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			As artificial intelligence (AI) transforms industries, economies, and societies, its rapid growth brings significant environmental implications. 

			Energy consumption, water usage, and greenhouse gas emissions associated with AI are rising sharply.

			Electricity consumption by data centres increased 12 per cent each year from 2017 to 2023, four times faster than global electricity growth, according to the IEA. As per the Greening Digital Companies 2025 report, four leading AI-focused companies saw their operational emissions increase by 150 per cent on average between 2020 and 2023.

			But tech innovation must support, not hinder, climate action. 

			Digital companies can drive decarbonization. Their technologies offer the potential to boost efficiencies across different industries, unlock innovative climate solutions, and address numerous socio-economic challenges.

			To achieve this, the global tech industry needs to better understand and manage positive and negative impacts. The urgency of doing so has never been greater. Yet the potential for greening digital remains obscured by inconsistent measurement practices and fragmented accountability.

			That is why ITU and partners worldwide, coming together for Green Digital Action, have called on the tech industry to take responsibility. 

			With an array of governments, businesses, civil society and international organizations, we aim to establish common, transparent measurement criteria and reporting frameworks, promote and uphold green technology standards, and build a circular economy. 

			The Declaration on Green Digital Action, put forward by the Azerbaijan COP29 presidency and ITU, has received endorsements from over 80 countries and nearly 1,800 companies and other non-state organizations worldwide. It calls for action to reduce environmental and climate impact while ensuring the benefits of connectivity extend to everyone worldwide. 

			As we approach the next climate talks at COP30, we expect new national and corporate commitments to fully capture digital impact on climate – both negative and positive.

			This report, Measuring what matters: How to assess AI’s environmental impact, reviews common assessment methodologies over the entire AI lifecycle. It stems from the Green Computing pillar of our Green Digital Action initiative, with a key sub-group on sustainable AI.

			We are examining implications at each phase of AI development, from initial models and training to real-world usages and interactions.

			By identifying gaps and flagging inconsistencies in current AI impact measurement, we aim to provide actionable insights for AI developers, consumers, and policy-makers alike.

			Together, let’s make sure AI helps us overcome the climate crisis rather than exacerbating it.

			Tomas Lamanauskas 
Deputy Secretary-General
International Telecommunication Union

			Geneva, 2025
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			International technical standards, developed collaboratively and agreed by consensus, can provide robust frameworks for sustainable artificial intelligence (AI). The findings of this report, however, reveal a field of standardization still in its early stages.

			Current approaches to measuring AI’s environmental impact across key phases such as development, training, and deployment exhibit significant variability, data gaps, and heavy reliance on estimations. 

			Indirect impacts from supply chains and hardware manufacturing, for example, are often overlooked or inconsistently assessed. These gaps limit transparency, informed decision-making, and accountability, underscoring the need for more comprehensive and harmonized efforts to align AI development with global sustainability goals.

			ITU standards provide metrics and methodologies for climate-impact monitoring. They also help industry integrate emissions tracking in product-development pipelines and offer guidance to governments and companies on lifecycle reporting. 

			The findings of this report highlight the importance of global action in three areas: 

			1.	Standardization of metrics to enable comparisons across studies and stakeholders.

			2.	Transparency on energy, water, and material footprints at every lifecycle stage.

			3.	Collaboration on sustainable AI among developers, consumers, and policy-makers and regulators.

			This report assesses the current landscape as a foundation for action. It offers valuable guidance to standards developers and all governments, companies, and researchers committed to integrating sustainability in every phase of AI design and deployment.

			Seizo Onoe 
Director, Telecommunication Standardization Bureau
International Telecommunication Union

			Geneva, 2025

		

		

		
			Executive summary

			This report synthesizes key findings from a diverse range of sources, including academic literature, corporate sustainability initiatives, and emerging environmental tracking tools. Collectively, these documents provide a thorough overview of current methodologies for evaluating the environmental impacts of artificial intelligence (AI) systems. While several advances in methodology and tooling are evident, the review highlights substantial inconsistencies in how different lifecycle stages of AI are measured, analysed, and reported.

			The primary objectives of this review were to assess:

			•	Which components of AI systems’ environmental impact are currently being measured?

			•	How accurate, transparent, and methodologically sound are these measurement practices?

			•	How actionable and relevant are these insights for decision-makers, operational teams, and policy-makers?

			One of the most pressing issues uncovered is the widespread reliance on indirect estimates when assessing energy consumption during the training phase of AI models. These estimates often lack real-time, empirical measurement. Furthermore, equally important lifecycle stages — such as inference (the operational use of models), Scope 3 emissions (from supply chains and hardware manufacturing), and infrastructure-level impacts (such as water consumption and cooling) — remain significantly underexplored. This reliance on proxies introduces substantial data gaps, impedes accountability, and restricts consumers’ ability to make informed, sustainable choices about AI.
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			To address these issues, the report uses a lifecycle-based approach, dividing the AI system's environmental impact into three stages: 

			1.	Training,

			2.	Inference,

			3.	Supply Chain.

			For each stage, we examine measurement methodologies, identify current limitations, and offer recommendations for key stakeholder groups: developers (producers), users (consumers), and policy-makers. The overarching aim is to ensure that sustainability becomes a foundational element — embedded from the earliest stages of AI design to its deployment and continued use — rather than an afterthought.

