce can potentially be attributable to AI technologies. Some have estimated that AI-based recommendation engines contribute 30 to 40 percent of sales in leading e-commerce players. If the ratio of firms adopting and absorbing AI is then applied—about 50 percent by 2030—AI could perhaps contribute some 5 to 10 percent of the value that digital data flows create, or a boost to GDP growth of about 0.5 percent by 2030 compared with today. AI can also boost global commerce by, for instance, improving supply chain efficiency and reducing complexities associated with global contracts, classification, and trade compliance. Montreal-based 3CE addresses one major source of supply chain friction by deploying natural language processing to automatically identify and correctly classify traded goods according to customs’ commodity taxonomies (for example, identifying that manually labeled “baby food” is the taxonomically correct “homogenized composite food preparation”). Improvements in transparency and supply chain efficiency can help companies secure better trade financing, reducing banks’ concerns about compliance risks. Banks can also use AI technologies to review trade documents, sort and label properly, and analyze risks in a much less labor-intensive way. Digital data flows already facilitate cross-border trading, but AI can make that trade even more effective. Take, for instance, global e-commerce platform Wish, which uses machine learning algorithms and connects hundreds of millions of merchants and consumers worldwide with targeted ads. This had an explosive impact on the volume of goods Sweden imports from China in a very short time—a 65 percent jump in volume in a single year between 2016 and 2017.

34 Artificial intelligence set to transform digital commerce marketing, Gartner, July 2017.
35 Kumba Sennaar, Artificial intelligence in ecommerce—comparing the top 5 largest firms, TechEmergence, February 1, 2018.
37 E-handeln från Kina har exploderat (E-commerce from China has exploded), PostNord, November 16, 2017.
The second way that AI generates impact from global flows is by making improved and expanded use of cross-border data in flows other than commerce, which can enhance the performance of AI solutions and, in turn, can improve the productivity of local activities, especially services. An estimated two-thirds of cross-border digital data flows could be associated with this effect. AI’s share within these digital data flows—about 35 to 40 percent—was then applied using two reference points. The first is MGI’s assessment of 400 potential use cases that estimated that AI accounts for about 40 percent of the total value contribution from analytics. The second is a range of corporate surveys drawn on to assess AI intensity within digital (AI-related investment out of total digital investment); this may grow from 10 percent today to 35 percent by 2030. The ratio of firms adopting and absorbing AI (again, about 50 percent by 2030) was then applied. The result of this analysis is that AI could have an impact of 10 to 15 percent on total digital flows, or about a 1 percent boost to GDP, by 2030.

Huge amounts of data cross borders every day, and an increasing share of these flows can power AI applications. For instance, many large sets of clinical data from hospitals around the world can enhance the accuracy of diagnosing rare cancers. The quality of AI translation engines can be substantially improved when they can be trained using data in different languages. Online travel agencies in one country can offer personalized interaction and services used in another country by analyzing travelers’ information searches as well as their travel patterns. In entertainment, the performance of chatbots, news aggregation engines, and recommendation sites can also benefit from global data flows, and this can encourage more consumption of content. AI could also drive knowledge spillover effects between economies. Digital talent platforms are already accessible across countries that help businesses, especially professional services companies, match their need for expertise with those who have it anywhere in the world. In the early wave of such digital expertise sharing and matching, specialists would manually scan the internet for relevant expert profiles. Analytics and machine learning algorithms are increasingly being used to speed up the process and improve matching; companies doing so include London-based proSapient and New York-based NewtonX, whose services are accessible from multiple countries. The business case for international collaboration among companies using such tools may strengthen.

Channel 5: Wealth creation and reinvestment

As AI contributes to the higher productivity of economies, the increased output from efficiency gains and innovations can be passed to workers in the form of wages and to entrepreneurs and firms in the form of profits. The generation of wealth induced by AI could create spillover effects that boost economic growth. As workers’ incomes rise and they spend more, and firms reinvest their profit into operations, the incremental output can be channeled back into the economy in the form of higher consumption or more productive investment as well as jobs growth. Such secondary effects or spillovers may develop over time; indeed, they have been a major source of sustained growth in the past. Such benefits will largely have an impact on an economy and its players if they are re-injected into the domestic economy rather than into other countries. Countries with a higher propensity to consume domestically, with resource-allocation systems that enable and encourage reinvestment into the domestic economy, and smaller leakage of capital from the repatriation of corporate profits or outbound capital flows, can maximize the benefit. The AI value chain may grow and boost the ICT sector, making an important economic contribution to an economy. It is important to build a strong AI value chain to maximize the reinjection of additional output into the economy.

38 Notes from the AI frontier: Insights from hundreds of use cases, McKinsey Global Institute, April 2018.
39 Various corporate surveys conducted by MGI and McKinsey suggest that “AI intensity within digital (AI-related investment out of total digital investment)” is around 10 percent today. If this ratio grows in line with the overall pace of AI adoption, it could reach around 35 percent by 2030.
40 Susan Ariel Aaronson, Data minefield? How AI is prodding governments to rethink trade in data, Centre for International Governance Innovation, April 3, 2018.
41 Avi Goldfarb and Daniel Trefler, AI and international trade, NBER working paper number 24254, January 2018.
42 Bruce Reed and Matthew Atwell, The rise of the expert economy: Could sharing wisdom be the next gig? Civic, May 2018.
43 The exact split of distribution of those rents could lead to a lower labor share of output in the economy.
Channel 6: Transition and implementation costs

A range of costs are likely to be incurred while executing the transition to AI. Companies are likely to incur cost restructuring their organizations. Some workers may be displaced by new technologies, and companies might need to pay associated costs such as severance. As they adopt new solutions, businesses may need to pay fees to cover the cost of systems, their integration, and associated project and consulting fees. Companies also need to build capabilities to operate new AI tools, hiring new workers and incurring costs such as fees associated with advertising and headhunters. Companies also need to upgrade the skills of their existing workers. As many tasks are automated, employees need to adapt to new types of work, and many workers will need to be trained to use new digital and AI tools for their daily operations. Disruptions to society may also incur costs (see Channel 7). However, this analysis does not claim to have fully sized all such externalities, but has attempted to model these in the simulation.

Channel 7: Negative externalities

AI could induce major negative distributional externalities affecting workers among others. Many economists argue that technology has caused a decline in the labor share in many economies. As firms adopt and absorb AI, pressure on employment and wages is likely to increase, which may depress the labor share of income and potential economic growth—cyclically through lost consumption during periods when individuals are unemployed or retraining, and structurally through a relative income effect. Other costs may have a direct impact on individuals and an aggregated impact on the economy. Displaced workers may need to take retraining courses supplied and supported by governments and companies if they are to swiftly rejoin the workforce. During the transition, there is likely to be a negative impact on the economy. Those workers who are out of work, and therefore not earning, are likely to cut their consumption (as well as temporarily not contributing to economic output). Another cost is government support for affected workers in the form of unemployment benefits and other social provision. It is known from historical cases that such externalities can last longer than expected. One example is the so-called Engels’ pause, which describes the stagnation of wage growth in Britain in the first half of the 19th century even as output per worker grew; the profit share of national income increased while the labor share of income declined.

2. Of the seven channels of impact, three stand out

Three of the seven channels stand out: (1) the use of AI-driven automation to substitute existing labor; (2) the application of AI to innovation that creates new and better products and services; and (3) AI-driven competition and the resulting disruption to firms and workers (Exhibit 1).

2.1 Automation of labor could add up to about 11 percent or around $9 trillion to global GDP by 2030

The substitution of labor by technology is often viewed from the point of view of the supply side of workers, and rarely from the demand side of firms. Yet, firms adopt technology for economic reasons—in the case of AI, the productivity boost available from substituting labor. The impact on people of being displaced by technology is real and important. However, this concern needs to be considered in the context of overall gains in productivity and economic activity. The impact of automation could be as much as $9 trillion, or around 11 percent higher output by 2030 as today. This represents

45 Mai Chi Dao et al., Why is labor receiving a smaller share of global income?: Theory and empirical evidence, IMF working paper number 17/169, July 24, 2017.

Assessing the Economic impact of Artificial Intelligence

Growth in value added accumulating over the period to 2030, driven by productivity gains from smart capital and the skills of the labor force, assuming displaced labor can be redeployed elsewhere in the economy. This is not to say that automation is exclusively beneficial for an economy. Yes, it drives the productivity of firms, but it also displaces workers. At an aggregate level, the boost in productivity can lead to greater economic output that is absorbed in the system, creating additional jobs elsewhere, and the overall economy may benefit (see Box 5, “Catalysts for the creation of new jobs”). At the micro level, however, many workers may come under stress, and they will need support as they transition to an AI-enabled market.

Net gains typically increase over time as the performance of these technologies improves—as has been seen in the case of many general-purpose technologies. For instance, the price of electric motors in Sweden plunged by as much as 70 percent during the 1920s.48 In the case of AI technologies, costs

Assessing the Economic impact of Artificial Intelligence

have fallen quickly even as performance has increased rapidly.49 Regarding performance, consider computer vision. In the period to 2011, this AI tool typically generated the wrong information from large data pools in one case out of four; five years later, the error rate was only 5 percent, on a par

Box 5. Catalysts for the creation of new jobs

MGI has modeled some potential sources of demand for new labor that could spur job creation to 2030, even net of automation.1 It calculated the full-time-equivalent jobs that could be created both directly and indirectly for more than 800 existing occupations. For trendline and step-up scenarios, six catalysts that can create demand for work were considered:

1 Rising incomes and consumption. As their incomes rise, consumers spend more, and this can create additional employment in segments including consumer durables, leisure, financial and telecommunication services, housing, healthcare, and education—not only in countries where these consumers live but also to those to which these economies export.

2 Aging populations. Patterns of spending change as people age, with the share spent on healthcare and other personal services rising significantly. This is likely to create substantial demand for occupations from healthcare professionals to home-care and personal-care professionals (while reducing demand for occupations associated with children and the young such as pediatricians and primary-school teachers).

3 Development and deployment of technology. Total spending on technology could increase by more than 50 percent from 2015 to 2030, likely increasing employment among, for instance, computer scientists, engineers, and IT administrators.

4 Investment in infrastructure and buildings. As developing economies continue to urbanize and there is demand in all economies for building maintenance and, where incomes are rising, for higher-quality buildings, demand for associated professionals such as architects and engineers, as well as lower-skilled construction workers and machinery operators will increase.

5 Investment in renewable energy, energy efficiency, and climate adaptation. Investment designed to meet policy goals on the environment, including energy efficiency, could create new demand for workers in occupations from manufacturing to construction.

6 Marketization of previously unpaid domestic work. If more countries around the world succeed in raising women’s labor-force participation, there is large potential to marketize the high share of unpaid care work women carry out in the home such as cooking, childcare, and cleaning, creating new employment.2

These six trends together could lead to the creation of 555 million to 890 million new jobs globally.

1 Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute, December 2017.

2 Around three-quarters of unpaid care work globally is undertaken by women. See The power of parity: How advancing women’s equality can add $12 trillion to global growth, McKinsey Global Institute, September 2015.

49 According to some estimates, the cost of industrial robots will fall by roughly 65 percent by 2025, to levels much lower than most analysts now anticipate. Combined with advances in machine learning and computer vision, this drop in costs should cause an inflection point in demand for robots as they infiltrate new industries with more provocative use cases. See Sam Korus, “Industrial robot cost decline,” Ark Invest, August 7, 2017.
Assessing the Economic impact of Artificial Intelligence

with—and even bettering—the information pattern recognition of an average human being, according to Google Brain.

2.2 Innovation in products and services could deliver up to about 7 percent or around $6 trillion of potential GDP by 2030

AI can make an important contribution by boosting innovation that can then be applied to improve current products and services, and create entirely new offerings. The simulation suggests that innovation can contribute about 7 percent, which could lead to a potential $6 trillion output increase by 2030, incremental to today’s output.

The first reason these AI effects are large is that companies can rapidly improve their top lines by reaching underserved markets more effectively even with existing products and services, while the value of gains from input substitution depends on productivity gains building up over time. The second reason is that, over the longer term, most technologies tend to foster innovation in products and services, boosting nontraditional industries and creating entirely new markets. Think about how the high-pressure compact steam engine moved beyond the factory, leading to a boom in rail and sea travel. The first steam-powered locomotive hit the rails in Britain in early 1800, and the first ship sailed in the United States by 1807. Consider how ICT was the foundation of the internet economy that is now reshaping retail, transportation, and media industries. AI is likely to have such transformative impact, for instance powering a consumer market for genomics and the development of an entirely autonomous road transportation system.

There are also competitive effects associated with innovation. Although front-runners can increase their top-line growth, a large portion of gains could be linked to a shift in market share. The implication is a large degree of cannibalization and firms being challenged if they do not redefined their product and service portfolios. To counter this effect and improve cash flow, some firms under competitive pressure are likely to cut investment in R&D, facilities, and the deployment of new technologies, potentially finding themselves in a vicious cycle. The risk is well documented in research related to competitive dynamics in digital markets.50

2.3 Negative externalities and transition costs could reduce the gross GDP impact by about nine percentage points, or around $7 trillion

The economic benefits of AI-based automation and innovation are secured at a cost, an element that existing research tends to overlook. The deployment of AI will very likely create a shock in labor markets and that there will very probably be costs associated with managing labor-market transitions, especially for workers whose skills are made obsolete or less relevant by AI technologies.

The 2017 research conducted by MGI highlights that up to 14 percent of workers might need to change occupations—and that, while some may change roles within the same company, others may need to move to new sectors and even geographies.51 The research also found that while most workers will face competition from AI for some tasks, less than 10 percent of occupations are made up of activities all (or more than 90 percent) of which can be fully automated based on currently demonstrated capabilities. Nevertheless, in about 60 percent of occupations, at least one-third of activities could be automated.

This implies significant changes for workers and workplaces.52 Further, workers may—it is to be hoped—have access to some social security and unemployment benefits to sustain them while they are unemployed and before they reenter the workforce. An obsolete product or service disappears

51 For a synthesized view of the labor-market shift, challenges, and potential measures, see AI, automation, and the future of work: Ten things to solve for, McKinsey Global Institute, June 2018.
Assessing the Economic impact of Artificial Intelligence

forever except in cases where the product becomes a niche curiosity; workers retrain, upskill, and reenter the workforce.

