Report ITU-R SM.2158-1
(09/2010)

Impact of power line telecommunication systems on radiocommunication systems operating in the LF, MF, HF and VHF bands below 80 MHz

SM Series
Spectrum management
Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

Series of ITU-R Reports

(Also available online at http://www.itu.int/publ/R-REP/en)

<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO</td>
<td>Satellite delivery</td>
</tr>
<tr>
<td>BR</td>
<td>Recording for production, archival and play-out; film for television</td>
</tr>
<tr>
<td>BS</td>
<td>Broadcasting service (sound)</td>
</tr>
<tr>
<td>BT</td>
<td>Broadcasting service (television)</td>
</tr>
<tr>
<td>F</td>
<td>Fixed service</td>
</tr>
<tr>
<td>M</td>
<td>Mobile, radiodetermination, amateur and related satellite services</td>
</tr>
<tr>
<td>P</td>
<td>Radiowave propagation</td>
</tr>
<tr>
<td>RA</td>
<td>Radio astronomy</td>
</tr>
<tr>
<td>RS</td>
<td>Remote sensing systems</td>
</tr>
<tr>
<td>S</td>
<td>Fixed-satellite service</td>
</tr>
<tr>
<td>SA</td>
<td>Space applications and meteorology</td>
</tr>
<tr>
<td>SF</td>
<td>Frequency sharing and coordination between fixed-satellite and fixed service systems</td>
</tr>
<tr>
<td>SM</td>
<td>Spectrum management</td>
</tr>
</tbody>
</table>

Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.

Electronic Publication

Geneva, 2011

© ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.
REPORT ITU-R SM.2158-1

Impact of power line telecommunication systems on radiocommunication systems operating in the LF, MF, HF and VHF bands below 80 MHz*, **, ***

(Question ITU-R 221/1)

(2009-2010)

TABLE OF CONTENTS

Page
1 Introduction .. 9
1.1 Data communication over electrical power lines.. 9
2 Characteristics of radio frequency emission from PLT Systems 10
2.1 Radiation sources in a PLT system.. 10
2.1.1 Differential-mode and common-mode currents... 10
2.1.2 Generation of the common-mode PLT current... 11
2.1.3 Common-mode current launched at the PLT modem output port............. 11
 2.1.3.1 Electrical characteristics of in-house power lines as seen from an outlet.. 13
 2.1.3.2 Impedances of in-house power lines measured at an outlet.................. 14
 2.1.3.3 Imbalance of in-house power lines measured at an outlet 14
2.1.4 Converted common-mode current ... 15
 2.1.4.1 Converted common-mode current generated at the remote unbalanced element ... 15
 2.1.4.2 Folded-dipole antenna effect of the switch branch 17
 2.1.4.3 Mode conversion at the switch branch ... 18
2.1.5 Leakage from the in-house power line to the service wires outside the house .. 19
 2.1.5.1 Optimistic data... 19
 2.1.5.2 Pessimistic data ... 21
2.1.6 Shielding effectiveness of the exterior walls of a house 22

* The Administration of Japan reserves its position on this Report, pending further contributions on specific issues to be submitted at the next meeting(s) of Working Party 1A.

** The Administration of Syrian Arab Republic reserves its position on this Report.

*** See also Report ITU-R SM.2157.
Radio system characteristics, protection criteria, and impact of PLT systems on radiocommunication systems ... 23

3.1 Broadcasting .. 23

3.1.1 General characteristics of analogue LF, MF and HF broadcasting 23

3.1.1.1 Bandwidth ... 23

3.1.1.2 Receiver noise .. 23

3.1.1.3 Minimum usable field strength .. 23

3.1.1.4 Protection ratios ... 24

3.1.2 General characteristics of DRM digital LF, MF and HF broadcasting 24

3.1.2.1 DRM robustness modes ... 25

3.1.2.2 Spectrum occupancy types .. 25

3.1.2.3 Modulation and protection levels 25

3.1.2.4 Receiver noise .. 25

3.1.2.5 Minimum usable field strength .. 26

3.1.2.6 Required signal-to-noise ratios for DRM reception 26

3.1.3 LF, MF, HF and VHF radio broadcasting frequency ranges 27

3.1.4 Protection criteria and acceptable interference 28

3.1.4.1 Recommendations ITU-R BS.1786 and ITU-R BT.1786
– Criterion to assess the impact of interference to the
terrestrial broadcasting service .. 28

3.1.4.2 Recommendation ITU-R BS.560-4 – Radio-frequency
protection ratios in LF, MF, and HF broadcasting 28

3.1.4.3 Recommendation ITU-R BS.703 – Characteristics of
AM sound broadcasting reference receivers for planning
purposes ... 28

3.1.4.4 Report ITU-R BS.1058 – Minimum AF and RF signal-
to-noise ratio required for broadcasting in band 7 (HF).... 29

3.1.4.5 Annex 2 to Recommendation ITU-R BS.1615 –
Planning parameters for digital sound broadcasting at
frequencies below 30 MHz – RF protection ratios for
DSB (DRM system) at frequencies below 30 MHz 29

3.1.4.6 Derivation of acceptable range of field strength incident
from the wired telecommunication systems 29

3.1.4.7 Receiver noise level and acceptable interference level 29

3.1.4.8 Equivalent field strength of receiver noise 30

3.1.4.9 External noise .. 31

3.1.4.10 Permissible interference field strength 32

3.1.4.11 Protection criteria for the broadcast service 32
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Amateur and amateur satellite</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1</td>
<td>General characteristics</td>
<td>34</td>
</tr>
<tr>
<td>3.2.1.1</td>
<td>Operational characteristics</td>
<td>35</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Amateur frequency allocations</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3</td>
<td>The protection requirements of the HF amateur radio service</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Fade margin and the 0.5 dB protection criterion of HF amateur radio</td>
<td>35</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>The noise floor in amateur radio bands</td>
<td>36</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Acceptable noise floor levels</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Aeronautical mobile and radionavigation</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Results</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>General protection criteria considerations HF fixed and land mobile</td>
<td>41</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Protection criteria and protection requirement</td>
<td>41</td>
</tr>
<tr>
<td>3.4.1.1</td>
<td>Protection criteria</td>
<td>41</td>
</tr>
<tr>
<td>3.4.1.2</td>
<td>Protection requirement</td>
<td>42</td>
</tr>
<tr>
<td>3.4.2</td>
<td>A possible protection criteria</td>
<td>42</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Automatic link establishment systems</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Maritime mobile</td>
<td>42</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Background</td>
<td>42</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Frequencies allocated for maritime communications</td>
<td>43</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Receiver parameters for the maritime mobile service in MF and HF bands</td>
<td>45</td>
</tr>
<tr>
<td>3.5.3.1</td>
<td>NAVTEX receivers – 424, 490 and 518 kHz</td>
<td>46</td>
</tr>
<tr>
<td>3.5.3.2</td>
<td>Maritime MF/HF receivers</td>
<td>46</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Hyperbolic radionavigation systems</td>
<td>47</td>
</tr>
<tr>
<td>3.5.5</td>
<td>LF/MF maritime radionavigation beacons</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Radiolocation</td>
<td>47</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Oceanographic radar systems in the bands 3-50 MHz</td>
<td>47</td>
</tr>
<tr>
<td>3.6.2</td>
<td>System characteristics</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Fixed</td>
<td>49</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Fixed system characteristics</td>
<td>49</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Protection criteria</td>
<td>49</td>
</tr>
<tr>
<td>3.8</td>
<td>Radio astronomy</td>
<td>49</td>
</tr>
<tr>
<td>3.9</td>
<td>Standard frequency and time</td>
<td>50</td>
</tr>
</tbody>
</table>
Potential means for preventing or eliminating interference ... 51
4.1 Mitigation factors and methods for power line communications 51
 4.1.1 Attenuation of conducted signals ... 51
 4.1.2 Frequency band exclusions .. 52
 4.1.3 Geographical exclusion zones ... 52
 4.1.4 Consultation area requirements ... 52
 4.1.5 Adaptive interference techniques .. 53
 4.1.6 Interference complaint procedures .. 53
 4.1.7 PLT operator database ... 54
4.2 Studies of mitigation techniques ... 54
 4.2.1 Study of mitigation techniques in Brazil .. 54
 4.2.1.1 Introduction and general information ... 54
 4.2.1.2 Test configuration ... 54
 4.2.1.3 Notch filters ... 56
 4.2.1.4 Power reduction ... 57
 4.2.1.5 Conclusion .. 57
 4.2.2 Intermodulation effects on the depth of spectrum notches in PLT systems 57
 4.2.2.1 Measurement technique ... 57
 4.2.2.2 Results .. 58
 4.2.2.3 Conclusions .. 61
5 Overall conclusions .. 61
Annex 1 – Noise, radiation and propagation considerations .. 61
A1 Noise, radiation and propagation considerations .. 61
 A1.1 Noise level in the HF band .. 61
 A1.1.1 The ambient noise environment .. 61
 A1.1.2 Measuring the ambient noise floor ... 62
 A1.1.3 Determination of the noise level .. 63
 A1.1.3.1 Thermal, man-made, cosmic and atmospheric noise levels 63
 A1.1.3.2 Updated noise measurements for Europe 65
A1.2 Propagation mechanisms .. 67
 A1.2.1 Near-field and ground-wave propagation ... 67
 A1.2.2 Sky wave propagation ... 67
 A1.2.3 Examples of propagation calculations and studies .. 68

Annex 2 – Analyses of potential interference .. 69
A2 Analyses of potential interference ... 69
 A2.1 A modelling analysis for the radio astronomy service .. 69
 A2.1.1 Uses of HF bands by the RAS .. 69
 A2.1.2 Separation distances between a RA antenna and a PLT system in the HF region 70
 A2.1.2.1 The PLT system used for the study ... 70
 A2.1.2.2 Calculations .. 71
 A2.1.3 Discussion ... 73
 A2.1.3.1 Multiple PLT systems .. 73
 A2.1.3.2 Diffraction propagation ... 73
 A2.1.3.3 Reduction of leaked emission from the PLT system .. 73
 A2.1.3.4 Radiation at higher frequencies .. 73
 A2.1.4 Conclusions .. 74
 A2.2 Overview of power line telecommunication systems interference to the broadcasting service .. 74
 A2.2.1 Introduction ... 74
 A2.2.2 Interference effects into low VHF television ... 75
 A2.2.3 Interference effects into the HF band ... 78
 A2.2.4 Summary and conclusions ... 82
 A2.3 Effects of interference from PLT into the broadcasting service below 30 MHz 82
 A2.4 Methodology for calculation of cumulative HF skywave interference from power line telecommunication systems ... 82
 A2.4.1 Governmental skywave interference example into Winnipeg, Canada 83
 A2.4.1.1 Introduction ... 83
 A2.4.1.2 Method of calculation for cumulative HF skywave interference from PLT systems .. 83
 A2.4.1.3 Cumulative PLT tool .. 85
 A2.4.1.4 Cumulative PLT tool – Instructions on use ... 85
 A2.4.1.5 Calculation of HF radio noise from PLT systems ... 88
A2.4.1.6 Wire-line system antenna gain ... 92
A2.4.1.7 Current PLT market penetration estimation 92
A2.4.1.8 Conclusions .. 92

A2.4.2 NTIA study on ionospheric propagation and aggregation of Access PLT emissions... 92
A2.4.2.1 Introduction .. 92
A2.4.2.2 Analytical modeling of sky wave propagation 93
A2.4.2.3 Simulation characteristics .. 99
A2.4.2.4 Simulation results .. 101
A2.4.2.5 Maps of Ionospheric Aggregation 103
A2.4.2.6 Summary ... 110

A2.4.3 Results on calculation of cumulative HF sky-wave interference caused by power line telecommunication systems 111
A2.4.3.1 Introduction .. 111
A2.4.3.2 Calculation of the cumulative PLT sky-wave field 111
A2.4.3.3 Calculation results .. 114

A2.4.4 Compatibility study results between the radio astronomy observations in the HF band and cumulative HF sky-wave interference caused by in-house power line telecommunication systems .. 119
A2.4.4.1 Introduction .. 119
A2.4.4.2 Calculation results .. 119
A2.4.4.3 Possible mitigation measures for protecting the radio astronomy service in the HF band 119

A2.5 Experimental results of the subjective assessment test on HF analogue broadcast reception interfered with by PLT ... 119
A2.5.1 Test methods .. 120
A2.5.1.1 Acquisition of audio samples 120
A2.5.1.2 Subjective assessment test .. 120
A2.5.2 Test results ... 124
A2.5.3 Test equipment ... 127

A2.6 Compatibility analysis regarding protection requirements of HF aeronautical mobile radio in relation to PLT in-house devices 127
A2.6.1 Introduction ... 127
A2.6.2 Study assumptions .. 128
A2.6.3 Compatibility model/geometrical computation 129
A2.6.4 Evaluation threshold for the aeronautical radio 130
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2.6.5</td>
<td>Results of the analysis</td>
<td>131</td>
</tr>
<tr>
<td>A2.6.6</td>
<td>Other determinants</td>
<td>133</td>
</tr>
<tr>
<td>A2.6.7</td>
<td>Requirements toward PLT devices for protecting the HF aeronautical mobile service</td>
<td>133</td>
</tr>
<tr>
<td>Annex 3</td>
<td>Radio frequency emissions from PLT systems</td>
<td>133</td>
</tr>
<tr>
<td>A3</td>
<td>Radio frequency emissions from PLT systems</td>
<td>133</td>
</tr>
<tr>
<td>A3.1</td>
<td>Measurement of access PLT non intentional radiated RF levels on HF bands</td>
<td>133</td>
</tr>
<tr>
<td>A3.1.1</td>
<td>Introduction</td>
<td>133</td>
</tr>
<tr>
<td>A3.1.2</td>
<td>Objective</td>
<td>134</td>
</tr>
<tr>
<td>A3.1.3</td>
<td>Interference concept</td>
<td>134</td>
</tr>
<tr>
<td>A3.1.4</td>
<td>Test description</td>
<td>134</td>
</tr>
<tr>
<td>A3.1.5</td>
<td>Comments</td>
<td>136</td>
</tr>
<tr>
<td>A3.1.6</td>
<td>Possible mitigation technique</td>
<td>136</td>
</tr>
<tr>
<td>A3.1.7</td>
<td>Conclusions</td>
<td>137</td>
</tr>
<tr>
<td>A3.2</td>
<td>Measurements of the radiated emissions from in-house power line telecommunications devices into the residential environment in Canada</td>
<td>137</td>
</tr>
<tr>
<td>A3.2.1</td>
<td>Introduction</td>
<td>137</td>
</tr>
<tr>
<td>A3.2.2</td>
<td>Conducted power measurement – Test procedure and results</td>
<td>137</td>
</tr>
<tr>
<td>A3.2.3</td>
<td>Field strength measurements – Procedure and results</td>
<td>142</td>
</tr>
<tr>
<td>A3.2.4</td>
<td>Conclusions</td>
<td>148</td>
</tr>
<tr>
<td>A3.3</td>
<td>Measurement results of the radiated emissions from in-house power line telecommunications systems into the residential environment in the test conducted in Japan</td>
<td>148</td>
</tr>
<tr>
<td>A3.3.1</td>
<td>Introduction</td>
<td>148</td>
</tr>
<tr>
<td>A3.3.2</td>
<td>Measurement method</td>
<td>149</td>
</tr>
<tr>
<td>A3.3.3</td>
<td>Condition of PLT communication</td>
<td>149</td>
</tr>
<tr>
<td>A3.3.4</td>
<td>Measurement result</td>
<td>151</td>
</tr>
<tr>
<td>A3.4</td>
<td>Measurement results of leaked emissions by access PLT system in the HF and the UHF bands</td>
<td>154</td>
</tr>
<tr>
<td>A3.4.1</td>
<td>Introduction</td>
<td>154</td>
</tr>
<tr>
<td>A3.4.2</td>
<td>Field experiment at Mt. Akagi, Japan, in July 23, 2002</td>
<td>154</td>
</tr>
<tr>
<td>A3.4.3</td>
<td>Leaked emissions in the HF band</td>
<td>156</td>
</tr>
<tr>
<td>A3.4.4</td>
<td>Spurious emission in the UHF band</td>
<td>158</td>
</tr>
</tbody>
</table>
1 Introduction

As part of the studies on the compatibility between radiocommunication systems and high data rate telecommunication systems using electricity power supply or telephone distribution wiring (Question ITU-R 221/1), this Report covers the use of the radio spectrum and associated protection requirements of radiocommunication services in respect to impact of power line telecommunications (PLT). PLT systems make use of radio frequency signals applied on the power lines used for the distribution of mains electricity. Because electrical power lines are not designed for the transmission of high data rate signals, PLT signals on electrical power lines have the potential of causing interference to radiocommunication services.

RR No. 15.12 requires that: “Administrations shall take all practicable and necessary steps to ensure that the operation of electrical apparatus or installations of any kind, including power and telecommunication distribution networks, but excluding equipment used for industrial, scientific and medical applications, does not cause harmful interference to a radiocommunication service and, in particular, to a radionavigation or any other safety service operating in accordance with the provisions of these Regulations”.

This Report covers the use of PLT Systems at frequencies below 80 MHz. This new family of applications is sometimes referred to as PLC (power line communications), BPL (broadband over power lines) as well as PLT (power line telecommunications). In this Report we shall use the generic term PLT.

1.1 Data communication over electrical power lines

Signalling over the mains network has existed for many years operating at VLF and LF, and many applications of low data rate transmission over the mains are currently in operation, including signaling by power companies in respect of their distribution networks.

Since 1998, new developments in data modem technology have demonstrated the possibility to use higher frequencies and wider bandwidths to communicate along the mains distribution network, using frequencies up to 80 MHz.

There are presently two main families of PLT applications:

– Access PLT whose target market is the last mile (i.e., 1.2 km) between the electricity supply substation and the subscriber and could therefore an alternative means of access to the telecommunication local loop.

– Indoor PLT whose aim is to distribute signals (coming for example from access PLT or from DSL) to the mains electricity socket outlets inside buildings.

In addition, ITU-R and ITU-T are studying Smart Grid.

PLT potentially offers a transmission rate of several Mbit/s via the normal electrical power wiring inside every building. In the case of access PLT, this data rate is shared among a number of simultaneous users. As PLT uses the Internet protocol (IP), the main application of PLT could be also described as Internet from the power socket. The benefit of PLT is that it uses the already existing and widely deployed low voltage electricity network, permitting new services without the

1 Smart Grid is under study by the ITU-T Focus Group on Smart Grid (FG Smart). One task of this Focus Group is to provide a definition of the term “smart grid.” For further details, see http://www.itu.int/en/ITU-T/focusgroups/smart.
need for additional wiring. The implementation of PLT systems and their technical characteristics can vary considerably according to application and the country of use.

In some circumstances, there may be significant attenuation of RF signals along low voltage power lines where multiple line-pole transformers fed from a medium voltage distribution network within a locality feed a small number of consumers each at low voltage (as is common with 110 V bi-phase supplies to home and business premises) or where electrical metering equipment uses inductive and capacitive components networks.

However, in 220/240 volt 3-phase distribution network there may be over 100 consumers per phase fed from a high voltage transformer. In the case of underground networks, there may be very little isolation from meters as electronic metering becomes standard. In these circumstances multiple PLT systems could end up sharing the bandwidth and thus may effectively reduce the data throughput rate available over the electrical mains of several streets or throughout a large building with little attenuation between the systems.

Examples of how PLT systems are designed and have been implemented around the world are given in Annex 4 to this Report.

2 Characteristics of radio frequency emission from PLT Systems

2.1 Radiation sources in a PLT system

Household power lines consist of two or three conducting wires, that is, live, neutral, and earth wires, where AC electric power is carried by the live and neutral wires. Similarly, in a PLT system in domestic use, signal power is fed into the live and neutral wires by PLT equipment (modem), and the HF signal current in each wire is intended to be equal in magnitude and opposite in the directions. In most cases, however, the currents in two wires have components flowing in the same direction. Those in-phase components behave like so-called antenna currents that become primary sources of the unwanted radiation from the PLT system.