			
				Assessing AI’s environmental impact

				While progress has been made evaluating the environmental impacts of artificial intelligence (AI) systems, significant inconsistencies remain in how different lifecycle stages—such as training, inference, and supply chain—are measured and reported. The review highlights a reliance on indirect estimates rather than direct measurements, especially for energy use during AI training, while other important factors like operational use, supply chain emissions, and infrastructure impacts are often overlooked. By adopting a lifecycle approach and offering targeted recommendations for developers, users, and policy-makers, the report aims to embed sustainability into every stage of AI development and use, ensuring environmental responsibility is prioritized from the outset.

			

			Key AI measurement gaps

			Current methods for measuring AI’s environmental impact are fragmented and rely too much on estimates instead of real data.

			

			Persistent gaps include:

			•	Over-reliance on estimates and proxies

			•	Inconsistent lifecycle boundaries and units

			•	Underreported Scope 3 and embodied emissions

			•	Opaque water use and infrastructure overheads

			•	Neglect of inference phase and user behaviour

			•	Lack of standardization across tools and methodologies

			•	Carbon-centric metrics masking broader impacts

			To further advance the understanding of AI's environmental impact, future research should:

			•	Integrate lifecycle assessments

			•	Enhance transparency and accountability

			•	Keep advancing green AI practices

			•	Standardize measurement practices

			•	Improve hardware efficiency

			•	Develop real-time telemetry tools

			•	Model user-behaviour impacts

			•	Refine amortization and attribution methods

			•	Harmonize lifecycle definitions and reporting units

			•	Expand Scope 3 and supply-chain analysis

		

		

		
			Background and purpose

			The rapid advancement of AI across enterprise, public, and consumer sectors has raised urgent concerns about its environmental footprint. While high-performance AI systems offer substantial economic and operational benefits, they also generate significant digital emissions due to energy-intensive training, constant inference workloads, and a hardware supply chain dependent on resource-extractive processes.

			A key industry challenge is the lack of standardized, transparent metrics to measure AI's environmental impact. This gap results in inconsistent reporting and misleading assumptions and hampers efforts to benchmark and reduce emissions.

			
				Advancing sustainable AI practices

				As AI rapidly transforms industries, concerns about its environmental impact—including energy-intensive training, ongoing inference workloads, and resource-heavy supply chains—are growing. The lack of standardized, transparent metrics for measuring AI’s footprint leads to inconsistent reporting and impedes progress toward sustainability. Green Digital Action brings together public and private stakeholders to address these challenges. By identifying measurement gaps, developing actionable guidance, and promoting cross-sector collaboration, the initiative aims to provide clear insights into AI’s energy use, water consumption, and carbon emissions. This effort empowers organizations to make informed, sustainable decisions about AI deployment, aligning technological progress with environmental stewardship for a greener future.

			

			To address these challenges, the ITU-led Green Digital Action (GDA) initiative and its Green Computing pillar formed a Sustainable AI working group of public and private sector stakeholders. The group aims to identify existing measurement approaches, highlight methodological gaps, and develop actionable guidance for industry-wide adoption to produce quantifiable insights into energy consumption, water usage, and carbon emissions across AI deployment models. 

			These outputs support strategic decision-making and promote collaboration across sectors to accelerate sustainable AI practices. By exposing misconceptions, the initiative empowers organizations to make informed decisions about AI workload placement and deployment models.

			Ultimately, the GDA initiative aims to open the way for a more sustainable future in AI development and deployment, ensuring that technological advancements are aligned with environmental stewardship.
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			Key findings – AI training

			i	Observed methodologies and best practice

			
				Energy and carbon footprint of AI training

				Training large AI models demands significant computational resources, resulting in high energy use and notable environmental impact. While GPU power draw is often used to estimate energy consumption, accurate assessment must include all system components (CPUs, memory, networking, storage). Best practice is to use actual energy measurements, convert to CO₂ emissions using region-specific grid factors, and consider the model’s full lifecycle—including inference—for a complete carbon footprint.

			

			AI training, particularly for large-scale models such as foundation models or transformers, requires substantial computational resources over prolonged periods. This phase represents a significant environmental footprint due to the concentration of energy-intensive hardware operations, typically utilizing GPUs, TPUs, or other accelerators in high-performance computing (HPC) clusters or hyperscale cloud environments.

			The most widely observed method for estimating energy consumption during training leverages the following formula:

			Energy (kWh) = GPU power draw (kW) × Training time (h) × Utilization rate

			GPU Power Draw is often derived from the Thermal Design Power (TDP), but more accurate measurement is obtained through real-time telemetry using tools that measure actual energy consumption. However, it is critical to note that GPU power draw alone does not represent the full energy consumption of the AI training process. Modern AI training pipelines typically involve additional compute components including CPUs, memory modules, networking devices, and storage systems. These components collectively contribute to the overall energy footprint and are frequently undercounted when only GPU TDP is used. 