The analysis suggests that these changes will incur costs of about $7 trillion by 2030. Negative externalities such as loss of domestic consumption during unemployment could lower the positive impact of AI by four percentage points. Transition and implementation costs could add another five percentage points of cost (Exhibit 2).\(^53\) There are limitations to the modeling, and therefore readers should use the results of the simulation to get a broad idea of the potential costs that may be incurred. It is difficult to calculate costs exactly because they are likely to be incurred on multiple fronts on the supply and demand sides, and, in many cases, be interrelated. Moreover, transition costs in one part of the value chain may generate new value in another part; therefore, the items of cost listed in the simulation may not be purely additive. This current modeling does not account for detailed value redistribution

Exhibit 2. Substantial transitional costs and negative externalities may accompany the transition to an AI-enabled economy

<table>
<thead>
<tr>
<th>Buildup of transition socioeconomic costs</th>
<th>Example items</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of economic value, cumulative 2030</td>
<td></td>
</tr>
<tr>
<td>Transition and implementation costs</td>
<td></td>
</tr>
<tr>
<td>Displaced workforce</td>
<td>-3 Severance pay, accrued paid time off, other compensation</td>
</tr>
<tr>
<td>Implementing solutions</td>
<td>+1 Fees to cover system integration and consulting fees (for a transformation program)</td>
</tr>
<tr>
<td>Hiring of new workers</td>
<td>-1 Advertising, recruiter and referral bonuses, relocation</td>
</tr>
<tr>
<td>Continuous upgrade of skills</td>
<td>-1 Employee AI-development programs</td>
</tr>
<tr>
<td>Negative externalities</td>
<td></td>
</tr>
<tr>
<td>Skilling and reskilling to reenter the workforce</td>
<td>-1 Training cost by national labor-market program</td>
</tr>
<tr>
<td>Loss of domestic consumption</td>
<td>-1 Unemployed individuals consume less</td>
</tr>
<tr>
<td>Loss of economic contribution</td>
<td>-2 Unemployed individuals do not produce economic output</td>
</tr>
<tr>
<td>Unemployment benefits</td>
<td>-1 Direct and indirect benefits during unemployment</td>
</tr>
<tr>
<td>Total costs</td>
<td>-9 -4 -5</td>
</tr>
</tbody>
</table>

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts. Figures may not sum to 100% because of rounding.
SOURCE: McKinsey Global Institute analysis

\(^{53}\) These estimates are based on analysis of reskilling per task rather than reskilling individuals. Most people will need to reskill for 2.5 tasks on average, which may imply that costs to support such workers in terms of training and social support may last for six months (a great deal of literature is predicated on the costs being incurred for a single month). For more on this topic, see, for instance, Ljubica Nedelkoska, Frank Neffke, and Simon Wiederhold, *Skill mismatch and the costs of job displacement*, CESifo Area Conference on the Economics of Education, Munich, Germany, September 11–12, 2015; and Benoît Pierre Freyens, “Measures of training costs in Australia,” *Management Research News*, August 2006.
Assessing the Economic impact of Artificial Intelligence across the economy. A more complete and robust macroeconomic simulation is needed to assess equilibrium and interconnected loops.

3. The impact of AI builds up over time, gathering pace after five to ten years

A net productivity effect builds up over time—modest within five years to material by 2030. As a result, AI’s contribution to growth may be three or more times higher by 2030 than it is over the next five years. The global net impact of $13 trillion of additional value compared with today’s global GDP is likely to develop over a longer period (Exhibit 3). Although an annual trend curve is presented here, this is largely for illustrative and simulation purposes. Readers should look at the shape of the curve rather than exact annual figures. This simulation is dependent on the actual level of adoption and absorption by firms, and MGI’s current firm-level data set may be skewed toward early adopters. This may mean that the impact shown is an overestimate. In reality, followers may not have organizational capabilities and investment capacity as strong as those of front-runners, and their adoption and absorption might be slower.

The aggregate net impact of AI may take off after a period of five to ten years. In the near term, there are costs related to the implementation of AI, but subsequently a broader swath of companies adopt and absorb AI throughout their organizations at an accelerating pace over the years as a result of competition and improvement in complementary capabilities to use AI tools. Reminiscent of the Solow Paradox, the small initial impact may persuade some observers that AI is being overhyped, but this could well lead to misjudgment. The benefits to early adopters of these technologies increase sharply in later years at the expense of non-adopters.

Exhibit 3. The economic impact of AI can build up at an accelerating pace

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.
SOURCE: McKinsey Global Institute analysis

In aggregate, and over time, the impact of AI is likely to accelerate, boosting productivity growth. Therefore, companies—and countries—with proactive AI strategies will likely need to be committed for the long haul, because the total net impact may become visible only after a few years.54 This pattern has been seen before with general-purpose technologies such as steam and electricity: a slow start dominated by investment and low productivity, followed (sometimes decades later) by impact

in the form of higher productivity. One study found that electricity pervaded businesses and households more generally only after 1915, when machines operated by stand-alone secondary motors diffused, centralized power grids spread, and productivity began to rise.55 Another found that the accumulation of capital in steam engines was slow. After the patenting of the improved steam engine by James Watt in 1769, it took until 1830 for steam to reach parity with water as a source of power in the British economy. Even as late as 1870, steam power was largely used in mining and cotton textile manufacturing.56

4. Micro and macro factors each contribute to the impact of AI

Micro and macro factors underpin the impact of AI on global economic activity to broadly the same extent. The most material micro factors relate to influences on the dynamics of firms’ adoption and absorption of AI. The key macro factors include AI investment and research capabilities as well as key enablers, such as digital absorption, human capital, connectedness to global flows, and labor-market structures and flexibility.

4.1 Micro factors influence AI adoption and absorption

The economic impact of AI depends on the rate at which these technologies are adopted by economic entities and absorbed throughout their organizations. Decisions to invest in these technologies do not occur in a vacuum, but depend on several important variables that determine the economic and competitive case for adoption and absorption.

Total absorption level of AI by companies might reach about 50 percent by 2030

Using econometric analysis and proprietary data along with early evidence from surveys on how companies are adopting AI, an estimated 70 percent of companies might adopt some AI technologies by 2030, up from today’s 33 percent, and about 35 percent of companies might have fully absorbed AI, compared with 3 percent today. Companies that partially absorb AI technologies are likely to capture partial benefits from AI. The modeling factored in different degrees of absorption and calculated “total” absorption by adding “partial” and “full” absorption; it could reach about 50 percent by 2030 (Exhibit 4).

One way to put these estimates into context is to compare them to the absorption of digital technologies such as web, mobile, cloud, and big data. Those technologies started to be used about ten to 25 years ago. The average level of absorption of this previous generation of digital technologies was about 37 percent in 2017 and may reach 70 percent by 2035. In comparison, absorption of AI might reach today’s level of digital absorption by 2027—in roughly ten years.

Early digitization and the competitive race are important determinants of the pace of AI adoption and absorption

Full absorption takes time, as seen in the case of the previous generation of digital technologies. AI may be adopted and fully absorbed slightly faster—at the high end of benchmarks of the speed at which technologies percolate. AI adoption and absorption could be more rapid because of the breadth of ways in which it is used, including in domains where digitization is still underpenetrated, such as the automation of services and smart automation of manufacturing processes. Another reason that AI may be adopted and absorbed more quickly than previous technologies is that its returns tend to be large and to come with significant cannibalization and substitution that create an imperative to respond to, and attempt to move ahead of, the competition. Nevertheless, the adoption and absorption of AI

56 Nicholas Crafts, Steam as a general purpose technology: A growth accounting perspective, May 2003.
Assessing the Economic impact of Artificial Intelligence may be bounded by its dependence on the technical infrastructure needed for its effective use. Two aspects worth highlighting are digitization and competition.

- **Digitization.** An important factor in the adoption of AI is whether previous digital technologies are in place, because these are the technical backbone for its effective rollout. Machine learning underpins a large share of AI technologies. Most algorithms require big data and a digital architecture (however it is provided; for example, via the cloud or on premises). Superior insight from AI does not translate into increases in corporate performance unless many activities change—for instance, many salespeople need to change the way they sell. Even when the technological backbone is present, companies cannot generate value from AI without the skilled labor and experience necessary to tap into its opportunities and mobilize change within organizations.

The way the absorption of previous generations of digital technologies affects the deployment of AI has been demonstrated. Correlating the absorption of AI with the digital maturity of a firm reveals that companies that are more digitally mature have annual AI adoption and absorption 12 percentage points higher than firms that are less digitally mature (Exhibit 5).

- **Competitive pressure.** Economists have long been interested in how technological innovation and technology interact with competition. According to both Schumpeterian and disruptive theory views, the adoption of technology is typically driven by competition and may build a first-order effect on innovation and growth.

1 Digital technologies for this purpose are big data, cloud, mobile, and web technologies.
2 Total absorption includes the weighted share of firms that have both partially and fully absorbed AI.
NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.
SOURCE: McKinsey Global Institute analysis

Assessing the Economic impact of Artificial Intelligence

Some economists have shown that competition was the most important driver of PC adoption, for instance. Some companies adopt AI in a preemptive move against perceived fear of disruption from competitors or as a direct response to a new competitor, while others react more slowly. The econometric analysis and corporate survey conducted by MGI have consistently suggested that, for each type of AI technology analyzed, the presence of rivals investing in AI accounts for a significant share of any decision by a company to invest.

In this research, taking the corporate survey as an input, the model simulates the extent to which companies are considering deploying AI technologies in specific functions or across their broader organization in response to competitive moves made by other firms in the same industry and geography. Other determinants such as the impact of AI on profitability and whether tangible use cases are available were also examined. Extrapolating from this microeconomic effect, we find that competitive pressure can increase absorption level by about 13 percentage points in 2030 (Exhibit 6).

4.2 Macro drivers can affect the adoption, absorption, and economic impact of AI, and potentially lead to a new AI divide

Other important macro drivers can also affect the adoption, absorption, and economic impact of AI technologies by firms and countries. In general, these drivers tend to favor developed countries more than developing ones. The research largely looked at two major categories: (1) indicators that

Exhibit 5. High digital maturity can accelerate AI adoption and absorption

Evolution of total absorption levels of firms with high digital maturity vs average¹
Share of firms %

<table>
<thead>
<tr>
<th>Year</th>
<th>Average</th>
<th>High digital maturity firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Constitutes companies that have absorbed web, cloud, mobile, and big data technologies.
NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.
SOURCE: McKinsey Digital Survey; McKinsey Global Institute analysis

Assessing the Economic impact of Artificial Intelligence

Are directly related to investment and research in AI and the automation potential of economies; and (2) enablers that are the foundations or preconditions for AI’s potential to be unleashed. Multiple indicators in eight dimensions: i) AI investment, ii) AI research activities, iii) Potential productivity boost from AI and automation, iv) digital absorption, v) innovation foundation, vi) human capital, vii) connectedness, and viii) labor-market structure and flexibility, for 41 countries were compiled to gauge the readiness of countries to adopt and absorb AI. These indicators are by no means exhaustive, but they are useful for gauging the relative positions of countries. The data set used has limitations and may not capture the full picture of each dimension.

AI-related indicators

The following three types of AI-related indicators were assessed:

- **AI investment.** The economic impact of AI depends on whether there is sufficient investment to fund new AI companies and research, and enable greater corporate investment. Investment in AI is growing rapidly but is still largely concentrated in the United States and China. Tech giants such as Google and Baidu spent an estimated $20 billion to $30 billion on AI in 2016. In 2017, according to CB Insights, $15.2 billion was invested in AI startups around the world, and nearly half (48 percent) of that total went to China; 38 percent was invested in the United States. The United States still has more AI startups than China, but China is making considerable headway in striking equity deals in the AI sphere. In 2013, the United States accounted for 77 percent of such deals, but that share fell to 50 percent in 2017. AI-related investment data were compiled from Dealogic, S&P, and Capital IQ. Investment figures include sources of funding such as seed, grant, mergers and acquisitions, private equity, and venture capital. The research tracked “external” investment.

1 McKinsey’s survey gathered data from C-level executives on whether, and to what extent, they would adopt AI technologies if a competitor or peer did so. MGI used econometrics to study the effect on adoption and absorption levels with and without this effect to understand the degree to which significant competition drives adoption and absorption levels.

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.

SOURCE: McKinsey Digital Survey; McKinsey Global Institute analysis
Assessing the Economic impact of Artificial Intelligence

investments (investment from one firm to another), a metric that does not capture in-house investment, which could be sizable in some economies.

- **AI research activities.** As noted, AI could have a large gross impact if companies use it to create new products and services (beyond simple labor substitution). This research analyzed AI-related research activities using data on AI-related patents from WIPO, and AI research using AI publications and citations from Scimago Journal Rank. These sources do not cover the full range of work being undertaken by companies, because many corporate research laboratories may not fully publish the scope and extent of their research given competitive dynamics. Having said that, it’s important to note that many corporate labs are now among the top contributors of AI knowledge for key conferences, including the Conference on Neural Information Processing Systems (NIPS) and the International Conference on Machine Learning (ICML).62

- **Potential productivity boost from AI and automation.** The 2017 research on the future of work conducted by MGI has found that the potential to automate and for AI to be deployed can be driven by the relative costs of machines and wages. Because wages are relatively low in developing countries, the potential to automate is lower. However, in most developed economies, higher wages will likely lead to more AI adoption and absorption when it substitutes for human labor.63 Although the impact was not explicitly modeled here, companies that substitute AI for labor may be motivated not only by cost savings, but also by AI’s ability to outperform humans in some functions. Depending on the wage level, economics, and social acceptance, the automation potential, and therefore the substitution effect, may differ. This research used MGI’s future of work database to assess different degrees of potential. Developed economies tend to have high automation potential, because the business case for AI solutions is easy to justify. The high index reading should be interpreted as high potential to substitute labor rather than a country’s strength.

AI enablers

The other five dimensions looked at are enablers. They are the foundations for adoption and absorption of AI (as well as other emerging technologies), and some are likely to correlate with AI-related indicators (and therefore these dimensions may not be orthogonal):

- **Digital absorption.** Conventional measures of digital readiness, maturity, or competitiveness of countries tend to focus on digital infrastructure: internet penetration, broadband speed, and affordability for households, for example. There is a wide variety of data on these measures.64 However, how companies are developing digital assets and using them across their organization is perhaps the more important precondition of AI. MGI analysis of digitization in China, Europe, and the United States demonstrated wide variances among sectors and countries. In general, the United States leads, closely followed by a few European countries such as the United Kingdom and Scandinavian economies, and with China still some distance behind.65 Because this assessment was based on bottom-up sector-level data, there are limited samples for broad cross-country comparison on a global basis. Therefore, this analysis used alternative sources from the Global Talent Competitiveness Index report. It drew on the technology utilization index,

64 For example, the International Telecommunication Union’s ICT Development Index; penetration using ITU data on internet penetration among individuals; quality using ITU statistics on broadband speed; and affordability from the derived ratio of cost to per capita GDP from BDRC Continental and Cable.co.uk.

65 MGI research has looked at the extent to which sectors in countries and countries are digitized. This work was arguably more in-depth (including detailed sector-level views) than the metrics used here. However, MGI’s analysis did not fully cover all the countries included in the assessments undertaken for this paper, which therefore uses broad digital-related statistics that can be compared across a larger number of countries. For more, see Digital America: A tale of the haves and have-mores, McKinsey Global Institute, December 2015; Digital Europe: Pushing the frontier, capturing the benefits, McKinsey Global Institute, June 2016; and Digital China: Powering the economy to global competitiveness, McKinsey Global Institute, December 2017.
Assessing the Economic impact of Artificial Intelligence

which measures how corporations are using the latest (digital) technologies in each country as a proxy for the ability of companies to absorb digitization.

