

3DTV based on integral method

Fumio Okano

Japan Broadcasting Corporation (NHK)

Contents

- Introduction
- Principle of integral method
- Experimental system
- Reconstructed 3D image
- Summary

For enjoying 3D television

3

Enjoying 3D television

Principle of Integral method

NHYK

Spatial imaging type

Image's appearance changes as the viewer's position moves

6

Gradient index lens (GRIN lens)

$$-\frac{3}{4}L_p$$
 -

 L_p : one period of ray path

7

Reconstructed images by integral method -Print version-

(a) Reconstructed spatial 3D image

(b) Projected image on diffuser set 10mm away from lens array.

(c) Projected image on diffuser set 40mm away from lens array.

Integral 3DTV in NHK STRL

Integral TV based on integral photography needs huge number of pixels

- Using HDTV
 - 1996: real-time, monochromatic, pseudoscopic
 - 1997: real-time, full-color, orthoscopic
 - Elemental lenses:54 (V) X 63(H), Viewing zone :20degree
- Using 2000 scanning lines TV system
 - 2001: real-time, full-color
 - 2004: improved system
 - · Elemental lenses:125 (V) X 160 (H), Viewing zone :12degree
- Using 4000 scanning lines TV system
 - 2007: Bayer pixel arrangement. (Dual-G)
 - · Number of elemental lenses:140(V) X 182 (H)
 - · Viewing zone:24.5 degree (measured value)
 - 2009: Full pixel arrangement
 - Improved resolution

Major resolution factors

■ Diameter of elemental lens

- Small diameter degrades the resolution for distant object because diffraction affects the resolution.
- Large diameter brings large pitch between adjacent elemental lenses.
- Pitch between adjacent elemental lenses
- Pixel pitch of elemental image
- Viewing zone angle

Dominant in our system

Experimental television system

Dual green UHDTV with 8milion pixel devices

·Developed with Victor Company of Japan

11

·Supported by National Institute of Communications Technologies

Experimental television system

Dual green UHDTV with 8milion pixel devices

- Developed with Victor Company of Japan
- ·Supported by National Institute of Communications Technologies

Elemental lenses alignment of lens array

13

Resolution characteristics

Calculated value

Reconstructed images with full parallax

Object: Real doll

(c) Left viewpoint

(d) Right Viewpoint

15

(b) Lower viewpoint

Pixel structure of Dual-G system

Each pixel has R or G or B signal.

G1 and G2 pixel are diagonally offset.

Each pixel has R, G,and B signal.

O = • + O + •

Experimental television system

Full pixel UHDTV with 33milion pixels

·Supported by National Institute of Communications Technologies

(20-23, April)

Summary

- The 3DTV with integral method is based on extremely high resolution video.
- The experimental setup produces full-color and full-parallax 3D images in real-time, however, the setup has not reached practical level yet.
- To produce higher quality 3D images for television, it requires a larger number of pixels for the capture and display stages. Although this problem must be overcome, our experimental setup has been progressed one step for practical use.

17