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Foreword by the ITU Deputy 
Secretary-General

As artificial intelligence (AI) transforms 
industries, economies, and societies, 
its rapid growth brings significant 
environmental implications. 

Energy consumption, water usage, and 
greenhouse gas emissions associated 
with AI are rising sharply.

Electricity consumption by data centres 
increased 12 per cent each year from 
2017 to 2023, four times faster than 
global electricity growth, according to 

the IEA. As per the Greening Digital Companies 2025 report, four leading AI-focused companies 
saw their operational emissions increase by 150 per cent on average between 2020 and 2023.

But tech innovation must support, not hinder, climate action. 

Digital companies can drive decarbonization. Their technologies offer the potential to boost 
efficiencies across different industries, unlock innovative climate solutions, and address 
numerous socio-economic challenges.

To achieve this, the global tech industry needs to better understand and manage positive 
and negative impacts. The urgency of doing so has never been greater. Yet the potential for 
greening digital remains obscured by inconsistent measurement practices and fragmented 
accountability.

That is why ITU and partners worldwide, coming together for Green Digital Action, have called 
on the tech industry to take responsibility. 

With an array of governments, businesses, civil society and international organizations, we aim 
to establish common, transparent measurement criteria and reporting frameworks, promote 
and uphold green technology standards, and build a circular economy. 

The Declaration on Green Digital Action, put forward by the Azerbaijan COP29 presidency 
and ITU, has received endorsements from over 80 countries and nearly 1,800 companies and 
other non-state organizations worldwide. It calls for action to reduce environmental and climate 
impact while ensuring the benefits of connectivity extend to everyone worldwide. 

As we approach the next climate talks at COP30, we expect new national and corporate 
commitments to fully capture digital impact on climate – both negative and positive.

This report, Measuring what matters: How to assess AI’s environmental impact, reviews common 
assessment methodologies over the entire AI lifecycle. It stems from the Green Computing pillar 
of our Green Digital Action initiative, with a key sub-group on sustainable AI.

https://www.iea.org/reports/energy-and-ai/
https://www.itu.int/en/ITU-D/Environment/Pages/Publications/GDC-25.aspx
https://www.itu.int/initiatives/green-digital-action/
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We are examining implications at each phase of AI development, from initial models and 
training to real-world usages and interactions.

By identifying gaps and flagging inconsistencies in current AI impact measurement, we aim to 
provide actionable insights for AI developers, consumers, and policy-makers alike.

Together, let’s make sure AI helps us overcome the climate crisis rather than exacerbating it.

Tomas Lamanauskas  
Deputy Secretary-General 

International Telecommunication Union

Geneva, 2025
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Foreword by the Director of the ITU 
Telecommunication Standardization 
Bureau

International technical standards, developed collaboratively 
and agreed by consensus, can provide robust frameworks 
for sustainable artificial intelligence (AI). The findings of this 
report, however, reveal a field of standardization still in its 
early stages.

Current approaches to measuring AI’s environmental impact 
across key phases such as development, training, and 
deployment exhibit significant variability, data gaps, and 
heavy reliance on estimations. 

Indirect impacts from supply chains and hardware 
manufacturing, for example, are often overlooked or 
inconsistently assessed. These gaps limit transparency, 

informed decision-making, and accountability, underscoring the need for more comprehensive 
and harmonized efforts to align AI development with global sustainability goals.

ITU standards provide metrics and methodologies for climate-impact monitoring. They also help 
industry integrate emissions tracking in product-development pipelines and offer guidance to 
governments and companies on lifecycle reporting. 

The findings of this report highlight the importance of global action in three areas: 

1.	 Standardization of metrics to enable comparisons across studies and stakeholders.
2.	 Transparency on energy, water, and material footprints at every lifecycle stage.
3.	 Collaboration on sustainable AI among developers, consumers, and policy‑makers and 

regulators.

This report assesses the current landscape as a foundation for action. It offers valuable guidance 
to standards developers and all governments, companies, and researchers committed to 
integrating sustainability in every phase of AI design and deployment.

Seizo Onoe  
Director, Telecommunication Standardization Bureau 

International Telecommunication Union

Geneva, 2025
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  Executive summary

This report synthesizes key findings from a diverse range of sources, including academic literature, 
corporate sustainability initiatives, and emerging environmental tracking tools. Collectively, 
these documents provide a thorough overview of current methodologies for evaluating 
the environmental impacts of artificial intelligence (AI) systems. While several advances in 
methodology and tooling are evident, the review highlights substantial inconsistencies in how 
different lifecycle stages of AI are measured, analysed, and reported.

The primary objectives of this review were to assess:

•	 Which components of AI systems’ environmental impact are currently being measured?
•	 How accurate, transparent, and methodologically sound are these measurement practices?
•	 How actionable and relevant are these insights for decision-makers, operational teams, 

and policy-makers?

One of the most pressing issues uncovered is the widespread reliance on indirect estimates 
when assessing energy consumption during the training phase of AI models. These estimates 
often lack real-time, empirical measurement. Furthermore, equally important lifecycle stages — 
such as inference (the operational use of models), Scope 3 emissions (from supply chains and 
hardware manufacturing), and infrastructure-level impacts (such as water consumption and 
cooling) — remain significantly underexplored. This reliance on proxies introduces substantial 
data gaps, impedes accountability, and restricts consumers’ ability to make informed, sustainable 
choices about AI.

Deciphering Carbon Reporting: Exploring Scope 1, 2, and 3 Emissions (image source: link here)

To address these issues, the report uses a lifecycle-based approach, dividing the AI system's 
environmental impact into three stages: 

1.	 Training,
2.	 Inference,
3.	 Supply Chain.

For each stage, we examine measurement methodologies, identify current limitations, and 
offer recommendations for key stakeholder groups: developers (producers), users (consumers), 

https://designconformity.com/deciphering-carbon-reporting-exploring-scope-1-2-and-3-emissions/
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and policy-makers. The overarching aim is to ensure that sustainability becomes a foundational 
element — embedded from the earliest stages of AI design to its deployment and continued 
use — rather than an afterthought.

