# 新岸线·NUFRONT

**EUHT: IMT-2020 Submission** 

Dec 2019

**START** 

### **CONTENTS**

- 1 About NUFRONT
- 2 About EUHT
- 3 EUHT Applications

Part 01 ABOUT NUFRONT



#### Nufront Technology Group



#### **Offices**

- Founded in 2004
- R&D Center and headquartered in Beijing
- Branches in Shanghai, Guangzhou, Shenzhen and Tokyo



#### **Employees**

- About 1000 employees
- More than 75% are Ph.D. and postgraduate degrees

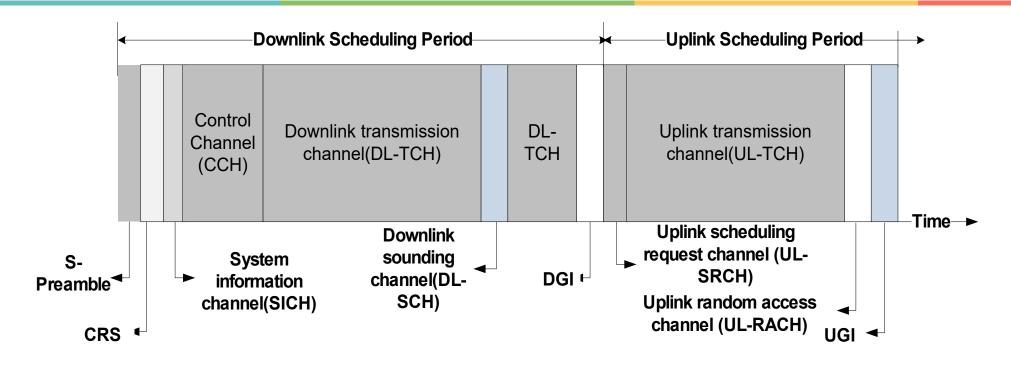


#### Focus

- Innovative Wireless Communication Systems for Vertical Market
  - PHY/MAC Protocol, SoC, Products, Deployment,...

Part 02 About EUHT

- ◆ Enhanced <u>Ultra-High</u> Throughput
- ◆ Specially designed for vertical market from the scratch
  - ◆ High throughput
  - ◆ Ultra high reliability
  - ◆ Ultra low latency
- ◆ Started R&D in 2007, Deployed in many scenarios
  - ◆ High speed train, Subway, Rural area, Vehicle, Factory ...


#### ◆ TDD OFDM

- ◆ Sub-carrier spacing: 19.53KHz, 39.0625KHz, 78.125KHz, 390.625 kHz (for mmWave band)
- ◆ CP: 1/8, 1/4
- ◆ Working frequency bands: sub-6GHz and mmWave band
- ◆ Self-contained and flexible frame structure
- ◆ Support TDMA/OFDMA/SDMA
- ♦ MIMO: up to 8 streams



#### Self-Contained and Flexible Frame Structure

#### **NUFRONT**



| S-Preamble | Sync , AGC                      | UL-SRCH | Service Request Channel |
|------------|---------------------------------|---------|-------------------------|
| CRS        | Fine Sync                       | UL-RACH | Random Access Channel   |
| SICH       | Broadcast Information           | DL-TCH  | DL Traffic Channel      |
| ССН        | Resource Allocation Information | UL-TCH  | UL Traffic Channel      |
| DL-SCH     | DL Channel Measurement          | DGI     | DL Guard Interval       |
| UL-SCH     | UL Channel Measurement          | UGI     | UL Guard Interval       |



#### Flexible and Efficient for Various Scenarios

| Scenarios       | Requirements            | Impact of System Design                  |
|-----------------|-------------------------|------------------------------------------|
| Home broadband  | Static                  | Sparse Pilot Density, Long frame length  |
| access          |                         | downlink-dominant                        |
| Wireless video  | Static                  | Sparse Pilot Density, Long frame length  |
| Wileless video  |                         | Uplink-dominant                          |
| surveillance    |                         |                                          |
| Metro video     | High vehicle speed      | Dense Pilot Density, middle frame length |
| surveillance    |                         | Uplink-dominant                          |
| HST passengers  | Very High vehicle speed | Denser Pilot Density, short frame length |
| network service |                         | Downlink-dominant;                       |