Similarly, in distribution networks, in-phase HF current components in power line conductors can be regarded as primary radiation sources, if the separation distance between the conductors is much less than the wavelength of the PLT signals.

2.1.1 Differential-mode and common-mode currents

In general, PLT signal currents in two power line conductors are intended to be equal in magnitude and flow in the opposite directions to each other. This fundamental current mode is referred to as various technical terms in the transmission line theory, for example, differential-mode, symmetric-mode, balanced-mode, and transverse-mode. However, if the signal source, power lines, or load are not electrically balanced with respect to the ground and nearby objects or power line wires are geometrically unparallel, the currents in the line conductors have components flowing in the same direction. This in-phase current mode is called common-mode, asymmetric-mode, or longitudinal-mode. Thus, the PLT signal current in each conductor can be expressed as a vector sum of differential- and common-mode components, i.e. I_d and I_c, as shown in Fig. 2-1a. These two mode currents propagate independently along the power lines if they are balanced. However they are coupled at unbalanced elements on the power line network. Since differential-mode PLT currents on two closely-aligned conductors flow in opposite directions, generated electromagnetic fields can be cancelled out, resulting in no significant field at positions distant from the power lines.

2 Attachment 1 of Technical Report on the High Data Rate PLT issued in Japanese by the Information and Communications Council to the Ministry of Internal Affairs and Communication (MIC), Japan, 2006.
In contrast, the common-mode PLT currents may form loop currents as depicted in Fig. 2-1a, producing electromagnetic fields, especially in the MF/HF ranges. At HF and much higher frequency ranges, they may radiate electromagnetic waves in a similar way to monopole antennas or folded dipole antennas. Thus, the common-mode currents are considered to be the primary radiation sources in the PLT system.

Although, the international standard CISPR 22 ed. 5.2 (2006) requires to limit only the common-mode currents running out of the mains port and telecommunication ports of an IT equipment to on or below 30 dBμA under the specified load conditions (i.e., an artificial mains network (AMN), an asymmetric artificial network (AAN) or an impedance stabilization network (ISN)), the same or similar regulatory measures cannot be applied to the PLT case because the PLT modems feed the differential-mode signal into highly unbalanced power line network where the differential-mode and common-mode are strongly coupled. It should be noted that the common-mode currents flowing along the power-line network are the source of the radiated emission, not just the common-mode currents flowing at the outlet. Furthermore the common mode current measured with the AAN (or ISN) would greatly underestimate the converted common mode current and hence the radiated emission since it could be greatly decreased by the common mode impedance of the PLT modem while the common mode current generated at the actual power line network would not be affected by the common mode impedance of the PLT modem. Therefore it is very important to fully describe the physical generation mechanisms of the common-mode currents on the power line network.

2.1.2 Generation of the common-mode PLT current

PLT signal currents in the differential mode (DM) may be transformed into common-mode currents by two different mechanisms. One is caused by the imbalance in a PLT modem, which is called the launched common-mode (LCM) current (shown as the dashed red arrows in Fig. 2-2). The other is caused by the imbalance in the power lines, which is called the converted common-mode (CCM) current (shown as the solid red arrows in Fig. 2-2). The imbalance in the power line network includes:

- the unbalanced load connected to an outlet;
- the switch branch which consists of ceiling lamp(s) and single-pole wall switch, and
- singly grounded service wire in some countries, as shown in Fig. 2-2.

Note that the unbalanced elements on the power line network are remote from the PLT modems, separated by several metres to a few tens of metres. Therefore the converted common-mode currents must be treated by means of the distributed constant circuit or the transmission line theory.

2.1.3 Common-mode current launched at the PLT modem output port

An equivalent circuit illustrated in Fig. 2-1b yields the following expression for the common-mode current at position x:

$$I_c(x) = \frac{1}{Z_c(x) \cdot Z_d(x)} \left[Z_2(x) e_1(x) - Z_1(x) e_2(x) \right]$$

(2-1)

where the differential-mode and common-mode impedances of the PLT system are:

\[Z_d(x) = Z_1(x) + Z_2(x) \quad \text{and} \quad Z_c(x) = \frac{Z_1(x) \cdot Z_2(x)}{Z_1(x) + Z_2(x)} + Z_3(x) \quad (2-2) \]

respectively, with \(Z_1(x) = Z_{S1}(x) + Z_{L1}(x), \quad Z_2(x) = Z_{S2}(x) + Z_{L2}(x), \quad Z_3(x) = Z_{S3}(x) + Z_{L3}(x). \)

From these equations, it is found that the common-mode currents are induced from the differential-mode signal currents because of imbalance in the PLT system: imbalance in the power lines, imbalance in the PLT modem (source voltages, \(e_1 \) and \(e_2 \), and impedances, \(Z_{S1} \) and \(Z_{S2} \)), and imbalance in the connected loads, \(Z_{L1} \) and \(Z_{L2} \).

FIGURE 2-1

Transmission line model of a PLT system and its equivalent circuit

Earth wire, ground, and nearby objects

a) Transmission line model

b) Equivalent circuit model
Figure 2-1b may hold in general in any position along the power-line, the common-mode current and the imbalance of the power-line network have been evaluated only at an outlet\(^3\). The common-mode current evaluated is the common-mode current launched from the PLT modem to the outlet due to the imbalances of both the modem and the power line network\(^3\). However the imbalance as seen from an outlet is only a small part of the imbalances existing on the power line\(^5\).

![Common-mode currents on the power line network](image)

2.1.3.1 Electrical characteristics of in-house power lines as seen from an outlet

It should be noted that the common mode and differential impedances and the longitudinal conversion loss measured at wall sockets may not represent the electrical characteristics and potential emissions of the entire in-house power lines. The power line network must be treated as a distributed circuit. The measured values that follow are “local values” and do not represent values along the entire power line. However, they may provide useful information on the characteristics of the in-house power lines.

As explained in previous paragraphs, unwanted radiation from PLT systems is usually caused by common-mode currents that are transformed from signal currents (differential mode) in power lines. Thus, the characteristics of the power lines, such as common-/differential-mode impedances and electrical balance, are key factors for analysing the PLT radiation. A large number of measurements were therefore made at wall sockets in various houses including wooden houses and reinforced concrete flats in Japan.

2.1.3.2 Impedances of in-house power lines measured at an outlet

As implied by equation (2-2), differential-mode and common-mode impedances of actual power lines vary widely with the measurement frequency and time as well as position. In addition, they are seriously affected by household appliances and other electrical/electronic equipment connected to the power lines. Therefore, the impedance characteristics have to be treated on a statistical basis.

Figure 2-3 shows the differential-mode impedance of power lines measured at various wall sockets in various houses. From this figure, it is found that, in many cases, the differential-mode impedances of power lines are around 100Ω. This measurement result agrees well with the CISPR 16-1-2 ed. 1.2 (2006) specifications for the load (i.e. artificial mains network) used in equipment compliance tests.

![Figure 2-3: Differential mode impedance measured at wall sockets in dwelling houses](image)

Figure 2-4 also gives the common-mode impedance measured at many wall sockets. It is evident that the common-mode impedances are usually greater than 100Ω. However, CISPR 16-1-2 specifies the common-mode impedance of the test load to be equal to 25Ω, because such low impedance can emphasize the imbalance characteristics of equipment under test (EUT) as deduced from equation (2-1).

2.1.3.3 Imbalance of in-house power lines measured at an outlet

Figure 2-5 shows data on LCL values measured at a number of wall sockets of various houses in Japan. The LCL (longitudinal conversion loss) is a parameter representing imbalance of a parallel line system, defined by the ratio of the applied common-mode voltage to the differential-mode voltage induced at a multi-terminal port. Well-balanced lines like a telephone unshielded pair cable usually have an LCL greater than 50 dB. The LCL depends on the differential-mode and common-mode impedances seen from the port. Since those impedances of power lines greatly change with time, frequency, and position, actual LCL values also change in a very wide range from 20 dB to 60 dB, as shown in Fig. 2-5.
2.1.4 Converted common-mode current

2.1.4.1 Converted common-mode current generated at the remote unbalanced element

As shown in Fig. 2-2, the unbalanced elements are remote from the PLT modem on the power line network. Therefore the system must be treated as the distributed constant circuit or the transmission line. The simplest model to analyze such situation is shown in Figs 2-6 and 2-7.
According to the theoretical analysis of Fig. 2-6, the common-mode current generated at the unbalanced load separated by a distance l from the PLT modem is:

$$I_{CM}(l) = \kappa I_{DM}^+(l) = \kappa I_{DM}^+(0) \exp(-\gamma l)$$

where:

- $I_{DM}^+(0)$: differential-mode current fed by the PLT modem at the outlet
- γ: attenuation constant of the differential-mode
- κ: is given by:

$$\kappa = \frac{-\Delta Z_0}{(Z_{CM}^* + Z_{0c})(Z_{DM} + Z_0)}$$
where Z_0 and Z_{0c} are characteristic impedances of the differential-mode and the common-mode, respectively, and

$$Z_{DM} = Z_2 + Z_1$$
$$Z_{CM} = Z_L + Z_1 \parallel Z_2 = Z_L + Z_{DM} / 4 - \Delta^2 / 4Z_{DM}$$
$$Z_L + Z_{DM} / 4 - \Delta^2 / 4(Z_{DM} + Z_0)$$
$$Z_{CM}^* = Z_L + Z_{DM} / 4$$

Note that the converted common-mode current generated at the remote unbalanced element is not reduced by increasing the common-mode impedance of the PLT modem.

The relationship between the common-mode current and the LCL is in general rather complicated due to the multi reflection of the common-mode current between the both ends of the transmission line which is not exactly equivalent in Figs 2-6 and 2-7 at the outlet. However in the case of diminishing multi reflection due to common mode attenuation and $Z_{DM} = Z_0$ for simplicity, there are simple relationship

$$\left| \frac{I_{CM, all}(l)}{I_{DM}^+(0)} \right| \approx |\kappa| \exp(-\alpha l) = \frac{1}{LCL_E}$$
$$\left| \frac{I_{CM, all}(l)}{I_{DM}^+(0)} \right| \approx \frac{1}{LCL_0}$$

and

$$LCL_E = LCL_0 \exp(-\alpha_c l)$$

where LCL_E represents the effective loss from the differential-mode current fed at the outlet by the PLT modem to the converted common-mode current generated at the remote unbalanced load, LCL_0 represents the longitudinal conversion loss measured at the outlet, and α_c is the common-mode attenuation constant of the power line. Therefore, the LCL measured at the outlet overestimates the effective conversion loss by the amount of the common-mode loss between the outlet and the remote unbalanced element. This is one of the reasons why the outlet LCL is not the effective measure of the imbalance of the power line and cannot be used as the conversion loss from the differential-mode current to the common-mode current generated in the power line network. The other reason is the hidden antenna current in the switch branch which is explained in the following.

2.1.4.2 Folded-dipole antenna effect of the switch branch

There are many branch circuits connected in parallel with backbone power lines in houses and buildings. At some specific frequencies where the length of a branch approaches half a wavelength, the branch circuit behaves like a folded dipole antenna as illustrated in Fig. 2-8. Then, the resonant branch radiates electromagnetic waves. The magnitude of the common-mode currents in the branch depends on the length and loads of the branch, the location of the connection points, and the impedances of the backbone lines presented at the connection points. These factors vary from branch to branch, and there are as many switch branches as the number of rooms in a house, the worst case scenario would be inevitable. The maximum antenna current in the folded dipole is twice as large as the differential-mode current entering the feed point. Therefore intrinsic conversion loss from the differential-mode current to the common-mode current is -6 dB.
The differential-mode current at the feed point of the folded-dipole antenna is attenuated from the differential-mode current fed at the outlet by the PLT modem by 5 to 10 dB, since the attenuation between two outlets on a common circuit is estimated to be 10 to 20 dB. As the differential-mode impedance of the backbone lines at the feed point of the folded-dipole is unknown, the partition loss is also unknown. Assuming the loss to be 3 dB, the total effective LCL of the folded-dipole is estimated to be 2 to 7 dB.

This is close to the worst case scenario for a single switch branch. However since there are many such branches in a house, the aggregated emission from many switch branches must be considered and there is no reason to assume all of them are far away from the worst case scenario. Therefore the effective LCL representing the folded-dipole antenna effect of the switch branches in the power line network is estimated to be a few to several dB. Note that the antenna current in the folded-dipole formed by the switch branch is invisible from the backbone lines and the outlets, and consequently that the LCL measured at the outlet does not include the folded-dipole antenna effect of the switch branches. Therefore the outlet LCL can never be used as a barometer of the antenna currents generated in the power line network driven by the differential-mode signal current from the PLT modems.

2.1.4.3 Mode conversion at the switch branch

The switch branches convert the differential-mode current into the common-mode current and vice versa even if they do not form the folded-dipole antenna. The switch branch consisting of a ceiling light and a single-pole wall switch shown in Fig. 2-9a is modelled as a transmission line with a series short-stub as shown in Fig. 2-9b and analyzed. The one of a pair of the differential-mode current entering the switch branch flows through a short-stub of the length \(l \) and causes two effects:

- the short-stub radiates as a folded monopole antenna of the length \(l \), and
- the short-stub delays the phase of the current by \(2\theta = 2\beta l \), where \(\beta = 2\pi/\lambda \).

The former effect is maximized when the length of the short-stub \(l \) becomes quarter-wavelength of the signal and the radiating current becomes twice as large as the differential-mode current. The latter effect causes the conversion between the differential-mode current and the common-mode current. The mode conversion factor, the power ratio of the output and the input modes of the series short-stub, is \(\eta = \sin^2 \theta \) and is shown in Fig. 2-9c. For the typical example of \(l = 3 \)m, the mode conversion factor is 50% (or –3 dB) for 12.5 MHz and 100% for 25 MHz. Note that the conversion factor is fairly large for the entire HF band and the lower VHF band.

The differential-mode current entering the switch branch is partly converted to the common-mode current by the phase shift at the series short-stub. The converted common-mode current travelling along the transmission line of the length \(L \) is reflected back 100% at the load and partly converted back to the differential-mode current at the series short-stub. The differential-mode current experienced the mode conversion twice at the short-stub looks as if it were just reflected by the switch branch although it still generates the common-mode current inside the switch branch. The differential-mode current experienced the mode conversion only once at the series short-stub feeds the common-mode current into the backbone power-line. The external mode conversion factor, the power ratio of the output common-mode and the input differential-mode of the switch branch is \(\xi = \eta (1-\eta) = \sin^2 2\theta /4 \) and is shown in Fig. 2-9c. The external mode conversion factor reaches 25% or –6 dB. The switch branch strongly couples the differential and common modes.

The external mode conversion effect of the switch branch could be partly observed from the outlet. However since the internal mode conversion factor \(\eta \) and the external mode conversion factor \(\xi \) can be either positively or negatively correlated, the internal mode conversion factor and the antenna current generated inside the switch branch cannot be estimated from the outlet LCL which may partly detect the external mode conversion effect of the switch branch.

2.1.5 Leakage from the in-house power line to the service wires outside the house

In-house PLT systems raise serious concern about interference problems caused by leakage of the PLT signals from houses. Since the service wires outside the houses are unshielded, may extend several tens metres in length at the height of nearly ten metres above ground, the common-mode current on the service wires has stronger potential of causing interferences to the radio services in MF and HF bands. Furthermore the service wires are singly grounded at the service transformers, are highly unbalanced and may convert the differential-mode current into the common-mode current quite efficiently in some countries. Therefore the leakage of both the common-mode and the differential-mode currents from the power line network inside the house to the service wires outside the house must be carefully investigated. Since there are diverged data as shown below, further studies would be required.

2.1.5.1 Optimistic data

At the interface between access and in-house power lines, there are power meters, circuit breakers, and distribution circuits that may attenuate the PLT signals. Therefore, a number of measurements were carried out on the differential-mode voltages inside and outside houses to evaluate the insertion loss provided by power network equipment such as distribution circuits. The results shown in Fig. 2-10 demonstrate that such network equipment can suppress the PLT differential-mode signal by more than 20 dB in almost all cases.
FIGURE 2-9
Mode conversion at the switch branch

a) Switch branch consisting of a ceiling light and a single-pole wall switch

b) Series short-stub model of the switch branch

c) Mode conversion factors of the series short-stub and switch branch

Frequency (MHz) in the case of \(l = 3 \) m

- \(\eta \): Series short-stub
- \(\xi \): Switch branch
- \(\eta + \xi \): Total

Half phase delay \(\theta (\pi \text{ rad}) \)
2.1.5.2 Pessimistic data

The other example\(^7\) in Fig. 2-11 indicates that:

- the differential-mode current measured on the service wires just outside the house is 0 to 30 dB smaller than that measured at the output of the breaker inside the house
- the common-mode current measured on the service wires just outside the house is very close to the differential-mode current measured at the same point, and
- the common-mode current measured on the service wires just outside the house is 10 to 30 dB larger than the common-mode current measured at the output of the breaker inside the house.

The second observation reflects the fact that the service wires are singly grounded at the service transformer in Japan and the differential-mode current is 100% converted into the common-mode current. The third observation suggests that the radiated emission from the service wires may be 20 to 47 dB stronger than that from the power line inside the house if the shielding effects of the house in Table 2-1 are applied.

2.1.6 Shielding effectiveness of the exterior walls of a house

Electromagnetic fields radiated from power lines may be shielded to some extent by the exterior walls and ceiling of a house. Hence, numerical analysis using an FI (Finite Integration) code was carried out to investigate the electromagnetic fields of a PLT system leaked from various housings, such as a wooden house and a reinforced concrete one. In this analysis, the shielding effectiveness was defined by the ratio of the maximum field strength at 10 m apart from the power lines not enclosed by a house to that with the power lines enclosed by the house. The results considerably vary with the structure of house, power line layout, and frequency. The mean values of the derived shielding effectiveness are listed in Table 2-1. However these values have not been verified by measurements.

TABLE 2-1

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Wooden house</th>
<th>Reinforced concrete house</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-10 MHz</td>
<td>17 dB</td>
<td>27 dB</td>
</tr>
<tr>
<td>10-30 MHz</td>
<td>10 dB</td>
<td>27 dB</td>
</tr>
</tbody>
</table>

3 Radio system characteristics, protection criteria, and impact of PLT systems on radiocommunication systems

3.1 Broadcasting

3.1.1 General characteristics of analogue LF, MF and HF broadcasting

The following physical characteristics and technical parameters are used in planning analogue broadcasting services below 10 MHz.

3.1.1.1 Bandwidth

The bandwidth of a typical modern AM receiver is 4.4 kHz, but a range may be encountered, with several modern receivers having selectable bandwidth.

3.1.1.2 Receiver noise

In addition to atmospheric and man-made noise, the intrinsic noise of the receiver must also be taken into account. This is described here.

The intrinsic receiver noise level E_{i0}, is calculated by:

$$E_{i0}(\text{dB(}\mu\text{V/m)}) = E_C(\text{dB(}\mu\text{V/m}) + 20 \log M - \text{SNR}_{af}$$

where:

E_C: noise limited sensitivity of the receiver

M: modulation depth

SNR_{af}: audio-frequency signal-to-noise ratio.