Assessing AI’s environmental impact

While progress has been made evaluating the environmental impacts of artificial intelli-
gence (AI) systems, significant inconsistencies remain in how different lifecycle stages—such 
as training, inference, and supply chain—are measured and reported. The review highlights 
a reliance on indirect estimates rather than direct measurements, especially for energy use 
during AI training, while other important factors like operational use, supply chain emis-
sions, and infrastructure impacts are often overlooked. By adopting a lifecycle approach 
and offering targeted recommendations for developers, users, and policy-makers, the 
report aims to embed sustainability into every stage of AI development and use, ensuring 
environmental responsibility is prioritized from the outset.

Key AI measurement gaps

Current methods for measuring AI’s environmental impact are fragmented and rely too much 
on estimates instead of real data.

Persistent gaps include:

•	 Over-reliance on estimates and proxies
•	 Inconsistent lifecycle boundaries and units
•	 Underreported Scope 3 and embodied emissions
•	 Opaque water use and infrastructure overheads
•	 Neglect of inference phase and user behaviour
•	 Lack of standardization across tools and methodologies
•	 Carbon-centric metrics masking broader impacts

To further advance the understanding of AI's environmental impact, future research should:

•	 Integrate lifecycle assessments
•	 Enhance transparency and accountability
•	 Keep advancing green AI practices
•	 Standardize measurement practices
•	 Improve hardware efficiency
•	 Develop real-time telemetry tools
•	 Model user-behaviour impacts
•	 Refine amortization and attribution methods
•	 Harmonize lifecycle definitions and reporting units
•	 Expand Scope 3 and supply-chain analysis
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  Background and purpose

The rapid advancement of AI across enterprise, public, and consumer sectors has raised urgent 
concerns about its environmental footprint. While high-performance AI systems offer substantial 
economic and operational benefits, they also generate significant digital emissions due to ener-
gy-intensive training, constant inference workloads, and a hardware supply chain dependent on 
resource-extractive processes.

A key industry challenge is the lack of standardized, transparent metrics to measure AI's environ-
mental impact. This gap results in inconsistent reporting and misleading assumptions and hampers 
efforts to benchmark and reduce emissions.

Advancing sustainable AI practices

As AI rapidly transforms industries, concerns about its environmental impact—includ-
ing energy-intensive training, ongoing inference workloads, and resource-heavy supply 
chains—are growing. The lack of standardized, transparent metrics for measuring AI’s 
footprint leads to inconsistent reporting and impedes progress toward sustainabil-
ity. Green Digital Action brings together public and private stakeholders to address 
these challenges. By identifying measurement gaps, developing actionable guidance, 
and promoting cross-sector collaboration, the initiative aims to provide clear insights 
into AI’s energy use, water consumption, and carbon emissions. This effort empowers 
organizations to make informed, sustainable decisions about AI deployment, aligning 
technological progress with environmental stewardship for a greener future.

To address these challenges, the ITU-led Green Digital Action (GDA) initiative and its Green 
Computing pillar formed a Sustainable AI working group of public and private sector stakehold-
ers. The group aims to identify existing measurement approaches, highlight methodological gaps, 
and develop actionable guidance for industry-wide adoption to produce quantifiable insights into 
energy consumption, water usage, and carbon emissions across AI deployment models. 

These outputs support strategic decision-making and promote collaboration across sectors to 
accelerate sustainable AI practices. By exposing misconceptions, the initiative empowers organi-
zations to make informed decisions about AI workload placement and deployment models.

Ultimately, the GDA initiative aims to open the way for a more sustainable future in AI develop-
ment and deployment, ensuring that technological advancements are aligned with environmental 
stewardship.
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Measuring what matters: How to assess AI’s environmental impact

  Key findings – AI training

i	 Observed methodologies and best practice

Energy and carbon footprint of AI training

Training large AI models demands significant computational resources, resulting in 
high energy use and notable environmental impact. While GPU power draw is often 
used to estimate energy consumption, accurate assessment must include all system 
components (CPUs, memory, networking, storage). Best practice is to use actual 
energy measurements, convert to CO₂ emissions using region-specific grid factors, 
and consider the model’s full lifecycle—including inference—for a complete carbon 
footprint.

AI training, particularly for large-scale models such as foundation models or transformers, 
requires substantial computational resources over prolonged periods. This phase represents 
a significant environmental footprint due to the concentration of energy-intensive hardware 
operations, typically utilizing GPUs, TPUs, or other accelerators in high-performance computing 
(HPC) clusters or hyperscale cloud environments.

The most widely observed method for estimating energy consumption during training leverages 
the following formula:

Energy (kWh) = GPU power draw (kW) × Training time (h) × Utilization rate

GPU Power Draw is often derived from the Thermal Design Power (TDP), but more accurate 
measurement is obtained through real-time telemetry using tools that measure actual energy 
consumption. However, it is critical to note that GPU power draw alone does not represent the 
full energy consumption of the AI training process. Modern AI training pipelines typically involve 
additional compute components including CPUs, memory modules, networking devices, and 
storage systems. These components collectively contribute to the overall energy footprint and 
are frequently undercounted when only GPU TDP is used. 

As a best practice, energy accounting should encompass the total system energy consumption, 
using observed actuals and not estimates. This energy estimate is then converted to carbon 
emissions:

CO2e (kg) = ∑ [total system energy (kWh) × Data centre PUE × Grid emission factor (kg Co2e 
per kWh)] 

Grid emissions factors are highly region-dependent and should ideally be based on marginal 
rates rather than national averages to more accurately reflect the carbon intensity of consumed 
electricity at training time. For example, data centres in France may emit far less CO₂e per kWh 
(~0.05 kg) than those in coal-dependent grids such as Poland (~0.8 kg).

A more granular approach to attributing emissions across a model's lifecycle involves 
amortization over the model’s expected usage volume:

Per inference emissions = Training Co2e / Expected number of inferences 
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This method is particularly relevant for models deployed as a service, where inference usage can 
be projected over time. However, assumptions here can significantly affect accuracy, especially 
for models with variable lifespans or deployment scales.