- **Innovation foundation.** The degree of innovation can determine whether a country is able to develop and commercialize powerful AI solutions. This research assessed overall innovation capacity using data on R&D investment from the OECD and evaluated industry dynamism using data on ICT and business-model creation and ICT organizational model creation from the Global Innovation Index 2017 report by INSEAD and WIPO. The modeling focused more on differences among companies in terms of whether they can use the technologies and create new business models, and whether companies can improve their organizational models in order to absorb technologies.

- **Human capital.** Economies need to ensure that they update the skills available not only to ensure that there are sufficient AI specialists, but also to enable large numbers of individuals to work alongside machines. Human capital is critical to the absorption of new knowledge and its real-world applications. This research looked at problem-solving skills using scores from the OECD’s Programme for International Student Assessment (PISA); the availability of scientists and engineers as well as employment in knowledge-intensive sectors from INSEAD; the overall quality of human capital from the World Economic Forum’s Global Human Capital Index; and the availability of talent using data on science, technology, engineering, and math (STEM) graduates from UNESCO and Eurostat.

- **Connectedness.** Countries with stronger connections to the world may have better foundations for innovation and are most likely to have increased potential to reap the benefits of AI. Connectedness can help countries use cross-border data flows to enhance the performance of AI applications and participate in global value chains, as noted. Global flows and connectedness have been looked in detail, and this analysis builds on that work. This analysis used MGI’s Connectedness Index, which ranks countries on their flows of goods, services, capital, people, and data. Data sources behind this index include the United Nations, ITC Trade Map, and TeleGeography.

- **Labor-market structure and flexibility.** Widespread penetration of AI will almost certainly displace many existing working tasks. Minimizing the risk of societal backlash will require as smooth as possible a transition to AI by putting in place mechanisms such as transitional support and training for displaced workers. Countries that have robust social support and extensive provision of training may be less likely to run into popular opposition to AI that could add cost to its implementation. Scores were compiled on aspects including collaboration between workers and employers, active labor-market policies, development of employees, and environmental performance from the Global Competitive Talent Index report published by INSEAD. The research also referred to redundancy cost (costs related to advanced notice and severance payments when terminating workers) from the World Bank.

Other factors may also play a role, including various legal frameworks governing the use of data in certain geographies. Examples include the EU’s General Data Protection Regulation and the California Consumer Privacy Act of 2018, US sector-based regulation such as the Health Insurance Portability and Accountability Act, and the Gramm-Leach-Bliley Act in finance. Regulation and other factors may affect outcomes, but the model used in this research is limited to those factors that can be quantified.

66 Digital America: A tale of the haves and have-mores, McKinsey Global Institute, December 2015.
Chapter 4. Along with large economic gains, AI may bring wider gaps

While the potential benefits of AI may be large, they are not likely to be distributed equally. The simulated estimate of the impact of AI on the world economy is an average of the effect on different countries, sectors, and firms. There could be widening gaps among countries, sectors, firms, and workers. This possibility needs to be managed if the potential impact of AI on the world economy is to be captured in a sustainable way—and even to avoid a backlash against these technologies that could limit their economic impact.

1. **In terms of readiness for AI, countries appear to fall into four groups**

 Using various indicators for the macro dimensions described, 41 countries were analyzed to assess where they stand relative to each other. A global average was calculated and then standard deviation measured. Countries one standard deviation above the average were categorized as “above threshold;” those one standard deviation below the average as “below threshold;” and the rest as “within the threshold” (Exhibit 7).

 This analysis found that there may be four groups of countries that share relatively similar degrees of preparedness, based on currently available data. The economic impact of AI is not guaranteed by being in a particular group of countries that look promising in terms of readiness—passivity will mean that even if the factors appear to be in place for the rapid adoption of AI, the economic benefits are unlikely to materialize. In addition, the groups are not fixed; countries could move from one to another over time depending on the choices they make and the actions they take. In fact, developing economies could potentially leapfrog advanced ones if they were to strengthen core enablers. An absence of legacy, inefficiencies in various parts of the economy, and the role of smart capital in overcoming skills issues may present attractive opportunities for the commercialization of AI use.

 The four country groups are:

 - **Active global leaders (China and the United States).** These two countries are currently leading the race to supply AI, and they have unique strengths that set them apart from all others. Scale effects enable more significant investment, and network effects enable these economies to attract the talent needed to make the most of AI. Together, they are responsible for the vast majority of AI-related research activities. They are a long way ahead of other countries on AI-related patents, publications, and citations. They also make substantial investment in AI. In terms of external investment (investment from one firm to another), including venture capital, private equity, and M&A, the United States accounted for 66 percent, while China was a distant second with 17 percent in 2016. However, China’s share is growing rapidly. These countries also have solid enablers. In 2016, they invested about 2 to 3 percent of GDP in overall R&D. Depending on national priorities and business opportunities, these huge R&D investment capacities could be channeled into AI. China’s capacity to innovate is increasing, the economy is digitizing quickly, and investment in AI is substantial. China and the United States are also the large contributors to global trade (in terms of both exports and imports), responsible for more than 20 percent of all the value being traded globally.

68 For certain dimensions where values for leading countries are far higher than the average (including AI research activities, for example), the threshold was lowered to show relative differences clearly.

70 For further discussion, see The China effect on global innovation, McKinsey Global Institute, October 2015; and Digital China: Powering the economy to global competitiveness, McKinsey Global Institute, December 2017.
Exhibit 7. Varying conditions among countries imply different degrees of AI adoption and absorption, and therefore economic impact

<table>
<thead>
<tr>
<th>Country</th>
<th>AI-related Enablers</th>
<th>Data sources</th>
<th>Total score^5</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td></td>
<td>Dealogic, S&P, Capital IQ, WIPO, Scimago Journal Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estonia</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finland</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceland</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^1 For the threshold, we calculated a global average and then measured standard deviation. If countries are generally one standard deviation above the average, we categorized them as “above” and one standard deviation below average as “below”; we categorized the rest as being “within.” For certain dimensions where values for leading countries are far higher than the average, we lowered the threshold to show relative differences clearly.

^2 VC = venture capital; PE = private equity; M&A = mergers and acquisitions.

^3 PISA = Programme for International Student Assessment, OECD; STEM = science, technology, engineering, and math; GHCI = Global Human Capital Index; WEF = World Economic Forum.

^4 GTCI = Global Talent Competitiveness Index.

^5 The score is calculated based on a weighted average of each area that can have a different degree of impact on GDP growth per their elasticity.

NOTE: The contents of this table are indicative. Countries in each group are listed in alphabetical order.

SOURCE: World Bank; UNdata; ILO; Global Innovation Index 2017; World investment report, UNCTAD; McKinsey Global Institute analysis
Exhibit 7. Varying conditions among countries imply different degrees of AI adoption and absorption, and therefore economic impact (continued)

<table>
<thead>
<tr>
<th>Readiness areas</th>
<th>AI-related Enablers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AI investment</td>
</tr>
<tr>
<td></td>
<td>AI research activities</td>
</tr>
<tr>
<td></td>
<td>Productivity boost from automation</td>
</tr>
<tr>
<td></td>
<td>Digital absorption</td>
</tr>
<tr>
<td></td>
<td>Innovation foundation</td>
</tr>
<tr>
<td></td>
<td>Human capital</td>
</tr>
<tr>
<td></td>
<td>Connect-edness</td>
</tr>
<tr>
<td></td>
<td>Labor-market structure</td>
</tr>
<tr>
<td>Examples of indicators included</td>
<td>Techno-logy utilization</td>
</tr>
<tr>
<td></td>
<td>R&D investment, business model creation</td>
</tr>
<tr>
<td></td>
<td>PISA score, STEM graduates, GHCI</td>
</tr>
<tr>
<td></td>
<td>MGI Connect-edness Index</td>
</tr>
<tr>
<td></td>
<td>Redundancy costs, indexes on worker-employer collaboration</td>
</tr>
<tr>
<td>Data sources</td>
<td>Dealogic, S&P, Capital IQ</td>
</tr>
<tr>
<td></td>
<td>WIPO, Scimago Journal Rank</td>
</tr>
<tr>
<td></td>
<td>MGI (INSEAD)</td>
</tr>
<tr>
<td></td>
<td>GTCI (INSEAD)</td>
</tr>
<tr>
<td></td>
<td>OECD, INSEAD, WEF</td>
</tr>
<tr>
<td></td>
<td>UNESCO, WEF</td>
</tr>
<tr>
<td></td>
<td>UNESCO, WEF, UNESCO, Eurostat</td>
</tr>
<tr>
<td></td>
<td>MGI, Global Talent Competitiveness Index</td>
</tr>
<tr>
<td></td>
<td>World Bank, INSEAD</td>
</tr>
<tr>
<td>Total score</td>
<td>n/a</td>
</tr>
</tbody>
</table>

1 For the threshold, we calculated a global average and then measured standard deviation. If countries are generally one standard deviation above the average, we categorized them as “above” and one standard deviation below average as “below”; we categorized the rest as being “within.” For certain dimensions where values for leading countries are far higher than the average, we lowered the threshold to show relative differences clearly.

2 VC = venture capital; PE = private equity; M&A = mergers and acquisitions.

3 PISA = Programme for International Student Assessment, OECD; STEM = science, technology, engineering, and math; GHCI = Global Human Capital Index; WEF = World Economic Forum.

4 GTCI = Global Talent Competitiveness Index.

5 The score is calculated based on a weighted average of each area that can have a different degree of impact on GDP growth per their elasticity.

NOTE: The contents of this table are indicative. Countries in each group are listed in alphabetical order.

SOURCE: World Bank; UN data; ILO; Global Innovation Index 2017; World investment report, UNCTAD; McKinsey Global Institute
Assessing the Economic impact of Artificial Intelligence

- **Economies with strong comparative strengths.** A wide range of countries belongs to this group, including, for instance, Canada, France, South Korea, and Sweden. They are relatively well positioned to capture the benefits of AI given their generally robust foundation of enablers. Many of these economies are highly motivated to embrace AI because they have been experiencing slowing productivity growth. Another incentive is the fact that labor costs tend to be high in these economies, especially advanced ones. Several large economies belong to this group—including Germany, Japan, and the United Kingdom—that have the capacity to drive innovation on a major scale and to accelerate the commercialization of AI solutions. Smaller, globally connected economies such as Finland, Singapore, South Korea, and Sweden typically score highly on their ability to foster productive environments where novel business models can thrive.

- **Economies with moderate foundations.** This group, which includes India, Italy, and Malaysia, has a moderate ability to capture economic benefits from AI. While the potential for economic gains is broadly positive, these countries are in a weaker starting position than those in the first two groups, but they exhibit comparative strengths in specific areas on which they may be able to build. India, for instance, has rather underdeveloped digital infrastructure and currently has a relatively low automation potential, but it produces around 1.7 million graduates a year with STEM degrees—more than the total of STEM graduates produced by all G-37 countries. Moreover, a high share of India’s exports is ICT-related.

- **Economies that need to strengthen foundations.** These countries are relatively challenged in their ability to capture the economic benefits of AI. They have somewhat limited automation potential because wages tend to be relatively low, and therefore the incentive to substitute labor to boost productivity is weak. They also have comparatively underdeveloped digital infrastructure, innovation and investment capacity, and digital skills, and are rather isolated from global trade and data flows. These economies tend to prioritize stimulating economic growth, reducing poverty, and developing away from agriculture into basic, and then more advanced, manufacturing and services. Initiatives to catch up with best practices may generate the higher return on investment rather than making substantial investment in advanced technologies that are currently beyond their reach. However, the risk is that they may fall behind as other countries embrace AI.

It is important to note that these groups are not static—countries may move from one to another courtesy of the choices they make. It is not inevitable that developed countries will always be at the forefront of AI adoption and impact, and that developing countries will always lag behind. Countries that take active steps to strengthen their AI foundations, capabilities, and enablers can change their AI-adoption trajectories. Indeed, our simulation indicates that the potential economic impact of AI can be sensitive to the pace of AI adoption, AI-related investment and innovation capacity.

2. **The gap between leading and lagging country groups is significant and may grow further**

Levels of AI absorption vary significantly between the country groups with the most and the least absorption (Exhibit 8). According to the simulation, economies with higher readiness to benefit from AI may achieve absorption levels about 11 percentage points higher than those of slow adopters by 2023, and this gap looks set to widen to about 23 percentage points by 2030. This indicates that like the digital divide, an AI divide may emerge between advanced and developing economies.72

71 In Germany, for instance, total economy productivity growth decelerated by 0.7 percent in 2010–14 versus 2000–04. In the United States, the decline in private business sector productivity between these two periods was 3.8 percent. See Solving the productivity puzzle: The role of demand and the promise of digitization, McKinsey Global Institute, February 2018.

72 Diego Comín and Bart Hobij, Cross-country technology adoption: Making the theories face the facts, Federal Reserve Bank of New York staff report number 169, June 2003.
Assessing the Economic impact of Artificial Intelligence

Exhibit 8. Gaps in AI absorption levels between groups may increase over time

Simulated AI absorption levels per country group
Share of firms, %

<table>
<thead>
<tr>
<th>Country group</th>
<th>Country example</th>
<th>2023</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active global leaders</td>
<td>United States</td>
<td>23</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>19</td>
<td>42</td>
</tr>
<tr>
<td>Economies with strong comparative strengths</td>
<td>South Korea</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td>24</td>
<td>53</td>
</tr>
<tr>
<td>Economies with moderate foundations</td>
<td>Italy</td>
<td>22</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td>Economies that need to strengthen foundations</td>
<td>Pakistan</td>
<td>14</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Zambia</td>
<td>14</td>
<td>31</td>
</tr>
</tbody>
</table>

+11 percentage points +23 percentage points

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.

SOURCE: McKinsey Global Institute analysis

As absorption rates diverge, so does the potential economic impact of AI. Because economic gains combine and compound over time, the simulated gap in net economic impact between the country groups with the highest economic gains and those with the least is likely to become larger. Country simulations suggest that there could be a large gap in economic impact between the leading and the lagging—between Sweden and Zambia, for example. That gap could widen from three percentage points in 2025 to 19 percentage points in 2030 in terms of net GDP impact (Exhibit 9).

The simulation suggests that AI-enabled growth, especially in some advanced countries such as Sweden, the United Kingdom, and the United States, may become as large as consensus growth projections (Exhibit 10).

The economic drivers of AI impact discussed generally favor those groups that are the most ready for these technologies. However, there are differences in the degree to which these drivers work to benefit individual countries savvy (Exhibit 11). For instance, productivity gains from substituting labor are most likely to accrue to countries with high automation potential. This research finds that advanced economies could gain about 10 to 15 percent of impact from labor substitution, compared with an impact of 5 to 10 percent in developing economies.