According to Recommendation ITU-R BS.703, the minimum sensitivity of an AM sound broadcasting sound receiver is:

<table>
<thead>
<tr>
<th></th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_C\text{dB(}\mu\text{V/m)}$</td>
<td>66</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Thus:

<table>
<thead>
<tr>
<th></th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>$\text{SNR}_{af}\text{ (dB)}$</td>
<td>32</td>
<td>32</td>
<td>26</td>
</tr>
<tr>
<td>$E_{i0}\text{dB(}\mu\text{V/m)}$</td>
<td>23.5</td>
<td>17.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

3.1.1.3 Minimum usable field strength

The noise floor used in the calculation of the required minimum field strength is determined by the largest of: atmospheric noise, man-made noise and intrinsic receiver noise. The resulting values for noise (whatever the cause), E_m, usually lies between 3.5 and 7 dB(\muV/m) in the frequency bands

9 Studies of planning parameters suitable for digital HF broadcasting are underway.
under consideration. The RF signal-to-noise ratio, SNR_{RF}, is taken to be 34 dB for the HF and 40 dB for the LF/MF bands. Thus the minimum usable field strength, F_{min}, is calculated as:

<table>
<thead>
<tr>
<th></th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_r dB(μV/m)</td>
<td>20</td>
<td>20</td>
<td>3.5-7</td>
</tr>
<tr>
<td>SNR_{RF} (dB)</td>
<td>40</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>F_{min} dB(μV/m)</td>
<td>60</td>
<td>60</td>
<td>37.5-41</td>
</tr>
</tbody>
</table>

3.1.1.4 Protection ratios

The co-channel and adjacent protection ratios given below are applicable for protecting AM broadcast transmissions against other AM transmissions and do not apply to protection from other services.

Co-channel protection ratios

<table>
<thead>
<tr>
<th>Quality grade</th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (fair)</td>
<td>27 dB</td>
<td>27 dB</td>
<td>17 dB</td>
</tr>
<tr>
<td>4 (good)</td>
<td>30 dB</td>
<td>30 dB</td>
<td>27 dB</td>
</tr>
</tbody>
</table>

Adjacent channel protection ratios

<table>
<thead>
<tr>
<th>ΔF_{kHz}</th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0-9$^{(1)}$</td>
<td>0-9</td>
<td>0</td>
</tr>
<tr>
<td>±2</td>
<td>+10</td>
<td>+10</td>
<td>+10</td>
</tr>
<tr>
<td>±5</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
</tr>
<tr>
<td>±10</td>
<td>-35</td>
<td>-35</td>
<td>-35</td>
</tr>
</tbody>
</table>

$^{(1)}$ The range of values corresponds to various degrees of modulation compression and bandwidths (e.g. 4.5 kHz/10 kHz).

3.1.2 General characteristics of DRM digital LF, MF and HF broadcasting

The following physical characteristics and technical parameters are used in planning digital broadcasting services below 10 MHz. They are the characteristics specifically developed for the Digital Radio Mondiale (DRM) system. In the DRM system, various robustness modes, spectrum occupancy types, modulation schemes, and protection levels are specified in order provide adequate service in a multitude of propagation and interference conditions. The possible combinations of these characteristics give rise to a range of values for S/N, minimum usable field strength, etc. These ranges will be indicated briefly in the following sections.

10 Studies of planning parameters suitable for digital HF broadcasting are underway.
3.1.2.1 DRM robustness modes

In the DRM specification four robustness modes with different parameters (sub-carrier number and spacing, useful symbol and guard interval length, etc.) for the OFDM (orthogonal frequency division multiplex) transmission scheme are defined for the various propagation conditions in the LF, MF, and HF bands:

<table>
<thead>
<tr>
<th>Robustness mode</th>
<th>Typical propagation conditions</th>
<th>Preferred frequency band</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ground-wave channels, with minor fading</td>
<td>LF, MF</td>
</tr>
<tr>
<td>B</td>
<td>Time- and frequency-selective channels, with longer delay spread</td>
<td>MF, HF</td>
</tr>
<tr>
<td>C</td>
<td>As robustness mode B, but with higher Doppler spread</td>
<td>Only HF</td>
</tr>
<tr>
<td>D</td>
<td>As robustness mode B, but with severe delay and Doppler spread</td>
<td>Only HF</td>
</tr>
</tbody>
</table>

3.1.2.2 Spectrum occupancy types

For each robustness mode the occupied signal bandwidth can be varied dependent on the frequency band and on the desired application.

<table>
<thead>
<tr>
<th>Robustness mode</th>
<th>Occupied signal bandwidth (kHz)</th>
<th>Spectrum occupancy type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2 3</td>
<td>0 1 2 3</td>
</tr>
<tr>
<td>A</td>
<td>4.208 4.708 8.542 9.542</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>4.266 4.828 8.578 9.703</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>– – – 9.477</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>– – – 9.536</td>
<td></td>
</tr>
</tbody>
</table>

3.1.2.3 Modulation and protection levels

For all robustness modes two different modulation schemes (16-QAM or 64-QAM) are defined which can be used in combination with one of two (16-QAM) or four (64-QAM) protection levels, respectively.

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Protection level</th>
<th>Average code rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-QAM</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>16-QAM</td>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>64-QAM</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>64-QAM</td>
<td>1</td>
<td>0.6</td>
</tr>
<tr>
<td>64-QAM</td>
<td>2</td>
<td>0.71</td>
</tr>
<tr>
<td>64-QAM</td>
<td>3</td>
<td>0.78</td>
</tr>
</tbody>
</table>

3.1.2.4 Receiver noise

In addition to atmospheric and man-made noise, the intrinsic noise of the receiver must also be taken into account and is described in § 3.1.1.2.
3.1.2.5 Minimum usable field strength

To achieve a sufficiently high quality of service for a DRM digital audio service, a bit-error ratio (BER) of about 10^{-4} is needed. The SNR required at the receiver input to achieve this BER is dependent, apart from the system parameters, also on the wave propagation conditions in the different frequency bands.

A range of relevant values for minimum usable field strength are given in the table below. The given ranges cover for the possible modulation schemes and protection levels. Only a few combinations of possibilities are indicated, sufficient to give an idea of the wide range of values that can arise.

<table>
<thead>
<tr>
<th>Robustness mode</th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robustness mode A</td>
<td>39.1-49.7</td>
<td>33.1-43.7</td>
<td></td>
</tr>
<tr>
<td>(Ground wave propagation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness mode A</td>
<td></td>
<td>33.9-47.4</td>
<td></td>
</tr>
<tr>
<td>(Ground-wave plus sky-wave propagation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness mode B</td>
<td></td>
<td></td>
<td>19.1-30.4</td>
</tr>
<tr>
<td>(Sky-wave propagation)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Planning parameter values for DRM system below 30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Required S/N (dB)$^{(1)}$</td>
</tr>
<tr>
<td>Receiver intrinsic noise (dB(μV/m))</td>
</tr>
<tr>
<td>Minimum usable field strength (dB(μV/m))$^{(1)}$</td>
</tr>
</tbody>
</table>

$^{(1)}$ The values depend on the modulation scheme (16-QAM or 64-QAM), the coding rate (0.5-0.78), and the propagation channel models (ground-wave and/or sky-wave).

3.1.2.6 Required signal-to-noise ratios for DRM reception

The following signal-to-noise ratios (SNR) are required to achieve a BER of about 10^{-4} are given below for typical propagation conditions on the relevant frequency bands.

<table>
<thead>
<tr>
<th></th>
<th>LF</th>
<th>MF</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground wave propagation (9, 10 kHz BW)</td>
<td>8.6-21.4</td>
<td>8.6-21.4</td>
<td></td>
</tr>
<tr>
<td>Robustness mode A, B (4.5, 5 kHz BW)</td>
<td>8.8-19.5</td>
<td>8.8-19.5</td>
<td></td>
</tr>
<tr>
<td>(Ground-wave propagation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robustness mode B (Ground-wave plus sky-wave propagation)</td>
<td></td>
<td>9.4-22.8</td>
<td>14.6-30.9</td>
</tr>
<tr>
<td>Robustness mode C (Ground-wave plus sky-wave propagation)</td>
<td></td>
<td></td>
<td>14.6-33.3</td>
</tr>
<tr>
<td>Robustness mode D (Sky-wave propagation)</td>
<td></td>
<td></td>
<td>16.0-35.0</td>
</tr>
</tbody>
</table>

$^{(1)}$ The values depend on the modulation scheme (16-QAM or 64-QAM), the coding rate (0.5-0.78), and the propagation channel models (ground-wave and/or sky-wave).
3.1.2.6.1 Protection ratios (PR)

The combination of spectrum occupancy types and robustness modes lead to several transmitter RF spectra, which cause different interference and therefore require different RF protection ratios. The differences in protection ratios for the different DRM robustness modes are quite small. Therefore, the RF protection ratios presented in the following tables are restricted to the robustness mode B.

3.1.2.6.2 Co-channel protection ratios

<table>
<thead>
<tr>
<th>Wanted signal</th>
<th>Unwanted signal</th>
<th>Co-channel PR range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>DRM</td>
<td>23.0-23.6</td>
</tr>
<tr>
<td>DRM</td>
<td>AM</td>
<td>4.8-7.8</td>
</tr>
<tr>
<td>DRM</td>
<td>DRM</td>
<td>12.8-16.4</td>
</tr>
</tbody>
</table>

3.1.2.6.3 Adjacent channel protection ratios

Values of adjacent channel protection ratio range over –20 kHz to +20 kHz frequency separation, but are not reproduced here.

3.1.3 LF, MF, HF and VHF radio broadcasting frequency ranges

The following frequency bands below 80 MHz are allocated to for broadcasting in RR Article 5:

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>148.5-283.5 kHz (Region 1)</td>
</tr>
<tr>
<td>MF</td>
<td>526.5-1 605.5 kHz (Regions 1, 3)</td>
</tr>
<tr>
<td></td>
<td>525-1 705 kHz (Region 2)</td>
</tr>
<tr>
<td>HF</td>
<td>3 950-4 000 kHz (Regions 1, 3)</td>
</tr>
<tr>
<td></td>
<td>5 900-6 200 kHz</td>
</tr>
<tr>
<td></td>
<td>7 100-7 350 kHz WRC-03: 7 200-7 350 (03-2007) and –7 400 (03-2009)</td>
</tr>
<tr>
<td></td>
<td>9 400-9 900 kHz</td>
</tr>
<tr>
<td></td>
<td>11 600-12 100 kHz</td>
</tr>
<tr>
<td></td>
<td>13 570-13 870 kHz</td>
</tr>
<tr>
<td></td>
<td>15 100-15 800 kHz</td>
</tr>
<tr>
<td></td>
<td>17 480-17 900 kHz</td>
</tr>
<tr>
<td></td>
<td>18 900-19 020 kHz</td>
</tr>
<tr>
<td></td>
<td>21 450-21 850 kHz</td>
</tr>
<tr>
<td></td>
<td>25 670-26 100 kHz</td>
</tr>
<tr>
<td>VHF</td>
<td>47-68 MHz (Region 1)</td>
</tr>
<tr>
<td></td>
<td>54-72 MHz (Region 2)</td>
</tr>
<tr>
<td></td>
<td>47-50 MHz, 54-68 MHz (Region 3)</td>
</tr>
<tr>
<td></td>
<td>76-108 MHz (Region 2)</td>
</tr>
</tbody>
</table>
3.1.4 Protection criteria and acceptable interference

The Radio Regulations, various ITU-R Recommendations, and Reports provide specifications and useful information that can be used in order to derive the protection requirements for reliable broadcasting reception. This section summarizes the relevant information and attempts to derive the protection requirements for HF analogue sound broadcasting. Because most of the PLT modems employ OFDM and spread spectrum (SS) for their modulation method, interference from PLT is treated as random noise in the analysis below.

3.1.4.1 Recommendations ITU-R BS.1786 and ITU-R BT.1786 – Criterion to assess the impact of interference to the terrestrial broadcasting service

<table>
<thead>
<tr>
<th>Description</th>
<th>Acceptable criterion for the total interference to the broadcasting service resulting from devices and systems without a frequency allocation in the Radio Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived value</td>
<td>At no time should exceed one percent of the total receiving system noise power</td>
</tr>
</tbody>
</table>

3.1.4.2 Recommendation ITU-R BS.560-4 – Radio-frequency protection ratios in LF, MF, and HF broadcasting

<table>
<thead>
<tr>
<th>Description</th>
<th>Minimum usable field strength: 34 dB plus the greater of 3.5 dB(μV/m) (receiver intrinsic noise) and atmospheric noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived value</td>
<td>C/N: 34 dB Minimum usable field strength ≥ 37.5 dB(μV/m)</td>
</tr>
</tbody>
</table>

3.1.4.3 Recommendation ITU-R BS.703 – Characteristics of AM sound broadcasting reference receivers for planning purposes

<table>
<thead>
<tr>
<th>Description</th>
<th>Noise-limited sensitivity: 40 dBμV/m, based on an AF signal-to-unwanted noise (r.m.s.) ratio of 26 dB, related to a modulation of 30%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived value</td>
<td>C/N: 26 dB – 20 log(0.3) dB = 26 + 10.5 = 36.5 dB Field strength: 40 dB(μV/m)</td>
</tr>
</tbody>
</table>
3.1.4.4 Report ITU-R BS.1058 – Minimum AF and RF signal-to-noise ratio required for broadcasting in band 7 (HF)

<table>
<thead>
<tr>
<th>Description</th>
<th>AF signal-to-noise ratio for planning purpose: 24 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AF signal-to-noise ratio corresponding to grade 4 on the ITU-R scale (perceptible but not annoying): 31 dB</td>
</tr>
<tr>
<td></td>
<td>AF signal-to-noise ratio corresponding grade 3 on the ITU-R scale (slightly annoying): 20-21 dB</td>
</tr>
<tr>
<td>Derived value</td>
<td>C/N: $24 \text{ dB} - 20 \log(0.3) \text{ dB} = 24 + 10.5 = 34.5 \text{ dB}$</td>
</tr>
</tbody>
</table>

3.1.4.5 Annex 2 to Recommendation ITU-R BS.1615 – Planning parameters for digital sound broadcasting at frequencies below 30 MHz – RF protection ratios for DSB (DRM system) at frequencies below 30 MHz

<table>
<thead>
<tr>
<th>Description</th>
<th>Relative RF protection ratio for AM interfered with by Digital: 6 to 6.6 dB for AF protection ratio of 0 dB as an reference value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived value</td>
<td>C/N: $6 \text{ dB} + 17 \text{ dB} = 23 \text{ dB}$, for AF protection ratio of 17 dB$^{(1)}$</td>
</tr>
</tbody>
</table>

$^{(1)}$ The value of 17 dB is used as an example to derive the C/N in absolute values.

3.1.4.6 Derivation of acceptable range of field strength incident from the wired telecommunication systems

<table>
<thead>
<tr>
<th>Summary of the derived value</th>
<th>Minimum usable field strength of HF broadcasting: 37.5 to 40 dB(μV/m) (C/N): 30 to 36.5 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derived field strength</td>
<td>Range of field strength incident from the wired systems: 1 to 10 dB(μV/m)</td>
</tr>
</tbody>
</table>

3.1.4.7 Receiver noise level and acceptable interference level

For estimation of receiver sensitivity deterioration due to co-channel interference, or for estimation of an acceptable co-channel interference level, it is important to know the receiver noise level rather than the receiver sensitivity, since receiver sensitivity deteriorates due to increase of receiver noise by co-channel interference power. For example, if the co-channel interference receiving power is the same level as the original receiver noise, resultant noise power increases by a factor of 2 (3 dB) (neglecting the difference of noise waveforms), and the sensitivity deterioration is 3 dB.

Receiver external noise level and interference level are usually expressed in terms of field strength. Accordingly, it is convenient to express the receiver internal noise by equivalent field strength for ease of comparison (in place of actual noise existing in the receiver, an equivalent noise is assumed received through the antenna with noise-less receiver.)

Receiver noise level can be calculated as shown in § 3.1.1.2. Although this receiver noise is estimated using analogue receiver sensitivity, these results also apply to digital receivers when bandwidth differences are taken into account.

The above receiver noise estimation is made on condition that external noise is absent. However, receiver noise usually includes external noise that is received through receiving antenna besides receiver internal (intrinsic) noise, which is generated in the receiver. The external noise for receivers operating at below 30 MHz includes atmospheric, man-made, and cosmic noise.
Recommendation ITU-R P.372-9 expresses each of average strength of atmospheric noise, man-made noise, and cosmic noise comparing with the thermal noise level kT_0b when they are received through a lossless short vertical monopole with perfectly grounded plane. Therefore, it is convenient to convert the receiver internal noise level into equivalent field strength (E_{ri}), as mentioned above, based upon the identical antenna.

Equivalent field strength of the receiver (overall) noise (E_{rt}) is expressed by the field strength corresponding to the power sum of the above E_{rt} and average field strength of the external noise (E_{re}). That is:

$$E_{rt}^2 = E_{ri}^2 + E_{re}^2 \quad (3-1)$$

When co-channel interference field strength, E_u, superposes to E_{rt}, the equivalent field strength of the receiver noise power increases up to E_{ru} which corresponds to the power sum of E_{rt} and E_u. That is:

$$E_{ru}^2 = E_{rt}^2 + E_u^2 \quad (3-2)$$

For example:

- When E_u is equal to E_{rt}, overall receiver noise increases by 3 dB, that is, receiver sensitivity deteriorates by 3 dB.
- When E_u is 6 dB lower than E_{rt}, receiver sensitivity deteriorates by 1 dB.
- When E_u is 10 dB lower than E_{rt}, receiver sensitivity deteriorates by 0.5 dB.
- When E_u is 20 dB lower than E_{rt}, receiver sensitivity deteriorates by 0.05 dB.

That is, in order to limit receiver sensitivity deterioration due to co-channel interference (E_u) to within 0.05 dB, E_u should be 20 dB lower than equivalent field strength of the receiver (overall) noise (E_{rt}).

3.1.4.8 Equivalent field strength of receiver noise

Receiver internal noise in § 3.1.1.2 is calculated using the receiver sensitivity with a built-in antenna. However, the sensitivity figures in § 3.1.1.2 are significantly improved by using an external antenna, such as a short wire extended in the room. Taking this improvement and low loss performance in the antenna matching of VHF receivers into account, external noise, whose minimum value is determined by the man-made noise, is considered the major component of receiver noise in receivers operating below 80 MHz.

With the above antenna condition defined in Recommendation ITU-R P.372, a lossless short vertical monopole antenna with perfect ground plane, the received power (P_r) from a field strength E is expressed by:

$$P_r = E^2 \lambda^2/(640\pi^2) \quad (3-3)$$

where:

- P_r: maximum available received power (W)
- E: field strength (V/m)
- λ: wavelength (m) = $3 \times 10^2/f$
- f: frequency (MHz).

Substituting kT_0b (-164.5 dBW) into the above P_r, equivalent field strength of the thermal noise; $E(kT_0b)$ for ($b = 9000$ Hz) is given by:

$$E(kT_0b) = 20 \log f - 56 \quad \text{dB(\mu V/m)} \quad (3-4)$$
where:

\[
E(kT_0 b): \text{ equivalent field strength of the thermal noise } kT_0 b \quad \text{dB(μV/m)}
\]

\[
k: \quad \text{Boltzmann’s constant} = 1.38 \times 10^{-23} \text{ J/K}
\]

\[
T_0: \quad \text{reference temperature} = 288 \text{ K}
\]

\[
b: \quad \text{receiver effective noise bandwidth (Hz)}
\]

\[
kT_0 b = -164.5 \text{ dBW} \quad \text{(for } b = 9000 \text{ Hz (the bandwidth } b \text{ is to be adjusted in accordance with the necessary bandwidth of the transmitter system))}.
\]

The value of \(E(kT_0 b)\) is shown in Fig. 3-1. Recommendation ITU-R P.372 expresses the average strength of each kind of external noise by comparing it with the thermal noise level \(F_{\text{am dB relative to } kT_0}\). That is, each field strength is obtained as \(F_{\text{am dB}}\) above \(E(kT_0 b)\) dB(μV/m).

FIGURE 3-1

Equivalent field strength of man-made noise \((b = 9000 \text{ Hz})\)

![Diagram of equivalent field strength of man-made noise](image)

Environmental categories:
- Curve A: City
- Curve B: Residential
- Curve D: Quiet rural
- Curve E: Cosmic noise

3.1.4.9 External noise

Recommendation ITU-R P.372 expresses each of average strength of atmospheric noise, man-made noise, and cosmic noise comparing with the thermal noise level \(F_{\text{am dB relative to } kT_0}\) when they are received through a lossless short vertical monopole with a perfectly grounded plane.