In addition, commonplace IT infrastructure reporting methodologies are observed as 
foundational in the reporting of AI environmental impact, for example:

Power usage effectiveness (PUE): Total facility power / IT equipment power

Hyperscale operators (e.g., Google, AWS) report PUEs of 1.1–1.3, compared to traditional data 
centres averaging 1.6 (Uptime Institute, 2023).

Water usage effectiveness (WUE): Litres of water consumed / IT equipment energy (kWh)

Emerging methodologies aim to benchmark training-phase emissions using standard workloads 
and hardware comparisons. However, no common approach has yet been observed.

ii	 Gaps

The methodologies outlined in section 1 do not capture the totality of the training phase 
environmental impact, and they are not universally applied across the existing literature.

Most of the available tools focus on measuring electricity usage during the inference phase 
of AI models, typically expressing emissions in units of mass of carbon per request, omitting 
the training phase altogether. Model training has been included in several lifetime carbon 
assessment (LCA) studies (e.g. Berthelot et al 2024; de Vries, 2023), although there is variation 
in precisely what was measured, and even in how the training phase is defined across the 
studies we reviewed.
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Key measurement gaps for AI environmental impact

Current methodologies fail to fully capture AI training's environmental footprint due to:

1.	 Over-reliance on proxies and estimates – Energy/emissions data often uses 
estimates instead of real-time telemetry, creating high uncertainty.

2.	 Inconsistent boundaries – Definitions of "training" vary significantly, frequently 
excluding R&D phases with substantial cumulative emissions.

3.	 Unstandardized units – Metrics range from emissions per token to per training 
cycle, hindering comparability and cost allocation.

4.	 Carbon myopia – Assessments overwhelmingly focus on CO₂ emissions, 
neglecting water use, e-waste, mineral depletion, and biodiversity impacts.

We identify the following barriers to measuring the environmental impacts of model training:

Over-reliance on proxies and estimates

Many studies report training emissions calculated from estimated values for model runtime, 
GPU power draw, carbon intensity factors, rather than real telemetry or direct measurement.

There is a scarcity of real data disclosed by model producers and data centre operators, meaning 
impact assessors fall back to proxy measurements and estimates for key values including, but 
not limited to, details of the hardware used, training time, amount of energy consumed and 
its carbon intensity. 

There is significant uncertainty in these estimates, which propagates through to high uncertainty 
in the final measurements. The over-reliance on proxies and estimates of unknown accuracy is 
especially acute for the embodied impacts of the training hardware, where it is typical to apply 
generic models to assumed hardware configurations.

Inconsistent "training" boundary

Training emissions are not always included in environmental assessments, despite their 
importance. Furthermore, the definition of the training phase is inconsistent across the literature.

For example, the research and development phase, which often involves multiple rounds of 
model training, refining, and ablation, is usually omitted—even though its cumulative emissions 
can exceed those of the final training run.

Only a handful of studies attempt to break down emissions using the phases of the AI 
development lifecycle (Build–Train–Run). The absence of phase-based modelling prevents 
teams from understanding where emissions are concentrated and from optimizing design-
stage decisions.
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Unstandardized units

Estimates of the environmental impacts of AI models express their results in a range of units that 
are not easily comparable or interchangeable. Different metrics are appropriate for different 
audiences. For example, units related to the model function, such as:

–	 emissions per token
–	 emissions per inference
–	 emissions per task completed
–	 emissions per user session

are useful for developers or operations teams that aim to reduce their impacts by changing 
how they interact with a model. 

On the other hand, units such as:

–	 emissions per unit time
–	 emissions per deployed instance
–	 emissions per training cycle
–	 emissions per user

are useful for model providers concerned with managing costs or regulatory compliance.

This problem is especially acute in organisations with internal carbon pricing or cost allocation 
models, where emissions need to be traceable to the workload, team, or business function 
responsible. 

Without allocatable metrics, emissions remain abstract. They cannot be embedded into 
procurement, architecture planning, or continuous improvement processes. 

Expressing the carbon emitted during the training phase in units other than total carbon 
footprint is especially challenging because there is uncertainty around how to properly amortize 
the training carbon so that it can sum with carbon from the other life cycle phases.

Carbon myopia: Overemphasis on CO2

Where training is accounted for in impact assessments, typically only carbon emissions 
are included, with other impacts such as energy consumption, water use, biodiversity loss, 
e-waste and mineral extraction only occasionally included. LCA-based studies usually express 
environmental impacts across three dimensions: global warming potential (GWP) in units of 
kgCO2e (where CO2e is carbon dioxide equivalent), abiotic depletion potential (ADP) in the 
unit kgSbe (kilograms of antimony-equivalent, with antimony being a chemical element used to 
represent raw material consumption), and primary energy (PE) in megajoule (MJ). By converting 
to carbon emissions, results can be hidden in carbon accounting methodologies e.g. offsetting 
with market-based emissions. Instead, the recommendation is to provide the base units of the 
emission sources such as energy consumption, water usage, minerals consumed etc, so that 
the carbon emission working can be shown from the base sources.
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Positive examples

The estimation of the environmental impact of Generative AI conducted by de Vries (2023), 
Berthelot et al (2024) and Huang et al (2025 offers guidance for measuring AI model emissions 
that include the training phase. However, these examples all vary in their implementation details 
and there is no clear way to choose between them. Typically, training emissions are likely to 
be most important for attributional studies, LCA studies, and periodic and ongoing reporting, 
rather than point in time assessments aim to empower consumers to make sustainable choices 
about their AI usage, because the training emissions historical and cannot be influenced by 
present and future behavioural changes, whereas inference emissions can.

Recommendations for measurement

Establishing lifecycle-based frameworks and clear boundaries for what constitutes the training 
phase is recommended for more accurate and actionable reporting. More detailed disclosures 
from model producers and data centres about the energy, hardware and time allocated to 
model training would greatly benefit environmental impact assessments. In the absence of that 
data, guidance for appropriate proxies or heuristics that can be used will help to standardize 
the measurement landscape.