In the case of innovation gains from developing new products and services, countries with strong capacity to innovate could potentially generate about 10 percent; for members of country groups that are less ready, the potential impact could be lower, at 1 to 5 percent. Globally connected economies could also benefit from global data flows and trade, which could contribute impact of 1 to 3 percent in comparison with an impact of less than 1 percent—or even a negative impact—in the case of the least developed country group. This differential also reflects the fact that more connected
Assessing the Economic impact of Artificial Intelligence

Exhibit 9. The economic impact of AI is likely to be much larger in developed economies

<table>
<thead>
<tr>
<th></th>
<th>Sweden</th>
<th>Zambia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2025</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>2030</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Cumulative GDP increase, percentage points</td>
<td>+3 pp</td>
<td>+19 pp</td>
</tr>
</tbody>
</table>

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.
SOURCE: McKinsey Global Institute analysis

Exhibit 10. AI adoption and absorption could make a large contribution to growth in slow-growing developed economies

AI-led growth %
Per capita GDP:
- <$10,000
- $10,000–$30,000
- $30,000+

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.
SOURCE: IHS Markit; Economist Intelligence Unit; Oxford Economics; McKinsey Global Institute analysis

1 Consensus based on IHS Markit, Economist Intelligence Unit, and Oxford Economics.
Exhibit 11. The impact of AI adoption and absorption can vary among country groups

Breakdown of economic drivers by country group
Incremental GDP increase, percentage points

- **Active global leaders**
 - **United States**: +15, +10, +2, +6, +37, -8, -7, +21
 - **China**: +2, +10, +9, +1, +2, +24, -4, -3, +18

- **Economies with strong comparative strengths**
 - **South Korea**: +4, +16, +9, +2, +5, +35, -7, -6, +22
 - **Sweden**: +4, +16, +11, +3, +5, +39, -7, -8, +24

- **Economies with moderate foundations**
 - **Italy**: +3, +11, +5, +1, +1, +21, -3, -6, +13
 - **Brazil**: +2, +8, +5, +1, +2, +19, -4, -2, +14

- **Economies that need to strengthen foundations**
 - **Pakistan**: +1, +6, +2, +0, +2, +10, -1, -1, +8
 - **Zambia**: +1, +6, +1, -1, +0, +8, -1, -1, +5

NOTE. Numbers are simulated figures to provide directional perspectives rather than forecasts. Figures may not sum to 100% because of rounding.

SOURCE: McKinsey Global Institute analysis
Assessing the Economic Impact of Artificial Intelligence

Economies with strong AI foundations and the human capital to drive innovation are also likely to be global suppliers of AI technologies. Countries with a high propensity to consume and substantial investment capacity could create an impact of about 5 percent from spillovers into their domestic economies, compared with 1 to 2 percent in the case of the least-ready country group. In terms of negative externalities, the impact will vary among countries depending on their pace of AI adoption and their labor-market structures.

3. More digitally savvy, dynamic sectors may experience greater impact from AI

Sectors also have very different degrees of digitization, competitive dynamics, and economics shaping their usage of AI. Some sectors are more digitally advanced than others, and, as noted, there is a strong correlation between the degree to which a sector is digitized and the speed of adoption and absorption of AI (Exhibit 12).

Exhibit 12. Sector analysis indicates that AI relies on a proceeding digital wave

![Image of a graph showing the AI Index Score and the Digital Index Score for various sectors.]

SOURCE: McKinsey Digital Survey; McKinsey Global Institute analysis

The MGI Industry Digitization Index examines sectors through the lenses of digital assets, use, and workers, compiling 27 indicators to reflect the many ways in which companies are digitizing (see Box 6, “Digitization by sector in three major economies”). For the measurement of digital assets, various elements, including business spending on computers, software, and telecom equipment, the stock of ICT assets, the share of assets such as robots and cars that are digitally connected, and data storage were examined. For use of digital technologies, digital payments, digital marketing, social technologies, and software for managing the back office and customer relationships were counted. On workers, more than 12,000 detailed descriptions of tasks to identify those associated with digital technologies were evaluated.

In the case of AI, this research looks at adoption and use in 13 sectors in ten selected countries using 16 metrics in the same three categories as the MGI Industry Digitization Index: (1) AI assets such as AI spending and number of AI technologies adopted at scale; (2) AI use such as percentage of firms...
Assessing the Economic impact of Artificial Intelligence

Box 6. Digitization by sector in three major economies

MGI analyzed 22 industries on 25 indicators and used this analysis to calculate its Industry Digitization Index on three dimensions: assets, their use, and labor. In order to compare the degree of digitization in similar sectors in China, the EU, and the United States, common indicators were used for these three regions and quantify the gaps. It should be noted that each country is different and may well have a different optimal degree of digitization. Nevertheless, this analysis aids understanding of variations in digitization among sectors, the rough sizes of gaps among them, and between the same sectors in the three regions. Together, these insights help to estimate the upside potential from further digitization.

In all three geographies, the ICT, media, and finance sectors are the most digitized, and fragmented local sectors such as agriculture, local services, and construction the least. In all three, there are large gaps in scores on the index between the top three sectors and the bottom three. On average, the top three are 5.8 times more digitized than the bottom three in the United States, 6.1 times in the EU, and 6.5 times in China. This suggests ample room for further digitization in all.

The ability to make effective cross-sector comparisons is limited. The degree of digitization can vary from sector to sector that have different characteristics. For instance, a sector with high capital intensity will, by definition, have a low share of spending on digital technologies as a percentage of total spending. Nevertheless, MGI’s Industry Digitization Index offers some useful quantitative guidance on the degree of digitization in different sectors and, at the very least, provides a directional foundation for comparison.

using AI in various functions; and (3) AI-enabled labor such as average AI spending per employee. These three inputs were then combined to arrive at an overall AI adoption score.73

In order to gauge sector-level differences, two sectors can be highlighted as indicative examples: (1) the telecom and high tech sector that is adopting AI relatively rapidly; and (2) healthcare, which is adopting AI slowly. The survey conducted by MGI for this research simulated these two sectors’ different pace of adoption and absorption, and the impact of AI on economic activity.74 The preliminary simulation shows that the economic impact in the telecom and high-tech sector could be more than double that of healthcare in 2030. If the national average of macroeconomic impact is 100, healthcare might experience 40 percent lower impact while the telecom and high tech sector could experience 40 percent higher impact than the national average (Exhibit 13).

As more firm- and sector-level data and insights become available, it will be possible to deepen analysis of AI adoption by sector, but early findings show that the impact of AI is likely to vary significantly among sectors. The differences in economic impact are due to a variety of factors. The extent of competition for market share and new demand are relatively higher in high tech, which leads to fast adoption and absorption of AI. Competition in this sector may persuade firms to focus more on innovating than on aiming for pure cost efficiency. The nature of tasks and the sector’s economics may make a stronger case for telecom and high-tech companies to substitute labor with AI solutions. In addition, varying degrees of connectedness to global flows and value chains may also contribute to differences.

Turning to the business impact of AI, the analysis conducted by MGI of more than 400 potential AI use cases focusing on analytics and machine learning techniques demonstrates that the mix of

73 For details on MGI’s AI and digital indices, see Digital America: A tale of the haves and have-mores, McKinsey Global Institute, December 2015; and Artificial intelligence: The next digital frontier? McKinsey Global Institute, June 2017.
74 The sector-level simulation is based on firms headquartered in the United States and Western Europe only.
Assessing the Economic impact of Artificial Intelligence

Impact varies between revenue-driven effects and cost-efficiency effects by sector. Industries in business-to-customer and high-service dimensions tend to focus AI use on revenue and innovation growth, and to a greater degree — more often than B2B players that have high capital intensity, for instance. This research estimates that the use of AI could potentially generate value equivalent to 7 to 12 percent of revenue in the travel sector and between 5 and 10 percent in high tech. However, in other sectors including the public and social sector, chemicals, and oil and gas, the potential value creation could be far lower in the order of 1 to 3 percent of industry revenue (Exhibit 14).

To develop a picture of how AI technologies might change sectors, this research focused on four sectors that have different degrees of globalization, digitization, and skill requirements, and that are likely to have different rates of AI adoption and absorption by 2030. Use of AI applications in these sectors is already producing economic impact.

3.1 Retail

A number of AI applications are already making inroads in retail. A range of them help retailers to know in intimate detail — and quickly — what shoppers want. For instance, facial recognition software, machine learning, and natural language enable virtual agents to greet customers, anticipate what they want to buy, and provide directions around the store. Machine learning personalizes promotions to match shoppers’ profiles. Computer vision with deep learning identifies articles put in shopping bags, adding data from sensors, and enables nonstop checkout and automatic payment. AI-enhanced robots can continuously track inventory, recognize empty shelves, and restock them; other robots fill bags in warehouses. Many AI solutions, machine learning, and robotics to eliminate many manual activities. This research has found that the three areas that offer the greatest opportunities are promotions, assortment, and replenishment. In marketing and sales, use cases imply potential value

75 Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.
76 Ibid.
Assessing the Economic impact of Artificial Intelligence

Range of potential economic impact of $0.3 trillion to $0.5 trillion, and the automation of operational tasks a further $0.1 trillion to $0.2 trillion opportunity (Exhibit 15).78

- **Labor substitution by AI-related capital investment.** AI applications are already replacing some tasks—but not entire jobs—in warehouses and store operations. One example is Amazon, which today has about 100,000 Kiva robots at work in some of its 200 fulfilment centers.79 These robots work alongside humans to fulfill customer orders and dispatch them; robots carry out the “grunt work.” For traditional retailers such as supermarkets, using AI to automate operations can create considerable value. Machine learning can help optimize merchandising, potentially boosting the efficiency of assortment by 50 percent. One retailer was able to increase sales by

Exhibit 14. The potential value of AI by sector

<table>
<thead>
<tr>
<th>Sector</th>
<th>Aggregate dollar impact $trillion</th>
<th>Impact as % of industry revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retail</td>
<td>0.4-0.8</td>
<td>3.2-5.7</td>
</tr>
<tr>
<td>Transport and logistics</td>
<td>0.4-0.5</td>
<td>4.0-6.4</td>
</tr>
<tr>
<td>Travel</td>
<td>0.3-0.5</td>
<td>7.2-11.6</td>
</tr>
<tr>
<td>Consumer packaged goods</td>
<td>0.2-0.5</td>
<td>2.5-4.0</td>
</tr>
<tr>
<td>Public and social sector</td>
<td>0.3-0.4</td>
<td>1.1-1.4</td>
</tr>
<tr>
<td>Automotive and assembly</td>
<td>0.3-0.4</td>
<td>2.6-4.0</td>
</tr>
<tr>
<td>Healthcare systems and services</td>
<td>0.2-0.3</td>
<td>2.9-3.7</td>
</tr>
<tr>
<td>Banking</td>
<td>0.2-0.3</td>
<td>2.5-5.2</td>
</tr>
<tr>
<td>Advanced electronics/semiconductors</td>
<td>0.2-0.3</td>
<td>3.3-5.3</td>
</tr>
<tr>
<td>Basic materials</td>
<td>0.2-0.3</td>
<td>1.6-3.1</td>
</tr>
<tr>
<td>High tech</td>
<td>0.2-0.3</td>
<td>5.7-10.2</td>
</tr>
<tr>
<td>Oil and gas</td>
<td>0.2-0.2</td>
<td>1.8-1.9</td>
</tr>
<tr>
<td>Insurance</td>
<td>0.1-0.3</td>
<td>3.2-7.1</td>
</tr>
<tr>
<td>Agriculture</td>
<td>0.1-0.2</td>
<td>2.4-3.7</td>
</tr>
<tr>
<td>Chemicals</td>
<td>0.1-0.2</td>
<td>1.0-2.3</td>
</tr>
<tr>
<td>Media and entertainment</td>
<td>0.1-0.2</td>
<td>2.9-6.9</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>0.1-0.2</td>
<td>2.9-6.3</td>
</tr>
<tr>
<td>Pharmaceuticals and medical products</td>
<td>0.1-0.1</td>
<td>4.2-6.1</td>
</tr>
<tr>
<td>Aerospace and defense</td>
<td><0.1T</td>
<td>1.8-3.2</td>
</tr>
</tbody>
</table>

NOTE: Artificial Intelligence here includes neural networks only. Figures may not sum to 100% because of rounding.

SOURCE: McKinsey Global Institute analysis

78 Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.

Assessing the Economic impact of Artificial Intelligence

up to 6 percent by using geospatial modeling to determine the attractiveness of micro-market segments, and using statistical modeling to manage stock levels, saving time spent by humans to check the status of stock. In Nigeria, the Kudi AI-powered chatbot can be embedded in Facebook Messenger, Skype, and Telegram, and helps consumers to transfer money, pay bills, and pay for mobile airtime. Kudi interacts with the user in an everyday conversational style. Because Kudi is part of Facebook’s free basics, there is no additional cost of any data to use.80

Retailers can also rely on AI to improve last-mile delivery. In Estonia, Starship Technologies uses autonomous bots—driverless robots—to deliver parcels. These robots can be seen on the streets of the capital Tallinn moving alongside pedestrians at 6 kilometers an hour, able to carry parcels weighing up to 10 kilograms. Even before they were authorized for use in Estonia, these bots were being used in the US states of Virginia and Idaho, and Starship is testing these robots in about 100 cities around the world.81 The government is currently working on a more permanent solution to regulating the legal status of autonomous robots on sidewalks within Estonia.

- **Product and service innovation and extension.** Empowered by the ease, economy, and immediacy of online shopping, many consumers today expect personalized and immediate fulfilment of demand. AI can help marketers to reach hyper-connected consumers who continuously redefine value by comparing prices online even when shopping in a physical store. An example of this AI role in action is Blue Yonder, which uses machine learning to produce personalized customer discounts and to forecast demand for fresh products. The company’s AI-based platform uses historical data alongside data from advertising, local weather forecasts, and public holidays to determine optimal order quantities for every product. The company has

80 Megan Rose Dickey, “Kudi wants to make it easier to pay bills in places where internet access is limited,” TechCrunch, February 13, 2017.
reduced stock-outs by as much as 80 percent. Another example of a company using AI in retail is Focal Systems whose Focal Tablet app uses deep learning computer vision attached to the front of shopping carts. The tablet provides the customer with in-store navigation, and collects image data. These data are then used by the company to identify the position of the consumer in the store, enabling the use of location-based adverts for the items in that part of the shop. The image data can also be used to identify gaps in inventory in real time, alerting staff to re-stock. Such technologies have reduced stocking time by an average of 30 percent, and increased the size of consumers’ shopping baskets by 10 percent. Singaporean AI company ViSenze uses image recognition to improve the online shopping experience for customers of large fashion retailers in Asia. One of these retailers, Zalaro, offers “visually similar product” recommendations, allowing users to upload an image and search for similar products among the company’s over 200,000 products.84

3.2 Healthcare

Despite starting from a lower starting point in terms of digital and AI maturity than other industries, healthcare is ripe for AI. Quicker diagnoses, better treatment plans, and improved health insurance are some of the main outcomes when AI technology diffuses through this sector. AI is enabling preventative healthcare through active health monitoring (through wearable fitness bands for examples) that can be coupled with machine learning and compared with medical records to flag for potential issues.