3.1.4.9.1 Man-made noise

Figure 3-1 shows a summary of man-made noise in various environments. Equivalent field strengths are shown for \(b = 9000 \text{ Hz}\).
3.1.4.9.2 Comparison between man-made noise and atmospheric noise

The minimum level of external noise is determined by the man-made noise as this is the dominant factor when the atmospheric noise fades.

3.1.4.10 Permissible interference field strength

From the above, it is concluded that:

– When an external antenna is used, external noise is the major receiver noise.
– With a built-in-antenna, external noise is the major factor in business and residential areas. Even in rural areas the external noise is significant;
– Since the minimum value of external noise is determined by the man-made noise, the permissible interference field strength is also determined by man-made noise;
– It is assumed in this analysis that the Fig. 3-1 for man-made noise in quiet rural areas be used as a reference.

3.1.4.11 Protection criteria for the broadcast service

– In order to protect the broadcasting service from radiated noise arising from PLT systems operating over the electrical infrastructure wiring and from electrical equipment connected to a power socket, protection levels between the values shown as line F in Fig. 3-2 (r.m.s. value) and those shown as line G in Fig. 3-2 (peak value) should not be higher the value at any place where a receiver might be located. The values in Fig. 3-2 recognize the noise floor limitation of the broadcast receiver above 30 MHz.
– The protection levels necessary to protect a broadcasting receiver using an a.c power supply from interference through a receiver power cable is the equivalent value given in Fig. 3-1, including the case when an external long wire antenna is used or when a power line is used as an antenna by grounding the external antenna terminal.

Median values of man-made noise power for a number of environments are shown in Fig. 3-1. The figure also includes a curve for galactic noise.

In all cases results are consistent with a linear variation of the median value, F_{am}, with frequency f of the form:

$$F_{am} = c - d \log f \quad \text{dB} \quad (3-5)$$

With f expressed in MHz, c and d take the values given in Table 3-1. Note that equation (3-5) is valid in the range 0.3 to 250 MHz for all the environmental categories except those of curves D and E as indicated in Fig. 3-1.

Since the above are received values with lossless short vertical monopole above a perfect ground plane, the vertical component of the r.m.s. field strength is obtained as F_{am} (dB) above $E(kT_0b)$ (dB) given by equation (3-4).

For $b = 9,000$ Hz:

$$E_n = F_{am} + 20 \log f - 56 \quad \text{dB(μV/m)} \quad (3-6)$$

where:

- E_n: field strength in bandwidth b, and
- f: centre frequency (MHz)
- b: receiver effective noise bandwidth (Hz).

Median values of man-made noise field strength for a number of environments obtained from equation (3-6) are shown in Fig. 3-1.
By substituting F_{am} expressed by equation (3-5) into equation (3-6),

$$E_n = c - d \log f + 20 \log f_{\text{MHz}} - 56 \quad \text{dB(\mu V/m)} \quad (3-7)$$

$$= c' + d' \log f \quad \text{dB(\mu V/m)} \quad (3-8)$$

where:

$$c' = c - 56$$
$$d' = 20 - d$$

c' and d' take the values given in Table 3-1.

<table>
<thead>
<tr>
<th>Environmental category</th>
<th>c'</th>
<th>d'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business (curve A)</td>
<td>20.8</td>
<td>-7.7</td>
</tr>
<tr>
<td>Residential (curve B)</td>
<td>16.5</td>
<td>-7.7</td>
</tr>
<tr>
<td>Rural (curve C)</td>
<td>11.2</td>
<td>-7.7</td>
</tr>
<tr>
<td>Quiet rural (curve D)</td>
<td>-2.4</td>
<td>-8.6</td>
</tr>
<tr>
<td>Galactic noise (curve E)</td>
<td>-4</td>
<td>-3.0</td>
</tr>
</tbody>
</table>

FIGURE 3-2

Protection criteria for interference field strength ($b = 9000$ Hz)

Curves F: Protection criteria for an r.m.s. value of interference field strength (20 dB below curve D in Fig. 3-1 at or below 30 MHz)

G: Protection criteria for a peak value of interference field strength (same as curve D in Fig. 3-1 at or below 30 MHz)
c' and d' for curves F and G take the values given in Table 3-2.

<table>
<thead>
<tr>
<th>Environmental category</th>
<th>c'</th>
<th>d'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve F</td>
<td>–22.4</td>
<td>–8.6</td>
</tr>
<tr>
<td>Curve G</td>
<td>–2.4</td>
<td>–8.6</td>
</tr>
</tbody>
</table>

Table 3-2
Values of the constants c' and d' at below 30 MHz

3.2 Amateur and amateur satellite

3.2.1 General characteristics

The RR defines the amateur radio service as:

«1.56 **amateur service:** A radiocommunication service for the purpose of self-training, intercommunication and technical investigations carried out by amateurs, that is, by duly authorized persons interested in radio technique solely with a personal aim and without pecuniary interest.

1.57 **amateur-satellite service:** A radiocommunication service using space stations on earth satellites for the same purposes as those of the amateur service.»

The maximum permitted transmitter power is dependent on national regulations, varying from around 100 W to 1.5 kW output power. The amateur services are the only potential user of relatively high transmitter power in residential areas. However many users choose to operate using low transmit powers on the order of a few watts. A wide variety of antennas and equipment, depending on location and financial means is used. Consequently, there is no standard amateur radio station.

Users of the amateur services do not generally have the opportunity to position antennas far away from electric wiring. They must install their antennas within the boundaries of their homes, which generally means in close proximity to mains and telephone wiring. Other sources of localized interference can be minimized by the amateur choosing not to use equipment such as luminaries, switch-mode power supplies, and other equipment generating interference when operating. That choice is not available in the case of many cable-borne cable transmission systems, where the emissions are present all the time.

Amateur service stations communicate over long distances on the HF bands, making optimum use of propagation windows. Amateurs frequently operate at or near to the minimum signal-to-noise ratio for effective communication. Limits of communication are generally determined by the received signal strength in relation to the background noise. Amateurs manage to communicate effectively with a signal-to-noise ratio of some 6 dB for voice communications in a nominal 2.4 kHz bandwidth and as low as minus 6 dB (related to the same bandwidth) for Morse code or spectrum-efficient data modes.

Many users of the amateur services provide disaster relief communications. In many countries, amateur radio is seen as a valuable back-up service in case of breakdown or overload of normal communications systems. Governments rely on this capability at times of emergency. Amateur service HF and VHF allocations are used for this purpose.
3.2.1 Operational characteristics

Amateur stations and amateur-satellite earth stations generally do not have assigned frequencies but dynamically select frequencies within an allocated band using listen-before-talk (LBT) techniques. Terrestrial repeaters, digital relay stations and amateur satellites use frequencies selected on the basis of voluntary coordination within the amateur services. Some amateur frequency allocations are exclusive to the amateur and amateur-satellite services. Many of the allocations are shared with other radio services and amateur operators are aware of the sharing limitations.

Operating protocols vary according to communications requirements and propagation. MF and HF bands are used for near-vertical-incidence-sky wave (NVIS) to global paths. VHF, UHF and SHF bands are used for short-range communications. Amateur satellites afford an opportunity to use frequencies above HF for long-distance communications.

3.2.2 Amateur frequency allocations

Details of frequency bands allocated to the amateur services in the range 1.8 to 80 MHz vary from Region to Region. Table 3-3 gives an indication of the frequency distribution of the allocations.

3.2.3 The protection requirements of the HF amateur radio service

Stations in the amateur services often work at very low signal to noise ratios (SNR). The available SNR is usually limited by environmental factors, such as antenna efficiency, but because the majority of amateur stations are in residential areas, the usual limitation is external man made noise.

<table>
<thead>
<tr>
<th>Approximate frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
</tr>
<tr>
<td>3.5</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>10.1</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>18.1</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>24.9</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>70</td>
</tr>
</tbody>
</table>

3.2.3.1 Fade margin and the 0.5 dB protection criterion of HF amateur radio

In professional broadcasting, ample fade margins are taken into account to guarantee a high degree of availability of the signal. This, coupled to the lower sensitivity of broadcast receivers, leads to the high power levels used in HF broadcasting. In the amateur radio service, the permitted transmitter powers are relatively low and in long-distance communications the remaining fade margin above the minimum required field strength of a long-distance signal is around 0 to 1 dB. Given the form of the signal strength versus time curve of a narrow-band HF signal with fading, this
means that in some long-distance communication links, parts of the transmissions will be missed due to fading, necessitating repeat transmissions. Increasing the ambient noise floor by only a few dB would have a tremendous impact on the long-distance communication capability of an amateur station.

For this reason, the maximum allowable increase in the total noise floor due to PLT emissions should be 0.5 dB. For the increase not to exceed 0.5 dB, the average noise field strength radiated by the power network at 10 m distance must be 9.14 dB below the pre-existing noise level.

3.2.3.2 The noise floor in amateur radio bands

In common with other HF services, the ability to achieve satisfactory amateur communications depends on the ratio between the wanted signal and the noise. The noise consists of four components, (internally generated) receiver noise, atmospheric, man-made and cosmic. Figure 3-3 were derived from Recommendation ITU-R P.372 using a graph that represents the 99.5% of time value exceeded situation, measurement bandwidth is 6 kHz, and f is frequency (MHz).

FIGURE 3-3

Equivalent field strength of man-made noise ($b = 6$ kHz)

<table>
<thead>
<tr>
<th>f (MHz)</th>
<th>E (dBuV/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>-70</td>
</tr>
<tr>
<td>0.5</td>
<td>-60</td>
</tr>
<tr>
<td>1</td>
<td>-50</td>
</tr>
<tr>
<td>2</td>
<td>-40</td>
</tr>
<tr>
<td>5</td>
<td>-30</td>
</tr>
<tr>
<td>10</td>
<td>-20</td>
</tr>
<tr>
<td>20</td>
<td>-10</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

Curves:
- Curve A: Business
- Curve B: Residential
- Curve C: Rural
- Curve D: Quiet rural
- Curve E: Cosmic
3.2.3.3 Acceptable noise floor levels

From the criteria in § 3.2.3.1, the acceptable increase in noise floor generated by PLT is 0.5 dB greater than the figures derived from the graph in Fig. 3-3. It should be noted that the requirement is independent of the bandwidth of the received signal: to correlate with the usual measurement bandwidth of 9 kHz, the figures can be increased by 1.8 dB. Table 3-4 lists the field strength acceptable at 10 m from a PLT installation to meet. Figures for 70 MHz are obtained by extrapolation from Fig. 3-3.

<table>
<thead>
<tr>
<th>Frequency band (MHz)</th>
<th>dB(μV/m) in 6 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Business</td>
</tr>
<tr>
<td>1.8</td>
<td>18.5</td>
</tr>
<tr>
<td>3.5</td>
<td>16.5</td>
</tr>
<tr>
<td>7</td>
<td>14.5</td>
</tr>
<tr>
<td>10</td>
<td>12.5</td>
</tr>
<tr>
<td>14</td>
<td>11.5</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>24</td>
<td>9.5</td>
</tr>
<tr>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>50</td>
<td>8.5</td>
</tr>
<tr>
<td>70</td>
<td>8</td>
</tr>
</tbody>
</table>

3.3 Aeronautical mobile and radionavigation

For compatibility assessments it is essential to have available at least the following characteristics of the victim radio services:

– the type of service;
– used frequency range;
– the minimum wanted field strength;
– the horizontal and vertical extension of the designated operational coverage (DOC).

For aeronautical radio services, which could potentially suffer interference due to cable TV leak radiation in the frequency range above 30 MHz, this information can be found in Table 3-5.

Many of military HF radios are located on airborne platforms. Therefore, they may suffer interference due to the low propagation loss of interfering signals and the large radio horizon distance (RHD) of airborne radios.

HF radio is used in the aerospace environment as the primary beyond-line-of-sight (BLoS) communication means to aircraft, land and maritime mobile platforms. Information is exchanged via HF radio in voice, message, and data link formats.
HF communications are used between air command and control ground elements and aircraft for exchanging mission control and surveillance/sensor data at extended ranges and when other communications are not available due to equipment failure or interference. HF is also used for air traffic control (ATC) purposes when beyond the range of VHF facilities.

TABLE 3-5

Aeronautical and radionavigation system characteristics

<table>
<thead>
<tr>
<th>Frequency band</th>
<th>Application abbreviation</th>
<th>Type of service, short description</th>
<th>Designated operational coverage (DOC)</th>
<th>Interference threat</th>
<th>Receiving bandwidth (kHz)</th>
<th>Minimum wanted field strength (dB(µV/m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-110 kHz</td>
<td>LORAN C</td>
<td></td>
<td></td>
<td>DSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>255-526.5 kHz</td>
<td>NDB</td>
<td>Non-directional beacons</td>
<td></td>
<td>DSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.8-22 MHz</td>
<td>HF Communications</td>
<td>HF Communications</td>
<td></td>
<td>PLT, DSL, CATV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 023 kHz</td>
<td>Distress/emergency</td>
<td></td>
<td></td>
<td>PLT, DSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 680 kHz</td>
<td>Distress/emergency</td>
<td></td>
<td></td>
<td>PLT, DSL, CATV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>74.8-75.2 MHz</td>
<td>ILS/MKR</td>
<td>Aeronautical radionavigation service (ARNS) marker beacon belonging to the ILS system, provides a signal to the pilot or flight management system (FMS), when the plane is passing certain fixed points during final approach and landing.</td>
<td>Horizontal: a circle of approximately 100 m radius around the position of the beacon. Vertical: from 30 m to 1 km, depending on the position of the beacon. Position of the beacon: 2 or 3 points on the extended centre line of the runway, between 100 m and 7.5 km from threshold.</td>
<td>CATV</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>

HF communications are used between air command and control elements and ground elements mainly in a back-up mode when primary and higher capacity means are not available.

This includes:

- backup to governmental communications systems;
- links to PfP and non-governmental elements;
- links to deployed/mobile entities;
- links to tactical formations.

For system characteristics and required protection criteria for the maritime and aeronautical mobile services, there is no single document that consolidates the information for systems operating below 80 MHz. Review of current texts reveals that some of the information on characteristics is contained in the following Recommendations: ITU-R M.257, ITU-R M.488, ITU-R M.541, ITU-R M.627, ITU-R M.688, ITU-R M.822, ITU-R M.1081, ITU-R M.1082, ITU-R M.1173 and ITU-R M.1458, and provisions of the RR.
In addition, no formal Recommendations for protection of maritime mobile or aeronautical mobile systems exist.

Annex 2.6 contains a compatibility analysis which assesses possible interference to airborne receivers due to summation effects from PLT sources.

3.3.1 Results

The following table was generated using a methodology similar to that contained in the UWB Report ITU-R SM.2057 with the multiple technology limit modified from 6 dB to 20 dB to take into account that PLT is not an intentional radiator and therefore in the view of Working Party 5B should only be allowed 1% of the interference margin.
TABLE 3.6

Signal level to be protected at the receive antenna

<table>
<thead>
<tr>
<th>System</th>
<th>Frequency band</th>
<th>Receiver location</th>
<th>Minimum level of desired signal (µV/m)</th>
<th>Required D/U (Note 1) (dB)</th>
<th>Receiver bandwidth (kHz)</th>
<th>Aviation safety margin (dB)</th>
<th>Multiple technology limit (dB)</th>
<th>Signal level to be protected at the antenna input (dBm/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB</td>
<td>190-535 kHz</td>
<td>Airborne</td>
<td>70</td>
<td>−31</td>
<td>15</td>
<td>2.8</td>
<td>6</td>
<td>20 (−107)</td>
</tr>
<tr>
<td>HF communications</td>
<td>2.85-22 MHz</td>
<td>Airborne</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>20</td>
<td>−107</td>
<td></td>
</tr>
<tr>
<td>Marker beacon</td>
<td>74.8-75.2 MHz</td>
<td>Airborne</td>
<td>1 500</td>
<td>−51</td>
<td>20</td>
<td>22</td>
<td>6</td>
<td>20 (−143)</td>
</tr>
<tr>
<td>Marker beacon</td>
<td>74.8-75.2 MHz</td>
<td>Ground</td>
<td>15</td>
<td>3</td>
<td>6</td>
<td>20</td>
<td>−143</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1 – Value taken here are the Intra System D/U ratio or in the case of radar the system I/N ratio and are provided as an interim value.
3.4 General protection criteria considerations HF fixed and land mobile

This section considers the protection requirements necessary to ensure that HF fixed and land mobile radiocommunication services, particularly those supporting radionavigation or other safety related functions do not experience harmful interference from PLT installations or networks, as would be required by RR No. 15.12.

Land forces need HF communications to ensure effective consultation, command and control, both within NATO and with PfP Nations. In addition, HF Combat Net Radio communications are used at lower echelons as primary or secondary means where terrain, distance, or mobility requirements preclude reliance on Tactical Area Communications Systems.

The vast majority of usage of the land mobile service are for: national defence, law enforcement; management and preservation of national resources; search and rescue; and emergency and safety communications operations in national seashores, lakes, forests, water resources, and wildlife refuge The areas of operation for these radios include the urban, suburban, and rural areas, both off-shore and in-land. Operation of these land mobile radios typically occurs near power lines that may be used for PLT systems.

3.4.1 Protection criteria and protection requirement

3.4.1.1 Protection criteria

In order to ensure HF communications, the interference protection criteria is based on the levels of thermal, man-made, cosmic and atmospheric noise levels defined in Annex 1 of this Report.

0.5 dB degradation of sensitivity

Generally speaking, the criterion of acceptable interference is based on a maximal sensitivity degradation of 0.5 dB. It means that the total noise and interference (generated by PLT) should not be more than 0.5 dB higher than the total noise at the HF receiver without interference from PLT.

In other words:

\[
(Total \ I + N) \ (\text{dBm/Hz}) < N \ (\text{dBm/Hz}) + 0.5
\]

where:

\[I: \text{ interference generated by PLT (dBm) in a bandwidth of 1 Hz}\]
\[N: \text{ total of receiver noise and man-made noise (dBm) in a bandwidth of 1 Hz.}\]

The above 0.5 dB sensitivity degradation criterion is selected based on the fact that military radio systems are operated close to their sensitivity level.

Basic parameters of HF radios required for the calculations

The required parameters of the victim HF radios are as follows:

- Receiver noise figure: 10 dB
- Antenna gain Rx: 0 dBi\(^\text{11}\)
- Thermal noise: −174 dBm/Hz

With this approach further parameters of HF radios are not required.

\(^{11}\) The antenna gain of HF systems is normally around 0 dBi. A positive antenna gain will reduce the relative influence of the thermal noise.
3.4.1.2 Protection requirement

Based on the above protection criteria, the protection requirement of HF radio systems are as follows:

a) The increase of background noise and interference per Hz should not exceed 0.5 dB due to the unwanted emissions of cable transmission networks (CTN) including unwanted emissions from PLT systems;

b) The reference noise level, depending on the area, can be either that for quiet rural, rural, residential or business;

c) The minimal separation between cable and victim HF Rx is assumed to be 10 m.

3.4.2 A possible protection criteria

PLT systems use radio frequency energy on unshielded, unbalanced transmission lines, resulting in the unavoidable radiation of RF energy. The radiated from PLT networks could cause harmful interference to radio communications. Consequently, limits on radiated emissions will be necessary to ensure protection of the existing licensed HF fixed service.

PLT systems are not recognized as a class of emission or a service and must be treated as a source of extraneous radiation source.

The proposed protection criterion for the HF fixed service from PLT systems is provisionally based on a degraded performance objective of 1% for unwanted emissions when compared with average values as given in Recommendation ITU-R F.1094 developed by former WP/9A. The peak value of PLT emissions should be taken into consideration.