Gap Implications Recommendations

Lack of standardization for 
incorporating R&D and exper-
imentation cycles into total 
emissions

Underestimates total train-
ing impact; distorts carbon 
accounting across organi-
zations

Develop a unified framework to 
include all training iterations and 
tuning steps in energy reporting, 
including transfer learning from 
previous models

Omission of infrastructure 
overheads (e.g., PUE adjust-
ments)

Incomplete lifecycle 
assessment: energy use 
appears artificially low

Include Power Usage Effec-
tiveness (PUE) factors and 
infrastructure telemetry in all 
reporting

Reliance on estimates rather 
than measured telemetry

Results in potentially 
inaccurate energy and 
emissions figures

Use actual consumption figures, 
avoid the use of proxies, esti-
mates and global averages

Absence of standardized 
amortization models for 
per-inference attribution

Hinders comparability 
across services and models

Establish sector-wide amortiza-
tion guidelines tied to expected 
usage and model lifespan

Inconsistent units
Difficult to compare differ-
ent studies

Develop consensus around stan-
dard units for specific use cases 
and guidance for converting 
between them

Inconsistent life cycle phase 
definition

Hard to compare studies 
with different phase defi-
nitions

Establish standard definitions for 
life cycle phases
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iii	 Recommendations for developers, consumers, policy-makers/
regulators

Stakeholder Recommendation Suggested Action Next Steps

Developers Implement real-time 
emissions tracking 
tools in development 
pipelines and stan-
dardise reporting and 
benchmarking with 
each model release

During training 
workflows log 
and report actual 
energy usage

Integrate emissions moni-
toring in software CI/CD 
pipelines and develop model 
incorporating lifecycle emis-
sions

Standardise and benchmark 
results with each new model 
release

Consumers Demand full-lifecycle 
carbon disclosures for 
model procurement

Require emissions 
data from vendors 
before onboarding 
models

Incorporate sustainability 
criteria in procurement and 
vendor assessment processes, 
report internally on observed 
emissions resulting from 
model usage

Regulators Define standard 
emissions accounting 
procedures, including 
amortization and infra-
structure inclusion

Issue guidelines 
aligned with ISO 
14040, ITU-T L.1410 
and CSRD for AI 
lifecycle reporting

Launch consultations with 
industry stakeholders to 
co-develop mandatory report-
ing standards
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  Key findings: AI inference / usage phase

i	 Observed methodologies and best practice

Inference, or the operational deployment of AI models, is often less energy-intensive per unit 
activity than training but may contribute more to total emissions due to high frequency and 
long-term use. Measurement at this stage is essential for service-oriented AI products, such as 
LLM-powered APIs or recommendation engines.

The foundational formula for evaluating inference energy usage is:

Energy per inference (Wh) = Total runtime energy (Wh) / Inference count

For tokenized models (e.g., large language models), a more refined metric is:

Energy per token (Wh) = (Power x Inference duration) / (Number of tokens × 3600)

Such metrics enable per-output tracking, which is increasingly useful for quantifying the 
marginal cost of generative AI tasks. Telemetry tools like can be embedded into model-serving 
infrastructure to track real-time usage.

Advanced metrics observed include:

Per query emission allocation

CO2e/query = (Inference energy + Overhead energy) × local grid emission factor / Queries 
processed

Energy performance efficacy

Energy efficiency score = Model accuracy / Energy consumed

This is valuable when comparing hardware or model architecture choices.

ii	 Gaps

The methodologies outlined in Section 1 only cover the electricity consumed by an AI model 
serving inference requests. There are several associated limitations to the methods and how 
they are applied in AI model impact assessments:

Lack of real-world measurement

Few sources attempt to measure or model emissions during real-world inference. Most rely on 
estimates or proxies rather than actual telemetry data. There is a widespread use of assumed 
model runtime, generic hardware, and standard carbon intensity factors, which introduces 
significant uncertainty.

Platform and deployment assumptions

Many papers assume that cloud deployment is automatically more sustainable, but this is rarely 
tested or broken down by region, hardware, or workload efficiency. The impact of deployment 
choices (e.g., cloud region, hardware type, workload placement) on inference emissions is not 
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well studied. Embodied carbon is rarely available for the specific hardware being used, leading 
assessors to fall back to analogues or crude models or omit it altogether.

User behaviour and consumption patterns

User behaviour (e.g., prompt length, retries, unnecessary use of large models) is a major factor 
in overall inference emissions but is almost completely absent from current analyses. There is 
no exploration of how product design or usage controls could reduce inference emissions.

Lifecycle phase definition

Inference typically considers the electricity consumed server-side to generate a response, and 
sometimes the hardware used to serve inference. However, inference can also include end-user 
devices, end-user energy consumption and the operational and embodied carbon emitted to 
transfer information between the client and server.

Overemphasis on carbon emissions

Where training is accounted for in impact assessments, typically only carbon emissions are 
included, with other impacts such as water use, biodiversity loss, e-waste and mineral extraction 
only occasionally included. LCA-based studies usually express environmental impacts across 
three dimensions: global warming potential (GWP) in units of kgCO2e (where CO2e is carbon 
dioxide equivalent), abiotic depletion potential (ADP) in kgSbe (kg antimony-equivalent,), and 
primary energy (PE) in MJ.

Inconsistent units

Similarly to the training phase, estimates of the environmental impacts of AI model during 
the inference phase express their results in a range of units that are not easily comparable or 
interchangeable. 

Positive examples 

The EcoLogits Calculator integrates with real development workflows via CodeCarbon. It 
provides developers with near-real-time visibility into the emissions impact of their workloads 
during development or model experimentation. The AI Energy Score (Huggingface/Salesforce) 
runs models on benchmark hardware and measures their energy consumption, adding them 
to a leaderboard. 

These examples indicate what good could look like: 

–	 Feedback loops embedded in coding and training environments 
–	 Configurable granularity by workload, developer, or session 
–	 Integration with Jupyter Notebooks, GitHub Actions, or ML platforms
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These types of tools represent the bridge between broad emissions estimates and actionable 
insights. However, they remain isolated examples rather than widely adopted best practice, and 
only a minority of models have been measured using these tools, meaning the majority of AI 
energy consumption remains a blind spot. These tools also only assess energy consumption.