			As a best practice, energy accounting should encompass the total system energy consumption, using observed actuals and not estimates. This energy estimate is then converted to carbon emissions:

			CO2e (kg) = ∑ [total system energy (kWh) × Data centre PUE × Grid emission factor (kg Co2e per kWh)] 

			Grid emissions factors are highly region-dependent and should ideally be based on marginal rates rather than national averages to more accurately reflect the carbon intensity of consumed electricity at training time. For example, data centres in France may emit far less CO₂e per kWh (~0.05 kg) than those in coal-dependent grids such as Poland (~0.8 kg).

			A more granular approach to attributing emissions across a model's lifecycle involves amortization over the model’s expected usage volume:

			Per inference emissions = Training Co2e / Expected number of inferences 

			This method is particularly relevant for models deployed as a service, where inference usage can be projected over time. However, assumptions here can significantly affect accuracy, especially for models with variable lifespans or deployment scales.

			In addition, commonplace IT infrastructure reporting methodologies are observed as foundational in the reporting of AI environmental impact, for example:

			Power usage effectiveness (PUE): Total facility power / IT equipment power

			Hyperscale operators (e.g., Google, AWS) report PUEs of 1.1–1.3, compared to traditional data centres averaging 1.6 (Uptime Institute, 2023).

			Water usage effectiveness (WUE): Litres of water consumed / IT equipment energy (kWh)

			Emerging methodologies aim to benchmark training-phase emissions using standard workloads and hardware comparisons. However, no common approach has yet been observed.
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			ii	Gaps

			The methodologies outlined in section 1 do not capture the totality of the training phase environmental impact, and they are not universally applied across the existing literature.

			Most of the available tools focus on measuring electricity usage during the inference phase of AI models, typically expressing emissions in units of mass of carbon per request, omitting the training phase altogether. Model training has been included in several lifetime carbon assessment (LCA) studies (e.g. Berthelot et al 2024; de Vries, 2023), although there is variation in precisely what was measured, and even in how the training phase is defined across the studies we reviewed.

			
				Key measurement gaps for AI environmental impact

				Current methodologies fail to fully capture AI training's environmental footprint due to:

				1.	Over-reliance on proxies and estimates – Energy/emissions data often uses estimates instead of real-time telemetry, creating high uncertainty.

				2.	Inconsistent boundaries – Definitions of "training" vary significantly, frequently excluding R&D phases with substantial cumulative emissions.

				3.	Unstandardized units – Metrics range from emissions per token to per training cycle, hindering comparability and cost allocation.

				4.	Carbon myopia – Assessments overwhelmingly focus on CO₂ emissions, neglecting water use, e-waste, mineral depletion, and biodiversity impacts.

			

			We identify the following barriers to measuring the environmental impacts of model training:

			Over-reliance on proxies and estimates

			Many studies report training emissions calculated from estimated values for model runtime, GPU power draw, carbon intensity factors, rather than real telemetry or direct measurement.

			There is a scarcity of real data disclosed by model producers and data centre operators, meaning impact assessors fall back to proxy measurements and estimates for key values including, but not limited to, details of the hardware used, training time, amount of energy consumed and its carbon intensity. 

			There is significant uncertainty in these estimates, which propagates through to high uncertainty in the final measurements. The over-reliance on proxies and estimates of unknown accuracy is especially acute for the embodied impacts of the training hardware, where it is typical to apply generic models to assumed hardware configurations.

			Inconsistent "training" boundary

			Training emissions are not always included in environmental assessments, despite their importance. Furthermore, the definition of the training phase is inconsistent across the literature.

			For example, the research and development phase, which often involves multiple rounds of model training, refining, and ablation, is usually omitted—even though its cumulative emissions can exceed those of the final training run.

			Only a handful of studies attempt to break down emissions using the phases of the AI development lifecycle (Build–Train–Run). The absence of phase-based modelling prevents teams from understanding where emissions are concentrated and from optimizing design-stage decisions.

			Unstandardized units

			Estimates of the environmental impacts of AI models express their results in a range of units that are not easily comparable or interchangeable. Different metrics are appropriate for different audiences. For example, units related to the model function, such as:

			–	emissions per token

			–	emissions per inference

			–	emissions per task completed

			–	emissions per user session

			are useful for developers or operations teams that aim to reduce their impacts by changing how they interact with a model. 

			On the other hand, units such as:

			–	emissions per unit time

			–	emissions per deployed instance

			–	emissions per training cycle

			–	emissions per user

			are useful for model providers concerned with managing costs or regulatory compliance.

			This problem is especially acute in organisations with internal carbon pricing or cost allocation models, where emissions need to be traceable to the workload, team, or business function responsible. 

			Without allocatable metrics, emissions remain abstract. They cannot be embedded into procurement, architecture planning, or continuous improvement processes. 

			Expressing the carbon emitted during the training phase in units other than total carbon footprint is especially challenging because there is uncertainty around how to properly amortize the training carbon so that it can sum with carbon from the other life cycle phases.

