RESOLUTION 122 (REV.WRC-19)

Use of the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz by high-altitude platform stations in the fixed service

The World Radiocommunication Conference (Sharm el-Sheikh, 2019),

considering

a) that the frequency band 47.2-50.2 GHz is allocated to the fixed service, the mobile service and the fixed-satellite service (FSS) on a co-primary basis;

b) that WRC-97 made provision for the operation of high-altitude platform stations (HAPS), also known as stratospheric repeaters, within the fixed service in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz;

c) that establishing a stable technical and regulatory environment will promote the use of all co-primary services in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz;

d) that Recommendation ITU-R F.1500 contains the characteristics of systems in the fixed service using HAPS in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz;

e) that, while the decision to deploy HAPS can be taken on a national basis, such deployment may affect the territory of other administrations and operators of co-primary services;

f) that the ITU Radiocommunication Sector (ITU-R) has completed studies dealing with sharing between systems using HAPS in the fixed service and other types of systems in the fixed service in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz;

g) that ITU-R has conducted studies dealing with compatibility between systems using HAPS and existing services in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz, leading to Report ITU-R F.2476;

h) that No. **5.552** urges administrations to take all practicable steps to reserve FSS use of the frequency band 47.2-49.2 GHz for feeder links for the broadcasting-satellite service (BSS) operating in the frequency band 40.5-42.5 GHz, and that ITU-R studies indicate that HAPS in the fixed service may share with such feeder links;

i) that the technical characteristics of expected BSS feeder links and FSS gateway-type stations are similar;

j) that ITU-R has updated studies on sharing between HAPS ground stations in the fixed service and the FSS, noting the negligible contribution to interference from HAPS stations to FSS space receivers,

recognizing

a) that Recommendation ITU-R SF.1843 provides information on the feasibility of HAPS systems in the fixed service sharing with the FSS;

b) that ITU-R studies have established specific power flux-density (pfd) values to be met at international borders to facilitate sharing conditions for HAPS with other types of fixed-service systems in a neighbouring country;

c) that FSS networks and systems with earth station antenna diameters of 2.5 metres or larger operating as a gateway-type station are capable of sharing with HAPS ground stations;

d) that, during periods of rain, the equivalent isotropically radiated power (e.i.r.p.) of the beam of the HAPS system suffering rain fade may be increased by a level commensurate with the level of rain fade, by up to 20 dB above the e.i.r.p. under clear-sky conditions indicated in Appendix 4,

resolves

1 that to facilitate sharing with the FSS (Earth-to-space), the maximum transmit e.i.r.p. density of a HAPS ground station shall not exceed the following levels under clear-sky conditions:

6.4	dB(W/MHz)	for	30°	$< \theta \le 90^{\circ}$
22.57	dB(W/MHz)	for	15°	$< \theta \le 30^{\circ}$
28	dB(W/MHz)	for	5°	$< \theta \le 15^{\circ}$

where θ is the HAPS ground station elevation angle in degrees (angle of arrival above the horizontal plane);

2 that the ground station antenna patterns of HAPS operating in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz shall meet the following antenna beam patterns:

$$G(\varphi) = G_{max} - 2.5 \times 10^{-3} \left(\frac{D}{\lambda}\varphi\right)^2 \qquad \text{for} \qquad 0^\circ < \varphi < \varphi_m$$
$$G(\varphi) = 39 - 5 \log (D/\lambda) - 25 \log \varphi \qquad \text{for} \qquad \varphi_m \le \varphi < 48^\circ$$
$$G(\varphi) = -3 - 5 \log (D/\lambda) \qquad \text{for} \qquad 48^\circ \le \varphi \le 180^\circ$$

where:

 G_{max} : maximum antenna gain (dBi)

 $G(\varphi)$: gain (dBi) relative to an isotropic antenna

 ϕ : off-axis angle (degrees)

 $\begin{array}{ll} D: & \text{antenna diameter} \\ \lambda: & \text{wavelength} \end{array} \right\} \text{expressed in the same units} \\ \end{array}$

$$\varphi_m = \frac{20 \lambda}{D} \sqrt{G_{\text{max}} - G_{\text{l}}} \text{ degrees}$$

 G_1 : gain of the first side lobe

= $2 + 15 \log (D/\lambda)$ (dBi);

3 that, for the purpose of protecting fixed-service systems in the territory of other administrations in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz, the pfd level per HAPS produced at the surface of the Earth in the territory of other administrations shall not exceed the following limits, developed for clear-sky conditions, unless the explicit agreement of the affected administration is provided at the time of notification of HAPS:

-141	$dB(W/(m^2 \cdot MHz))$	for	$0^{\circ} \leq \theta$	< 3°
$-141 + 2(\theta - 3)$	$dB(W/(m^2 \cdot MHz))$	for	$3^{\circ} \leq \theta$	≤ 13°
-121	$dB(W/(m^2 \cdot MHz))$	for	$13^{\circ} < \theta$	≤ 90°

where θ is the angle of the arrival of the incident wave above the horizontal plane, in degrees;

4 that, for the purpose of protecting mobile-service systems in the territory of other administrations in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz, the pfd level per HAPS produced at the surface of the Earth in the territory of other administrations shall not exceed the following limits, developed for clear-sky conditions, unless the explicit agreement of the affected administration is provided at the time of notification of HAPS:

-106	$dB(W/(m^2 \cdot MHz))$	for	$0^\circ \leq \theta$	$\leq 4^{\circ}$
$-106 + 1.2 (\theta - 4)$	$dB(W/(m^2 \cdot MHz))$	for	$4^{\circ} < \theta$	≤ 11.5°
-97	$dB(W/(m^2 \cdot MHz))$	for	$11.5^\circ < \theta$	$\leq 90^{\circ}$

where θ is the angle of arrival of the incident wave above the horizontal plane, in degrees.

The limits above take into account the 3 dB aggregate loss due to polarization mismatch, and body loss was not taken into account;

5 that, to protect radio astronomy stations operating in the frequency band 48.94-49.04 GHz from unwanted emissions of HAPS operating in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz, the separation distance between the radio astronomy station and the nadir of a HAPS platform shall exceed 50 km;

6 that administrations planning to implement a HAPS system in the frequency bands 47.2-47.5 GHz and 47.9-48.2 GHz shall notify the frequency assignments by submitting all mandatory elements of Appendix 4 to the Radiocommunication Bureau for the examination of compliance with respect to this Resolution with a view to their registration in the Master International Frequency Register,

instructs the Director of the Radiocommunication Bureau

to take all necessary measures to implement this Resolution.