Recommendations

Develop real-time telemetry and integration of environmental measurements into workflows, 
including inference. Create allocatable metrics (e.g., per-inference, per-token) to make emissions 
data actionable for teams, and comparable with cost data. Benchmark deployment options to 
understand the impact of different clouds, regions, and architectures on inference emissions. 
Encourage responsible design and user behaviour to optimize inference efficiency.

Gap Implications Recommendations

Minimal telemetry on 
inference load

Prevents accurate attribution of oper-
ational carbon emissions

Deploy real-time energy 
monitoring tools in serving 
infrastructure

User behaviour 
(prompt length, 
retries) not modelled

Emissions intensity can vary signifi-
cantly based on usage patterns. Lack 
of emissions feedback perpetuates 
inefficient usage patterns.

Develop behavioural usage 
models for more granular 
emissions reporting

No standardized 
benchmarks for infer-
ence across providers 
or regions

Difficult to compare service carbon 
footprints

Establish industry-wide 
inference benchmarking 
frameworks

Regulatory void
No mandates for inference-phase 
disclosures in ESG reports

Consider expanding and 
aligning CSRD’s Digital Emis-
sions Reporting standards

Inconsistent units Difficult to compare different studies

Develop consensus around 
standard units for specific 
use cases and guidance for 
converting between them

Inconsistent life cycle 
phase definition

Hard to compare studies with differ-
ent phase definitions

Establish standard definitions 
for life cycle phases
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iii	 Recommendations for developers, consumers, policy-makers/
regulators

Stakeholder Recommendation Suggested Action Next Steps

Developers Embed telemetry in 
model-serving APIs

Log inference emis-
sions per request

Add environmental observabil-
ity to monitoring dashboards 
and APIs so that consumers can 
report on their environmental 
impact

Provide guidance on best prac-
tice for the consumers usage 
of AI models, so that they can 
reduce their environmental 
footprint

Consumers Use emis-
sions-aware 
interfaces to guide 
AI usage

Provide feedback 
on high-emissions 
queries

Integrate emissions into 
user-facing analytics tools

Regulators Develop standards 
for usage-phase 
emissions reporting

Require disclosure 
of CO₂e/token or 
CO₂e/request for 
public-facing AI 
tools

Coordinate with cloud service 
providers and ML vendors to 
harmonize metrics
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  Key findings: AI supply chain and Scope 3 phase

i	 Observed methodologies and best practice

Scope 3 emissions represent upstream and downstream lifecycle impacts, including 
manufacturing, transportation, and disposal of AI infrastructure. Estimating these impacts 
requires integration of product lifecycle assessments (including lifetime carbon assessments, or 
LCAs), as well as an understanding of how life cycle stages affect Scope 3 emissions calculations 
and reporting.

The primary equation used is:

Embodied carbon (CO2e) = ∑ (Mass of components × Emission factors)

Circular economy metrics:

Recycling rate (%) = ∑ (Recycled materials / Total materials) × 100

Spend based accounting

Scope 3 emissions = ∑ (Procurement spend × Emission factor sector)

ISO 14040/14044 provides a structured framework for conducting cradle-to-grave, LCA-
based lifecycle assessments. All material & energy inputs, and output products such as waste 
and emissions are accounted for across all processes and all stages of the AI system lifecycle. 
However, in observed AI sustainability reports, the emissions from manufacturing and the 
broader supply chain are regularly missing.
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ii	 Gaps

Gap Implications Recommendations

Lack of transparency in 
hardware sourcing and 
manufacturing

Makes embodied carbon 
and social impacts invisible

Mandate supplier disclosures, 
reporting and third-party certifica-
tions

Inconsistent tracking of 
water use and e-waste

Misses key environmental 
factors, especially in water-
stressed regions

Report WUE and hardware recy-
cling metrics with operational data

Fragmented standards for 
Scope 3 assessment

Prevents comparability 
across vendors and deploy-
ments

Harmonize LCA protocols using 
ISO and ICT-specific extensions see 
also ITU‑T L.1410

Data scarcity
Inconsistent reporting on 
mining impacts (e.g. cobalt, 
lithium etc)

Develop and share open datasets

iii	 Recommendations for developers, consumers, policy-makers/
regulators

Stakeholder Recommendation Suggested Action Next Steps

Developers Adopt ISO-compliant 
LCA tools for infra-
structure

Use LCA data in supply 
chain impact models

Build a component-level 
environmental product 
declaration (EPD) system 
and integrate into an ICT 
sustainability database

Consumers Procure AI services 
with verified low 
Scope 3 impacts

Select vendors with 
circular economy certi-
fications

Include Scope 3 in 
sustainability procure-
ment criteria

Regulators Extend reporting 
standards to include 
full lifecycle and 
embodied impacts

Add Scope 3 AI-spe-
cific disclosures to 
CSRD or SEC ESG 
reporting

Develop ICT-specific 
addenda to global 
sustainability standards



13

Measuring what matters: How to assess AI’s environmental impact

  Gaps in current AI measurement approaches

Key gaps in AI environmental measurement

Current methods for measuring AI’s environmental impact are fragmented and rely 
too much on estimates instead of real data. Important impacts such as supply chain 
emissions, water use, and hardware lifecycles are often missed. Reporting standards 
and units vary, making comparisons hard. Most assessments focus narrowly on carbon, 
ignoring broader environmental effects. Standardization and broader metrics are 
urgently needed for true accountability.

The current methodologies for assessing the environmental impact of AI reveal important gaps 
that impede a holistic understanding of their environmental footprint. Despite improvements 
in measuring energy consumption, the translation of these into broader environmental metrics 
remains inconsistent. The complexity of AI programs, coupled with their rapid evolution, 
necessitates a more holistic approach to measurement that encompasses the full AI lifecycle 
and diverse environmental impacts. 

Current methodologies for assessing AI’s environmental impact remain fragmented, inconsistent, 
and incomplete. Despite emerging tools and growing awareness, key lifecycle stages and 
impact dimensions are underrepresented or poorly quantified. 

