

Wireless LAN Services for Hot-Spot

Woo-Yong Choi
Electronics and Telecommunications Research Institute
wychoi53@etri.re.kr

Contents

- > Overview
- Wireless LAN Services
- Current IEEE 802.11 MAC Protocol
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- > MAC Enhancements
 - **□** Dynamic RTS-CTS Threshold Control Method

Overview

Overview

- > IEEE 802.11 WLAN is currently dominant technology
- ➤ Next generation WLAN technology will be developed based on the current IEEE 802.11 WLAN
- ➤ Most recent next generation WLAN will be IEEE 802.11e WLAN
- ➤ At the end of next year, IEEE 802.11n standard will emerge to support 100Mbps at MAC SAP
- ➤ Current and future MAC technologies will be addressed in this presentation

Wireless LAN Services

VoIP + Wireless LAN

- **➤** Wireless extension of current VoIP service
- ➤ Initial stage of home or office networking that is possible in a near future

Home & Office Networks

- > Realization of networks of home or office equipments
- ➤ Wireless transmission service for game, HDTV, medical examination, etc.

Info-Station

- > Multimedia service in gas station, shopping mall, etc.
- > Quick download of music and cinema

Current IEEE 802.11 MAC Protocol

IEEE 802.11 System

- > Infrastructure Mode
 - Infrastructure Basic Service Set (BSS)
 - One Access Point (AP) and multiple stations (STAs)
- > Ad hoc Mode
 - Independent Basic Service Set (IBSS)
 - No AP and multiple STAs

DCF

- **➤ Distributed Coordination Function (DCF)**
 - 802.11 MAC protocol is based on CSMA-CA scheme (Ethernet MAC protocol: CSMA-CD scheme)

Immediate access when medium is free >= DIFS

DCF

> Hidden Node Problem

STA 1: currently transmitting

STA 2: attempting to transmit

DCF

- **➤ Collision Avoidance (CA)**
 - Solves the hidden node problem

PCF

- **▶** Point Coordination Function (PCF)
 - Polling based transmission

Limitations

- Signaling Overhead
 - RTS-CTS or polling is needed for every MSDU transmission
 - Ack is needed for every MPDU (a fragment of MSDU) transmission
 - This is inefficient especially for real time service
- **➤ Not Sufficient Support for QoS Service**
 - No specification for the service with various service requirements
 - No policy for the general QoS service

MAC Enhancements

(Based on IEEE 802.11n Contributions, IEEE 802.11-03/0509r0 & 04/0312r0)

Two Factors for Efficiency of RTS-CTS Method

- **▶** Data Frame Length
 - RTS-CTS method is efficient in the case of transmissions of long data frames
 - But, inefficient with short data frames
- > Numbers of STAs and Transmission Attempts
 - Related with the number of retransmissions
 - Efficient in the case of many STAs and transmission attempts
 - But, inefficient with small numbers of STAs and transmission attempts

Dynamic RTS-CTS Threshold Control

> Infrastructure BSS

- AP periodically monitors the number of STAs connected to itself, the number of transmission attempts and the data frame size distribution
- AP calculates the optimal dot11RTSThreshold
- AP broadcasts the updated threshold value to be used by STAs
- Detailed algorithm is for further research
- **►Independent BSS**
 - For further research

Simulation Condition

- > n greedy STAs attempt to transmit data frames continuously using DCF protocol
- ➤ The length of data frames is variable based on the experimental statistics from NLANR (National Lab. for Applied Network Research) (www.nlanr.net/NA/Learn/paketsizes.html)
- \succ p: the probability that a transmission attempt fails due to the hidden node problem (p = 0, 0.25, 0.5)
- > Optimal RTS-CTS threshold was obtained using computer simulations for maximizing MAC throughput

Throughput Analysis (p=0)

Throughput Analysis (p=0.25)

Throughput Analysis (p=0.5)

Optimal RTS-CTS Threshold (p=0)

Optimal RTS-CTS Threshold (p=0.25)

Optimal RTS-CTS Threshold (p=0.5)

Performance Improvements

- > Average 25 % throughput improvement in IEEE 802.11a
- > Average 28 % throughput improvement in IEEE 802.11b