Applied Digital Broadcast Planning and Implementing
Essential in planning Maps

Aerial View

DEM View
Essential in planning Maps

Clutter View

Solutions in Radiocommunications
Clutter definable options

<table>
<thead>
<tr>
<th>Clutter Code</th>
<th>Name</th>
<th>Attenuation (dB)</th>
<th>Clutter Height (m)</th>
<th>Reflection Factor</th>
<th>Surface Factor</th>
<th>Diffusion Factor</th>
<th>Station Width (m)</th>
<th>Station Height (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

* Used for coordination ** Used for sub-layer

Clutter parameters include:
- Clutter Code
- Name
- Attenuation (dB)
- Clutter Height (m)
- Reflection Factor
- Surface Factor
- Diffusion Factor
- Station Width (m)
- Station Height (m)

ATDI
Solutions in Radiocommunications
Coverage View 3D/2D
Percentage Layer
Full 3D navigation
Case in planning digital Broadcasting

BBC DAB
Planning for Mauritius Island
Planning France Digital Broadcasting
DAB with FM Broadcasting

The BBC Network
- 4 Radio Channels in Stereo coded with 192kbits/s
- 1 Radio Channel in Mono coded with 96kbits/s
- Speech-based programs at lower rates (typ. <96kbits/s)
- 12.5MHz of Band III allocated to DAB (217.5-230MHz)
BBC network availability

Key Concept

- MUSICAM - MPEG Layer 2
- OFDM
- FEC CODING
- GAP FILLERS
- SFN
- FLEXIBILITY

<table>
<thead>
<tr>
<th>Time</th>
<th>0000 - 1059</th>
<th>1100 - 1859</th>
<th>1900 - 2359</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio 1</td>
<td></td>
<td>Radio 2</td>
<td>Radio 3</td>
</tr>
<tr>
<td>(192 Kbit/s)</td>
<td></td>
<td>(192 Kbit/s)</td>
<td>(192 Kbit/s)</td>
</tr>
<tr>
<td>Radio 4</td>
<td></td>
<td>Radio 5</td>
<td></td>
</tr>
<tr>
<td>(192 Kbit/s)</td>
<td></td>
<td>(96 Kbit/s)</td>
<td></td>
</tr>
<tr>
<td>Unused</td>
<td>5 Live Sport+ (80 Kbit/s)</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>Unused</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parliament</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- currently</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unavailable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>World Service</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(80 Kbit/s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBC Xtra</td>
<td></td>
<td>BBC Xtra</td>
<td>BBC Xtra</td>
</tr>
<tr>
<td>(192 Kbit/s)</td>
<td></td>
<td>(112 Kbit/s)</td>
<td>(192 Kbit/s)</td>
</tr>
</tbody>
</table>
BBC Implementation

4 MODES OF OPERATION (I TO IV):

- Mode I: for terrestrial SFN (greater site spacing)
- Mode II: for single-station broadcast and hybrid networks up to 1.5GHz
- Mode III: satellite broadcast and earth dispatch, up to 3GHz
- Mode IV: for optimal SFN in L band

SEVERAL FREQUENCY RANGES (UHF/VHF/L Band)
Feasibility of SFN and gap fillers
Simple Quasi-Omni RX Antennas
BBC DAB Network

Radio freq properties

<table>
<thead>
<tr>
<th>Mode</th>
<th>Mode I</th>
<th>Mode II</th>
<th>Mode III</th>
<th>Mode IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>1.536MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of carriers</td>
<td>1536</td>
<td>384</td>
<td>192</td>
<td>768</td>
</tr>
<tr>
<td>Guard Interval</td>
<td>246µs</td>
<td>62µs</td>
<td>31µs</td>
<td>123µs</td>
</tr>
<tr>
<td>Distance between TX in SFN</td>
<td><=60km</td>
<td><=20km</td>
<td><=10km</td>
<td><=30km</td>
</tr>
<tr>
<td>Carrier spacing</td>
<td>1kHz</td>
<td>4kHz</td>
<td>8kHz</td>
<td>2kHz</td>
</tr>
</tbody>
</table>