Persistent gaps include:

Over-reliance on estimates and proxies

Many assessments use forecasted values rather than measured telemetry, introducing 
uncertainty. Hardware details, energy use, and carbon intensity are often inferred, not observed.

Inconsistent lifecycle boundaries and units

Definitions of lifecycle phases (e.g., “training” vs. “development”) vary, complicating comparison. 
Impact units differ across studies (e.g., per-token vs. per-inference vs. per-session), limiting 
interoperability and practical use.

Underreported Scope 3 and embodied emissions

Supply chain impacts—such as emissions from chip fabrication, hardware transport, and e-waste—
are often excluded. Embodied carbon and mining impacts are poorly tracked and inconsistently 
reported.

Opaque water use and infrastructure overheads

Water usage data remains sparse and non-standardized, especially from hyperscale providers. 
Energy overheads like cooling (PUE) are frequently omitted from model-level assessments.
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Neglect of inference phase and user behaviour

Inference emissions are often overlooked despite their cumulative scale. Usage patterns, 
prompt retries, and inefficient deployment choices (e.g., region, hardware) are rarely factored in.

Lack of standardization across tools and methodologies

Disparate tools and reporting formats hinder comparability. There is no consensus on 
amortization methods, benchmarking protocols, or lifecycle accounting models.

Carbon-centric metrics masking broader impacts

Most studies focus narrowly on CO₂e, ignoring water, minerals, biodiversity loss, and energy 
source transparency. Results may be obscured by offsets or averaged emissions factors.
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  Key insights and next steps

The analysis of existing literature, measurement approaches, and identified gaps provides 
valuable insights into the current state of AI's environmental impact assessment and suggests 
priority areas for further research and improvement.

Insights from recent studies

•	 Energy and resource metrics: Current research emphasizes the importance of 
measuring energy consumption in megawatt-hours (MWh) and terawatt-hours 
(TWh), as well as water usage in litres per kilowatt-hour (L/kWh). However, there 
is a need for more comprehensive carbon footprint data that translates these 
metrics into CO₂-equivalent emissions.

•	 Scope 3 emissions: While acknowledged, Scope 3 emissions related to supply 
chain impacts remain underreported. This gap underscores the need for 
more empirical data to fully capture the lifecycle environmental impact of AI 
technologies.

•	 Methodological transparency: The reliance on actual corporate sustainability 
reports enhances credibility, yet future projections and water impact estimations 
require greater methodological transparency to ensure accuracy and 
comparability.

Focus areas for further studies

To address the identified gaps and 
enhance measurement practices, the next 
phase of the study proposes to focus on 
identifying key AI use cases across industries 
and selecting deployment scenarios to 
gain a better understanding of diverse 
environmental impacts. This will include 
developing a comprehensive framework 
for testing and measuring and monitoring 
energy consumption, water usage, and 
carbon emissions of AI workloads, while also 
defining variables for workload placement, 
hardware selection, and operational 
practices. 

Ongoing standardization work

ITU within ITU-T Study Group 5 “Environment, 
EMF, Climate Action and Circular Economy” is 
working on a methodology on how to assess 
the Environmental Impact of Artificial Intelli-
gence systems. 

This standard will include:

•   Overview of the impacts of AI on environ-
ment

•   Solutions and framework for evaluating the 
environmental impact of AI

•   Guidance for comparative analysis between 
two AI systems or between an AI system and a 
non-AI system.

•   Considerations on environmental scoring.

In terms of measurement and analysis, the study recommends assessing anonymized operational 
data related to AI workloads to evaluate environmental impacts across the full lifecycle, and 
conduct comparative analyses across on-premises, cloud, and hybrid environments to identify 
best practices and areas for improvement.
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Recommendations for future research

To further advance the understanding of AI's environmental impact, future research should:

•	 Integrate lifecycle assessments: Adopt a life-cycle-based system thinking approach to 
assess and design AI systems with environmental sustainability in mind

•	 Enhance transparency and accountability: Introduce specific environmental disclosure 
requirements to enhance transparency across the AI supply chain and ensure 
comprehensive reporting of energy use and emissions.

•	 Keep advancing green AI practices: Encourage research into methods for greening AI 
and promote widespread adoption of green AI principles, leveraging AI to address its 
own environmental challenges.

•	 Standardize measurement practices: Improve AI energy measurement standardization, 
advocating for direct energy measurements over proxy estimates and ensuring 
comprehensive power tracking across computing infrastructure.

•	 Improve hardware efficiency: Use more energy-efficient AI hardware to reduce emissions 
per computation and ensure reporting is transparent and without proxies.

•	 Develop real-time telemetry tools: Advance research into telemetry-based tools that 
provide fine-grained, real-time insights into emissions at the workload, session, or model 
level.

•	 Model user-behaviour impacts: Study how user interaction patterns (e.g., prompt length, 
retry frequency) affect AI energy consumption and explore how interface design can 
encourage low-emission usage.

•	 Refine amortization and attribution methods: Investigate standard models for amortizing 
training emissions and attributing environmental costs across services, use cases, and 
lifecycle phases.

•	 Harmonize lifecycle definitions and reporting units: Establish consensus on lifecycle 
phase boundaries (e.g., Build–Train–Run) and recommended units for impact reporting 
(e.g., per-token, per-session, per-task).

•	 Expand Scope 3 and supply-chain analysis: Support detailed studies of embodied 
emissions, water usage, mineral extraction, and end-of-life impacts associated with AI 
hardware, including cloud infrastructure and end-user devices.
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  Conclusion

In conclusion, this paper underscores the critical importance of addressing the identified 
gaps in measuring the environmental impact of AI. By enhancing transparency, standardizing 
measurement practices, and integrating lifecycle assessments, the industry can gain a more 
comprehensive understanding of AI's environmental footprint.