			Carbon myopia: Overemphasis on CO2

			Where training is accounted for in impact assessments, typically only carbon emissions are included, with other impacts such as energy consumption, water use, biodiversity loss, e-waste and mineral extraction only occasionally included. LCA-based studies usually express environmental impacts across three dimensions: global warming potential (GWP) in units of kgCO2e (where CO2e is carbon dioxide equivalent), abiotic depletion potential (ADP) in the unit kgSbe (kilograms of antimony-equivalent, with antimony being a chemical element used to represent raw material consumption), and primary energy (PE) in megajoule (MJ). By converting to carbon emissions, results can be hidden in carbon accounting methodologies e.g. offsetting with market-based emissions. Instead, the recommendation is to provide the base units of the emission sources such as energy consumption, water usage, minerals consumed etc, so that the carbon emission working can be shown from the base sources.

			Positive examples

			The estimation of the environmental impact of Generative AI conducted by de Vries (2023), Berthelot et al (2024) and Huang et al (2025 offers guidance for measuring AI model emissions that include the training phase. However, these examples all vary in their implementation details and there is no clear way to choose between them. Typically, training emissions are likely to be most important for attributional studies, LCA studies, and periodic and ongoing reporting, rather than point in time assessments aim to empower consumers to make sustainable choices about their AI usage, because the training emissions historical and cannot be influenced by present and future behavioural changes, whereas inference emissions can.

			Recommendations for measurement

			Establishing lifecycle-based frameworks and clear boundaries for what constitutes the training phase is recommended for more accurate and actionable reporting. More detailed disclosures from model producers and data centres about the energy, hardware and time allocated to model training would greatly benefit environmental impact assessments. In the absence of that data, guidance for appropriate proxies or heuristics that can be used will help to standardize the measurement landscape.
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							Lack of standardization for incorporating R&D and experimentation cycles into total emissions

						
							
							Underestimates total training impact; distorts carbon accounting across organizations

						
							
							Develop a unified framework to include all training iterations and tuning steps in energy reporting, including transfer learning from previous models

						
					

					
							
							Omission of infrastructure overheads (e.g., PUE adjustments)

						
							
							Incomplete lifecycle assessment: energy use appears artificially low

						
							
							Include Power Usage Effectiveness (PUE) factors and infrastructure telemetry in all reporting

						
					

					
							
							Reliance on estimates rather than measured telemetry

						
							
							Results in potentially inaccurate energy and emissions figures

						
							
							Use actual consumption figures, avoid the use of proxies, estimates and global averages

						
					

					
							
							Absence of standardized amortization models for per-inference attribution

						
							
							Hinders comparability across services and models

						
							
							Establish sector-wide amortization guidelines tied to expected usage and model lifespan

						
					

					
							
							Inconsistent units

						
							
							Difficult to compare different studies

						
							
							Develop consensus around standard units for specific use cases and guidance for converting between them

						
					

					
							
							Inconsistent life cycle phase definition

						
							
							Hard to compare studies with different phase definitions

						
							
							Establish standard definitions for life cycle phases

						
					

				
			

			iii	Recommendations for developers, consumers, policy-makers/regulators

			
				
					
					
					
					
				
				
					
							
							Stakeholder

						
							
							Recommendation

						
							
							Suggested Action

						
							
							Next Steps

						
					

				
				
					
							
							Developers

						
							
							Implement real-time emissions tracking tools in development pipelines and standardise reporting and benchmarking with each model release

						
							
							During training workflows log and report actual energy usage

						
							
							Integrate emissions monitoring in software CI/CD pipelines and develop model incorporating lifecycle emissions

							Standardise and benchmark results with each new model release

						
					

					
							
							Consumers

						
							
							Demand full-lifecycle carbon disclosures for model procurement

						
							
							Require emissions data from vendors before onboarding models

						
							
							Incorporate sustainability criteria in procurement and vendor assessment processes, report internally on observed emissions resulting from model usage

						
					

					
							
							Regulators

						
							
							Define standard emissions accounting procedures, including amortization and infrastructure inclusion

						
							
							Issue guidelines aligned with ISO 14040, ITU-T L.1410 and CSRD for AI lifecycle reporting

						
							
							Launch consultations with industry stakeholders to co-develop mandatory reporting standards

						
					

				
			

			Key findings: AI inference / usage phase

			i	Observed methodologies and best practice

			Inference, or the operational deployment of AI models, is often less energy-intensive per unit activity than training but may contribute more to total emissions due to high frequency and long-term use. Measurement at this stage is essential for service-oriented AI products, such as LLM-powered APIs or recommendation engines.

			The foundational formula for evaluating inference energy usage is:

			Energy per inference (Wh) = Total runtime energy (Wh) / Inference count

			For tokenized models (e.g., large language models), a more refined metric is:

			Energy per token (Wh) = (Power x Inference duration) / (Number of tokens × 3600)

			Such metrics enable per-output tracking, which is increasingly useful for quantifying the marginal cost of generative AI tasks. Telemetry tools like can be embedded into model-serving infrastructure to track real-time usage.

			Advanced metrics observed include:

			Per query emission allocation

			CO2e/query = (Inference energy + Overhead energy) × local grid emission factor / Queries processed

			Energy performance efficacy

			Energy efficiency score = Model accuracy / Energy consumed

			This is valuable when comparing hardware or model architecture choices.

			ii	Gaps

			The methodologies outlined in Section 1 only cover the electricity consumed by an AI model serving inference requests. There are several associated limitations to the methods and how they are applied in AI model impact assessments:

			Lack of real-world measurement

			Few sources attempt to measure or model emissions during real-world inference. Most rely on estimates or proxies rather than actual telemetry data. There is a widespread use of assumed model runtime, generic hardware, and standard carbon intensity factors, which introduces significant uncertainty.