MUSICAM Audio Coding (8 to 384kbits/s), sampling @48 or 24kHz

Scrambling

FEC + Time & Frequency interleaving

COFDM up to 1536 carriers, spaced 1kHz
Example of DVB-T network planning
Mauritius island (Indian ocean)
Planning a new digital broadcast
(Step 1/4)

- One of the existing analog network is « duplicated »:
- Same sites:
 - 14 sites for the analog program
 - Only 7 for the digital multiplex
- Same transmitting antennas
- Same powers
- Same frequencies
Planning a new digital broadcast
(Step 2/4)

- The coverage of the digital transmitters are computed.
- The powers of the digital transmitters are adjusted to ensure the coverage of the whole island.
- A lower power is required:
 - Typically 1000 W for the analog program.
 - Only 100 W for the digital multiplex (lower thresholds).
Planning a new digital broadcast
(Step 3/4)

- A channel N-1 or N+1 is randomly attributed per site.
- Analog program:
 - channel 27 of the analog frequency plan
- Digital Multiplex:
 - channel 26 or channel 28 of the digital frequency plan
- Digital signals are extremely robust
- Hence interferences caused by digital signals on analog signals
Planning a new digital broadcast
(Step 3/4)

- The digital transmitters causing interferences are isolated.
- They are transferred from channel N-1 to channel N+1 or vice versa.
- It is then possible to avoid almost any harmful interference.
- The new network is now being tested.
CSA’s requirement in France

- 6 multiplex (= 6 frequencies)
- 5 or 6 programs per multiplex

33 programs

Reserved for state and local channels

22 programs left to be attributed to the candidates
CSA’s requirement in France

- 29 sites located around the main cities in France
- On each site, 6 transmitters (1 per multiplex)
- For each one of the 174 transmitters, the main technical characteristics:

For each one of the 174 transmitters, an antenna pattern
CSA’s requirement in France

- 28 sites + 1 in Corsica
- 6 transmitters on each site
- Sites located around the main cities
- The East and North parts of France have few transmitters
- Problems of coordination with neighboring countries
Present Analogue Network

- The existing analog network
 - 1,000 mains transmitters
 - 11,000 sub or re-transmitters
Response to technical specifications

Gauge specified by the CSA

Mast simulation

Pattern matching the gauge

Solutions in Radiocommunications
Site Locations

<table>
<thead>
<tr>
<th>Location</th>
<th>Area</th>
<th>Code</th>
<th>Site</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niort</td>
<td>Cantan de Melle</td>
<td>490</td>
<td>25</td>
<td>59</td>
</tr>
<tr>
<td>Niort</td>
<td>Cantan de Melle</td>
<td>490</td>
<td>25</td>
<td>62</td>
</tr>
<tr>
<td>Orleans</td>
<td>La Plaine Poteau</td>
<td>321</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Orleans</td>
<td>La Plaine Poteau</td>
<td>321</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Orleans</td>
<td>La Plaine Poteau</td>
<td>321</td>
<td>2</td>
<td>46</td>
</tr>
<tr>
<td>Orleans</td>
<td>La Plaine Poteau</td>
<td>321</td>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>Orleans</td>
<td>La Plaine Poteau</td>
<td>321</td>
<td>2</td>
<td>51</td>
</tr>
<tr>
<td>Orleans</td>
<td>La Plaine Poteau</td>
<td>321</td>
<td>2</td>
<td>63</td>
</tr>
<tr>
<td>Paris</td>
<td>Tour Eiffel</td>
<td>358</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>Paris</td>
<td>Tour Eiffel</td>
<td>358</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>

Site found in the European coordination file

All areas specified by the CSA already contain an existing site

Solutions in Radiocommunications
Why were the existing sites privileged?