The level of an aggregate interfering signal at the receiving antenna with respect to the quiet rural noise level as specified in Recommendation ITU-R P.372 should also be considered. Certain mitigation techniques such as implementation procedures for PLT systems could mitigate the potential compatibility issue resulting from the use of these objectives.

3.4.3 Automatic link establishment systems

Experience with military missions shows that HF communications is sometimes the only way to distribute missions and progress reports without delays, and without the danger of signal jamming. In addition, in case of a nuclear explosion SATCOM links will be disrupted. By contrast, the HF links would still be available. Disruptions on HF links would be only for a short time.

In general, adaptive radio systems are used which can automatically choose the best frequencies in relation to the best propagation conditions and the maximum data throughput, but only if the noise floor is low enough (i.e. below the decision threshold of the systems). Higher noise levels will reduce the performance of ALE-based systems, as well as the general performance of digital radios.

3.5 Maritime mobile

In this chapter, the various frequency bands allocated for maritime communications and maritime mobile service are reviewed.

3.5.1 Background

Maritime radiocommunications, of which the most important is distress and safety communications, are heavily based on the use of MF and HF frequency bands primarily due to the unique propagation conditions of the MF/HF bands.
Maritime communications are defined as a service under the ITU Radio Regulations. Communications can be between coast stations and ships, or between ships; survival craft stations and emergency radio beacons may also participate in this service. It also includes port operations service and ship movement service.

Safety service is defined under RR No. 1.59:

«1.59 safety service: Any radiocommunication service used permanently or temporarily for the safeguarding of human life and property.»

The maritime community also uses radionavigation, which is also a defined service having exclusive allocations as defined in the RR.

Terms for use of maritime radiocommunications are agreed under the Constitution and Convention of the ITU, which is complemented by the decisions of the World Radiocommunication Conferences (WRC) published as the Radio Regulations (RR). The RR also has binding provisions for all administrations to take all necessary actions to protect these radio frequencies from harmful interference.

3.5.2 Frequencies allocated for maritime communications

Distress and safety communications

RR Appendix 13 defines frequencies to be used for non-GMDSS distress and safety communications. Although it was the intention that GMDSS system would globally replace the Appendix 13 by 1 February 1999, it has been noted that certain administrations and vessels, not subject to the SOLAS, 1974 agreement as amended may still wish to continue to use provisions of Appendix 13 for distress and safety communications for some time after 1 February 1999.

The following paragraphs detail the regulations governing the protection of Distress and Safety Frequencies.

“Section II – Protection of Distress and Safety Frequencies

A – General

§ 13 Except as provided for in these Regulations, any emission capable of causing harmful interference to distress, alarm, urgency or safety communications on the frequencies 500 kHz, 2 174.5 kHz, 2 182 kHz, 2 187.5 kHz, 4 125 kHz, 4 177.5 kHz, 4 207.5 kHz, 6 215 kHz, 6 268 kHz, 6 312 kHz, 8 291 kHz, 8 376.5 kHz, 8 414.5 kHz, 12 290 kHz, 12 520 kHz, 12 577 kHz, 16 420 kHz, 16 695 kHz, 16 804.5 kHz, 121.5 MHz, 156.525 MHz, 156.8 MHz or in the frequency bands 406-406.1 MHz, 1 544-1 545 MHz and 1 645.5-1 646.5 MHz (see also Appendix 15) is prohibited. Any emission causing harmful interference to distress and safety communications on any of the other discrete frequencies identified in Part A2, Section I of this Appendix and in Appendix 15 is prohibited.”

Global maritime distress and safety system

Global maritime distress and safety system (GMDSS) is fully defined in the International Convention for the Safety of Life at Sea (SOLAS, 1974). Resolution 331 (Rev.WRC-97)* states that all ships subject to IMO SOLAS convention shall be fitted for the GMDSS by 1 February 1999.

* This Resolution was subsequently revised at WRC-03 and WRC-07.
The frequencies to be used for the GMDSS are contained in RR Appendix 15. The distress and safety frequency allocations are shown in Table 3-7. In addition to frequencies listed in Appendix 15, coast stations should use other appropriate frequencies for the transmission of safety messages.

TABLE 3-7

Table of distress and safety frequencies in maritime mobile service below 30 MHz

<table>
<thead>
<tr>
<th></th>
<th>Distress</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MHz</td>
<td>MHz</td>
</tr>
<tr>
<td>DSC</td>
<td>2 187.5</td>
<td>2 182.0</td>
</tr>
<tr>
<td>RTP-COM</td>
<td>2 187.5</td>
<td>2 182.0</td>
</tr>
<tr>
<td>NBDP-COM</td>
<td>2 187.5</td>
<td>2 182.0</td>
</tr>
<tr>
<td>MSI/MSI-HF</td>
<td>4 209.5</td>
<td>5 680.0</td>
</tr>
<tr>
<td>AERO-SAR</td>
<td>4 210.0</td>
<td>4 210.0</td>
</tr>
<tr>
<td>MF</td>
<td>6 310.0</td>
<td>6 216.0</td>
</tr>
<tr>
<td>HF</td>
<td>8 414.5</td>
<td>8 291.0</td>
</tr>
<tr>
<td></td>
<td>12 577.0</td>
<td>12 290.0</td>
</tr>
<tr>
<td></td>
<td>16 804.5</td>
<td>16 420.0</td>
</tr>
<tr>
<td></td>
<td>19 680.5</td>
<td>22 376.0</td>
</tr>
<tr>
<td></td>
<td>26 100.5</td>
<td>26 100.5</td>
</tr>
<tr>
<td></td>
<td>MSI</td>
<td>MSI-HF</td>
</tr>
</tbody>
</table>

Legend:

AERO-SAR These aeronautical carrier (reference) frequencies may be used for distress and safety purposes by mobile stations engaged in coordinated search and rescue operations.

DSC These frequencies are used exclusively for distress and safety calls using digital selective calling in accordance with No. 32.5 (see Nos. 33.8 and 33.32).

MSI In the maritime mobile service, these frequencies are used exclusively for the transmission of maritime safety information (MSI) (including meteorological and navigational warnings and urgent information) by coast stations to ships, by means of narrow-band direct-printing telegraphy.

MSI-HF In the maritime mobile service, these frequencies are used exclusively for the transmission of high seas MSI by coast stations to ships, by means of narrow-band direct-printing telegraphy.

NBDP-COM These frequencies are used exclusively for distress and safety communications (traffic) using narrow-band direct-printing telegraphy.

RTP-COM These carrier frequencies are used for distress and safety communications (traffic) by radiotelephony.

Frequencies allocated to maritime mobile service

The Table of Frequency Allocations (RR Article 5) shown in Table 3-8 contains the following frequencies below 30 MHz allocated exclusively for maritime mobile service in Region 1. These frequencies should also be protected from harmful interference within the sense of RR No. 15.12.
TABLE 3-8
Frequencies allocated to the maritime mobile service

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Adjacent Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-19.95 kHz</td>
<td>2 625-2 650 kHz</td>
</tr>
<tr>
<td>20.05-70 kHz</td>
<td>4 000-4 438 kHz</td>
</tr>
<tr>
<td>72-84 kHz</td>
<td>6 200-6 525 kHz</td>
</tr>
<tr>
<td>86-90 kHz</td>
<td>8 100-8 815 kHz</td>
</tr>
<tr>
<td>110-112 kHz</td>
<td>12 230-13 200 kHz</td>
</tr>
<tr>
<td>117.6-126 kHz</td>
<td>16 360-17 410 kHz</td>
</tr>
<tr>
<td>129-148.5 kHz</td>
<td>18 780-18 900 kHz</td>
</tr>
</tbody>
</table>

3.5.3 Receiver parameters for the maritime mobile service in MF and HF bands

For system characteristics and required protection criteria for the maritime and aeronautical mobile services at frequencies below 80 MHz, there is no single document that consolidates the requested information for systems operating below 80 MHz. Review of current texts reveals that some of the information on characteristics is contained in the following Recommendations: ITU-R M.257, ITU-R M.488, ITU-R M.541, ITU-R M.627, ITU-R M.688, ITU-R M.822, ITU-R M.1081, ITU-R M.1082, ITU-R M.1173 and ITU-R M.1458, and provisions of the RR.

In addition, no technical studies related to protection criteria nor formal Recommendations for such protection of maritime mobile or aeronautical mobile systems exist. However, the following information has been collated, which may serve as a basis for deriving protection requirements.

3.5.3.1 NAVTEX receivers – 424, 490 and 518 kHz

Report ITU-R M.910-1 provides that:
- Receiver sensitivity = 18 μV/m (25 dB(μV/m));
- \(S/N = 8 \) dB (300 Hz);
- Co-channel protection ratio = 8 dB.

3.5.3.2 Maritime MF/HF receivers

MF/HF distress and safety communications in the GMDSS use the following frequencies:

<table>
<thead>
<tr>
<th>Digital selective calling (DSC) (kHz)</th>
<th>Radiotelephony (R/T) (kHz)</th>
<th>Narrow-band direct-printing (NBDP) (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 187.5</td>
<td>2 182</td>
<td>2 174.5</td>
</tr>
<tr>
<td>4 207.5</td>
<td>4 125</td>
<td>4 177.5</td>
</tr>
<tr>
<td>6 312</td>
<td>6 215</td>
<td>6 268</td>
</tr>
<tr>
<td>8 414.5</td>
<td>8 291</td>
<td>8 376.5</td>
</tr>
<tr>
<td>12 577</td>
<td>12 290</td>
<td>12 520</td>
</tr>
<tr>
<td>16 804.5</td>
<td>16 420</td>
<td>16 695</td>
</tr>
<tr>
<td>Maritime safety information (MSI) (kHz)</td>
<td>Coordination with SAR aircraft (kHz)</td>
<td>MF/HF general communications in the GMDSS use the following frequency bands (kHz)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>4 210</td>
<td>3 023</td>
<td>1 606.5-1 625</td>
</tr>
<tr>
<td>6 314</td>
<td>5 650</td>
<td>1 635-1 800</td>
</tr>
<tr>
<td>8 416.5</td>
<td></td>
<td>2 045-2 160</td>
</tr>
<tr>
<td>12 579</td>
<td></td>
<td>2 170-2 173.5</td>
</tr>
<tr>
<td>16 806.5</td>
<td></td>
<td>2 173.5-2 190.5</td>
</tr>
<tr>
<td>19 680.5</td>
<td></td>
<td>2 190.5-2 194</td>
</tr>
<tr>
<td>22 376</td>
<td></td>
<td>2 625-2 850</td>
</tr>
<tr>
<td>26 100.5</td>
<td></td>
<td>4 000-4 063</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 063-4 438</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 200-6 525</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 100-8 195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 195-8 815</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 230-13 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 360-17 410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 780-18 900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 680-19 800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 000-22 855</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 070-25 210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 100-26 175</td>
</tr>
</tbody>
</table>

Co-channel protection ratios:
- Radiotelephony = 9 dB
- Digital selective calling = 12 dB
- Narrow-band direct-printing = 16 dB.

The ETSI Standard 300 373 contains the following values.

Maximum usable sensitivity:
- In 1 605-4 000 kHz: 5 dB(µV)
- In 4 000-27 500 kHz: 0 dB(µV)

Adjacent signal selectivity:
- 500 Hz ±500 Hz: 40 dB (with a narrow-band filter)
- 1 kHz, ±4 kHz: 40 dB
- 2 kHz, ±5 kHz: 50 dB
- 5 kHz, ±8 kHz: 60 dB

Automatic gain control time constants:
- Attack time = 5 to 10 ms
- Recovery time = 1 to 4 s

Cross modulation:
- ±20 kHz: max level of unwanted signal = +90 dB(µV)

Intermodulation:
- +70 dB(µV)
Spurious response rejection:
70 dB
* ETSI Standard 300 373

3.5.4 Hyperbolic radionavigation systems
For use in the bands 285.4-285.6 kHz, 285.6 and 315 kHz and 405 and 415 kHz (see RR No. 466A), Recommendation ITU-R M.631-1 provides that:
– minimum wanted received signal level = 3 µV/m;
– bandwidth ±10 Hz;
– co-channel protection ratio = 20 dB.
For use band 70-130 kHz (LORAN), Recommendation ITU-R M.589-3 provides that:
– The S/N at the boundary of the coverage area is typically, e.g. if the expected noise level is 55 dB(µV/m), a wanted minimum signal level of 45 dB(µV/m) is needed throughout the coverage area.
– A typical protection ratio for the maximum wanted-to-unwanted signal level is 20 dB, meaning that the unwanted field strength at a Loran-C receiver should be below ~25 dB(µV/m) in order to prevent interference.

3.5.5 LF/MF maritime radionavigation beacons
For use in the frequency band 275-415 kHz, Recommendations ITU-R M.823-3 and ITU-R M.588 provide that:
– Frequency assignments to maritime radio beacons are based on multiples of 100 Hz.
– The maximum permitted occupied bandwidth in Region 1 is 230 Hz.
– The receiver operates at a maximum bit error ratio of 1×10^{-3} in the presence of Gaussian noise at a signal-to-noise ratio of 7 dB in the occupied bandwidth.
– The required protection ratio for an on-channel interfering signal is 15 dB.

3.6 Radiolocation
The radiolocation service is a radiodetermination service used for detection and positional location of distant objects (targets).
Frequencies in the range 3-50 MHz are used for a variety of uses including area surveillance of aircraft and shipping movements, early warning missile detection and oceanographic observations providing data on wave heights and related wind conditions.

3.6.1 Oceanographic radar systems in the bands 3-50 MHz
Protection requirements for the various systems in use are given in Table 3.8bis.

3.6.2 System characteristics
The following system characteristics have been taken from Report ITU-R M.1874.
TABLE 3-8bis
Protection requirements for oceanographic radar systems in the bands 3-50 MHz

<table>
<thead>
<tr>
<th>Receiving characteristics</th>
<th>Oceanographic radar systems (Recommendation ITU-R M.1874)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 (5 MHz)</td>
</tr>
<tr>
<td></td>
<td>16 sets of 2-element Yagi</td>
</tr>
<tr>
<td>Antenna pattern type</td>
<td>Electric and magnetic</td>
</tr>
<tr>
<td></td>
<td>dipoles</td>
</tr>
<tr>
<td>Antenna type</td>
<td>2 crossed loops +</td>
</tr>
<tr>
<td></td>
<td>monopole as single unit</td>
</tr>
<tr>
<td>Antenna polarization</td>
<td>Vertical</td>
</tr>
<tr>
<td>Antenna main beam gain</td>
<td>5 dBi</td>
</tr>
<tr>
<td>Antenna elevation beamwidth</td>
<td>45°</td>
</tr>
<tr>
<td>Antenna azimuthal beamwidth</td>
<td>90-360°</td>
</tr>
<tr>
<td></td>
<td>size</td>
</tr>
<tr>
<td>Antenna horizontal scan rate</td>
<td>Fixed antenna</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna height</td>
<td>4 m</td>
</tr>
<tr>
<td>IF 3 dB bandwidth</td>
<td>500 Hz</td>
</tr>
<tr>
<td>Noise figure</td>
<td>12 dB with pulsing</td>
</tr>
<tr>
<td>Initial maximum tolerable value of interference</td>
<td>−147 dBm</td>
</tr>
<tr>
<td>Resolution bandwidth</td>
<td>500 Hz</td>
</tr>
</tbody>
</table>

NOTE 1—The initial maximum tolerable value of interference is specified for the aggregate level from all interference sources and hence an apportionment factor will need to be developed.
3.7 Fixed

Signal intelligence (SIGINT) activities are important to the military. Therefore, listening to (very weak) signals is done by the military and this activity can be disturbed by low-level interference.

Military HF radio stations are also supplied by public power lines. The power supply system might not be provided with special filters to remove HF signals. Filtering out PLT signals on power lines might not be practical.

3.7.1 Fixed system characteristics

Review of current texts reveals that some of the information on characteristics is contained in Recommendations ITU-R F.758 and ITU-R F.764, parts of which are outdated and due for revision or deletion during the current ITU-R work cycle, and provisions of the RR. In addition, Recommendation ITU-R F.339 provides information on bandwidths, signal-to-noise ratios and fading allowances for complete HF systems characteristics.

3.7.2 Protection criteria

The level of an aggregate interfering signal at the receiving antenna with respect to the ITU quiet rural noise level as specified in Recommendation ITU-R P.372 may be considered, however neither technical studies relating to protection criteria nor formal Recommendations for such protection of HF fixed service systems exist at this time.

A deterministic analysis is generally the preferred methodology when considering the protection of the primary fixed service in the HF range from interference caused by high data rate communication applications using the electricity supply wiring.

3.8 Radio astronomy

Threshold interference levels for interference detrimental to the operation of the radio astronomy service (RAS) are given in Recommendation ITU-R RA.769. As noted there, the values represent detrimental threshold levels for typical observations, using an integration (observations) time of 2 000 s and an antenna gain of 0 dBi. Recommendation ITU-R SA.509 provides the antenna gain pattern of the radio astronomy antenna.

The radio astronomy service (RAS) has frequency allocations at 13.36-13.41 MHz and 25.55-25.67 MHz on a primary basis. In terms of total input interference power into the bands, the threshold interference levels from Recommendation ITU-R RA.769 are −185 dBW and −188 dBW respectively, and the corresponding spectral power flux densities within the bands are −248 and −249 dB(W/(m² ⋅ Hz)).

All frequency bands below 80 MHz currently allocated to and intensively used by the radio astronomy service are indicated in Table 3-8 which reproduces the protection criteria for the frequency range where cable signal can be found. These are as given in Recommendation ITU-R RA.769.

Protection of bands in this frequency range is of great importance for future radio astronomy because of the construction of a new generation of radio telescopes such as the MWA, the eVLA, the low frequency array (LOFAR) and the square-kilometer array (SKA).
TABLE 3-9

<table>
<thead>
<tr>
<th>Frequency band (MHz)</th>
<th>European Common Allocation (ECA) allocation status</th>
<th>Reference bandwidth for spurious emissions (MHz)</th>
<th>Level of detrimental interference (continuum observations) (dB(μV/m))</th>
<th>Level of detrimental interference (spectral line observations) (dB(μV/m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.36-13.41</td>
<td>Primary shared (5.149)</td>
<td>0.05</td>
<td>–55.2</td>
<td>–55.2</td>
</tr>
<tr>
<td>25.55-25.67</td>
<td>Primary (passive exclusive) (5.149)</td>
<td>0.12</td>
<td>–53.2</td>
<td>–50.2</td>
</tr>
<tr>
<td>37.5-38.25</td>
<td>Secondary (5.149)</td>
<td>1.60</td>
<td>–50.2</td>
<td>–50.2</td>
</tr>
<tr>
<td>73.0-74.6</td>
<td>Secondary (5.149)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1 – RR No. 5.149 states for the bands 13.36-13.41 MHz, 25.55-25.67 MHz, 37.5-38.25 MHz, and 73.0-74.6 MHz, that “… administrations are urged to take all practicable steps to protect the radio astronomy service from harmful interference. Emissions from spaceborne or airborne stations can be particularly serious sources of interference to the radio astronomy service”.

3.9 Standard frequency and time

ITU-R Working Party 7A notes that interference analyses may not predict accurately the effect of possible PLT interference on specialized services such as the reception of standard-frequency and time signals by radio-controlled clocks.

Table 3-10 is derived from the Table in Annex 1 to Recommendation ITU-R SM.1138.

