EU FP7 Call 8 Project iJOIN
iJOIN: Interworking and JOINt Design of an Open Access and Backhaul Network Architecture for Small Cells based on Cloud Networks

iJOIN vision towards 2020 radio access technologies

February 2014

Contact: Albert Banchs, albert.banchs@imdea.org
 Peter Rost, peter.rost@neclab.eu
 Giovanna D’Aria, giovanna.daria@telecomitalia.it
The iJOIN Project

- Project number: FP7-317941
- Project Coordinator: IMDEA
 - Albert Banchs
 albert.banchs@imdea.org
- Technical Management: NEC
 - Peter Rost
 peter.rost@neclab.eu
- Funding scheme: STREP
- Objective 1.1
- Duration: 30 months
- Begin: 01 November 2012

- Industry partners
 1. NEC (UK)
 2. Telecom Italia (IT)
 3. Telefonica (ES)
 4. Sagemcom (FR)
 5. Intel Mobile Communications (FR)
 6. HP Italy Innovation Center (IT)

- Research institutes
 7. IMDEA (ES)
 8. CEA (FR)

- Universities
 9. University of Bremen (DE)
 10. University of Surrey (UK)
 11. University of Dresden (DE)
 12. Universidad III Carlos de Madrid (ES)
Outline

- Motivation and Background
- Key Concepts
 - RAN as a Service
 - Joint RAN and backhaul operation and design
- Results
- Summary
MOTIVATION AND BACKGROUND

Outline

Motivation and Background

- Key Concepts
 - RAN as a Service
 - Joint RAN and backhaul operation and design

- Results

- Summary

http://www.ict-ijoin.eu/ @ict_ijoin
Motivation

- More complex content
- More frequent usage
- Increase of mobile subscribers
- Powerful devices

Demand for 500-1000x data rates

500 – 1000x increase in overall traffic demand …

- Exponential increase of mobile data subscribers (4x 2006-10 in EU)
- Internet content more complex (Avg. website 3x size in 5y, 90% of all www are multi-media)
- Mobile devices are used more frequently (iTunes has 500k apps, adding 10k each day)
- Devices become more powerful (Increase by 100% in 2007-10 of wireless users)

Development of cellular data rates…

- Cellular peak data rate increase every 10y by factor 100
- Services evolve → design today for services of tomorrow
- Digital agenda requires this development

Cellular peak data rates over time
Introduction

Cellular peak data rates over time

Data Rates [kB/s]

100,000
10,000
1,000
100
10
1

GSM
GPRS
EDGE
HSDPA
WIMAX
LTE
LTE-A

Transistor Density

Transistor Count (10^6)

10,000
1,000
100
10
1
0,1

Intel Xeon Phi
Sparc T3
Core i7
Opteron
AMD K8
Pentium Pro
Pentium Pro

Storage Area Density

Storage Density (GBit/in²)

1000
100
10
10
1
0,1

Storage
Processing
Communication

http://www.ict-ijoin.eu/ @ict_ijn
How the “Cloud” changes the picture …

- C-RAN
- RAN-Sharing
- SDN
- SDR

- NFV
- Soft-EPC
- SDN

- SaaS
- PaaS
- IaaS

- On-demand
- Broad access
- Pooling
- Elasticity
- Measured

Mobile Network

Radio Access NW
Backhaul NW
Core NW

Virtualisation / “Cloudification”

Communication Technology

Information Technology

http://www.ict-ijoin.eu/

@ict_ijoin
Outline

- Motivation and Background

Key Concepts
- RAN as a Service
- Joint RAN and backhaul operation and design

- Results

- Summary

KEY CONCEPTS
Key enablers to satisfy data demands

Small Cells
- 50% Total cost of ownership (TCO) savings
- Four-fold increase in density until 2014
- Worth about 6.1bln USD until 2014

⇒ Small-cells are *the* option to handle higher rates and to improve energy/cost-efficiency

Centralised Processing
- C-RAN handles inter-cell interference, allows for higher utilisation and to avoid peak-provisioning
- Up to 50% energy-saving
- 20%-50% OPEX reduction, 15% CAPEX reduction
- Requires high capacity and low delay backhaul

⇒ Centralisation is an option to implement the network but requires more flexibility than today
Key Concepts

- **Flexible centralisation through RANaaS (RAN-as-a-Service)**
 - Offer RAN functionality as cloud-service
 - Simplified RAN management and flexible small-cell solutions
 - Allow to flexibly shift functions from RAN to cloud
 - Reduce complexity & cost through elastic & flexible function assignment
 - Higher energy-efficiency through computational diversity and higher utilisation

- **Joint design and optimisation of RAN and backhaul**
 - Interworking of access and backhaul network
 - Optimise for flexible centralisation
 - Optimise backhaul for small cells
 - Consider heterogeneous backhaul network (fibre and wireless)
 - Relax backhaul requirements through dynamic provisioning (“on-demand”)

[Diagram showing the relationship between Cloud Platform, Core Network, RANaaS, and various network elements like iTN, eNB, iSC, and small cell network.]
Outline

- Motivation and Background

Key Concepts
- RAN as a Service
- Joint RAN and backhaul operation and design

- Results

- Summary

RAN AS A SERVICE
Key Concepts: RAN as a Service

“Conventional” implementation of LTE

RANaaS

Flexible Functional Split

C-RAN Implementation (BB-pooling)

Centrally executed

Netw. Mgmt.