Existing analog site

Planned digital sites

Today

Tomorrow?
Expected Problem

• Digital broadcasters will probably be obliged to rent the existing analog sites to TDF, sole owner of all existing analog sites

• Problem of fair competition:
 • the new broadcasters will be clients & competitors of TDF
The Maps

2D map sample (image) Corresponding 3D map (MNT)

Solutions in Radiocommunications
Resulting coverage

Coverage of 1 out of the 6 multiplex
- Partial coverage of the country, smaller than the analog coverage
- Global analysis of the covered surfaces
- Global analysis of the covered populations
- Detailed analysis, city per city
Economic model

- The new programs are supposed to be financed by advertisement only
- It requires to cover a large population
- It is necessary to simulate and to compare the performances of the multiplex
Differences between the multiplex

- Some multiplex are slightly better than others.
- All in all, they are fairly equivalent.
- Technical parameters have been adjusted so that no multiplex is privileged.
User’s advantages

- Already pointing towards an analogue transmitter
- Re-orientation should be avoided as far as possible
- This orientation allows to receive with a single antenna all the digital multiplex and all the analogue programs

Multiplex R1

Multiplex R2

Solutions in Radiocommunications
Conclusion of the migration

- **Advantages**
 - Availability of these sites
 - Limitation of the problem of initialization for the receiving antennas
 - Easier to determine an adequate frequency plan of the network

- **Disadvantages**
 - Problem of fair competition between existing and new broadcasters
 - Sometimes, for historical reasons, the sites locations are not optimized
Market issue

Key issue to ensure the success of the new programs

- to concentrate around the main cities
- To adjust the technical parameters so that all multiplex cover a sufficient and equivalent population
- to perform intensive calculations considering
 - The coverage's of the transmitters
 - The population figures
Recording a station parameter

- Spectrum allocation
- Channel assignment
- Video system used
- Signal input
Single Frequency Networks Overview

What are they?
Terminology
Simple technologies
Complex modulation SFN
ATDI Modelling tools
SFN Principle

- Multiple transmitters
- Shared channel
- Same information
- Common modulation
- Simultaneous launch
Advantages

- Increased availability
- Can be spectrally efficient
- Single channel receivers (e.g. paging)
Disadvantages

- Symbol rate / audio band must be less than DS
- Destructive interference if DS or flight times are too great
- Synchronised emission
- Frequency stability
- Generally limited to broadcast or low capacity traffic delivery systems
Technologies

- AM spaced carrier
- FM offset carrier
- Complex modulation (Broadcast OFDM)
AM Spaced Carrier

- Carriers spaced within channel.
- Heterodyne outside audio passband
- Not as efficient due to large offset of carriers
- Limited number of tx possible
- Used in Airband

Tx1

Tx2

Tx3

fc
narrowband channel
FM Offset Carrier

- Carriers slightly offset to avoid static nulls
- Heterodyne below audio passband
- Receiver captures strongest signal
- Large number of tx possible
- Used in Paging (data), PMR (voice)
Complex Modulation (OFDM)

- Channel split into narrowband bins
- Information rate high overall but slow symbol rate in each bin
- DSP equalises delay spreads over channel.
- Guard interval approx $\frac{1}{4} t_{\text{symbol}}$ to prevent ISI
- Tolerant to selective fading & multi-path if DS less than t_{guard}
- SFN’s are a case of multi-path
- Network possible gain due to decorrelated paths
- Used in DVB, DAB.
ATDI Modelling Tools

- Composite coverage plans
- Frequency offset plans
- SDS interference assessment
- Launch delay optimisation
- Network gain areas
- Network gain calculation
SDS Interference Assessment

- Power delay protection mask
- Quantify interference over populated zones

\[\begin{align*}
A & \xrightarrow{t_1} C/I_1 \\
& \xrightarrow{t_2} C/I_2 \\
& \xrightarrow{t} \text{Tx1, Tx2, Tx3}
\end{align*} \]
Launch Delay Optimisation

- Interference optimised by shifting into unimportant regions using launch delay
- Areas specified with % importance
- Other optimisations
 - Power reduction
 - Antenna height drop
 - Antenna pattern change (e.g. downtilt)

Launch delay optimised

>125
>100
>75
>50 usec
Network Gain Areas

- Simple tool to analyse no of servers
- Maximum gain can added to server areas
Network Gain Calculation

- SFN gain up to 14dB for 99% locations
- Depends on relative levels and delays and number of servers
- T-DAB model

Composite field strength

Effective field strength = composite + network gain
Conclusion

- Overall aim: increase network availability
- 2 simple examples and an example of a complex scheme.
- Suite of planning tools to help for examples above