			Platform and deployment assumptions

			Many papers assume that cloud deployment is automatically more sustainable, but this is rarely tested or broken down by region, hardware, or workload efficiency. The impact of deployment choices (e.g., cloud region, hardware type, workload placement) on inference emissions is not well studied. Embodied carbon is rarely available for the specific hardware being used, leading assessors to fall back to analogues or crude models or omit it altogether.

			User behaviour and consumption patterns

			User behaviour (e.g., prompt length, retries, unnecessary use of large models) is a major factor in overall inference emissions but is almost completely absent from current analyses. There is no exploration of how product design or usage controls could reduce inference emissions.

			Lifecycle phase definition

			Inference typically considers the electricity consumed server-side to generate a response, and sometimes the hardware used to serve inference. However, inference can also include end-user devices, end-user energy consumption and the operational and embodied carbon emitted to transfer information between the client and server.

			Overemphasis on carbon emissions

			Where training is accounted for in impact assessments, typically only carbon emissions are included, with other impacts such as water use, biodiversity loss, e-waste and mineral extraction only occasionally included. LCA-based studies usually express environmental impacts across three dimensions: global warming potential (GWP) in units of kgCO2e (where CO2e is carbon dioxide equivalent), abiotic depletion potential (ADP) in kgSbe (kg antimony-equivalent,), and primary energy (PE) in MJ.

			Inconsistent units

			Similarly to the training phase, estimates of the environmental impacts of AI model during the inference phase express their results in a range of units that are not easily comparable or interchangeable. 

			Positive examples 

			The EcoLogits Calculator integrates with real development workflows via CodeCarbon. It provides developers with near-real-time visibility into the emissions impact of their workloads during development or model experimentation. The AI Energy Score (Huggingface/Salesforce) runs models on benchmark hardware and measures their energy consumption, adding them to a leaderboard. 

			These examples indicate what good could look like: 

			–	Feedback loops embedded in coding and training environments 

			–	Configurable granularity by workload, developer, or session 

			–	Integration with Jupyter Notebooks, GitHub Actions, or ML platforms

			These types of tools represent the bridge between broad emissions estimates and actionable insights. However, they remain isolated examples rather than widely adopted best practice, and only a minority of models have been measured using these tools, meaning the majority of AI energy consumption remains a blind spot. These tools also only assess energy consumption.

			Recommendations

			Develop real-time telemetry and integration of environmental measurements into workflows, including inference. Create allocatable metrics (e.g., per-inference, per-token) to make emissions data actionable for teams, and comparable with cost data. Benchmark deployment options to understand the impact of different clouds, regions, and architectures on inference emissions. Encourage responsible design and user behaviour to optimize inference efficiency.
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							Minimal telemetry on inference load

						
							
							Prevents accurate attribution of operational carbon emissions

						
							
							Deploy real-time energy monitoring tools in serving infrastructure

						
					

					
							
							User behaviour (prompt length, retries) not modelled

						
							
							Emissions intensity can vary significantly based on usage patterns. Lack of emissions feedback perpetuates inefficient usage patterns.

						
							
							Develop behavioural usage models for more granular emissions reporting

						
					

					
							
							No standardized benchmarks for inference across providers or regions

						
							
							Difficult to compare service carbon footprints

						
							
							Establish industry-wide inference benchmarking frameworks

						
					

					
							
							Regulatory void

						
							
							No mandates for inference-phase disclosures in ESG reports

						
							
							Consider expanding and aligning CSRD’s Digital Emissions Reporting standards

						
					

					
							
							Inconsistent units

						
							
							Difficult to compare different studies

						
							
							Develop consensus around standard units for specific use cases and guidance for converting between them

						
					

					
							
							Inconsistent life cycle phase definition

						
							
							Hard to compare studies with different phase definitions

						
							
							Establish standard definitions for life cycle phases

						
					

				
			

			iii	Recommendations for developers, consumers, policy-makers/regulators

			
				
					
					
					
					
				
				
					
							
							Stakeholder

						
							
							Recommendation

						
							
							Suggested Action

						
							
							Next Steps

						
					

				
				
					
							
							Developers

						
							
							Embed telemetry in model-serving APIs

						
							
							Log inference emissions per request

						
							
							Add environmental observability to monitoring dashboards and APIs so that consumers can report on their environmental impact

							Provide guidance on best practice for the consumers usage of AI models, so that they can reduce their environmental footprint

						
					

					
							
							Consumers

						
							
							Use emissions-aware interfaces to guide AI usage

						
							
							Provide feedback on high-emissions queries

						
							
							Integrate emissions into user-facing analytics tools

						
					

					
							
							Regulators

						
							
							Develop standards for usage-phase emissions reporting

						
							
							Require disclosure of CO₂e/token or CO₂e/request for public-facing AI tools

						
							
							Coordinate with cloud service providers and ML vendors to harmonize metrics

						
					

				
			

			Key findings: AI supply chain and Scope 3 phase

			i	Observed methodologies and best practice

			Scope 3 emissions represent upstream and downstream lifecycle impacts, including manufacturing, transportation, and disposal of AI infrastructure. Estimating these impacts requires integration of product lifecycle assessments (including lifetime carbon assessments, or LCAs), as well as an understanding of how life cycle stages affect Scope 3 emissions calculations and reporting.

