Wireless LAN Services for Hot-Spot

Woo-Yong Choi
Electronics and Telecommunications Research Institute
wychoi53@etri.re.kr
Contents

- Overview
- Wireless LAN Services
- Current IEEE 802.11 MAC Protocol
 - Distributed Coordination Function (DCF)
 - Point Coordination Function (PCF)
- MAC Enhancements
 - Dynamic RTS-CTS Threshold Control Method
Overview
Overview

- IEEE 802.11 WLAN is currently dominant technology
- Next generation WLAN technology will be developed based on the current IEEE 802.11 WLAN
- Most recent next generation WLAN will be IEEE 802.11e WLAN
- At the end of next year, IEEE 802.11n standard will emerge to support 100Mbps at MAC SAP
- Current and future MAC technologies will be addressed in this presentation
Wireless LAN Services
VoIP + Wireless LAN

- Wireless extension of current VoIP service
- Initial stage of home or office networking that is possible in a near future

Source: TI
Home & Office Networks

- Realization of networks of home or office equipments
- Wireless transmission service for game, HDTV, medical examination, etc.

Consumers want their devices to work together and share content.
Info-Station

- Multimedia service in gas station, shopping mall, etc.
- Quick download of music and cinema
Current IEEE 802.11 MAC Protocol
IEEE 802.11 System

- **Infrastructure Mode**
 - Infrastructure Basic Service Set (BSS)
 - One Access Point (AP) and multiple stations (STAs)

- **Ad hoc Mode**
 - Independent Basic Service Set (IBSS)
 - No AP and multiple STAs
DCF

Distributed Coordination Function (DCF)

- 802.11 MAC protocol is based on CSMA-CA scheme
 (Ethernet MAC protocol: CSMA-CD scheme)

Immediate access when medium is free \geq DIFS

- DIFS
- Busy Medium
- PIFS
- SIFS
- Contention Window
- Backoff-Window
- Next Frame
- Slot time
- Defer Access
- Select Slot and Decrement Backoff as long as medium is idle
Hidden Node Problem

STA 1: currently transmitting
STA 2: attempting to transmit
DCF

- **Collision Avoidance (CA)**
 - Solves the hidden node problem
Point Coordination Function (PCF)

- Polling based transmission
Limitations

- **Signaling Overhead**
 - RTS-CTS or polling is needed for every MSDU transmission
 - Ack is needed for every MPDU (a fragment of MSDU) transmission
 - This is inefficient especially for real time service

- **Not Sufficient Support for QoS Service**
 - No specification for the service with various service requirements
 - No policy for the general QoS service
MAC Enhancements
(Based on IEEE 802.11n Contributions, IEEE 802.11- 03/0509r0 & 04/0312r0)
Two Factors for Efficiency of RTS-CTS Method

- **Data Frame Length**
 - RTS-CTS method is efficient in the case of transmissions of long data frames
 - But, inefficient with short data frames

- **Numbers of STAs and Transmission Attempts**
 - Related with the number of retransmissions
 - Efficient in the case of many STAs and transmission attempts
 - But, inefficient with small numbers of STAs and transmission attempts
Dynamic RTS-CTS Threshold Control

- **Infrastructure BSS**
 - AP periodically monitors the number of STAs connected to itself, the number of transmission attempts and the data frame size distribution
 - AP calculates the optimal dot11RTSThreshold
 - AP broadcasts the updated threshold value to be used by STAs
 - Detailed algorithm is for further research

- **Independent BSS**
 - For further research
Simulation Condition

- n greedy STAs attempt to transmit data frames continuously using DCF protocol
- The length of data frames is variable based on the experimental statistics from NLANR (National Lab. for Applied Network Research) (www.nlanr.net/NA/Learn/paketsizes.html)
- p: the probability that a transmission attempt fails due to the hidden node problem (p = 0, 0.25, 0.5)
- Optimal RTS-CTS threshold was obtained using computer simulations for maximizing MAC throughput
Throughput Analysis (p=0)
Throughput Analysis (p=0.25)
Throughput Analysis (p=0.5)
Optimal RTS-CTS Threshold (p=0)
Optimal RTS-CTS Threshold (p=0.25)
Optimal RTS-CTS Threshold (p=0.5)
Performance Improvements

- Average 25% throughput improvement in IEEE 802.11a
- Average 28% throughput improvement in IEEE 802.11b