TABLE 3-10

Properties of Standard frequency and time signals

<table>
<thead>
<tr>
<th>Description of emission</th>
<th>Necessary bandwidth</th>
<th>Designation of emission</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formula</td>
<td>Sample calculation</td>
</tr>
<tr>
<td>1 High frequency (voice)</td>
<td>$B_n = 2M$</td>
<td>Speech $M = 4,000$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandwidth: 8,000 Hz = 8 kHz</td>
</tr>
<tr>
<td>2 High frequency (tone bursts)</td>
<td>$B_n = 2/t_R$</td>
<td>$t_R = 1$ ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandwidth: 2,000 Hz = 2kHz</td>
</tr>
<tr>
<td>3 High frequency (time code)</td>
<td>$B_n = BK + 2M$</td>
<td>$B = 1/s$ $M = 1$ $K = 5$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bandwidth: 7 Hz</td>
</tr>
</tbody>
</table>
TABLE 3-10

<table>
<thead>
<tr>
<th>Description of emission</th>
<th>Necessary bandwidth</th>
<th>Designation of emission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formulas</td>
<td>Sample calculation</td>
<td>Formula</td>
</tr>
<tr>
<td>4 Low frequency (time code)</td>
<td>Bandwidth = 2 kHz</td>
<td>2K00K2XAN</td>
</tr>
<tr>
<td>Time code leading edge used for epoch measurement</td>
<td>$B_n = 2/t_R$</td>
<td>$t_R = 1 \text{ ms}$</td>
</tr>
<tr>
<td></td>
<td>Bandwidth = 2 000 Hz = 2 kHz</td>
<td></td>
</tr>
<tr>
<td>Time code as telegraphy</td>
<td>$B_n = BK + 2M$</td>
<td>$B = 1/s$</td>
</tr>
<tr>
<td></td>
<td>$M = 1$</td>
<td>$K = 3$</td>
</tr>
<tr>
<td></td>
<td>Bandwidth: 5 Hz</td>
<td>5H00A2XAN</td>
</tr>
</tbody>
</table>

4 **Potential means for preventing or eliminating interference**

To prevent interference, the administration of Japan decided in October 2006 to permit only indoor PLT, that is, not to allow access PLT.

Another way to prevent, or at least sufficiently mitigate, interference is to define suitable emission limits of PLT systems and devices at a level low enough to ensure the protection of a radiocommunication or radio astronomy service.

Electrical power systems could be designed for high speed data transmission through complete radiation shielding, RF blocking filters at transition points, or other means.

4.1 **Mitigation factors and methods for power line communications**

There is increasing demand for and use of broadband access to the Internet throughout the world and PLT systems may provide one means of such access. But such systems are unintentional emitters of RF radiation, and may cause interference to radio receivers.

PLT system may use internal low voltage house wiring to carry communications signals, or outside (overhead or buried) LV wiring, or outside MV wiring, or a combination.

Some radio receivers, such as HF broadcast receivers with internal antennas that use the electric power cord as part of the antenna subsystem, may suffer interference through conducted emissions, but the interference coupling path to most other victim receivers may be by means of radiated emissions.

In adopting regulations applicable to PLT, national administrations may rely solely on limits on emission levels to protect against interference, or they may rely on a combination of emission limits and mitigation factors. This section provides guidance on mitigation factors that may be considered by national administrations.

4.1.1 **Attenuation of conducted signals**

A primary concern of some administrations is the protection of HF broadcast receivers in one apartment or home when a neighbour in an adjacent apartment or home uses PLT. In this case, conducted emissions might be the primary interference coupling mechanism.

Some studies have included measurements showing that attenuation of PLT signals, from the electric socket in the premises, through an electric meter and through a breaker panel, is on the order of 30 dB to 40 dB. This is understood to be due to a combination of loss through the meter itself, plus the complex electrical behaviour of in-building electric networks. Electric meters that
contain electronic circuitry to provide for remote control and monitoring have been found to attenuate PLT signals by as much as 20 dB at some frequencies, and the frequency dependence of the attenuation is quite complex. Consequently, in an apartment building where one neighbour is using PLT technology and an adjacent neighbour has an HF broadcast receiver connected to the mains network, the total attenuation of conducted PLT signals could be on the order of 60 to 80 dB from one neighbour to the other.

These results may or may not be applicable in all countries, because building construction methods vary and electrical network configurations vary from country to country. Consequently, in considering whether to take this attenuation into account as a mitigation factor in adopting national regulations, administrations should study the attenuation in typical buildings within each country.

Moreover, attenuation may be increased by adding a filter to the electric power network. Such a filter could be inserted between a radio receiver’s mains cord plug and the electrical socket where it is connected. Because the physical configuration of plugs and sockets varies from one country to another, administrations should investigate the feasibility of this mitigation approach and the availability of such filters within each country. For further information on separation distance see § A3.5.

4.1.2 Frequency band exclusions

Administrations may require that PLT systems exclude (place no carrier frequencies in) certain designated bands. This requirement might be applied solely to overhead outdoor MV wires, to outdoor MV and LV wires, or to underground wires (LV or MV).

For example, one administration has imposed such a requirement on some bands between 2 MHz and 22 MHz as well as 74.8-75.2 MHz. This protects bands allocated to aeronautical mobile and radionavigation services that are used to provide aeronautical safety of life services. In this case, the requirement was applied only to overhead outdoor MV wires, not to LV or underground MV wires.

4.1.3 Geographical exclusion zones

Administrations may prohibit PLT operators from using certain frequency bands within specified distances of licensed radio stations in particular services.

For example, one administration has prohibited PLT use of the frequency band 2.1735-2.1905 MHz (global maritime distress band) within 1 km of about 110 designated maritime radio stations. It also prohibited PLT operators from using 73.0-74.6 MHz (radio astronomy frequencies) within 65 km of one radio astronomy (RA) observatory (applicable only to overhead MV) or within 47 km of the RA observatory (applicable to underground MV and overhead LV lines).

Such distance-based regulations would apply to companies operating PLT systems to provide Internet access service, but not to in-home networks using customer-owned PLT equipment.

The distances at which harmful interference from PLT systems might occur is highly dependent upon factors such as the characteristics of the local power grid and the design and topology of the particular PLT system. Since these factors vary significantly from one location to another, conclusions drawn from one system and configuration cannot reliably be applied to dissimilar cases. Administrations should take care to base regulatory decisions only on analyses that accurately reflect the national situation.

4.1.4 Consultation area requirements

In order to make the detection and mitigation of interference more efficient, administrations may require PLT system operators to give advance notice of installations to certain radio service licensees.
For example, one administration has required PLT operators to give 30 days advance notice of installations in the following bands and locations:

- on 1.7-30 MHz, if within 4 km of certain specified administration monitoring stations and about 60 aeronautical and land HF radio stations;
- on 1.7-80 MHz, if within 4 km of about 16 radio astronomy sites;
- on 1.7-30 MHz, if within 37 km of three specified radar receive sites;
- on 1.7-80 MHz, if within 1 km of certain other specified administration sites;
- to frequency coordinators for police, fire and emergency medical agencies licensed to operate mobile radio services in the area.

For planned operations within the consultation areas defined above, PLT operators must supply the following information:

1. name of the PLT operator;
2. frequencies of the PLT operation;
3. postal codes served by the PLT operation;
4. the manufacturer of and type of PLT equipment being deployed;
5. point of contact information (both telephone and e-mail address); and
6. the proposed or actual date of initiation of PLT operation.

4.1.5 Adaptive interference techniques

Administrations may require PLT operators to employ equipment with adaptive interference mitigation techniques under the control of the operator. This would permit PLT operators to notch or decrease signal strength to mitigate interference at particular locations in particular bands when it is reported. Administrations could require that notches reduce emissions by a fixed amount (for example, 10 dB or 20 dB) below applicable emission limits.

It may also be feasible to develop PLT equipment that senses radio signals in certain radio services and adaptively automatically applies notches to protect those radio signals. If such equipment is feasible, administrations could specify radio services or frequency bands that are to be protected in this manner.

Administrations may also require that PLT operators employ equipment with a last resort remote-controllable RF transmission shutdown feature for deactivation of any unit found to cause harmful interference.

4.1.6 Interference complaint procedures

Administrations should assure that procedures exist for submission of and response to PLT interference complaints.

For example, the complainant should first take reasonable steps to confirm that interference exists, and is caused by a PLT system. The complainant should notify the PLT operator. The PLT operator should investigate within a time that is reasonable for the service suffering interference. For example, the PLT operator might be allowed 24 h to investigate and mitigate complaints from public safety licensees, but longer to investigate interference to HF broadcast services. If the interference cannot be mitigated in this manner, the licensee could then file a complaint with the appropriate administration agency, which would then assign its technical and legal resources to mitigating the interference.
4.1.7 PLT operator database

Administrations could require PLT operators to establish a publicly accessible database of PLT operations to make interference mitigation more efficient. Such a database could be managed by an industry trade association, by the administration itself, or by an independent third party. The database could contain the following information, for example:

1. name of the PLT operator;
2. frequencies of the PLT operation;
3. postal codes served by the PLT operation;
4. the manufacturer of and type of PLT equipment being deployed;
5. point of contact information (both telephone and e-mail address); and
6. the proposed or actual date of initiation of PLT operation.

The database manager need have no role in any interference complaint or investigation, but information in the database could be used in such investigations.

4.2 Studies of mitigation techniques

4.2.1 Study of mitigation techniques in Brazil

4.2.1.1 Introduction and general information

This section presents the results obtained through field measurements of broadband power line telecommunication (PLT) systems reported by the Brazilian Administration. The tests were performed in order to evaluate the effectiveness of mitigation techniques implemented in second-generation PLT systems. Aspects of radio interference and levels of radiated emissions from the network were considered. These emissions were both compared with the limits of ITU-T Recommendation K.6012 as well with the limits of one administration.

4.2.1.2 Test configuration

The tests were performed on a typical low voltage installation of overhead lines with a length of 240 m. The network consisted of public lighting poles so that the noise produced by motors and electrical appliances would be minimized.

The methodology applied was based on ITU-T Recommendation K.6012 and FCC 04-245 procedures.

In order to get the highest readings of disturbance emissions, the PLT equipment was set at the maximum output power level (around -58 dBm/Hz) to maximize disturbance emissions.

A calibrated loop antenna, a tripod and a spectrum analyzer were used to measure the magnetic component of the radiated emissions below 30 MHz (according to ITU-T Recommendation K.60 measurement procedure, CISPR 16-1-1 a quasi-peak detector could also be used instead of the spectrum analyzer). The setup is displayed in Fig. 4-1.

12 Clause 1 (Scope) of ITU-T Recommendation K.60 – Emission levels and test methods for wireline telecommunication networks to minimize electromagnetic disturbance of radio services (2008-02) states: “The purpose of this Recommendation is to guide administrations when considering complaints of interference between telecommunication systems and is not intended to set compliance requirements or recommendations for protecting the radio spectrum.”
The spectrum analyzer was set at a resolution bandwidth (RBW) of 9 kHz with a peak detector. Comparing these values with those obtained with a quasi-peak detector indicated a difference of less than 4 dB.

Measurements were performed at a horizontal separation distance of 3 m. The distance was taken as a straight line from the projection of the power line to the floor level to the measuring antenna reference point.

As Fig. 4-2 illustrates, testing was performed along the line from the PLT injection point at 0, ¼, ½, ¾, and 1 wavelength spacing, based on the mid-band frequency used by the equipment. The positions correspond to points P0, P1, P2, P3 and P4, respectively.

At each position, three measurements were taken; one for each orientation of the magnetic loop antenna to evaluate the three orthogonal field components.
Figure 4-3 shows that when the equipment is set at maximum injected power, the electric field is far above the quasi-peak limits used by one administration. Distance correction was applied to the limit value according to the extrapolation factor adopted by one administration (see Annex 3.6). When scanning the spectrum with and without the presence of PLT, it can be noted that the PLT signal interferes in the existing services. However, there is a considerable reduction in the radiated power when moving down the line from the injection point.

Regarding interference mitigation, three configurations were analysed.

4.2.1.3 Notch filters

Initially, notch filters were configured to attenuate the signal level on predetermined frequency bands. In Fig. 4-4, one can observe three notches at the bands 4.8-4.9 MHz, 14-15 MHz and 22-23 MHz. In all three ranges, the emission strength falls below the levels given in ITU-T Recommendation K.60. Moreover, demodulation of the radio signal confirmed the effectiveness of this mitigation technique in preset exclusion bands.
4.2.1.4 Power reduction
Finally, the injected power was attenuated until the radiated emission reached the FCC limits. This test was performed in a small section of the network where it was possible to have measurement distances of 10 metres. Figure 4-5 illustrates a small increase in background noise due to PLT. The spikes represent RF signals that were not affected by PLT emissions.

![FIGURE 4-5](image)

4.2.1.5 Conclusion
The tests showed that the implementation of mitigation techniques such as notch filters and output power control should offer the effective protection to HF systems.

Considering the results of these tests, the lack of infrastructure to provide for broadband access, and the need to promote digital inclusion, the Brazilian Administration is considering regulation, rules and necessary requirements to enable the coexistence of PLT systems, operating over low voltage (LV) and medium voltage (MV) power lines on the frequency band of 1 705 kHz to 50 MHz, with HF licensed systems.

4.2.2 Intermodulation effects on the depth of spectrum notches in PLT systems
The interference to stations in the amateur and amateur-satellite services from PLT in the HF range has led to a mitigation technique known as spectral notching to be introduced. However, measurements have shown that intermodulation effects in other equipments connected to the mains wiring can lead to a marked reduction in the effectiveness of this approach.

4.2.2.1 Measurement technique
Two PLT devices were set up to communicate between them, with a line impedance stabilization network (LISN) feeding into a unit designated as “remote”: the 20 dB attenuation at RF simulates a remote PLT in another room. Hence the remote PLT only makes a small contribution to the measured emission. The devices are referred to as power line adaptors (PLA).

The local and remote PLAs are communicating but no data is being sent. Measurements were made at 400 spot frequencies with a 9 kHz measurement bandwidth and a quasi-peak (QP) detector. The results are shown in Fig. 4-6, with the EN55022 Class B QP at 60 dB(µV) limit shown for comparison.

Because of the frequency step size, the narrower notches such as 10 MHz, 18 MHz and 24 MHz amateur bands are not be shown with their full depth but all are at least 30 dB deep and some are over 40 dB deep at the centre.
A non-linear device using the circuit in Fig. 4-7 was connected to the mains. This is very similar to a number of small mains power supplies examined: there are variations in component values between various models.

![FIGURE 4-6](image)

FIGURE 4-6

The spectrum showing the spectral notches

<table>
<thead>
<tr>
<th>Conducted emission (dB(μV))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

- PLA emission, no intermods (QP)
- EN 55022 Class “B” limit (QP)
- PLA emission, no intermods (QP)

4.2.2.2 Results

Figure 4-8 shows the effect of connecting the rectifier shown in Fig. 4-7 to an adjacent mains socket. It can be seen that the depth of the 3.5, 14, 18, 21, 24 and 28 MHz notches is reduced to about 20 dB. There is also a significant increase in out-of-band products with peak amplitude that is significantly higher than the QP level. The increase in emissions in the range 0.5-2 MHz includes the 1.8 MHz amateur band and the MF broadcast band. There are also increased emissions above 27 MHz that could affect the 28 MHz and 50 MHz amateur bands, although the emissions above 30 MHz are not shown in Fig. 4-8.

Figure 4-9 shows the composite plot of Fig. 4-7 and Fig. 4-8 overlaid.

A small plug-in switch-mode mains PSU was dismantled, and it was found that the rectifier part was similar to Fig. 4-6, apart from a larger smoothing capacitor and different diodes. The mains input is connected directly to the bridge rectifier via a 5.6 Ω resistor, and the RF interference filtering is after the rectifier. This means that RF signals from a nearby PLA can get straight into the bridge rectifier, and any intermodulation products and harmonics generated by the bridge rectifier can get straight out again, onto the mains.
FIGURE 4-7
Simulated small power supply

FIGURE 4-8
The effects of intermodulation on the notches
Some tests were also performed with one PLA on its own. This may be a “worst-case” situation where it is constantly calling while searching for another PLA but it may also be representative of the case where two PLAs are plugged in close together, as sometimes happens. In either case, the QP level of the intermodulation products is higher than the results shown in Fig. 4-8 (where a local PLA is communicating with a remote PLA). At a spot frequency of 14.182 MHz, inside the 14 MHz “notch”, the QP emission levels for one PLA on its own were as follows:

- No rectifying load, 44 dBµV.
- With PSU on load, 60 dBµV.
- With PSU off load, 65 dBµV.
- With rectifier shown in Fig. 4-7, 73 dBµV.

The 14 MHz notch is quite deep and goes well below the EN55022 Class B limit of 60 dBµV QP but in this situation, it was found that the PSU on load can bring the level up to the limit. It was found that the same PSU disconnected from its PLA, i.e. unloaded, can generate intermodulation products that are about 5 dB over the limit. The PSU on its own is relatively quiet in the HF bands so the above emissions appear to be caused by the rectifier of the PSU generating intermodulation products from the PLA signals.

A charger for a mobile phone was also tested, and it also generated intermodulation products, particularly when off-load, although these were about 2 dB less than the PLA PSU when off-load. Clearly there are many different types of switch-mode power supply that can be plugged in to the mains and some of these may cause significantly more intermodulation than the two types mentioned above.
4.2.2.3 Conclusions

Although the introduction of spectral notches into PLT systems shows a very useful improvement in reducing the interference potential to the amateur and amateur satellite services of in house PLT systems, the measurements resulting from these experiments have demonstrated that the effects of non-linearity in other devices can have a major effect in significantly reducing the depths of the notches. Nevertheless, the notches still perform a valuable function even when intermodulation is present, but the effects of intermodulation can be best minimized by a reduction of the power levels applied to the mains distribution system.

5 Overall conclusions

This Report illustrates the potential for interference to various radiocommunication services in the presence of emissions from PLT systems and devices. The Report describes the radio frequency emission characteristics of PLT systems as well as the characteristics and protection criteria of radiocommunication systems that are impact by PLT systems. Additionally, potential methods for mitigating interference from PLT emissions are discussed.

Annex 1

Noise, radiation and propagation considerations

A1 Noise, radiation and propagation considerations

A1.1 Noise level in the HF band

This section provides a general explanation of noise in the HF band (3-30 MHz). More detailed reference is made to noise levels in the individual radio spectrum users’ sections of this Report.

The sensitivity of a high-grade radio receiver is determined by the noise generated in its low-level signal stages. This noise is generated by active components within the equipment. This noise level defines the ultimate sensitivity of the receiver. In the HF radio spectrum however, communication is not generally limited by the internal noise in the receiver, but by other noise sources external to the receiver itself. These noise sources, taken together, comprise the ambient noise environment.

A1.1.1 The ambient noise environment

In the HF band the external noise environment consists of two parts: the irreducible residual ambient noise which is predictable and which may vary with season, time and location, and incidental noise from local man-made sources. The combination of these two determines the minimum usable signal level. These have been termed the ambient noise floor and incidental noise, respectively.

The incidental noise generated by devices compliant with relevant EMC standards can greatly exceed the noise floor. Despite this, reception of low-level HF signals is possible because of the random and therefore probabilistic nature of the incidental noise. Many devices radiate near the limit of their standard on only a few discrete frequencies, or on a narrow-band of frequencies. In addition, most incidental noise is relatively short lived.
HF communication services have to take account of the variable nature of HF propagation. The operating frequency and time of transmission need to be chosen so as to optimize the probability of achieving a satisfactory signal to noise ratio. Some systems in the fixed and mobile services have sufficient flexibility in their operating protocols that the transmission is repeated at a later time when the interference has ceased if incidental noise prevents radiocommunication at a particular time. In the case of automatic or adaptive systems this functionality may be built into the operating protocol. In contrast the HF broadcasting service typically has to maintain a satisfactory quality of services on a particular frequency, to a particular target area, for periods ranging from half an hour to several hours duration in the face of variable propagation conditions.