This research estimates that AI in healthcare could create value of between $0.2 trillion and $0.3 trillion based on the way it is already being used in the sector (Exhibit 16). Value stemming from greenfield AI is particularly large from uses such as the diagnosis of disease and improved care enabled by the use of large datasets that incorporate images and video, including from MRI scans, for instance. Some AI uses in healthcare take over mundane tasks carried out by human beings, while others directly support the sector’s output.83

• Labor substitution by AI-related capital investment. Autonomous diagnostic devices using machine learning and other AI technologies can conduct simple medical tests without human assistance, relieving doctors and nurses of routine activities. AI-powered diagnostic tools identify diseases faster and with greater accuracy using historical medical data and patient records. AI algorithms optimize hospital operations, staffing schedules, and inventory by using medical and environmental factors to forecast patient behavior and disease probabilities.

Chatbots equipped with deep learning algorithms could take over dealing with patients coming into emergency rooms with relatively minor ailments such as a sore throat.84 In Copenhagen, a voice-assistant technology called Corti is being used by emergency service dispatchers. The system works by listening to emergency phone calls and, by doing so, assisting dispatchers to make a diagnosis. Corti uses speech recognition software to transcribe the conversation and machine learning to analyze words and nonverbal sounds such as tone of voice and breathing patterns, and then makes recommendations on how the emergency should be handled. The well-trained dispatchers in Copenhagen can recognize a cardiac arrest over the phone around 73 percent of the time, while an early study on Corti suggest the AI can identify cardiac arrest 95 percent of the time.85

In Rwanda, robotics company Zipline operates a drone-delivery service for urgent medicines and blood in conjunction with the country’s Ministry of Health. Health workers in remote locations can order medicines from Zipline via text message. The medicine is packed within minutes, transported by an autonomous drone, and dropped by parachute into a designated landing area within 30 minutes. The remote location must be within 80 kilometers of a Zipline distribution center, but doesn’t require any

83 Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.
85 Tristan Greene, “AI is giving the entire medical field super powers,” The Next Web, February 5, 2018.
physical infrastructure. Rwanda’s vision is to put all 12 million citizens within 30 minutes of essential medical products. Zipline plans to work with the government of Tanzania to launch a similar drone delivery network.86

- **Product and service innovation and extension.** AI in imaging is pushing the frontier of accuracy. AI-based image recognition and machine learning can see far more detail in MRI and X-ray images than human eyes can, enabling expanded use of such images. The Mayo Clinic, for instance, has a machine learning program that can quickly and reliably identify abnormalities in different types of glioblastomas. Beyond imaging, innovative companies are using AI to reinvent every step in patient care. One example is startup Enlitic, which is developing a deep learning app that could improve the accuracy of diagnosis. Another is Oncora Medical that has developed an AI tool to help oncologists draft personalized radiation treatment plans for cancer patients. These are instances of new use cases within existing business models, but AI is also leading to the development of new ones. One such is using AI in combination with behavioral health interventions to focus on wellness, prevention, and disease management. South African insurer Discovery Health tracks the diet and fitness activity of people it insures, and offers incentives for healthy behavior.

Genomics is an area where new AI-enabled business models are emerging including, for instance, applying machine learning algorithms to the increasing vast amount of gene-level data as the cost of sequencing the genome has plunged.87 Deep Genomics uses machine learning to help researchers interpret genetic variations and how these affect cellular processes. 23andMe recently combined data from 600,000 research participants with machine learning to develop a model for a report designed to provide personalized analyses of how an individual’s genetic material may impact their weight, while Nigerian startup Ubenwa has developed a machine learning system to tackle birth asphyxia,

one of the top three causes of infant mortality in the world. This system, currently in testing as a mobile app, analyses amplitude and frequency patterns in the infant’s cry, and provides an instant diagnosis of this condition.88

3.3 High tech and telecommunications

The telecommunications sector already has high digital intensity and can tap into a rich pool of talent. It is ripe for AI given an exponential increase in data generation and gathering coupled with cloud-based hyper-processing power and advanced algorithms. Indeed, the technology sector already tops the rankings in the AI Index developed by MGI that measures the extent of AI adoption and use in 13 sectors in ten countries.89

This research finds that AI in high tech could create value of between $0.2 trillion and $0.3 trillion or between 5.7 and 10.2 percent of sector revenue, and value in telecommunications of $0.3 trillion to $0.5 trillion or between 3 and 6 percent of industry revenue (Exhibit 17).

Exhibit 17. AI in telecoms adds the most value by increasing the acquisition and retention of customers, and more efficient and productive service delivery

<table>
<thead>
<tr>
<th>$ trillion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marketing and sales</td>
</tr>
<tr>
<td>Other operations</td>
</tr>
<tr>
<td>Finance and IT</td>
</tr>
<tr>
<td>HR</td>
</tr>
<tr>
<td>Risk management</td>
</tr>
<tr>
<td>Strategy and corporate finance</td>
</tr>
<tr>
<td>Supply-chain management and manufacturing</td>
</tr>
<tr>
<td>Pricing and promotion</td>
</tr>
<tr>
<td>Customer acquisition and generation</td>
</tr>
<tr>
<td>Workplace productivity and efficiency</td>
</tr>
<tr>
<td>Predictive maintenance and procurement analytics</td>
</tr>
<tr>
<td>Fraud and debt analysis</td>
</tr>
<tr>
<td>Strategy and corporate finance</td>
</tr>
<tr>
<td>Customer service management</td>
</tr>
<tr>
<td>Next product to buy</td>
</tr>
<tr>
<td>Marketing budget allocation</td>
</tr>
<tr>
<td>Analytics-driven accounting and IT</td>
</tr>
<tr>
<td>Analytics-driven hiring and retention</td>
</tr>
</tbody>
</table>

SOURCE: McKinsey Global Institute analysis

Telecoms operators have only recently started to leverage AI technology, largely using enhancing analytics to increase value. However, there are potentially uses for AI across the full value stream including marketing and sales, customer service, and network automation. There is ongoing discussion about

89 The index is based on 16 input metrics, divided into three categories: AI assets (three metrics), AI use (11 metrics), and AI-enabled labor (two metrics). Using principal component analysis, the input metrics were combined into an overall AI adoption score. The data for these metrics were primarily obtained from the AI adoption and use survey, proprietary databases, and the MGI Industry Digitization Index. See Artificial intelligence: The next digital frontier? McKinsey Global Institute, June 2017.
how 5G networks might use machine learning algorithms to improve the self-organization capabilities of wireless, improving service quality. Regulations on the acquisition, processing, use, and storage of customer data obtained in communication networks will be an important area for consideration.

- **Labor substitution by AI-related capital investment.** AI in telecommunications is today largely being used to automate front-line customer services including, for instance, through virtual agents and contact agents interacting with those customers in real time. One telecoms operator, for instance, used automation technologies to save millions of cost a year by automatically identifying issues raised in incoming calls to the customer service hotline, reducing the need for talk time with agents. This automated approach scans voice recordings for a broad array of key words, reducing the time agents spend on the phone with customers. Telkomsel, Indonesia’s telecoms company, is experimenting with chatbot applications to handle customer inquiries with minimal human interaction, the operational goal being to improve process efficiency and the customer experience. Customers can talk to the chatbot about customer service and product information, and the AI can also facilitate transactions such as paying bills or buying data.

- **Product innovation and extension.** Most uses of AI are evolutions or enhancements to existing advanced analytics deployed as telecoms companies respond to intense competitive conditions by fighting to retain every customer. They have already started using predictive analytics to gauge whether a customer is likely to switch operators and then target campaigns to persuade them to stay. These predictive analytics are continuously improving. One study found that machine learning could retain 90 percent of potential churners. Virtual assistants can relieve customer agents of workload, not only to reduce the need for labor, but also to create revenue upside by, for instance, routing customer services calls more effectively. CenturyLink adopted in place an AI-drive sales assistant in 2016, and many other companies are now following suit. As suggested above, Chatbots use a combination of machine learning and natural language processing to predict customer needs, and are able to answer simple queries more quickly than humans can. Eventually, networks themselves may be run with AI, but this is not yet technically viable and is subject to the completion of pending standards and agreements among industry participants. Wireless networks are already self-organizing networks that ingest data to optimize service quality, but the algorithms used are not yet AI but must be predefined, requiring manual interference when the network fails. However, leading telecoms players are looking at AI to help resolve issues related the increase in network complexity and diversification of device requirements in an Internet of Things world in which self-driving cars, autonomous construction sites, household internet services, and remote surveillance systems will all share the same network capacity.

3.4 Automotive and assembly

The automotive and assembly industry has been one of the earliest adopters of AI. It was one of the first industries to implement advanced robotics in manufacturing on a large scale. Technological change is now sweeping through the sector with a number of innovations becoming prevalent simultaneously—autonomous vehicles, connectivity, electrification, and shared mobility among them. This is not surprising. Sectors generally adopt AI technologies at the core of their value chain, and operations is at the heart of the automotive industry.

AI is playing an increasing role in the sector. A January 2018 McKinsey study identified the key AI opportunities for original equipment manufacturers (OEMs), and estimated potential value of around $0.2

90 ITU-T Focus Group on Machine Learning for Future Networks including 5G (FG-ML 5G), ITU (https://www.itu.int/en/ITU-T/focusgroups/ml5g/Pages/default.aspx)
92 Coco Liu, “Artificial intelligence is on the rise in Southeast Asia, helping everyone from fashion designers to rice growers,” South China Morning Post, November 5, 2017.
93 ITU workshop highlights data demands of machine learning for 5G, February 8, 2018.
Assessing the Economic Impact of Artificial Intelligence

According to the study, in the short term, the most significant value is likely to be generated from process efficiencies, while in the longer term driver/vehicle feature sets and mobility services are likely to account for the majority of value creation. The potential for value creation through AI technologies for the entire sector is larger at between $0.3 trillion and $0.4 trillion or 2.6 to 4.0 percent of current industry revenue (Exhibit 18).

Exhibit 18. AI in automotive and assembly adds the most value in supply-chain management and manufacturing value flow

$ trillion

- **Labor substitution by AI-related capital investment.** AI enables analysis of previously indecipherable data to render existing processes requiring labor optimally efficient by, for instance, analyzing in real time a range of images, sounds, and vibrations from machines in order to predict maintenance needs, and avoid time-consuming manual inspections. Algorithms used in predictive maintenance typically apply random forest models to predict failures and accumulate knowledge over time, thus becoming more accurate. KUKA robotics is integrating AI technology with cloud-based software applications and services to provide automotive OEMs with AI-powered predictive maintenance solutions. Through its AI-drive Envision product, Beet Analytics Technology provides OEMs with a comprehensive view of the status of production lines, helping to improve efficiency and reducing unscheduled downtime. Envision is a software-based product that doesn’t require any installation of robots or sensors, and which applies AI to turn big data into charts that provide predictive insights into the production line. The company reports that Envision cuts the time required to solve problems and validate fixes by up to 75 percent.

AI-based process automation reduces the need for labor in core R&D operations. Take crash test simulations as an example. In the past, such stimulations required test parks and teams at great cost,

94 Artificial intelligence: Automotive’s new value-creating engine, McKinsey Center for Future Mobility, January 2018.
95 Ibid.
96 Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.
Assessing the Economic impact of Artificial Intelligence

however with the support of AI, testing can be carried out with far fewer resources, with much of it virtually, and with increased accuracy. German OEM Audi is using AI-powered robotics in its Ingolstadt factory to implement modularization, which makes it easier to handle models with special requirements without interrupting the production of other models. Plug-in hybrid A3 Sportback requires specialized electric equipment and can now be moved off the main production line using AI-powered driverless forklifts and transportation systems. Ford opened a highly automated car assembly plant in Hangzhou, China, in 2015. The plant has 650 state-of-the-art robots, and while many processes are largely automated, the plant still employs 2,800 workers.97

• **Product and service innovation and extension.** There is significant potential to generate additional economic value. Today, it is common practice in the industry to offer discounts at the point of sale that are factored into the original pricing. With smarter AI-based pricing that draws on large pools of data on potential customers, the size of discounts can be much reduced. In the aftermarket, the value of customers can be boosted by building AI into vehicles that can pull customers to licensed garages for spare parts and service. Chinese AI company SenseTime offers multiple AI-based services related to identification and autonomous driving. The company has more than 400 customers and partners, and recently entered into a collaboration with Honda to accelerate R&D and the building of cars with an autonomous technology that uses advanced computer vision technologies to enable self-driving vehicles to travel on more challenging and less pre-defined routes.98

4. Among firms, performance gaps between front-runners and nondiffusers may widen

The economic impact of AI was simulated for three groups of companies: “front-runners,” “followers,” and “laggards.”99 The first group experiences the largest benefits from AI, and the last group the lowest (Exhibit 19).

• **Front-runners.** Front-runners are defined as companies that adopt a broad set of AI technologies and absorb the application of technologies across their organizations over the next five to seven years. The simulation assumed that this group comprises about 10 percent of companies whose AI-facilitated growth profile is similar to that of the top quartile of high-growth performing firms.100 This segment is similar in spirit and size to the early adopters observed in the theory of technology diffusion laid out by Everett M. Rogers, among others.101There may be two types of front-runner. The first type is the “producer-user” front-runner that develops and provides AI technologies. Such companies have substantial advantages in securing critical resources such as talent, computing power, massive data sets, and more accurate algorithms. The second type is the “user-only” front-runner that largely employs AI technologies supplied by the first type. These companies tend to adopt AI much faster and more effectively than others, and therefore can enhance their competitive advantage over companies that move later (or not at all). Although these two types were not modeled separately, it might be worth exploring how they capture value differently, what determines which type of front-runner a company is, and how the constraints associated with being a certain type of front-runner change over time.