Adm./Cong. Control

RRM

MAC

PHY

RF

Centrally executed

Example: Partly centralised (inter-cell) RRM

Example: Joint Decoding

Executed at BS

Executed at RRH
Key Concepts: RANaaS Benefits

- Computational diversity
 - Exploitation of temporal and spatial traffic fluctuations
 - Efficiently use available resources, scale resource according to needs (resource pooling, elasticity)
Key Concepts: RANaaS Benefits

- Localized optimisation
 - Optimisation based on purpose, deployment, ...
 - Using software implementation rather than configuration (SON)
 - Flexible software assignment over time and space

http://www.ict-ijoin.eu/ @ict_ijoin
Outline

- Motivation and Background
- Key Concepts
 - RAN as a Service
 - Joint RAN and backhaul operation and design
- Results
- Summary

JOINT RAN AND BACKHAUL OPERATION AND DESIGN
Key Concepts: Joint RAN/BH Operation

Logical Architecture

Physical Architecture

Joint Operation and Optimization

http://www.ict-ijoin.eu/
Key Concepts: RAN-BH Interworking

- SotA:
 - Separate optimisation/operation of RAN and backhaul
 - No standardised interfaces for RAN-Backhaul interaction
- But: Immediate impact of backhaul on RAN performance

- Example: Mobility
 - Increased HO rate in dense networks
 - High backhaul latency → higher probability for RLF
 - Solutions:
 - Opportunistic handover
 - Multi-connectivity
 - Target-cell initiated HO
Key Concepts: RAN-BH Interworking

- **RANaaS**
 - Flexibly adopt degree of centralisation
 - Apply software based on RAN/BH network information

- **Backhaul**
 - Differently prioritise user and control plane traffic from RAN
 - Adapt backhaul network based on load changes in RAN

- **RAN**
 - Optimise RAN load balancing based on backhaul information
 - Provide feedback for backhaul route setup

- **Challenges**
 - Avoiding oscillation
 - Defined standard interfaces (3GPP RAN3/5)
Outline

- Motivation and Background
- Key Concepts
 - RAN as a Service
 - Joint RAN and backhaul operation and design

Results

- Summary

RESULTS
Main Objectives: Quantitative Measures

Main Objectives:

- **Energy-efficiency:** J/bit < 5%
- **Cost-efficiency:** €/bit < 10%
- **Utilisation efficiency:** U > 75%
- **Area throughput efficiency:** R = 100x

Demand increases by 1000x →
Area throughput efficiency must increase 100x

Combat over-provisioning →
Increased utilization to 75+%

Energy demand must remain almost constant → Energy-consumption per bit 1%-5%

Revenue per user remains constant but data per user 50-100x → Cost-per-bit 1%-5%

http://www.ict-ijoin.eu/
@ict_ijoin
Results: Logical Architecture
Results: Common Scenarios (CS)

- iJOIN Common Scenarios (CS):
 - Outdoor focus:
 - CS1: Dense Hotspot in a Stadium
 - CS2: Dense Hotspot in a Square
 - CS3: Wide-Area continuous coverage
 - Indoor focus:
 - CS4: Dense Hotspot in an Airport / Shopping Mall

http://www.ict-ijoin.eu/
@ict_ijoin
Results: Physical Architecture

CS1: Dense Hotspot in a Stadium

CS2: Dense Hotspot in a Square

CS3: Wide-area continuous coverage

CS4: Dense Hotspot in an Airport/Shopping Mall

http://www.ict-ijoin.eu/
@ict_ijoin
Motivation and Background

Key Concepts
- RAN as a Service
- Joint RAN and backhaul operation and design

Results

Summary

SUMMARY
Summary

New paradigms in mobile networks
- Ultra dense heterogeneous networks
- Cloud computing applied to radio access and core network
- Programmable networks, e.g. application of Software Defined Networking to mobile networks
- System-optimization in focus

New opportunities
- Deployment of commodity hardware for RAN processing
- Mobile communication apps
- Dedicated purpose deployments and configurations
Thank you for your attention!