The Future of Commercial Aviation and Its Spectrum Requirements

A look into the Future
Joe Cramer
The Future of Aviation

• The future of aviation is being developed today – for automobiles.
 • Concept of not driving yourself will gain acceptance.
 • Your children/grandchildren already accept this.
 • As people age and cannot drive, a driverless car provides freedom.
 • As people release “control” to a car, they will also be comfortable with not having a pilot in the aircraft.

• No Pilot on or in the aircraft.
 • How much does this actually change the way people fly and how the air transportation system is managed?
The Future of Aviation – Spectrum Requirements

• What will be the Requirements for an Air Transportation System dominated by unmanned aircraft?
 • But first, what do we need to do?
 • Keep aircraft and passengers safe – These are the 1st, 2nd and 3rd … Priorities!
 • Keep traffic moving (safely and efficiently)
 • How do we accomplish this?
 • Aircraft must be able to continue to perform these essential functions:
 • Know and provide its location, direction and speed to others (3 dimensions – Latitude/Longitude/Altitude)
 • Sense and Avoid other aircraft (respond safely and effectively) – quickly.
 • Receive commands/instructions from “pilot”/air traffic control in case of unexpected issues
 • Operate in high density traffic environments both on the ground and in the air
 • Operate safely when the “unexpected” occurs
The Future of Aviation – Spectrum Requirements

• What will be the Radio Frequency Spectrum Requirements?
 • Spectrum is critical:
 • Aircraft must be able to continue to perform their essential functions:
 • Know its location: Currently exists. Use same systems/spectrum (GLONASS/GPS, etc.)
 • Altitude: Radio Altimeter (4200-4400 MHz)
 • Direction/speed: calculated and from measurements
 • Sense and Avoid other aircraft – quickly: (960-1164 MHz for ADS-B, TCAS, DME, ACAS; 1250-1390 MHz for ARSR; 8750-8850 Doppler radar, etc.)
 • Provide to others location/direction/speed: (1030/1090 MHz for ADS-B)
 • Receive commands/instructions from “pilot”/air traffic control: (5030-5091 MHz; FSS)
 • Operate in high density traffic environments both on the ground and in the air (autonomy?)
 • Operate safely when the “unexpected” occurs (autonomy?)
How Do We Get to this Future State?

• It will not be easy!
 • It is easier to build a new house, than renovate an old house.

• What might need to change from the radio frequency spectrum standpoint:
 • Systems designed 30+ years ago could be more efficient and more resistant to harmful interference. Do we need all of them?

• What additional Communication (Command/Control), Navigation, Surveillance Systems are needed?
 • Many interests in the “old” house!
 • The landscape is changing around us, we must move faster.
 • Remember! -- Safety must still be the #1 priority.
Thank You