98 Bien Perez, “Meet SenseTime, Hong Kong’s first hi-tech unicorn that no one’s heard of,” *South China Morning Post*, October 23, 2017.
99 This segmentation is arbitrary and has no effect on the total economic impact on companies. Redefining these groups simply redistributes total economic gains and losses between the segments defined.
101 Rogers’ diffusion of innovations theory contends that diffusion is the process by which an innovation is communicated over time among the participants in a social system. Four main elements influence the spread of a new idea or technology: the innovation itself; communication channels; time; and a social system. Rogers identifies six segments and posits that 50 percent of the early population is split between innovators (2.5 percent), early adopters (the next 13.5 percent), and the early majority (34 percent). See Everett M. Rogers, *Diffusion of Innovations*, New York, NY: The Free Press, 1983. Also see Barbara Wejnert, “Integrating models of diffusion of innovations: A conceptual framework,” 2002, *Annual Review of Sociology*, Volume 28.
Assessing the Economic impact of Artificial Intelligence

The simulation finds that front-runners could increase economic value (economic output minus AI-related investments and transition costs) by 122 percent by 2030, or an implicit additional growth rate of cash generation of about 6 percent a year for the next 12 years. Achieving and sustaining this rate of growth over such a long period would be remarkable, as it conflicts with Gibrat’s Law that a firm’s growth rate is independent of its size.102 The analysis suggests that cash generation is likely to accelerate after a five-year period in which front-runners could experience cash outflows as they invest in, and scale up, AI. Front-runners tend to slowly concentrate the profit pool of their industry in a winner-takes-all phenomenon. This may lead to the phenomenon of increasing concentration and the rise of “superstar” firms. Some researchers argue that technology could enable superstars to pull away from the pack, but also that a slowdown in the diffusion of technology could then prevent

laggards from catching up. Indeed, the fact that benefits from AI come after a delay implies a very low discounted return on investment, especially for the latecomers. However, there are various approaches to analyzing and explaining the superstar phenomenon—why and where it happens, and how to measure it—that need further study.

- **Followers.** The second group, the followers, consists of firms that are joining the AI party, but cautiously. They are starting to adopt and absorb AI technologies, having seen the tangible impact enjoyed by front-runners and having realized the competitive threat of not adopting and absorbing. This research simulated that 20 to 30 percent of firms could be in this group by 2030. For these companies, the pace and degree of change in cash flow are likely to be more moderate. On the one hand, front-runners have already triggered some spillover effects that spread some benefits to followers; on the other hand, followers are cannibalized by front-runners (although later on, followers do the same to laggards).

- **Laggards.** The final group comprises laggards (a group that includes non-adopters) that are not investing in AI seriously or at all. Laggards account for 60 to 70 percent of firms globally in the simulation. They could lose around 23 percent of cash flow compared with today, according to the simulation. When laggards don’t exercise the option of fully investing in AI, adopting has limited returns because these companies are moving too late. Laggards may have major capability issues that prevent them from joining the AI race, and therefore they may need to respond in other ways such as limiting costs and cutting investment. The latter is a common response observed in industries faced with similar situations—companies argue that they are cutting costs to get themselves out of a crunch and preparing for future growth. A survey conducted by MGI in 2017 finds that late adopters and nonadopters of AI reduce their employment and investment more than other peers. This behavior may seem typical of how companies behave in the face of difficult economic conditions, but in this case, there is more of a life-cycle phase in which firms adjust to the risk of exiting the market.

5. **There may be large shifts in demand for certain skills, potentially widening gaps between workers**

According to the MGI research on future of work in 2017, it is estimated that up to 375 million workers, or 14 percent of the global workforce, may need to change occupations—and virtually all workers

103 David Autor et al., *The fall of the labor share and the rise of superstar firms*, May 1, 2017. The authors find that the rising industry concentration is positively and significantly correlated with the growth of patenting intensity and total factor productivity, suggesting that concentration is associated with faster technological progress. They cite a 2015 OECD paper that found widening productivity differences between the top 5 percent of firms and the rest, which was attributed to a slowdown in technological diffusion between frontier firms and the laggards that reflected leading firms' ability to protect their advantages, contributing to a slowdown in aggregate productivity growth. Consistent with the OECD findings, they found that in industries where the speed of diffusion had slowed (indicated by a drop in the pace of citations), concentration had risen by more and labor shares had fallen by more. For instance, in industries where the proportion of total citations received in the first five years was ten percentage points lower, concentration rose by an extra 3.3 percentage points. See Dan Andrews, Chiara Criscuolo, and Peter N. Gal, *Frontier firms, technology diffusion and public policy: Micro evidence from OECD countries*, OECD future of productivity background paper, 2015.

104 For a summary of literature on concentration, see *Market concentration*, OECD Directorate for Financial and Enterprise Affairs Competition Committee issues paper, June 2018. In summary, the OECD’s review of academic literature finds that there has been a moderate increase in broad measures of concentration in Japan and the United States (but not in Europe), but that the imprecision of these measures tells us little about whether competitive intensity has changed.

105 There is similar divergence between early movers and laggards in the case of digitization. One study found that, on average, bold, at-scale responses pay off twice as much as semi-bold reactions and three times as much as medium reactions. There is some variation by industry, but it is not dramatic. In telecom and high tech, for instance, bold, at-scale reactions have 2.5 times greater payoff than medium reactions. In manufacturing, it is 2.2 times greater, and in retail and media, 1.9 times greater. The study estimates that a medium reaction is worth 1.5 points of earnings before interest and taxation (EBIT) growth a year and about 2 points in revenue growth per year, and the effect of a successful bold, at-scale move is roughly 4.5 points in EBIT and 6 points in revenue. See Jacques Bughin and Nicolas van Zeebroeck, “The best response to digital disruption,” *MIT Sloan Management Review*, April 6, 2017.

Assessing the Economic impact of Artificial Intelligence

may need to adapt to work alongside machines in new ways. Of 2,000 job activities examined, seven high-level categories of work activity: specifically i) predictable physical, ii) data process, iii) data collection, iv) unpredictable physical, v) interface, vi) manage, and vii) expertise will be impacted. Each of these categories has different potential for automation. The first three categories have the highest technical potential for automation at about 60 to 80 percent: performing physical activity and operating machinery in predictable environments, processing data, and collecting data. The other four high-level categories have considerably lower potential to be automated at around 10 to 25 percent: performing physical activities and operating machinery in unpredictable environments; interfacing with stakeholders; applying expertise to decision making, planning, and creative tasks; and, least susceptible to automation, managing and developing people.

Overall, the picture that emerges is one of rising wage and employment opportunity inequality, which is broadly consistent with recent academic literature that points to rising wage inequality when jobs start to be created following a technological disruption. Among different cohorts of workers, there may be patterns similar to those simulated for firms: groups with superior skill sets may capture a disproportionate share of gains. Workers engaged in nonrepetitive activities requiring high digital skills could increase the wages they command because their skills are in short supply, while raising the productivity they contribute to their employers. In contrast, workers in repetitive tasks are likely to be squeezed as their skill sets are increasingly irrelevant and their power to negotiate higher wages is likely to decline. In other words, some workers are at risk of being replaced by machines, while there could be shortages of workers who can complement what machines do (see Box 7, “Categorizing skill shifts”).

Some noteworthy patterns emerge from the simulation for this research (Exhibit 20):

• **AI is likely to shift the jobs mix toward tasks requiring high digital skills and those involving nonrepetitive tasks.** A large shift could occur in the category with low digital skills and repetitive tasks, declining from 43 percent of jobs in the global economy today to 32 percent by 2030. The share of jobs requiring high digital and nonrepetitive tasks might increase from 42 to 53 percent during the same period. All stakeholders in the economy—policy makers, companies, other institutions, and individuals—will need to make a substantial effort to manage this shift. More retraining, job matching, and mobility programs will be required. Because social and emotional skills cannot be easily replaced by AI applications, demand for non-digital and nonrepetitive tasks, such as healthcare work could moderately increase, too.

• **Uneven wage bill distribution may emerge from AI.** The simulation suggests that while the share of employment with repetitive activities and requiring low digital skills could be reduced by 25 percent, total wages associated with these jobs may shrink by 39 percent as employment declines and wages potentially remain stagnant. In contrast, employment requiring high digital skills and non-routine tasks may increase, and wages may go up by more than ten percentage points in 2030, driven by demand and higher productivity. The 2017 research on the future of work has highlighted two reasons for this. First, there are changes in the mix of occupations and the wages associated with them. Second, some forms of automation will be skills-biased—raising the productivity of highly skilled workers but reducing demand for lower-skill, routine occupations. The findings in this paper are based on indicative scenarios and simulation, and

110 This finding aligns with other research. See, for instance, Vincenzo Spiezia, Measuring the demand for skills in the digital economy, OECD, 2016.
111 This research simulated how the changing nature of tasks and skill requirements can impact employment and wages. Also see Daron Acemoglu and Pascual Restrepo, Modeling automation, NBER working paper number 24321, February 2018.
that more thorough modeling of labor markets will be needed. For example, the outcome of simulation can be sensitive to the evolution of the labor share of income versus capital, which is determined by a variety of complex economic factors.

- **The effect on skills and wages will vary depending on the company.** Changes in the returns on various skills become even more obvious when considering jobs at companies at different stages of AI adoption. In front-runners, the mix of jobs is likely to evolve quickly toward nonrepetitive activities and activities requiring high digital skills, accelerating the displacement of workers who perform repetitive tasks. However, this group of companies can further expand output and employment, using the first-mover advantage of being able to tap into the best talent, and likely paying a premium to secure it. Front-runners may thus be characterized by their creation of employment (although some will create huge shocks in traditional industries they disrupt), a higher mix of nonrepetitive jobs and jobs requiring digital skills, a likely pay premium for higher skills, and stable employment. Such dynamics are already emerging. Analysis of US company data suggests that the average wage of workers at top-percentile firms has been increasing.

Box 7. Categorizing skill shifts

For the sake of simplicity, activities that are highly automatable have been categorized as “repetitive” and activities that are difficult to automate as “nonrepetitive,” and likely trends in these two categories were then simulated. The research also added another dimension to take account of skills requirements—digital versus non-digital—that could be a precondition or foundation of applying AI. In reality, the change in skill mix will be much more complex. However, even this simple categorization has the merit of providing some idea of the magnitude of the shift away from the repetitive, non-digital paradigm that dominated the previous version of industrial production.

Jobs characterized by degree of repetitive versus nonrepetitive tasks. Routine and repetitive tasks are the most likely to be substituted by automation, while new jobs created are likely to require advanced digital skills or associated with high-value-added functions, such as design. Demand for basic cognitive skills, including simple data inputting and processing, is likely to decline from 18 percent of hours worked in 2016 to 14 percent by 2030. In contrast, demand for technological skills—the smallest category today—may rise from 11 percent of hours worked in 2016 to 16 percent by 2030.1 The research used MGI’s automation database to categorize repetitive and nonrepetitive jobs, and simulated how the mix of these would shift as AI is adopted and absorbed. Although nonrepetitive jobs are not immune to the impact of automation and AI, the displacement impact on repetitive jobs is likely to be much bigger.

Jobs characterized by degree of digital versus non-digital skill requirements. Increasingly, jobs are likely to need more ICT and digital skills. The OECD has pointed to future need for technical and professional skills, including specialist ICT skills for workers who drive innovation, and the skills necessary to support digital infrastructure; generic ICT skills for workers and citizens who need to be able to use these technologies; and soft skills that complement ICT, including leadership, communication, and teamwork skills.2 Changing requirements are already evident in labor markets. In the United States, for instance, the share of jobs requiring AI skills has grown 4.5 times since 2013.3

Assessing the Economic impact of Artificial Intelligence

fast, while that of lower-percentile firms has largely been stagnant.113 In laggards, workers may feel more secure in the next few years because limited skill shifts will be required. However, as revenue and market shares start to wane, these companies are likely to be under pressure to cut headcount. Additional pressure on margins will likely lead to downward pressure on wages, too, and workers for such companies would then be faced with lower wages or higher risk of losing their job. According to the OECD, a 10 percent higher risk of automation corresponds to a 4.3 percent decline in hourly earnings.114

6. **AI is likely to disrupt labor markets but may have a neutral to modestly negative impact on long-term employment overall**

There has been a great deal of discussion about the displacement impact of automation in general, and AI in particular.115 A persistent view holds that AI will lead to the loss of existing jobs to machines, and policy conversations have focused on how to support individuals through basic income programs, tax reforms, and other redistribution mechanisms that transfer wealth generated by machines to a permanently displaced workforce. However, there has been less exploration of the employment opportunities that AI may create through the expansion of products and services, and of productivity gains that ultimately may be reinvested in economies, creating jobs.116 Overall, the adoption of AI may not have a significant impact on net employment in the long term.

MGI’s research on the future of work in 2017 found that around half of all work activities could be automated, adapting currently available technologies, but the proportion of work displaced by 2030 is likely to be lower because of a range of technical, economic, and social factors.117 The scenarios covering 46 countries suggest that between zero and one-third of work activities could be displaced between 2016 and 2030, with a midpoint of 15 percent. This proportion varies widely among

Assessing the Economic impact of Artificial Intelligence

countries. As noted, the firm-level simulation in this research is generally consistent with those findings, but is slightly more aggressive than the midpoint scenario on a global basis. This reflects, among other factors, the competitive race among firms.

Considering all the different forces playing out, there is likely to be more rather than less pressure on full-time employment demand, but the total pressure in the aggregate may be more limited than many fear. The average global scenario suggests that total full-time-equivalent employment demand may remain flat at best compared with today. In the long term, total employment demand may be positive if one considers the fact that number of hours worked per employment unit may continue the downward trend observed over the past decade. In practice, the dynamics of employment will depend on the interplay of the five factors illustrated in Exhibit 21.

Exhibit 21. AI adoption and absorption can affect employment in five key ways

<table>
<thead>
<tr>
<th>Impact on employment by 2030, cumulative</th>
<th>% change, FTEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor displaced due to AI</td>
<td>-18</td>
</tr>
<tr>
<td>Labor gains from augmentation</td>
<td>5</td>
</tr>
<tr>
<td>Labor gains from innovation and redeployment</td>
<td>10</td>
</tr>
<tr>
<td>Labor gains from reinvestment</td>
<td>1</td>
</tr>
<tr>
<td>Labor gains from global flows</td>
<td>1</td>
</tr>
<tr>
<td>Net effect on employment</td>
<td>-1</td>
</tr>
</tbody>
</table>

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts. Figures may not sum to 100% because of rounding.

SOURCE: McKinsey Global Institute analysis

There will be job losses and gains as AI penetrates. Throughout history, technologies have displaced existing workers. The horse and carriage was replaced by the car, which was much faster. As cars became the preferred means of transport, a range of jobs were displaced, including manufacturers of wagons, carriages, harnesses, and saddles, and horse breeders, but ten times as many jobs were created in a range of new occupations including in auto manufacturing, auto dealerships, gas stations, and transportation and logistics.

History also tells us that technological innovation creates jobs in the long term. For instance, the transformative shift from agriculture to industry and then services did not lead to mass unemployment,

119 Globally, the working-age population is growing, which could pose additional challenges to the labor supply and to demand dynamics.
120 Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute, December 2017.
but to new types of jobs. One recent study found that up to 9 percent of US workers in 1980 to 2000 were employed in categories that did not exist 10 to 15 years earlier, as we noted earlier.121

Using historical trends of new jobs created to old jobs, and adjusting for a lower labor-output ratio that considers the likely labor-saving nature of AI technologies via smart automation, new jobs driven by investment in AI could contribute about 5 percent to employment by 2030. The boost to employment comes from AI expanding economic activity through innovation in products and services, higher participation in global flows, and increased demand for labor. Moreover, additional wealth created in the economy creates spillover effects, boosting labor demand. These could have a positive contribution to employment of about 12 percent.