			The primary equation used is:

			Embodied carbon (CO2e) = ∑ (Mass of components × Emission factors)

			Circular economy metrics:

			Recycling rate (%) = ∑ (Recycled materials / Total materials) × 100

			Spend based accounting

			Scope 3 emissions = ∑ (Procurement spend × Emission factor sector)

			ISO 14040/14044 provides a structured framework for conducting cradle-to-grave, LCA-based lifecycle assessments. All material & energy inputs, and output products such as waste and emissions are accounted for across all processes and all stages of the AI system lifecycle. However, in observed AI sustainability reports, the emissions from manufacturing and the broader supply chain are regularly missing.
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			ii	Gaps
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							Implications

						
							
							Recommendations

						
					

				
				
					
							
							Lack of transparency in hardware sourcing and manufacturing

						
							
							Makes embodied carbon and social impacts invisible

						
							
							Mandate supplier disclosures, reporting and third-party certifications

						
					

					
							
							Inconsistent tracking of water use and e-waste

						
							
							Misses key environmental factors, especially in water-stressed regions

						
							
							Report WUE and hardware recycling metrics with operational data

						
					

					
							
							Fragmented standards for Scope 3 assessment

						
							
							Prevents comparability across vendors and deployments

						
							
							Harmonize LCA protocols using ISO and ICT-specific extensions see also ITU-T L.1410

						
					

					
							
							Data scarcity

						
							
							Inconsistent reporting on mining impacts (e.g. cobalt, lithium etc)

						
							
							Develop and share open datasets

						
					

				
			

			iii	Recommendations for developers, consumers, policy-makers/regulators

			
				
					
					
					
					
				
				
					
							
							Stakeholder

						
							
							Recommendation

						
							
							Suggested Action

						
							
							Next Steps

						
					

				
				
					
							
							Developers

						
							
							Adopt ISO-compliant LCA tools for infrastructure

						
							
							Use LCA data in supply chain impact models

						
							
							Build a component-level environmental product declaration (EPD) system and integrate into an ICT sustainability database

						
					

					
							
							Consumers

						
							
							Procure AI services with verified low Scope 3 impacts

						
							
							Select vendors with circular economy certifications

						
							
							Include Scope 3 in sustainability procurement criteria

						
					

					
							
							Regulators

						
							
							Extend reporting standards to include full lifecycle and embodied impacts

						
							
							Add Scope 3 AI-specific disclosures to CSRD or SEC ESG reporting

						
							
							Develop ICT-specific addenda to global sustainability standards

						
					

				
			

			Gaps in current AI measurement approaches

			
				Key gaps in AI environmental measurement

				Current methods for measuring AI’s environmental impact are fragmented and rely too much on estimates instead of real data. Important impacts such as supply chain emissions, water use, and hardware lifecycles are often missed. Reporting standards and units vary, making comparisons hard. Most assessments focus narrowly on carbon, ignoring broader environmental effects. Standardization and broader metrics are urgently needed for true accountability.

			

			The current methodologies for assessing the environmental impact of AI reveal important gaps that impede a holistic understanding of their environmental footprint. Despite improvements in measuring energy consumption, the translation of these into broader environmental metrics remains inconsistent. The complexity of AI programs, coupled with their rapid evolution, necessitates a more holistic approach to measurement that encompasses the full AI lifecycle and diverse environmental impacts. 

			Current methodologies for assessing AI’s environmental impact remain fragmented, inconsistent, and incomplete. Despite emerging tools and growing awareness, key lifecycle stages and impact dimensions are underrepresented or poorly quantified. 

			Persistent gaps include:

			Over-reliance on estimates and proxies

			Many assessments use forecasted values rather than measured telemetry, introducing uncertainty. Hardware details, energy use, and carbon intensity are often inferred, not observed.

			Inconsistent lifecycle boundaries and units

			Definitions of lifecycle phases (e.g., “training” vs. “development”) vary, complicating comparison. Impact units differ across studies (e.g., per-token vs. per-inference vs. per-session), limiting interoperability and practical use.

			Underreported Scope 3 and embodied emissions

			Supply chain impacts—such as emissions from chip fabrication, hardware transport, and e-waste—are often excluded. Embodied carbon and mining impacts are poorly tracked and inconsistently reported.

			Opaque water use and infrastructure overheads

			Water usage data remains sparse and non-standardized, especially from hyperscale providers. Energy overheads like cooling (PUE) are frequently omitted from model-level assessments.

			Neglect of inference phase and user behaviour

			Inference emissions are often overlooked despite their cumulative scale. Usage patterns, prompt retries, and inefficient deployment choices (e.g., region, hardware) are rarely factored in.

			Lack of standardization across tools and methodologies

			Disparate tools and reporting formats hinder comparability. There is no consensus on amortization methods, benchmarking protocols, or lifecycle accounting models.