Natural noise sources

a) Atmospheric noise, a major source of which is almost continuous lightning activity around the equator from which interference is propagated to the rest of the world by ionospheric reflection. The overall noise level depends on frequency, time of day, season of the year and location. In temperate zones, noise from this source is relatively low, although there will be short bursts of noise from local electrical atmospheric activity at certain times.

b) Cosmic noise, originating from outer space, mainly the Sun and the Milky Way (the latter contribution also known as galactic noise). In the HF band, the cosmic noise reaching the antenna depends on the screening effect of the ionosphere and will generally be at levels below that of man-made noise. At lower HF frequencies it is impractical to distinguish between cosmic noise and the general background noise from other sources.

Man-made noise sources

Man-made noise is composed of two parts:

The first results from a large number of relatively distant sources. This is effectively white noise and one of the constituents of the ambient noise floor. The environments are often classified as city, residential, rural and quiet rural. Man-made noise derives from electrical, electronic or radio equipment. From the radio user's point of view, the difference between these environments is the level of the noise and the length of time for which it persists.

Secondly there is incidental noise from local sources, the level of which varies depending on the type of environment and the density of usage of nearby equipment. In rural and quiet rural locations incidental noise may be expected to be rare, and HF communication is optimal.

A1.1.2 Measuring the ambient noise floor

Measurements of the ambient noise floor have been carried out by a number of organizations including the MASS Consultants, BNetzA, BBC, Qinetiq13 and the RSGB14. Making these measurements requires great care. In particular it is essential to select a radio frequency that is not occupied by an existing radio signal. Intentional radio signals around any particular frequency must not be confused with noise.

Because of high occupancy levels in the HF bands, and the necessary method of measurement a simple frequency sweep within an HF band using a typical EMC measuring receiver with a standard 9 kHz bandwidth will not provide a true measure of the background noise level. Furthermore, measurements made with a typical loop EMC measuring antenna may be limited by the noise of the receiver system, not the environmental noise.

13 Qinetiq is the British defence technology company, formed from the greater part of the former government Defence Evaluation & Research Agency (DERA), June 2001.

14 Radio Society of Great Britain.
To carry out a swept measurement of the true ambient noise floor at HF, a much narrower bandwidth than 9 kHz – something on the order of 100-200 Hz – should be used. This is then converted to a 9 kHz bandwidth for comparison purposes.

Usually it is impractical to measure the ambient noise floor in industrial or business locations where the incidental noise will exceed the noise floor all the time. In a residential location it is usually quite practical to choose a period when there is no significant incidental noise. This assumes that measurements are taken at a reasonable distance (greater than 10 m) from any building or dwelling, and that the measuring antenna is suitably located. In interpreting published plots of the ambient noise floor, it is important to take into account the conditions of measurement, particularly the bandwidth, the detector used, peak, quasi-peak or average, and the type of antenna.

A1.1.3 Determination of the noise level

The following are relevant extracts from Recommendation ITU-R P.372. Data on atmospheric radio noise from lightning were obtained in an extensive CCIR study undertaken in the 1960s, although global warming may lead to changes in the incidence and intensity of thunderstorm activity, and although a re-examination of the analysis might be beneficial to provide evidence whether these data may have changed with time, there is no basis for expecting that these data have changed with time. Data on man-made noise is based on an analysis undertaken in the USA, largely in USA environments, in the 1970s.

The levels contained in the Recommendation are used as a reference throughout this Report although the question remains whether they represent levels present today in Europe. CEPT has undertaken a noise floor measurement campaign in Europe to evaluate if the noise floor levels in the LF, MF and HF bands given in Recommendation ITU-R P.372 are representative or not of the levels present today in Europe.

A1.1.3.1 Thermal, man-made, cosmic and atmospheric noise levels

In order to be able to deal with the major types of modulation used in HF radios, the interference calculations of noise and interference are based on a reference bandwidth of 1 Hz.

The noise sources considered are thermal noise inherent to radios and man-made as well as radio noise mentioned in Recommendation ITU-R P.372.

Thermal noise per Hertz:

$$ N_0/\text{Hz} = kT_0 \text{ W/Hz} $$

where:

- k: Boltzman’s constant = $1.38 \times 10^{-23} \text{ (J/K)}$
- $T_0 = 290 \text{ K}$

The radio noise described in Recommendation ITU-R P.372 is used for the calculations. It contains man-made, cosmic and atmospheric noise components. The details are as follows:

The median value above kT_0 is as follows:

$$ F_{am} = c - d \log (f) \quad \text{dB} $$
The values for c and d can be found in the above ITU-R reference and f is frequency (MHz). The values are as follows:

TABLE A1-1

<table>
<thead>
<tr>
<th>Type of area</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>76.8</td>
<td>27.7</td>
</tr>
<tr>
<td>Residential</td>
<td>72.5</td>
<td>27.7</td>
</tr>
<tr>
<td>Rural</td>
<td>67.2</td>
<td>27.7</td>
</tr>
<tr>
<td>Quiet Rural</td>
<td>53.6</td>
<td>28.6</td>
</tr>
<tr>
<td>Cosmic (10-80 MHz)</td>
<td>52.0</td>
<td>23.0</td>
</tr>
</tbody>
</table>

The corresponding levels are given in Fig. A1-1:

FIGURE A1-1

Median values of man-made noise power for a short vertical loss less grounded monopole antenna
(Recommendation ITU-R P.372, Fig. 10)
The atmospheric noise is modelled as follows:

<table>
<thead>
<tr>
<th>Frequency range (MHz)</th>
<th>Formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-10</td>
<td>(F_a = 27.8 - 0.35 \times (8.2 - f(MHz))^2) dB</td>
</tr>
<tr>
<td>10-15</td>
<td>(F_a = 46.4 - 1.98 \times f(MHz)) dB</td>
</tr>
<tr>
<td>15-20</td>
<td>(F_a = 66.8 - 3.34 \times f(MHz)) dB</td>
</tr>
<tr>
<td>20-30</td>
<td>0</td>
</tr>
</tbody>
</table>

These formulae were derived from Recommendation ITU-R P.372 using a graph that represents the 99.5% of time value exceeded situation and \(f \) is frequency (MHz). The above formulae were derived for this exercise only. Therefore, although the formulae do not fully match the original graph at points where the influences of other components are dominant, the final results are in practical terms correct and valid.

A1.1.3.2 Updated noise measurements for Europe

In June 2002, CEPT/ECC WGSE asked ECC FM22 in a liaison statement to conduct a European measurement campaign in the LF, MF and HF bands to evaluate the noise floor levels given in Recommendation ITU-R P.372-8. The question was asked to help its Project team SE35 in its technical work concerning the compatibility between cable transmission systems and radio services. Recommendation ITU-R P.372-9 was most recently updated in 2007 although the noise floor figures are unchanged. The man made noise results continue to be based on analysis in the 1970s, largely of measurements made in the USA. There are some proposals which assume a limited increase of the existing noise floor and therefore it is essential to have correct values of the present noise floor level.

FM22 organized a measurement campaign in Europe in November 2002 and used the SE35 proposals for the measuring method and procedures as mentioned in the liaison statement. PT SE35 individual members and organizations such as NATO and the European Radio amateur Association indicated their willingness to contribute to the study. The results of the European measurement campaign were ambiguous and it became clear that the goal of obtaining comparable results was much more complicated than it seemed at the start of the campaign.

In The Netherlands, a group of experts from military bodies, industry, amateurs and the Radio Communication Agency started a study. In parallel, a study was carried out in FM22.

Soon it was clear that the measurement method and procedures used in the United States of America in the 1970s could not be reproduced, and that a properly described measuring method should be developed.
FIGURE A1-3
Examples of atmospheric noise field strength (Tokyo, New York)

(TOKYO)
N36° E140°

(NEW YORK)
N40° W75°

Frequency (MHz)

Winter (dBμv/m)

Spring (dBμv/m)

Summer (dBμv/m)

Autumn (dBμv/m)

Frequency (MHz)

1 0000-0400LT
2 0400-0800LT
3 0800-1200LT
4 1200-1600LT
5 1600-2000LT
6 2000-2400LT

Report 2158-A1-03
Recent studies undertaken by MASS consultants in the United Kingdom used modern technology to obtain large data sets enabling good statistical analysis. Methods have been developed for obtaining the noise figure, producing data for the eventual modification of the information in the Recommendation. A method was also developed for determining the statistical characteristics of the impulsive component; see Report ITU-R P.2089. These results have been entered into the Radiocommunication Study Group 3 noise databank along with similar results from studies carried out in Germany.

The levels of man-made noise found in both these studies are of the same order of level as those in the Recommendation, leading to the view that there have not been major changes in the past 30 years – perhaps increased electrical usage has been compensated by improved suppression techniques. However more results are needed before any revision to the Recommendation could be considered with confidence.

Recommendation ITU-R P.372 provides estimates of noise levels across the spectrum for man-made, atmospheric and cosmic radio noise. At HF, in most situations, it is man-made noise that dominates, although there are situations at low-noise radio sites, for example, where atmospheric and cosmic noise may be the limiting noise level. It is not expected that the noise level caused by natural sources will have changed since the advent of the models in Recommendation ITU-R P.372. However, man-made noise may change according to industrial activities.

A1.2 Propagation mechanisms

A1.2.1 Near-field and ground-wave propagation

The occurrence of line sources in the case of PLT will require the estimation of radiation from a generic portion of the total network tied to one injection point. The estimation can be achieved at distances up to at least 1 km through the application of a modeling package such as numerical electromagnetic code (NEC). To estimate radiated power levels at distances of 1 km or greater where ground wave propagation will occur, the field strength levels may be calculated using the curves in Recommendation ITU-R P.368\(^15\) at frequencies up to 30 MHz. GRWAVE may be used for the entire frequency range under consideration up to at least 80 MHz. A copy of GRWAVE may be obtained from the Radiocommunication Study Group 3 software page.\(^{16}\)

For larger distances within line-of-sight, both under or above the power line, Recommendation ITU-R P.525 will be appropriate, and Recommendation ITU-R P.1546 may be used at higher frequencies.

A1.2.2 Sky wave propagation

At HF, the ionosphere is an important factor in allowing relatively weak signals to propagate over long distances, most importantly, through both reflection and refraction from the higher regions - the E and F layers. Absorption can also be a significant factor, particularly in the D-region, the lowest part of the ionosphere, so this mode of propagation can both enhance and attenuate the signals strengths received at large ranges. Because ionization is driven by the Sun, the ionosphere shows diurnal and seasonal variation, depending upon the level of solar activity.

ITU-R Working Party 3L considered that highly geometric arrangements of power lines bearing PLT systems could cause higher and more directional emissions in aggregate than more random distributions.

\(^16\) http://www.itu.int/oth/R0A0400000F/en.
It may be found necessary to estimate the total radiated power through the aggregation of all of the
generic portions for an area, e.g. a city. If cumulative effect(s) of multiple access PLT systems
occur, they could contribute to or be the origin of skywave propagation which goes to long
distances depending on the frequency. A methodology has been provided for further study at Annex
of document, which is intended to provide a means of estimating the effects of cumulative
emissions from a large population of PLT sources by skywave propagation.

Based on assumptions made in studies contained in this Report and on additional material that has
been considered, the following range of assumptions may be used in skywave aggregation
calculations.

<table>
<thead>
<tr>
<th>Range of assumptions for use in skywave aggregation calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.i.r.p. per PLT modem(^{(1)})</td>
</tr>
<tr>
<td>PLT modems per household</td>
</tr>
<tr>
<td>Duty cycle (fraction of time that each modem is transmitting)</td>
</tr>
<tr>
<td>Market penetration (PLT modems divided by total number of households)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) Some studies have used measured values of e.i.r.p. as high as –74 dBm/Hz, while other studies have
used radiated power levels as low as –103 dBm/Hz derived from injected power levels and a theoretical
conversion factor.

A1.2.3 Examples of propagation calculations and studies

The following list contains examples of work done on relevant radio wave propagation modes:

2. Recommendation ITU-R P.368 – Ground wave propagation curves for frequencies between 10 kHz and 30 MHz.

3. Recommendation ITU-R P.834 – Effects of tropospheric refraction on radio wave propagation and Recommendation ITU-R P.1546 – Method for point to area predictions for terrestrial services in the frequency range 30 MHz-3 000 MHz.

Annex 2

Analyses of potential interference

A2 Analyses of potential interference

A2.1 A modelling analysis for the radio astronomy service

“The potential of harmful interference from PLT systems is highly dependent upon factors such as the characteristics of the local power grid and the design and topology of the particular PLT system. Since these factors vary significantly from one location to another, conclusions drawn from one system and configuration cannot reliably be applied to dissimilar cases. Administrations should take care to base regulatory decisions only on analyses that accurately reflect the national situation.”

PLT systems inject broadband radio frequency energy into a conductor system, which is inherently unbalanced and globally can be found in a variety of configurations, even within one administration. As a consequence of several measurement campaigns it is apparent that a combination of both point and line sources of radiation will occur. The occurrence of line sources will require the estimation of radiation from a generic portion of the total network tied to one injection point.

Estimation of radiation can be achieved at distances up to at least 1 km through the application of a modeling package such as Numerical Electromagnetic Code (NEC). To estimate radiated power levels at distances of 1 km or greater where ground wave propagation will occur, the field strength levels may be calculated using the curves in Recommendation ITU-R P.368\(^\text{17}\) at frequencies up to 30 MHz. GRWAVE may be used for the entire frequency range under consideration up to at least 80 MHz. A copy of GRWAVE may be obtained from the Study Group 3 software page\(^\text{18}\).

It may be found necessary to estimate the total radiated power through the aggregation of all of the generic portions for an area, e.g. a city. It is also possible that the power line sources will initiate a sky wave component. In such cases the sky wave field strengths can be estimated using Recommendation ITU-R P.533\(^\text{19}\).

It should be noted that in developing criteria for PLT systems measurement of both E and H fields is necessary owing to the unknown relationship between these fields in the near field to these radiation sources.

A2.1.1 Uses of HF bands by the RAS

The protected bands at 13.36-13.41 and 25.55-25.67 MHz are extensively used by radio astronomers to observe electromagnetic waves emitted by the Sun, Jupiter, pulsars, and many other types of celestial objects. These emissions are mainly produced through synchrotron emission and wave-particle interactions driven by electrons accelerated near to the speed of light, and are distributed continuously across a relatively wide range of frequencies.

\(^{17}\) http://www.itu.int/rec/R-REC-P.368/en.

\(^{19}\) http://www.itu.int/rec/R-REC-P.533/en.
The Sun produces radio emissions of many kinds. However, those studied in the HF range are emissions produced by flares and other transient events. The characteristics and classification of these emissions are shown in Fig. A2-1\(^{20}\). The emissions have a variety of characteristics and occur over a wide frequency range, exceeding 10 MHz to 3 GHz. The Type III bursts and storms are the most frequently observed solar radio emissions in the HF range, although all types occur on occasion, with varying degrees of rarity. Some bursts of solar radio emission are strong enough to interrupt terrestrial radio communications. Since HF bands have many critical applications, such as long-distance aeronautical communications, an ability to predict solar-induced degradation of communication conditions in the HF bands is very important. To address such needs, the National Institute of Information and Communications Technology (NICT) of Japan has been operating the “space weather forecast” for many years.

Additionally, some aspects of the evolution of the Universe just after the Big Bang which are of the greatest current interest can best be studied in the HF and VHF/UHF bands. New radio telescopes such as low frequency array (LOFAR), long wavelength array (LWA) and square kilometer array (SKA) are currently planned to explore this region of the spectrum.

A2.1.2 Separation distances between a RA antenna and a PLT system in the HF region

A2.1.2.1 The PLT system used for the study

A High frequency PLT system using the frequency band 2-30 MHz has been proposed in several countries. Since power lines are not designed with HF communication applications in mind, transmissions are highly attenuated. To compensate for the losses, the proposed systems use high transmitted powers (e.g. \(-50 \text{ dBm/Hz}\), which is the value used in this study). Consequently power lines carrying PLT signals will radiate significant power in the HF bands.

The gain of the antenna formed by the power line is assumed to be \(-20 \text{ dBi}\)\(^{21}\).

\(^{20}\) http://hiraiso.crl.go.jp/.

A2.1.2.2 Calculations

A generally-applicable calculation of the power received from a PLT system by a radio telescope antenna would be very difficult. The geometry of the wire(s) carrying the signals and their distances from conducting and dielectric structures need to be considered. In addition, compared with the wavelengths, the “antenna” may be close to the ground. At frequencies below about 30 MHz, the ionosphere may be a major factor in the propagation of the emissions.

Equation to calculate received power by a RAS antenna

The received power by a radio astronomy antenna is calculated by:

$$ P_r = P_t - L_{bf} + G_r $$

where:

- P_r: received power by the radio astronomy antenna (dBW)
- P_t: transmitted power at a distance of 30 m from the transmitter (dBW)
- G_r: antenna gain of the radio astronomy antenna toward the transmitter (dBi)
- L_{bf}: propagation loss beyond 30 m from the transmitter (dB).

Given the radio astronomy antenna gain (0 dBi) and gain of power line (−20 dBi), it is necessary to evaluate P_t and L_{bf} before calculating the power received by the radio astronomy antenna. Establishing P_t will be difficult. Estimating L_{bf} will require consideration of many factors in addition to the geometric path loss, such as the role of nearby conducting and dielectric structures, wave interference and ionospheric propagation.

We assume a distance of 30 m. We therefore show here a calculation for that distance, and then discuss the application of such a model to other distances.

Calculations of transmitted power at a distance of 30 m from the transmitting antenna

It is possible to calculate the transmitted field strength at a distance of 30 m, E, from a transmitter by using equation (1) in § 2 of Recommendation ITU-R P.525 as follows:

$$ E = \frac{\sqrt{30G_t P}}{d} $$

$$ = 408 \, (\mu V/m) \text{ (in the 13 MHz band)} $$

and

$$ E = 633 \, (\mu V/m) \text{ (in the 25 MHz band)} $$

G_t and d denote antenna gain of the PLT system (dBi) and distance from the transmitter, respectively. Then the field strength is converted into power by using equation (8) in § 4 of Recommendation ITU-R P.525:

$$ P_r = E - 20 \log f - 167.2 $$

where:

- P_r: expressed in dBW
- E: dB($\mu V/m$), and
- f: GHz.

Therefore the received power by a radio astronomy antenna with the gain of 0 dBi and located 30 m from the transmitting antenna (power line) is given as:

$$ P_r = -77.52 \, \text{dBW (in the 13 MHz band)} $$
These values are far above the protection criteria of the RAS receivers. This calculation, even for this small separation distance, is worthy of consideration because in general, radio telescopes are connected to power lines. However, this result underlines the need to keep PLT systems as far as possible from radio telescope antennas.

Received power at distances exceeding 30 m from the transmitting antenna

Calculation of the power received at distances exceeding 30 m from the transmitting antenna is difficult. In general, the calculation of received power at large distances from antennas is based upon the assumption that characteristic size scales in the antenna are small compared with the range, or else that they have a uniform distribution to infinity, as in the case of an infinite, straight wire. In general, PLT systems will not satisfy these assumptions. However, the free-space calculation has value for illustrative purposes.

Recommendation ITU-R P.525 provides a model for free-space propagation loss between a PLT system and the antenna of a radio telescope. This model does not include the effect due to atmospheric attenuation. The atmospheric attenuation is only 2.5×10^{-2} dB/km (Fig. 1 of Recommendation ITU-R P.676), therefore we neglected this attenuation.

The free-space propagation loss between isotropic antennas, L_{bf}, is given in equation (4) in § 2.2 of Recommendation ITU-R P.525 as:

$$L_{bf} = 32.4 + 20 \log f + 20 \log d \quad \text{(dB)}$$ \hspace{1cm} (A2-4)

where:

- f: frequency (MHz)
- d: distance between the RAS antenna and the PLT system (km).

However, a more realistic approach would be to use a more deterministic analysis, such as that being developed within Working Party 9C. This will include modeling emissions received from power lines over ranges from 10 to 1000 m.

Calculations of separation distances

In the estimation of separation distances, at least two main propagation modes need to be considered: direct path propagation, including terrain effects, and ionospheric propagation.

a) **Direct path calculation**

Using the arguments above, we can estimate the separation distance, d.