Improved measurement practices will not only enable informed decision-making for optimizing 
AI operations but also drive the adoption of sustainable AI practices across various sectors. 
Ultimately, these efforts will contribute to a more sustainable future in AI development and 
deployment, aligning technological advancements with environmental stewardship.
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  Appendix

Studies and publications relating to the measurement of AI’s environmental impact 

No Content piece name/title Link to source

1

A Beginner’s Guide to Power and 
Energy Measurement and Estima-
tion 
for Computing and Machine Learn-
ing

https://​urldefense​.com/​v3/​_​_https:/​www​.nrel​.gov/​
docs/​fy25osti/​91518​.pdf​_​_;!!LSAcJD​lP!0MR0U1G​
XxhVub78Hb​-GY​sL97y9GTau​GMCPTe7XHz​
A7afhzrl9N​Bfdf4MxqRM​23DpijUuRtKVuqG4JDQ$

2
A Dataset for Research on Water 
Sustainability

https://​dl​.acm​.org/​doi/​10​.1145/​3632775​.3661962

3
AFNOR SPEC 2314 Frugal AI refer-
ential

https://​www​.boutique​.afnor​.org/​en​-gb/​standard/​
afnor​-spec​-2314//​fa208976/​421140

4
AI threats to climate change https://​foe​.org/​wp​-content/​uploads/​2024/​03/​AI​

_Climate​_Disinfo​_v6​_031224​.pdf

5
Artificial intelligence, data, calcu-
lations: what infrastructures in a 
decarbonized world?

https://​theshiftproject​.org/​wp​-content/​uploads/​
2025/​03/​2025​_03​_06​-TSP​-Rapport​-intermediaire​
-IA​.pdf

6

Artificial intelligence, data, calcula-
tions: Key figures (World) 

https://​view​.officeapps​.live​.com/​op/​view​.aspx​?src​
=​https​%3A​%2F​%2Ftheshiftproject​.org​%2Fwp​
-content​%2Fuploads​%2F2025​%2F03​%2FVERSION​
-PROVISOIRE​-Etat​-des​-lieux​-Monde​-The​-Shift​
-Project​-1​.xlsx​&​wdOrigin​=​BROWSELINK

7
A Water Efficiency Dataset for Afri-
can Data Centers

https://​arxiv​.org/​abs/​2412​.03716

8
Digital Economy report 2024 - UN unctad​.org/​system/​files/​official​-document/​

der2024​_en​.pdf

9 Estimating the environmental 
impact of Generative-AI services 
using an LCA-based methodology

https://​www​.sciencedirect​.com/​science/​article/​pii/​
S2212827124001173​?ref​=​pdf​_download​&​fr​=​RR​-2​&​
rr​=​94750b04f9f603b1

10
EcoLogits Calculator https://​huggingface​.co/​spaces/​genai​-impact/​

ecologits​-calculator 

11
Fine-grained methodology to 
assess environmental impact of a 
set of digital services

https://​hal​.science/​hal​-04928998

12
IA Act Regulation Europe https://​eur​-lex​.europa​.eu/​legal​-content/​EN/​TXT/​

?uri​=​CELEX:​52021PC0206

13

Improving Carbon Emissions of 
Federated Large Language Model 
Inference through Classification of 
Task-Specificity

https://​hotcarbon​.org/​assets/​2024/​pdf/​
hotcarbon24​-final109​.pdf 

14
ISO normalization ISO/IEC 
42001:2023

https://​www​.iso​.org/​fr/​standard/​81230​.html

15 ITU AI & Environment report ITU AI and Environment Report.pdf

https://urldefense.com/v3/__https:/www.nrel.gov/docs/fy25osti/91518.pdf__;!!LSAcJDlP!0MR0U1GXxhVub78Hb-GYsL97y9GTauGMCPTe7XHzA7afhzrl9NBfdf4MxqRM23DpijUuRtKVuqG4JDQ$
https://urldefense.com/v3/__https:/www.nrel.gov/docs/fy25osti/91518.pdf__;!!LSAcJDlP!0MR0U1GXxhVub78Hb-GYsL97y9GTauGMCPTe7XHzA7afhzrl9NBfdf4MxqRM23DpijUuRtKVuqG4JDQ$
https://urldefense.com/v3/__https:/www.nrel.gov/docs/fy25osti/91518.pdf__;!!LSAcJDlP!0MR0U1GXxhVub78Hb-GYsL97y9GTauGMCPTe7XHzA7afhzrl9NBfdf4MxqRM23DpijUuRtKVuqG4JDQ$
https://urldefense.com/v3/__https:/www.nrel.gov/docs/fy25osti/91518.pdf__;!!LSAcJDlP!0MR0U1GXxhVub78Hb-GYsL97y9GTauGMCPTe7XHzA7afhzrl9NBfdf4MxqRM23DpijUuRtKVuqG4JDQ$
https://dl.acm.org/doi/10.1145/3632775.3661962
https://www.boutique.afnor.org/en-gb/standard/afnor-spec-2314/fa208976/421140
https://www.boutique.afnor.org/en-gb/standard/afnor-spec-2314/fa208976/421140
https://foe.org/wp-content/uploads/2024/03/AI_Climate_Disinfo_v6_031224.pdf
https://foe.org/wp-content/uploads/2024/03/AI_Climate_Disinfo_v6_031224.pdf
https://theshiftproject.org/wp-content/uploads/2025/03/2025_03_06-TSP-Rapport-intermediaire-IA.pdf
https://theshiftproject.org/wp-content/uploads/2025/03/2025_03_06-TSP-Rapport-intermediaire-IA.pdf
https://theshiftproject.org/wp-content/uploads/2025/03/2025_03_06-TSP-Rapport-intermediaire-IA.pdf
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ftheshiftproject.org%2Fwp-content%2Fuploads%2F2025%2F03%2FVERSION-PROVISOIRE-Etat-des-lieux-Monde-The-Shift-Project-1.xlsx&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ftheshiftproject.org%2Fwp-content%2Fuploads%2F2025%2F03%2FVERSION-PROVISOIRE-Etat-des-lieux-Monde-The-Shift-Project-1.xlsx&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ftheshiftproject.org%2Fwp-content%2Fuploads%2F2025%2F03%2FVERSION-PROVISOIRE-Etat-des-lieux-Monde-The-Shift-Project-1.xlsx&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ftheshiftproject.org%2Fwp-content%2Fuploads%2F2025%2F03%2FVERSION-PROVISOIRE-Etat-des-lieux-Monde-The-Shift-Project-1.xlsx&wdOrigin=BROWSELINK
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ftheshiftproject.org%2Fwp-content%2Fuploads%2F2025%2F03%2FVERSION-PROVISOIRE-Etat-des-lieux-Monde-The-Shift-Project-1.xlsx&wdOrigin=BROWSELINK
https://arxiv.org/abs/2412.03716
https://unctad.org/system/files/official-document/der2024_en.pdf
https://unctad.org/system/files/official-document/der2024_en.pdf
https://www.sciencedirect.com/science/article/pii/S2212827124001173?ref=pdf_download&fr=RR-2&rr=94750b04f9f603b1
https://www.sciencedirect.com/science/article/pii/S2212827124001173?ref=pdf_download&fr=RR-2&rr=94750b04f9f603b1
https://www.sciencedirect.com/science/article/pii/S2212827124001173?ref=pdf_download&fr=RR-2&rr=94750b04f9f603b1
https://huggingface.co/spaces/genai-impact/ecologits-calculator
https://huggingface.co/spaces/genai-impact/ecologits-calculator
https://hal.science/hal-04928998
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://hotcarbon.org/assets/2024/pdf/hotcarbon24-final109.pdf
https://hotcarbon.org/assets/2024/pdf/hotcarbon24-final109.pdf
C:\\Users\\smol8\\AppData\\:b:\\r\\personal\\thomas_basikolo_itu_int\\Documents\\2025%20AI%20and%20ML%20Activities\\Green%20Computing%20Pillar%20Activities\\Papers%20for%20Review\\ITU%20AI%20and%20Environment%20Report.pdf?csf=1&web=1&e=cXcPOT
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No Content piece name/title Link to source