			Carbon-centric metrics masking broader impacts

			Most studies focus narrowly on CO₂e, ignoring water, minerals, biodiversity loss, and energy source transparency. Results may be obscured by offsets or averaged emissions factors.

			Key insights and next steps

			The analysis of existing literature, measurement approaches, and identified gaps provides valuable insights into the current state of AI's environmental impact assessment and suggests priority areas for further research and improvement.

			
				Insights from recent studies

				•	Energy and resource metrics: Current research emphasizes the importance of measuring energy consumption in megawatt-hours (MWh) and terawatt-hours (TWh), as well as water usage in litres per kilowatt-hour (L/kWh). However, there is a need for more comprehensive carbon footprint data that translates these metrics into CO₂-equivalent emissions.

				•	Scope 3 emissions: While acknowledged, Scope 3 emissions related to supply chain impacts remain underreported. This gap underscores the need for more empirical data to fully capture the lifecycle environmental impact of AI technologies.

				•	Methodological transparency: The reliance on actual corporate sustainability reports enhances credibility, yet future projections and water impact estimations require greater methodological transparency to ensure accuracy and comparability.

			

			
				
					
					
				
				
					
							
							Focus areas for further studies

							To address the identified gaps and enhance measurement practices, the next phase of the study proposes to focus on identifying key AI use cases across industries and selecting deployment scenarios to gain a better understanding of diverse environmental impacts. This will include developing a comprehensive framework for testing and measuring and monitoring energy consumption, water usage, and carbon emissions of AI workloads, while also defining variables for workload placement, hardware selection, and operational practices. 

						
							
							Ongoing standardization work

							ITU within ITU-T Study Group 5 “Environment, EMF, Climate Action and Circular Economy” is working on a methodology on how to assess the Environmental Impact of Artificial Intelligence systems. 

							This standard will include:

							•   Overview of the impacts of AI on environment

							•   Solutions and framework for evaluating the environmental impact of AI

							•   Guidance for comparative analysis between two AI systems or between an AI system and a non-AI system.

							•   Considerations on environmental scoring.

						
					

				
			

			In terms of measurement and analysis, the study recommends assessing anonymized operational data related to AI workloads to evaluate environmental impacts across the full lifecycle, and conduct comparative analyses across on-premises, cloud, and hybrid environments to identify best practices and areas for improvement.

			Recommendations for future research

			To further advance the understanding of AI's environmental impact, future research should:

			•	Integrate lifecycle assessments: Adopt a life-cycle-based system thinking approach to assess and design AI systems with environmental sustainability in mind

			•	Enhance transparency and accountability: Introduce specific environmental disclosure requirements to enhance transparency across the AI supply chain and ensure comprehensive reporting of energy use and emissions.

			•	Keep advancing green AI practices: Encourage research into methods for greening AI and promote widespread adoption of green AI principles, leveraging AI to address its own environmental challenges.

			•	Standardize measurement practices: Improve AI energy measurement standardization, advocating for direct energy measurements over proxy estimates and ensuring comprehensive power tracking across computing infrastructure.

			•	Improve hardware efficiency: Use more energy-efficient AI hardware to reduce emissions per computation and ensure reporting is transparent and without proxies.

			•	Develop real-time telemetry tools: Advance research into telemetry-based tools that provide fine-grained, real-time insights into emissions at the workload, session, or model level.

			•	Model user-behaviour impacts: Study how user interaction patterns (e.g., prompt length, retry frequency) affect AI energy consumption and explore how interface design can encourage low-emission usage.

			•	Refine amortization and attribution methods: Investigate standard models for amortizing training emissions and attributing environmental costs across services, use cases, and lifecycle phases.

			•	Harmonize lifecycle definitions and reporting units: Establish consensus on lifecycle phase boundaries (e.g., Build–Train–Run) and recommended units for impact reporting (e.g., per-token, per-session, per-task).

			•	Expand Scope 3 and supply-chain analysis: Support detailed studies of embodied emissions, water usage, mineral extraction, and end-of-life impacts associated with AI hardware, including cloud infrastructure and end-user devices.

			Conclusion

			In conclusion, this paper underscores the critical importance of addressing the identified gaps in measuring the environmental impact of AI. By enhancing transparency, standardizing measurement practices, and integrating lifecycle assessments, the industry can gain a more comprehensive understanding of AI's environmental footprint.

			Improved measurement practices will not only enable informed decision-making for optimizing AI operations but also drive the adoption of sustainable AI practices across various sectors. Ultimately, these efforts will contribute to a more sustainable future in AI development and deployment, aligning technological advancements with environmental stewardship.
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			Appendix

			Studies and publications relating to the measurement of AI’s environmental impact 
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							Content piece name/title

						
							
							Link to source

						
					

				
				
					
							
							1

						
							
							A Beginner’s Guide to Power and
Energy Measurement and Estimation
for Computing and Machine Learning

						
							
							https://urldefense.com/v3/__https:/www.nrel.gov/docs/fy25osti/91518.pdf__;!!LSAcJDlP!0MR0U1GXxhVub78Hb-GYsL97y9GTauGMCPTe7XHzA7afhzrl9NBfdf4MxqRM23DpijUuRtKVuqG4JDQ$

						
					

					
							
							2

						
							
							A Dataset for Research on Water Sustainability

						
							
							https://dl.acm.org/doi/10.1145/3632775.3661962

						
					

					
							
							3

						
							
							AFNOR SPEC 2314 Frugal AI referential

						
							
							https://www.boutique.afnor.org/en-gb/standard/afnor-spec-2314//fa208976/421140

						
					

					
							
							4

						
							
							AI threats to climate change

						
							
							https://foe.org/wp-content/uploads/2024/03/AI_Climate_Disinfo_v6_031224.pdf

						
					

					
							
							5

						
							
							Artificial intelligence, data, calculations: what infrastructures in a decarbonized world?