Most jobs created by technology can be outside the technology-producing sector itself. For instance, it is estimated that the advent of the personal computer has enabled the creation of 15.8 million net new jobs in the United States since 1980—90 percent of them in nontechnology sectors.122 Nobody can be sure that this will happen with the advent of AI, but historical precedent together with the findings of the executive survey conducted for this research suggest that there is an argument for optimism. As noted, competitive pressure is likely to drive corporate investment in AI that goes beyond what is needed simply to substitute labor, and this investment can create more jobs. Of course, investment in AI needs to be managed to be effective for businesses. AI solutions need to be modeled and developed by data scientists, and workers then need to be trained to use them. Other types of AI-related jobs are already emerging, including business intelligence developers and computer vision engineers.

122 Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute, December 2017.
Chapter 5. Conclusion

The economic impact of AI is likely to be large, comparing well with other general-purpose technology in history. However, the productivity dividend of AI probably will not materialize immediately. This research finds that AI’s impact is likely to build up at an accelerated pace over time, and therefore the benefits of initial investment may not be visible in the short term. At the same time, there is a risk that a widening AI divide could open up between those who move quickly to embrace these technologies and those who do not adopt them, and also between workers who have the skills that match demand in the AI era and those who do not. The benefits of AI are likely to be distributed unequally, and if the development and deployment of these technologies are not handled effectively, inequality could deepen, fueling possible conflicts within societies.

Patience and long-term strategic thinking will be required. Policy makers will need to show bold leadership to overcome understandable discomfort among citizens about the perceived threat to their jobs as automation takes hold. Companies need to work with governments on the mammoth task of skilling and reskilling people to work with AI. Individuals need to adjust to a new world in which job turnover may be more frequent, they may have to transition to new types of employment, and they are likely to need to continually refresh and update their skills to match the needs of a dynamically changing jobs market.\(^{123}\)

Technical appendix

This research models a set of critical channels through which AI can affect the performance of firms, how this creates spillovers to other economic entities, and therefore the aggregate performance of sectors and economies.

This modeling and simulation relies on two important features. The first is the quality of data that provide us with the range of estimates of how AI is perceived by companies and of how they use these technologies economically and strategically. Two unique data sets and surveys were used to ensure that the modeling has appropriate input. The results of the modeling and simulation will change as more versatile data sets are created, and therefore the results presented in this paper may evolve. The second feature of this research is its inclusion of micro-estimates of the pace of adoption and full absorption of AI technologies. The approach taken in this analysis is based on the premise that AI should be treated as a disruptive innovation that has a strong competitive and strategic rationale for companies.124

I. Micro-to-macro approach

The simulation of the economic impact of AI takes a micro-to-macro approach with the following seven steps:

1. Integrate relevant data sources. The research uses a range of data sources including two independent corporate surveys that gauge companies’ appetite to invest in AI. Complementing these data sets is MGI’s proprietary database of 400 existing AI use cases across industries and functions used to confirm the order of magnitude of AI’s potential impact on profits with related cost and revenue drivers.125 Further, to gauge the impact on labor specifically, the analysis drew on a database developed in MGI’s future of work research in 2017, which analyzes the potential to automate individual jobs—looking at activities rather than entire jobs—in 46 countries; this work assessed 800 existing occupations and around 2,000 activities undertaken within these occupations, and the amount of effort and types of capabilities these activities require.126

2. Prepare a foundational data set from econometrics. Using the survey data detailed in Step 1, the research derives an econometric model that links firms’ decision to invest to a set of factors from literature on the diffusion of innovation. This econometric model therefore endogenizes corporate adoption based on the explicit competitive and strategic value of AI, rather than taking a set of older technology adoption curve benchmarks, as MGI research has done in the past.127 The rate of adoption and absorption that results from the econometrics of this research is faster than the average of the technology diffusion rate benchmarks collected in previous MGI research. This result is consistent with the idea that AI is strongly disruptive.128 For details, see the section on econometric modeling.

3. Simulate “gross” GDP impact. In addition to estimating corporate adoption and absorption of AI, the research models macroeconomic factors expected to be influenced by AI, namely labor augmentation, labor substitution, product and service innovation, the impact of the global value chain, and the feedback loop in the macroeconomy (that is, improved productivity leads to additional reinvestment of consumption in the economy). For the impact of AI on the global value chain, the research factors in the contribution from increased flows of data, an adjustment

124 See, for example, William J. Abernathy and James M. Utterback, “Patterns of industrial innovation,” Technology Review, 1978, Volume 80, Number 7.
125 Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.
127 For example, in Jobs lost, jobs gained: Workforce transitions in a time of automation, McKinsey Global Institute, December 2017.
128 Notes from the AI frontier: Insights from several hundred use cases, McKinsey Global Institute, April 2018.
in foreign direct investment for the reinvestment capacity of profit flows, and a trade adjustment in the effect on competition (for example, companies in a given economy will become more or less competitive depending on their openness to trade and relative AI absorption).

4 **Simulate “net” GDP impact.** Most existing research on the impact of AI tends to focus on the gross figure. This research models the net impact by taking into account a range of costs related to the implementation of AI, including investment in the deployment of systems and transition costs associated with labor, for instance the cost of labor displacement, retraining, and rehiring. The analysis also assesses negative externalities such as loss of consumption during unemployment as well as social costs incurred by paying benefits to those who are unemployed during the transition.

5 **Simulate the impact on labor markets.** The next step was linking the economic impact with the effect on labor markets, taking into account different skill and wage levels. Various segments of workers and the tasks they perform (that is, routine versus non-routine, and digital versus non-digital) will experience different shifts in employment and wages.

6 **Model country variances.** After building a foundational model based on the global average, the research modeled variances for individual 41 countries. The research identifies enablers that correlate strongly to factors driving adoption of AI, such as innovation capacity, human capital, and connectedness to the world. It also modeled specifics such as digital infrastructure, automation potential, and other macroeconomic factors including foreign direct investment intensity and unemployment benefits for each country.

7 **Undertake sensitivity analysis.** Finally, the results presented in the main body of the research are the average results for a multiple set of simulations. In order to gauge the degree of changing impact by key variables, the research includes a sensitivity analysis of selected variables.

II. **Survey data**

The research draws on two independent corporate surveys conducted by MGI and McKinsey.

Two independent surveys conducted in 2017

The first is McKinsey’s regular digital survey of around 1,600 business executives across industries worldwide on digital technologies and AI to ascertain the causes of economic impact and the likely pace of that impact. It is part of a series of global surveys on economic matters administered independently by a global research firm. Respondents are typically C-level executives who receive detailed survey insights as an incentive to respond to the questionnaire. The questionnaire is typically cross-checked for systematic correlated bias of answers in order to ensure its scientific validity. The survey universe is 12,000 firms across sectors and geographies that mimic the world economy. The typical response rate is 10 to 15 percent, which is in the high range for surveys. The digital survey received more than 1,600 valid responses, matching other surveys.

The second survey was conducted by MGI in 2017 and collected answers from more than 3,000 corporations in 14 sectors in ten countries, namely Canada, China, France, Germany, Italy, Japan, South Korea, Sweden, the United Kingdom, and the United States. These countries were chosen as the largest contributors to world GDP, are all digitally advanced, and have scaled up their investment in AI. The largest portion of answers came from the United Kingdom (12 percent), followed by the United States. The country with the fewest answers was Sweden (5 percent). Twenty-seven percent of respondents came from very small firms with fewer than ten employees, while 7 percent...

129 The online survey was conducted from June 20 to July 10, 2017, and garnered responses from 1,619 C-level executives and senior managers representing the full range of regions, industries, company sizes, and functional specialties. See How digital reinventors are pulling away from the pack, McKinsey & Company survey, October 2017.

Assessing the Economic Impact of Artificial Intelligence

came from large firms with more than 10,000 employees. The sample covers service, agriculture, and industrial sectors.

One test of consistency between these two surveys is the fact that the adoption rate for each set of AI technology is not significantly different for the ten countries that the two surveys have in common.

Testing sample validity

A set of initial tests on the sample were performed in order to ensure its relevance. While the tests are only indicative, they suggest that the base of work is relatively solid as a starting point for estimating the impact of AI on economies.

There are two key tests. The first was to test for answer bias. The second was to confirm that some robust economic relationships established in economic literature emerged in the data, too. Specifically, the analysis tested whether there were any differences in the sample of answers from the original target of firms per sector and country, and in terms of the mean difference in key financial metrics (revenue, revenue growth, profit, and profit growth) of respondents and non-respondents. The analysis used a simple one-way test per financial metric, as well as a multivariate logit model of a firm answering or not answering, linked to all the financial metrics. There were no statistical differences in answer rates. Finally, some self-reported biases were tested. In the survey, the order of questions was randomized for half of the sample, and no bias in types of responses was found. Systematic responding (either extreme, or only middle answers) was also checked for; 122 answers, or 4 percent, were spotted where there were very low differences between answers in all categories of the questionnaire (AI awareness, AI impact on profit, AI impact on employment, and AI impact on employment mix); very low is defined as being in the bottom 5 percent in terms of differences in answers across all categories). However, the econometric results are not sensitive to whether these responses were included, so the full sample was kept as the basis for the simulations.

A few important regularities uncovered in the technology innovation literature were also tested to ensure that they also emerged from the data set. For instance, there is a size bias (size of firms) in AI adoption. For this research, therefore, two indexes were built—one for digital absorption and one for AI absorption in which absorption is the proportion of digital technologies and AI used at scale by each corporation. A cross-section correlation with firm revenue and employee size was then run. The size-absorption correlation effect is especially strong for large companies with more than 10,000 employees (the coefficient of correlation with employee was $r = 0.56$ for digital and 0.63 for AI).

III. Econometrics of firms’ absorption of AI and the impact on their profit growth

1. Variety of models

In order to derive AI adoption and absorption curves, a three-step process was used. The first two steps link firms’ adoption of AI to competition and the benefits of AI, demonstrating a strong stock/dynamic effect in which the propensity to adopt at a certain time (t) is the result, among others, of the number of competitors already vested and the stock of other technologies already absorbed. The third step forecasts adoption and absorption at an aggregate level based on the econometric results and the stock effect, which conditions the dynamics at time $t+1$:

- **Step 1:** The first step was estimating a series of models and relationships at the firm level related to the adoption of AI and its absorption within workflows for four clusters of AI technologies (advanced machine learning, robotics and robotic process automation, virtual assistants, and other tools such as computer vision and language processing). The model is a logit model where the dependent variable is a binary (yes/no) variable regarding the state of adoption and

assessing the economic impact of artificial intelligence

absorption, and the set of independent variables includes a set of factors, notably including: capabilities and learning effects (current stock of AI technology already invested and current use of previous digital technologies such as cloud, mobile, and web); uncertainty of use case (as measured by firms’ perception of the business case of investing in AI, and negatively linked to the perceived importance of the technology); state of competition (adoption and absorption of AI technology by rivals); and complementary effects (for instance, adoption in other AI technologies). In general, this approach results in statistically robust relationships. The final model relationship retained was the one with the best fit (adjusted by degrees of freedom). The details of the results discussed in this appendix suggest strong competitive, stock, and scope effects.

• Step 2: The second step was to estimate a simultaneous model of profit growth and AI adoption and absorption, using the logic that if faster adoption relative to rivals brings more profit potential, then the promise of higher profit may improve the business case for AI, and therefore further push a firm to adopt. This extra step analysis uses instrumental techniques, with industry and country effects as well as past profitability as instruments. The profit growth equation is profit expectations over the next three years based on profit growth of the past three years (reflecting the fact that profit dynamics are typically path-dependent), as well as on AI adoption and absorption, and growth in AI investment. The analysis confirms that profit growth is path dependent, that is, that one percentage point of profit growth in the past three years induces 0.6 percentage point of profit-growth expectation in the next three years. There is a two-way relationship between AI adoption and absorption, and profit; there is a 15 to 20 percent uplift for early adopters versus the average, and this profit expectation further boosts adoption, but only by a marginal 3 to 5 percent, depending on the type of AI technology.

• Step 3: Based on a dynamic relationship between stock and diffusion, an econometric equation was used to simulate how adoption may spread across years. First, the current stock of AI adoption and absorption at t was considered. For t+1, the digital survey was used to estimate how digital technologies have been adopted and absorbed over time, while the regression results for each cluster of AI technology were used to estimate the marginal portion of companies to adopt AI at time t+1, based on the portion of companies already vested, the scope effect among clusters of AI technology, and the stock effect of digital technology. The process is recursive for time t+é. One caveat to note is that the adoption relationship uncovered by the econometrics is assumed to remain stable. Because this relationship essentially covers the early stage of AI, one cannot assume that this relationship will hold later. For instance, one may assume that the competitive effect is not necessarily constant and may decrease with time, as the strategic value of first-mover advantage has largely disappeared. Thus, the calibration of Step 3 may be seen as an upper bound.

2. Econometric model

The process of new technology adoption has been widely studied and debated in economic literature over the past 20 years. Applying this literature to the practice of AI adoption, the process suggests that AI is a function of a set of key predictors, outside of control effects which we note in equation 1.

\[Pr(AI) = f(\text{rivalry, digital capabilities, AI complements, expected profitability, ...}) \]

(1)

Where Pr denotes the probability by the ith-firm to adopt the cluster j of AI technology, and the probability is a function to be estimated of a vector (...), ultimately composed of the following four key predictors assumed to affect the probability to adopt:

• Rivalry. The large body of literature on game theory suggests that the marginal propensity to adopt depends on the extent of rivalry, or the portion of rivals that has already decided to adopt the technology. However, the effect of competition is not known a priori. If one assumes that the benefit to the marginal adopter from acquiring a new technology decreases with an increase in the number of previous adopters—which is the case with strong first-mover advantage and fixed market potential—then the effect of rivals’ adoption may decrease marginal incentives to
However, the diffusion of new technology often creates new markets. Furthermore, there are many more reasons that the effect of rivalry should have the reverse—positive—effect on the marginal propensity to adopt. One case in point is when network externalities are positively related to the number of users of the new technology in the industry. Being part of a network increases the awareness of the new technology and reduces the risks associated with adopting and using it. Another case is when competition is of the oligopoly type, with strategic interactions among firms. If the stealing of market share is enhanced by technology adoption, it should oblige other firms to follow. In general, the literature suggests that the rivalry is usually strongly visible and induces epidemic adoption when it comes to technology diffusion associated with disruption. We posit the same here, as we further control for expected profitability as another factor mediating the effects of rivalry of adoption patterns in our vector of predictors.