16
Life-Cycle Emissions of AI Hard-
ware: A Cradle-To-Grave Approach 
and Generational Trends

Life-Cycle Emissions of AI Hardware: A Cradle-To-
Grave Approach and Generational Trends

17
Measuring trends in Artificial Intel-
ligence

https://​aiindex​.stanford​.edu/​ai​-index​-report​-2023/​ 

18
Mineral Resources impact of digital 
acceleration (AI impact)

Metal requirements in the digital sector - La librai-
rie ADEME

19
Open LLM Leaderboard https://​huggingface​.co/​spaces/​open​-llm​

-leaderboard/​open​_llm​_leaderboard​#/​

20

Recommendation ITU-T L.1410: 
Methodology for environmental life 
cycle assessments of information 
and communication technology 
goods, networks and services

https://​www​.itu​.int/​ITU​-T/​recommendations/​rec​
.aspx​?rec​=​16010

21

Recommendation ITU-T L.1480: 
Enabling the Net Zero transi-
tion: Assessing how the use of 
information and communication 
technology solutions impact 
greenhouse gas emissions of other 
sectors

https://​www​.itu​.int/​ITU​-T/​recommendations/​rec​
.aspx​?rec​=​15030

22
RIA31 Ethical and Responsible AI 
Guide

https://​ref​-ia​.isit​-europe​.org/​#

23
Standardization for AI Environ-
mental Sustainability – Towards a 
coordinated global approach

https://​www​.su​stainablea​icoalition​.org/​
wp​-content/​uploads/​Standardization​_AI​
_Sustainability​.pdf

24
SBTI methodology for IT https://​sciencebasedtargets​.org/​resources/​legacy/​

2020/​04/​GSMA​_IP​_SBT​-report​_WEB​-SINGLE​.pdf

25
Towards Green AI: Current Status 
and Future Research

[2407.10237] Towards Green AI: Current status and 
future research

26
The Environmental Impact of AI https://​www​.splunk​.com/​en​_us/​blog/​learn/​ai​

-environmental​-impact​.html

27 The growing energy footprint of 
artificial intelligence

https://​www​.cell​.com/​joule/​fulltext/​S2542​
-4351(23)00365​-3

28 The growing energy footprint of 
artificial intelligence

https://​www​.cell​.com/​joule/​fulltext/​S2542​
-4351(23)00365​-3

29 The Carbon Footprint of Machine 
Learning Training Will Plateau, 
Then Shrink

https://​ieeexplore​.ieee​.org/​document/​9810097

30 Website Carbon Impact https://​greencompute​.uk/​References/​Web/​
Website​_CarbonImpact​_Shina​.pdf 

(continued) 

https://arxiv.org/html/2502.01671v1#:~:text=Life,Grave%20Approach%20and%20Generational%20Trends
https://arxiv.org/html/2502.01671v1#:~:text=Life,Grave%20Approach%20and%20Generational%20Trends
https://aiindex.stanford.edu/ai-index-report-2023/
https://librairie.ademe.fr/economie-circulaire-et-dechets/7954-metal-requirements-in-the-digital-sector.html
https://librairie.ademe.fr/economie-circulaire-et-dechets/7954-metal-requirements-in-the-digital-sector.html
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=16010
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=16010
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=15030
https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=15030
https://ref-ia.isit-europe.org/
https://www.sustainableaicoalition.org/wp-content/uploads/Standardization_AI_Sustainability.pdf
https://www.sustainableaicoalition.org/wp-content/uploads/Standardization_AI_Sustainability.pdf
https://www.sustainableaicoalition.org/wp-content/uploads/Standardization_AI_Sustainability.pdf
https://sciencebasedtargets.org/resources/legacy/2020/04/GSMA_IP_SBT-report_WEB-SINGLE.pdf
https://sciencebasedtargets.org/resources/legacy/2020/04/GSMA_IP_SBT-report_WEB-SINGLE.pdf
https://arxiv.org/abs/2407.10237
https://arxiv.org/abs/2407.10237
https://www.splunk.com/en_us/blog/learn/ai-environmental-impact.html
https://www.splunk.com/en_us/blog/learn/ai-environmental-impact.html
https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3
https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3
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