						
							
							https://theshiftproject.org/wp-content/uploads/2025/03/2025_03_06-TSP-Rapport-intermediaire-IA.pdf

						
					

					
							
							6

						
							
							Artificial intelligence, data, calculations: Key figures (World) 

						
							
							https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Ftheshiftproject.org%2Fwp-content%2Fuploads%2F2025%2F03%2FVERSION-PROVISOIRE-Etat-des-lieux-Monde-The-Shift-Project-1.xlsx&wdOrigin=BROWSELINK
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							A Water Efficiency Dataset for African Data Centers

						
							
							https://arxiv.org/abs/2412.03716
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							Digital Economy report 2024 - UN

						
							
							unctad.org/system/files/official-document/der2024_en.pdf

						
					

					
							
							9

						
							
							Estimating the environmental impact of Generative-AI services using an LCA-based methodology

						
							
							https://www.sciencedirect.com/science/article/pii/S2212827124001173?ref=pdf_download&fr=RR-2&rr=94750b04f9f603b1

						
					

					
							
							10

						
							
							EcoLogits Calculator

						
							
							https://huggingface.co/spaces/genai-impact/ecologits-calculator 
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							Fine-grained methodology to assess environmental impact of a set of digital services

						
							
							https://hal.science/hal-04928998

						
					

					
							
							12

						
							
							IA Act Regulation Europe

						
							
							https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

						
					

					
							
							13

						
							
							Improving Carbon Emissions of Federated Large Language Model Inference through Classification of Task-Specificity

						
							
							https://hotcarbon.org/assets/2024/pdf/hotcarbon24-final109.pdf 

						
					

					
							
							14

						
							
							ISO normalization ISO/IEC 42001:2023

						
							
							https://www.iso.org/fr/standard/81230.html

						
					

					
							
							15

						
							
							ITU AI & Environment report

						
							
							ITU AI and Environment Report.pdf
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							Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends

						
							
							Life-Cycle Emissions of AI Hardware: A Cradle-To-Grave Approach and Generational Trends

						
					

					
							
							17

						
							
							Measuring trends in Artificial Intelligence

						
							
							https://aiindex.stanford.edu/ai-index-report-2023/ 
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							Mineral Resources impact of digital acceleration (AI impact)

						
							
							Metal requirements in the digital sector - La librairie ADEME
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							Open LLM Leaderboard

						
							
							https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/

						
					

					
							
							20

						
							
							Recommendation ITU-T L.1410: Methodology for environmental life cycle assessments of information and communication technology goods, networks and services

						
							
							https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=16010
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							Recommendation ITU-T L.1480: Enabling the Net Zero transition: Assessing how the use of information and communication technology solutions impact greenhouse gas emissions of other sectors

						
							
							https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=15030
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							RIA31 Ethical and Responsible AI Guide

						
							
							https://ref-ia.isit-europe.org/#
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							Standardization for AI Environmental Sustainability – Towards a coordinated global approach

						
							
							https://www.sustainableaicoalition.org/wp-content/uploads/Standardization_AI_Sustainability.pdf

						
					

					
							
							24

						
							
							SBTI methodology for IT

						
							
							https://sciencebasedtargets.org/resources/legacy/2020/04/GSMA_IP_SBT-report_WEB-SINGLE.pdf
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							Towards Green AI: Current Status and Future Research

						
							
							[2407.10237] Towards Green AI: Current status and future research

						
					

					
							
							26

						
							
							The Environmental Impact of AI

						
							
							https://www.splunk.com/en_us/blog/learn/ai-environmental-impact.html
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							The growing energy footprint of artificial intelligence

						
							
							https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3
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							The growing energy footprint of artificial intelligence

						
							
							https://www.cell.com/joule/fulltext/S2542-4351(23)00365-3

						
					

					
							
							29

						
							
							The Carbon Footprint of Machine Learning Training Will Plateau, Then Shrink

						
							
							https://ieeexplore.ieee.org/document/9810097

						
					

					
							
							30

						
							
							Website Carbon Impact

						
							
							https://greencompute.uk/References/Web/Website_CarbonImpact_Shina.pdf 

						
					

					
							
							31

						
							
							White Paper on Global Artificial Intelligence Environmental Impact
(Green AI Index: A Framework for Evaluating the Environmental Impact of AI Models and Data Centres)

						
							
							https://www.greenai.institute/whitepaper/white-paper-on-global-artificial-intelligence-environmental-impact
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