- Different requirements for Different application scenarios
- EUHT is extremely flexible and easy to adapt to given scenario
  - Frame length : 0.1ms ~ 14 ms
  - Pilot Density: 0.04ms ~ 14ms Pilot interval
  - DL/UL ratio can be fine-tuned in unit of one OFDM symbols

#### Meet the IMT-2020 Requirement

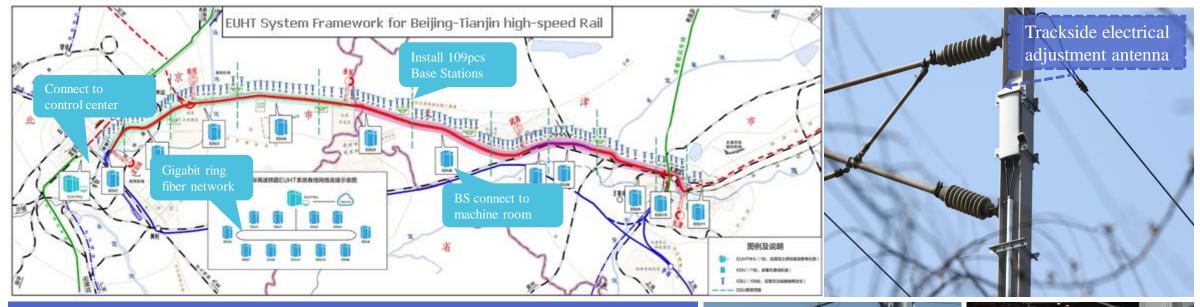
- ◆ Indoor / Dense Urban / Rural eMBB
  - ◆ both average and 5-percentile spectral efficiency surpass the requirements
- ◆ URLLC: >99.99999%
  - ◆ For evaluation configuration A (4 GHz), Channel model A
- ◆ mMTC: 135,900,382 / 625 kHz
  - ◆ For evaluation configuration A (ISD=500m) with full buffer system level simulation followed by link level simulation; Channel model A
- ◆ Mobility: up to *500km/h*

### Evaluation Results from BUPT and Tsinghua University NUFRONT

- ◆ BUPT (Beijing University of Post and Telecommunication) and Tsinghua University
  - ◆ The Top Universities in Wireless Communication in China
- ◆ Evaluation is based on M.2412 and the results show that EUHT can meet the IMT-2020 requirements in all five test environments

#### EUHT: multiple industrial and national standards

#### **NUFRONT**


- ◆ Industrial Standard for Wireless Communication (2012)
  - ◆ YD/T 2394-2012
- ◆ National Standard for Cooperative Vehicle and Road Communication (2014)
  - ◆ GB/T 31024-2014
- ◆ Industrial Standard for Realtime HD Video Surveillance transmission in Metro (2016)
  - ◆ CJ/T 500-2016
- ◆ National Standard for Wireless Communication (2018)
  - ◆ GB/T 36454-2018

# Part 03 EUHT Applications



#### EUHT Project Case — Jingjin Intercity High-Speed Rail

#### NUFRONT



- Commercial use: Jan 2017
- 120km, 109 Base stations
- 150Mbps @ 300km/h
- 100% Handover Success ratio @ 300km/h





#### EUHT Project Case — Guangzhou Metro



- Commercial use: Dec 2017
- 410Mbps @ 120km/h
- 30 channel HD-CCTV per train





#### EUHT Use Case — Beijing Vehicle Networking Park





- V2V for Platooning
  - exchange the information of vehicles with high reliability and low latency
- V2I for HD video transmission to control center
  - remote control



#### EUHT Project Case —Broadband Coverage in Rural Areas

- 2015 ~ Present
- Most cost effective solution to solve the "last mile" problem
- Single Base station coverage > 2km
- 5,000 villages, 1 million families











#### GSK CNC (Computerized Numerical Control) Factory

- May 2018
- Replace cable to support flexible manufacture
- Reduce the maintenance cost







#### EUHT Project Case — 8K Ultra-HD Live Transmission

- Jan 2019, with China Telecom
- 130~200 Mbps, low error, low latency
- Commercial use in Basketball World cup







## Thank You

END