- **Digital capabilities.** It is generally assumed in the literature on the diffusion of technology that potential users of a new technology differ from one another on important dimensions so that some firms adopt more (or faster) than others. This heterogeneity is called the rank effect. One group of rank factors refers to general characteristics of firms such as location, size, and industry: larger firms tend to adopt faster, or firms exposed to international competition are more inclined to innovate and adopt new technologies. In addition to the variables in our vector above, we control in our regression for the location of company headquarters, global presence, size, and the main industry in which the company operates. One other rank factor relevant for our purposes is linked to the digital maturity of the firm. Informally, in our survey, companies report that prior investment in digital technologies is critical to investment in AI as it brings a new set of technical and operating complementarity capabilities. Likewise, we know that AI benefits may rely on the degree of access to big data and architecture, for instance, because most AI-based algorithms rely to an extent on identifying powerful hidden networks of relationships among data that are discoverable only with the right big data investment. In particular, we use two types of complementary digital technologies. The first is early-access technology such as web and mobile, and the second is advanced technologies such as cloud, big data, and advanced analytics.

- **AI complementarities.** As discussed, AI encompasses a multiple set of technologies, which we have grouped in several clusters in this research. There is clearly a point where each cluster acts as a complement to another. For example, when a firm uses AI to automate a process, it will likely combine both advanced robotics and artificial visualization (so that robots can interface with each other). This complementarity in technology diffusion has been shown as being large in the case of digital technologies.

- **Expected profitability.** Any investment decision in a new technology relies on a business case. We have discussed this loop effect above.

137 This is in line with research by Harrison and O’Neill, who state, “Companies that rush into sophisticated AI before reaching a critical mass of automated processes and structured analytics can end up paralyzed.” We expect complementary technologies such as big data and advanced analytics to have a positive effect on AI technology adoption. See Nick Harrison and Deborah O’Neill, “If your company isn’t good at analytics, it’s not ready for AI,” *Harvard Business Review*, 2017.
Equation 1 was estimated as a single logit or OLS model or as a system of two equations with, first, expected profitability, and then Equation 1 with expected profitability instrumented as described above. Equation 1 was estimated for both adoption and absorption, with the final model chosen being the one with the best fit, with removal of multicollinearity, and all misspecification tests (see Exhibit A1 for a summary of the significant effects for adoption and, for a more concrete synthesis of the results, reporting only statistically significant coefficients, Exhibit A2).

Their magnitude of impact on adoption and absorption is qualified as high, medium, or low depending on their odd ratio effect on adoption propensity. In general, the effects are marginally more significant for decisions to adopt than to absorb. Further, AI complementarities are relatively strong: companies tend to invest in the broad set of technologies; expected profitability plays a stimulating role, but the effects are lower than any other predictors. Rivalry is a pervasive effect, but it is especially visible when it concerns the adoption and absorption of advanced machine learning techniques.
Exhibit A1. Regression results for AI technology cluster corporate absorption

<table>
<thead>
<tr>
<th>%</th>
<th>Estimate</th>
<th>Standard error</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivalry</td>
<td>5.01</td>
<td>0.79</td>
<td>0.00</td>
</tr>
<tr>
<td>Digital capabilities</td>
<td>2.88</td>
<td>0.40</td>
<td>0.00</td>
</tr>
<tr>
<td>AI complementarities</td>
<td>3.31</td>
<td>0.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Expected profitability</td>
<td>0.02</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>Region: Asia–Pacific</td>
<td>-0.54</td>
<td>0.27</td>
<td>0.04</td>
</tr>
<tr>
<td>Region: Europe</td>
<td>-0.39</td>
<td>0.20</td>
<td>0.05</td>
</tr>
<tr>
<td>Revenue above $1 billion</td>
<td>0.46</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Industry: Services</td>
<td>0.87</td>
<td>0.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Industry: Retail</td>
<td>0.39</td>
<td>0.35</td>
<td>0.27</td>
</tr>
<tr>
<td>Constant</td>
<td>-6.95</td>
<td>0.55</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Advanced robotics and robotic process automation

<table>
<thead>
<tr>
<th>Key predictions</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivalry</td>
<td>-5.53</td>
</tr>
<tr>
<td>Digital capabilities</td>
<td>0.55</td>
</tr>
<tr>
<td>AI complementarities</td>
<td>2.54</td>
</tr>
<tr>
<td>Revenue above $1 billion</td>
<td>0.98</td>
</tr>
<tr>
<td>Region: Asia–Pacific</td>
<td>0.32</td>
</tr>
<tr>
<td>Region: Europe</td>
<td>0.53</td>
</tr>
<tr>
<td>Industry: Advanced electronics</td>
<td>3.25</td>
</tr>
<tr>
<td>Industry: Automotive and assembly</td>
<td>1.06</td>
</tr>
<tr>
<td>Industry: Services</td>
<td>-0.49</td>
</tr>
<tr>
<td>Industry: Chemicals</td>
<td>1.55</td>
</tr>
<tr>
<td>Industry: Financial services</td>
<td>1.06</td>
</tr>
<tr>
<td>Industry: High tech</td>
<td>0.61</td>
</tr>
<tr>
<td>Industry: Media and entertainment</td>
<td>-1.42</td>
</tr>
<tr>
<td>Industry: Metals and mining</td>
<td>1.14</td>
</tr>
<tr>
<td>Industry: Paper and forest products</td>
<td>2.49</td>
</tr>
</tbody>
</table>

Natural language and computer vision

<table>
<thead>
<tr>
<th>Key predictions</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivalry</td>
<td>1.49</td>
</tr>
<tr>
<td>Digital capabilities</td>
<td>1.31</td>
</tr>
<tr>
<td>AI complementarities</td>
<td>3.30</td>
</tr>
<tr>
<td>Revenue above $1 billion</td>
<td>0.21</td>
</tr>
<tr>
<td>Industry: Chemicals</td>
<td>-0.99</td>
</tr>
<tr>
<td>Industry: Electric power and natural gas</td>
<td>1.16</td>
</tr>
<tr>
<td>Industry: Financial services</td>
<td>-0.40</td>
</tr>
<tr>
<td>Industry: Media and entertainment</td>
<td>0.69</td>
</tr>
<tr>
<td>Constant</td>
<td>-4.32</td>
</tr>
</tbody>
</table>
Assessing the Economic impact of Artificial Intelligence

Exhibit A1. Regression results for AI technology cluster corporate absorption (continued)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Standard error</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivalry</td>
<td>0.62</td>
<td>0.21</td>
<td>0.09</td>
</tr>
<tr>
<td>Digital capabilities</td>
<td>1.04</td>
<td>0.30</td>
<td>0.00</td>
</tr>
<tr>
<td>AI complementarities</td>
<td>3.79</td>
<td>0.25</td>
<td>0.00</td>
</tr>
<tr>
<td>Revenue above $1 billion</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Region: Latin America</td>
<td>-0.71</td>
<td>0.35</td>
<td>0.04</td>
</tr>
<tr>
<td>Industry: Chemicals</td>
<td>-1.44</td>
<td>0.49</td>
<td>0.00</td>
</tr>
<tr>
<td>Industry: Electric power and natural gas</td>
<td>-0.67</td>
<td>0.43</td>
<td>0.12</td>
</tr>
<tr>
<td>Industry: Infrastructure</td>
<td>-0.87</td>
<td>0.42</td>
<td>0.04</td>
</tr>
<tr>
<td>Industry: Pharmaceuticals and medical products</td>
<td>-0.69</td>
<td>0.40</td>
<td>0.09</td>
</tr>
<tr>
<td>Industry: Retail</td>
<td>-0.71</td>
<td>0.34</td>
<td>0.04</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.15</td>
<td>0.35</td>
<td>0.00</td>
</tr>
</tbody>
</table>

SOURCE: McKinsey Global Institute analysis

Exhibit A2. Heat map of influence of AI technologies on corporate absorption

<table>
<thead>
<tr>
<th>Impact on AI uptake1</th>
<th>High1</th>
<th>Medium1</th>
<th>Low1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced machine learning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced robotics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer vision and language processing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual assistants</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Adoption2</th>
<th>Absorption3</th>
<th>Adoption2</th>
<th>Absorption3</th>
<th>Adoption2</th>
<th>Absorption3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital capabilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Absorption cloud and big data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Absorption mobile, internet, and web</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI complementarities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rivalry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI expected profitability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average uptake %</td>
<td>40</td>
<td>15</td>
<td>31</td>
<td>10</td>
<td>43</td>
<td>7</td>
</tr>
</tbody>
</table>

1 High = odd ratio > 10; medium = odd ratio > 3; low = odd ratio > 1.
2 Adoption includes both pilot, use cases not at scale, and all their cases of absorption at scale, either functional or across the whole enterprise; absorption is only adoption at scale across the whole enterprise.
3 Absorption intensity, or the ratio of absorption to adoption rate, as a measure of how adoption is scaled.

SOURCE: McKinsey Global Institute analysis
IV. Sources for country heat map

In order to assess readiness for AI, more than 25 indicators were examined. Some of the public sources used in this analysis were:

- International Telecommunication Union development index: ITU (http://www.itu.int/net4/ITU-D/idi/2017/)
- Scimago Journal and Country Rank (https://www.scimagojr.com/)
- PISA problem solving: OECD (http://www.oecd.org/pisa/)
- Global Innovation Index: INSEAD (https://www.globalinnovationindex.org/Home)
- Trade: UNCTAD, ICT Trade Map (https://www.trademap.org/Index.aspx)

V. Simulating country-level economic impact

Multiple data sets were used to simulate the impact of AI on individual countries. First, macroeconomic data for each country was used as the basis for capturing differences in the stage of development and economic structure of individual countries. Each country has a different profile in terms of GDP, share of consumption, and labor share of economic activity, for example. Second, a subset of AI-related indicators for each country that are linked to different dimensions of economic impact was taken. Different degrees of variance by country for each variable, producing a different level of impact for each country, were modeled. For example, differences in skill levels by country can have an impact on augmentation, innovation, and spillovers. Differences in R&D expenditure (an indicator of input into innovation systems), ICT business creation (an indicator that measures economic activity enabled by innovation, in particular in startups and small and medium-size enterprises), and ICT organizational model creation (an indicator to check innovative activity within firms, in particular large ones) will impact the output of innovation. Social indicators such as labor-employer cooperation can have an effect on transition costs (Exhibit A3).
Exhibit A3. Factors considered for country simulation

Macroeconomic factors
- GDP
- Per capita GDP
- Gross saving rate
- Labor share, capital ratio
- Share of consumption
- Share of corporate profit pool
- Marginal propensity to consume
- Return on capital investment

Input from country scorecard
- Automation potential total workforce (MGI)
- ICT development index (ITU/GII)
- Innovation capacity
- Investment capacity
- Gross saving (World Bank)
- AI investment (MGI survey/others)

AI impact dimension
- PISA problem-solving (OECD)
- Employment in knowledge-intensive services (GII)
- Availability of scientists and engineers (GTCI)
- ICT use (ITU/GII)
- Trade intensity of goods and services (MGI)
- Net ICT import balance (GII)
- Data flows (MGI)
- FDI flows (WIS)

1 Global Innovation Index 2017.
2 Global Talent Competitiveness Index 2018.

SOURCE: ITU; World Bank; OECD; INSEAD; WIPO; UNCTAD; Dealogic; S&P; Capital IQ; McKinsey Global Institute analysis
VI. Stress testing the economic impact of AI

Several questions were simulated to assess the sensitivities of economic impact to different variables (Exhibit A4). Six areas were tested. Of these, the rate of AI absorption and innovation gains tended to be the most sensitive to a ten-percentage-point change to baseline assumptions (a 1.1- to 3.6-percentage-point average cumulative impact on GDP by 2030); other areas tended to change moderately (0.2 to one percentage point):

1. **AI adoption and absorption levels.** It is important to gauge sensitivities of this kind so that countries can understand the impact on their economies of enabling or hampering AI adoption and absorption. A 10 percent change in adoption and absorption rates was simulated for each country by 2030—from the 48 percent current global average to 53 percent, for instance. Globally, increasing the adoption and absorption rate by this amount yields an additional 1.4 percentage points of cumulative value added by 2030.

2. **Investment in AI.** AI investment can be used not only to substitute laborious tasks, but also to develop new business models, products, and services. However, achieving a healthy return on that investment depends on a number of factors including the country’s economic context, regulatory policies, infrastructure available for incubating startups, and appropriate social safety nets (for example, providing the right support environments for startups). A 10 percent change in AI investment was simulated. Globally, this could generate an additional 0.7 percentage point of net GDP impact by 2030.

3. **Innovation capacity.** Each country has different capacity and capabilities for innovation. The impact of product and service gains and extension was simulated, specifically a 10 percent increase in the effectiveness ratio (the ratio of innovation gains to labor-force efficiency improvement). Globally, this could lead to a 0.9-percentage-point increase in GDP by 2030.

4. **Global data flows and connectedness.** The economic potential of AI also depends on the economy’s participation in global cross-border data and trade flows. Each country’s position on global connectedness was simulated, and a 10 percent increase in data flows. On a global level, the simulation yields 0.2-percentage-point change; this could have a different impact on countries depending on their current position in global connectedness.

5. **Transition costs.** Economies can avoid certain costs associated with the displacement of people if they redeploy them rather than let them go, enabling them to shift to other roles by giving them the appropriate skills. The cost of reskilling depends on how effective the program is. Effective programs retrain individuals and get them back into the workforce more quickly, cutting economic cost. The model simulated reskilling taking a 10 percent higher cost that could reduce the GDP impact by 0.3 percentage point globally.

6. **Negative externalities due to increased unemployment duration.** The duration of unemployment has significant implications for economic costs. The longer a person displaced by AI is unemployed, the longer that individual is not consuming, and any unemployment benefits also incur an economic cost. A 10 percent increase in unemployment period for each country was simulated. This would produce a negative impact on the economic potential of AI of 0.3 percentage point.
Exhibit A4. Countries have different degrees of sensitivity

<table>
<thead>
<tr>
<th>Percentage points</th>
<th>Production factors</th>
<th>Externalities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase AI adoption and absorption by 10%</td>
<td>Increase AI investment levels by 10%</td>
</tr>
<tr>
<td>Global</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Active global leaders</td>
<td>United States</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>China</td>
<td>2.6</td>
</tr>
<tr>
<td>Economies with strong comparative strengths</td>
<td>South Korea</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>Sweden</td>
<td>3.5</td>
</tr>
<tr>
<td>Economies with moderate foundations</td>
<td>Italy</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>Brazil</td>
<td>1.8</td>
</tr>
<tr>
<td>Economies that need to strengthen foundations</td>
<td>Pakistan</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>Zambia</td>
<td>1.1</td>
</tr>
</tbody>
</table>

NOTE: Numbers are simulated figures to provide directional perspectives rather than forecasts.

SOURCE: McKinsey Global Institute analysis
Assessing the Economic impact of Artificial Intelligence