At the 13 MHz band, $L_{bf} = 107.48$ dB and $d = 424$ km. Similarly at the 25 MHz band, $L_{bf} = 108.66$ dB and $d = 253$ km.

In this propagation mode, a separation distance of up to 424 km is needed to protect the HF radio astronomy antenna from interference caused by a single PLT system. More realistically, multiple transmitters should be considered, some of which are driven with the same signals but at different distances from the radio telescope antenna.

b) **Ionospheric propagation**

At HF frequencies, the ionosphere is an important factor in allowing relatively weak signals to propagate over long distances, through both reflection and refraction. Absorption can occur in the D-region, the lowest part of the ionosphere. So this mode of propagation can both enhance and attenuate the signals strengths received at large ranges. The ionosphere is driven by the Sun, and
also shows diurnal and seasonal variation, so depending upon the level of solar activity, the signal strength received at large distances may vary by more than 60 dB. Therefore, this propagation mode becomes the dominant factor in the reception of PLT emissions at large distances, and may, on occasion, provide world coverage.

A2.1.3 Discussion

Realistic assessments of the interference potential of PLT systems on radio telescopes are not easy to make. There is initial value in simplified instances and case studies, as discussed in this section.

A2.1.3.1 Multiple PLT systems

It is clear that the PLT system consists of multiple modems to communicate. Thus it is necessary to consider a case where there are a significant number of PLT modems. The ADSL system has been introduced and more than 1 000 000 systems are already used in many countries. Therefore we assume that 10 000 PLT modems are deployed in an area. In this case the aggregate transmitted power from the PLT system becomes 10 000 (= 40 dB) higher than the case for a single system, and, even in the simple case of direct path reception, the necessary separation distance to protect the RAS antenna becomes 20 dB larger, i.e., the distance is larger than the radius of the Earth.

A2.1.3.2 Diffraction propagation

Diffraction around the curved surface of the Earth is an important factor in the propagation of radio waves over large distances. Recommendation ITU-R P.526 provides guidance for the development of a diffraction propagation model, and its Annex provides nomographs to get propagation loss due to diffraction relative to the free-propagation case. For example, Fig. 2 of Recommendation ITU-R P.526 provides diffraction loss due to the spherical Earth as a function of distance.

The figure shows that the diffraction loss is larger for distances of 38 km or more (at 25 MHz and $k = 1$, where k is the effective Earth radius factor, defined in Recommendation ITU-R P.310), and that additional loss of about 20 dB is obtained for a distance of 100 km. However these nomographs also suggest that diffraction does not give very much additional loss if the separation distance is not so large.

A2.1.3.3 Reduction of leaked emission from the PLT system

It cannot be ruled out that there will be technical and operational methods available that may significantly reduce the emission of radio signals by power lines below the levels assumed here. This could have significant ramifications for discussions of compatibility. For example, assuming direct-path, free-space propagation, reducing the leaked emission by 60 dB, the separation distance between the HF RAS antenna and the PLT system becomes about 0.4 km, reducing the separation distance needed by a factor of about 1 000. In such a case it would be possible to deploy 10 000 PLT modems by establishing an exclusion zone of a radius of 40 km around each RAS telescope. If the degree of reduction is less than 60 dB, the radius of the exclusion zone becomes larger accordingly.

A2.1.3.4 Radiation at higher frequencies

Power distribution systems have not been designed with the carrying of HF signals in mind. In addition to the various resistive and reactive components, there are almost certainly non-linear characteristics, for example oxide layers, coatings on insulators, discharges in humid atmospheres etc., which will generate harmonics and intermodulation components that could extend too much higher frequencies than the frequency of the PLT. These should also be considered. However, in these cases the propagation issues may be less complicated.
A2.1.4 Conclusions
Models for assessing the impact of HF emissions from PLT systems upon the operation of radio telescopes are still at a rudimentary stage. Adequate separation distances will be an important factor in the protection of radio telescopes from these emissions. A simple, direct-path, free-space propagation model indicates a maximum protection distance of about 420 km. However, this could be changed by local terrain effects and by the ionosphere, which may, under some conditions, enable emissions to propagate over continental distances, or even world-wide. In a more realistic assessment, multiple sources, at least some of which are driven with the same signals and at differing distances from the radio telescope, would need to be considered. If methods become available that would reduce the emission by about 60 dB, the compatibility issue between PLT and radio observatories would become much less difficult, so that band sharing between radio astronomical observations and PLT systems could become more demonstrably viable.

The radiation of intermodulation products and harmonics due to non-linearities (at radio frequencies) in the power line components may produce emissions at frequencies much higher than the fundamental PLT frequency. These also need to be studied, although in this case simple propagation models may be applicable.

PLT systems may be widely deployed, and once this has occurred, it will be difficult to address compatibility issues with the radio astronomy service and other communication services. This underlines the need for comprehensive studies, including combinations of single and multiple signals, the radiation properties of large, connected networks in environments like those in which PLT systems will operate, and for appropriate measurements of real systems and components. At this point it is not possible to report compatibility; more study is needed.

A2.2 Overview of power line telecommunication systems interference to the broadcasting service

A2.2.1 Introduction

The promise of high speed data communications utilizing the existing electric power infrastructure is an attractive alternative to providing Internet services especially in rural areas. Power Line Telecommunication (PLT) systems use existing medium-voltage and low-voltage power distribution systems to guide the propagation of radio frequency signals and thus, provide access to broadband services. Since power lines are not shielded, emissions along the power distribution lines may occur. PLT emissions by devices without a corresponding frequency allocation in the Radio Regulation are the concern of this overview.

Radiocommunication Study Group 6 has made it clear that the broadcasting service must be protected from interference by devices without a corresponding frequency allocation in the Radio Regulations that produce fundamental emissions in the frequency bands allocated to the broadcasting service. Numerous studies have been made using simulations to determine the potential for PLT interference to various radiocommunication systems22,23. This overview considers two recent studies that are directly applicable to the HF and low VHF broadcast bands.

A2.2.2 Interference effects into low VHF television

Caldwell and Wetmore24 studied the potential for interference from PLT into the low VHF television band (54-88 MHz). Their analysis simulated different locations in the Los Angeles, California area of the United States. The areas were modelled using the numerical electromagnetic code (NEC) program. One area was a residential neighbourhood in West Los Angeles served by a 12 kV three-phase distribution system with no medium voltage neutral where the transformer primaries are connected between phases. Typical distribution poles (designated as 2 and 6) are illustrated in Fig. A2-2. The overall area covered by the simulation is illustrated in Fig. A2-3. The locations of distribution poles 2 and 6 illustrated in Fig. A2-2 are identified. The PTL point of excitation, E, is located at pole 1.

The NEC model used a single frequency tone with an input power level of \(-56\ \text{dBm}\) in a 6 MHz television band. The study considered both direct sequence spread spectrum (DSSS) and orthogonal frequency division multiplexing (OFDM) modulations. If OFDM modulation with 50 evenly spaced carriers is assumed, a compliance measurement using the recommended resolution bandwidth of 120 kHz would measure 1/50th of the existing signal power in the 6 MHz channel. Therefore, \(10 \log_{10}(50) = 17\ \text{dB}\) should be added to properly reflect the aggregated increase to the signal power due to the multiple OFDM carriers.

Three half-wave dipoles were placed at locations at a height of 9.1 m above ground level. The placement of the dipoles simulated television receive-antennas placed on houses located within the neighbourhood. The received field strength at the dipoles in the presence of the 50 carrier OFDM PLT signal as a function of the television channel (low VHF channels 2, 3, 4, and 5) is illustrated in Fig. A2-4. The signal strength (dB(μV/m)) is compared with the noise threshold at the edge of coverage for an ATSC digital television signal. The noise threshold of 13 dB(μV/m) is the FCC defining field strength of 28 dB(μV/m) less the 15 dB SNR required for ATSC digital television. The FCC Defining field strength is the value of the field strength required to delineate the coverage area for a digital television station. The FCC planning factors requires the Desired-to-Undesired (D/U) ratio for co-channel interference of ATSC digital television to be greater than +15 dB and +23 dB at the fringe of coverage. Therefore, a PLT signal strength greater than 13 dB(μV/m) (or 5 dB(μV/m) at the fringe of coverage) in the presence of a 28 dB(μV/m) digital television signal will render the television signal unusable.

The PLT signal field strength also exceeds the limit set in Recommendation ITU-R SM.1757 for interference from any device without an allocation in the RR (e.g., ultra wideband devices). This recommendation specifies that the power emitted 3 m from the device should not exceed –114.2 dBm over 6 MHz. The equivalent field strength is a maximum of 2.5 dB(μV/m). The PLT emissions significantly exceed these limits.

In addition, to determining the field strength at discrete points, the study includes plots of field strength (μV/m) over the entire area of interest. Figures A2-5 and A2-6 illustrate the field strength (μV/m) of PLT emissions in TV channels 2 and 5 at 4 m above ground level, respectively, over an area of approximately 2 500 m². Field strength values over 90 (μV/m) are considered non-compliant. Points within 10 m of the PLT conductor are not included. It should be noted that the PLT emission, in many locations, exceeds both the FCC and the ITU-R limits for digital TV reception. This study shows that PLT signals although compliant with FCC Part 15 rules will cause material interference to low VHF digital television and render these channels unusable by the broadcasting service.

25 ATSC – Advanced Television Systems Committee.
The field strength of a PLT signal received at three locations for the low VHF channels in the West Los Angeles study. The PLT signal simulates an OFDM modulation of 50 carriers with an excitation power of –56 dBm per carrier integrated over the 6 MHz TV band. The plot illustrates that the PLT signal significantly exceeds the field strength used by the FCC to define the area of coverage for a digital television station and the limits of reception.

The PLT emission field strength (μV/m) in TV channel 2 at 4 m AGL. Note the strong emissions particularly occurring at the various power line discontinuities.
A2.2.3 Interference effects into the HF band

Zhang and Lauber27 have modelled a similar situation in the 5 to 35 MHz band but have included the effects of distribution transformers. They have characterized the PLT system using a three-phase medium voltage line with a neutral line. The lines were spaced 1 m apart at a height of 10 m with the neutral line 0.9 m above the centre phase line. The pole configuration is illustrated in Fig. A2-7.

The electric power distribution system is illustrated in Fig. A2-8. The power line consists of a 360 m straight section with a second 180 m straight section at a 60\textdegree angle. Both ends of the line are terminated with transformers in a wye-configuration. For the case presented here the line was also loaded by transformers at two additional locations. The PLT excitation was injected 60 m from the end of the line using a broadband Gaussian source with a power spectral density of -50 dBm/Hz. Zhang and Lauber show that the introduction of inductive reactance of transformers increases the impedance discontinuities and subsequently, undesirable resonances and emissions from the power lines. Their results confirm the observations of Caldwell and Wetmore above that emissions are more prevalent where discontinuities exist in the power distribution system.

FIGURE A2-7
Electric power distribution pole configuration for the Zhang and Lauber* simulation of power line telecommunication interference into the 5 to 30 MHz HF band

FIGURE A2-8
Zhang and Lauber* model for a electric power distribution network containing transformer loading and terminations. The lines are located 10 metres above a good soil ground

Using this model, Zhang and Lauber simulated measurement points at quarter-wavelength distances from the point of excitation. Vertically-polarized measurements were made at a height of 2 m above ground level and at a horizontal distance of 10 metres from the nearest conductor. The results are reduced by 3 dB to compensate for the difference between the peak values in the simulation and a quasi-peak detector specified by the FCC limit values. Figures A2-9 and A2-10 show the simulation results as a function of distance from the point of excitation for 5-20 MHz and 25 to 35 MHz, respectively. Note that standing waves are present on the power line. These standing waves in the presence of impedance discontinuities result in significant resonances at various frequencies and distances along the power line. Figure A2-11 illustrates the net effect of these resonances showing that PLT emissions well in excess of the FCC limits occur along the power line.

FIGURE A2-9

Field strength of PLT emissions adjacent to an electric power distribution line derived from simulations by Zhang and Lauber for frequencies from 5 to 20 MHz

FIGURE A2-10
Field strength of PLT emissions adjacent to an electric power distribution line derived from simulations by Zhang and Lauber* for frequencies from 25 to 30 MHz

FIGURE A2-11
Maximum Field Strength of PLT emission occurring along the electric power distribution system simulated by Zhang and Lauber*

A2.2.4 Summary and conclusions

It is clear that the broadcasting service and its range of operation are limited by the noise floor of the receiving equipment. Consequently, broadcasting services are particularly susceptible to noise emanating in the vicinity of the receive antenna. This overview has illustrated the issue with PLT and the need to restrict the operation of PLT devices within the frequency bands allocated to the broadcasting service.

A2.3 Effects of interference from PLT into the broadcasting service below 30 MHz

The following information is one illustration of the effects of interference from PLT into the broadcasting service below 30 MHz.

The demonstration shows that interference from PLT devices and networks affects the reception of the HF analogue services. Moreover, the Broadband interference radiated by the PLT networks can cause the complete failure of the digital services, using DRM system.31,32 Because of the trans-border nature of these services, the listeners who suffer interference will not know to whom they should complain. With the expected increase of number of listeners with DRM, this problem may become more frequent and could jeopardize the development of the new digital services. Consequently, the attempts to roll out PLT without taking this into account are of serious concern to the Broadcasting Community.

The only way to prevent, or at least sufficiently mitigate, this problem is to define suitable emission limits of PLT networks, to a level low enough to ensure the protection of the broadcasting service.

A2.4 Methodology for calculation of cumulative HF skywave interference from power line telecommunication systems

This section contains four studies of Skywave aggregation of PLT emissions. In order to determine the aggregate received power level one must first assume the power output and the density of the PLT devices and systems. The cumulative effect of PLT systems from different locations on a given receiver location can then be aggregated, by adding the available received powers.33 The four studies include:

30 Download the zip file and keep all files in the same folder after unzip. Run the demonstration in slide show mode with Power point.

31 The Digital Radio Mondiale (DRM) consortium, which has 90 members, including 36 European companies, has developed a new digital broadcasting technology to improve the quality and enhance the capabilities of LF, MF and HF broadcasting compared to those offered by existing analogue systems in these bands. This system is also described in Recommendation ITU-R BS.1514-1.

33 It should be noted that in the example calculations included in the studies, results are directly related to the input assumptions.
A study done by the governmental Research & Technology Organisation Information Systems Technology (IST) Panel Research Task Group (RTG) on “HF Interference, Procedures and Tools IST-050/RTG-022” calculates the potential impact of world-wide distribution of in-house PLT systems or devices to a specified test location (area-to-point model). It also provides example calculation using Winnipeg, Canada as the specified receiving location.

A study done by NTIA analysed the interference potential due to aggregation of ionospheric signals using propagation software, method of moment electromagnetic simulation models of PLT energized power line.

A study done by Japan used skywave propagation model specified in Recommendation ITU-R P.533 – HF propagation prediction model (point-to-area model). It provides example calculations involving high angle propagation in the vicinity of Japan.

A study done by IUCAF contains compatibility study in relevant to the radio astronomy service in the HF band, based on extraction from the above study done by Japan.

A2.4.1 Governmental skywave interference example into Winnipeg, Canada

A2.4.1.1 Introduction

This section presents the results of the work carried out by the Governmental Research & Technology Organisation Information Systems Technology (IST) Panel Research Task Group (RTG) on “HF Interference, Procedures and Tools IST-050/RTG-022” to address the concerns raised by the potential for unintentional radio interference by the widespread operation of broadband wire-line telecommunication systems, such as power line telecommunications (PLT, PLC). The Research Task Group started their studies in 2004, with the participation of an international group of experts, and the final report was published in 2006 for unlimited public use.

A2.4.1.2 Method of calculation for cumulative HF skywave interference from PLT systems

A comprehensive methodology is proposed to predict the cumulative effect of far field (skywave) PLT interference at a receiver location. Given knowledge of all relevant input parameters, the methodology would give accurate predictions. It is well established and easy to explain that the cumulative signal power from large number of unintentional radiators (e.g., PLT installations), as received at a receiver site, can be written:

\[
P_{\text{cum}}(f,t) = \int \int \frac{g_{RX}(x,y,f)}{L(x,y,f,t)} P_{TX}(f) D_A(x,y) \eta_{PEN}(x,y) \eta_{USAGE}(t) dA
\]

- \(P_{\text{cum}}(f,t) \) is the total received power spectral density (W/Hz), at frequency \(f \) and time instant \(t \).
- The integral is done over an area with geographical coordinates \((x, y)\).
- The integral (summation) is performed incoherently, i.e. on a power basis, rather than on an amplitude basis.
- \(g_{RX}(x,y,f) \) is the receiver antenna directivity in the direction (azimuth and elevation) of signals originating from a transmitter at point \((x, y)\). It is important to use directivity rather than gain, in order to be able to compare the result to established background noise levels.

$L(x, y, f, t)$ is the basic transmission loss from point (x, y) to the receiver site. For each frequency it varies with time (as function of solar activity and time of day and year). It is proposed to use the median transmission loss “LOSS” as predicted by ICEPAC\(^{35}\), which calculates a prediction of the amount that the PLT signal will be attenuated under median propagation conditions for the given input parameters.

Note that ICEPAC can estimate $\frac{L(x, y, f, t)}{g_{RX}(x, y, f)}$ directly, if the receiver antenna characteristics are given, which in this case should be normalized by the antenna efficiency to give antenna directivity rather than gain. In the absence of knowledge of receiver antenna, an isotropic antenna can be assumed $g_{RX}(x, y, f) = 1$.

$P_{TA}(f)$ is the average e.i.r.p. spectral density (W/Hz) of a single PLT installation.

$D_{a}(x, y)$ is the population density (persons per unit area). Such demographic data (actual numbers from 2005 and predicted numbers for 2010 and 2015) can be downloaded free of charge from the database “Gridded population of the world”\(^{36}\). It is recommended to download “Population Grid” data, which contains the number of people in each grid square, at a grid resolution of 0.25° in BIL format. These data implicitly take into account the different areas of grid squares at different latitudes (and that some grid squares have smaller land areas since they contain partly sea), and hence contain $D_{a}(x, y)dA$ directly.

$\eta_{PEN}(x, y)$ is the market penetration (PLT installations per capita).

$\eta_{USAGE}(t)$ is the duty cycle; the average fraction of time each PLT installation is transmitting. This will be different for different times of day and week; for home installations it is likely to be larger when people are not at work. When considering in-house PLT systems, the market penetration would refer to the number of modems installed, while the duty cycle be averaged over the number of modems (and hence will not exceed 50%, considering that there always will be at least one modem listening to a transmitting modem).

To estimate the potential of cumulative effect of PLT interference at a receiver site, Working Party 5C recommends the following methodology:

Step 1: Download and import population density data $D_{a}(x, y)dA$.

Step 2: Estimate $\eta_{PEN}(x, y)$ based on available market information.

Step 3: Select a number of representative operating frequencies, times of day and year, sunspot numbers (SSN) and levels of geomagnetic activity\(^{37}\). For each combination of these, do the remaining steps.

Step 4: Run ICEPAC (ICEAREA_INV) to obtain median values of $\frac{L(x, y, f, t)}{g_{RX}(x, y, f)}$.

Step 5: Estimate values of $P_{TA}(f)$ and $\eta_{USAGE}(t)$, based on available information.

\(^{35}\) ICEPAC is part of the IONCAP family of HF prediction programs, which are considered, according to Recommendation ITU-R F.1611, as related models to that contained in Recommendation ITU-R P.533. ICEPAC is available for download from: http://www.itu.int/ITU-R/index.asp?category=documents&link=rsg3&lang=en.

\(^{36}\) Socioeconomic Data and Applications Center (SEDAC), Columbia University, which can be downloaded from the following web site http://sedac.ciesin.columbia.edu/gpw.

\(^{37}\) Geomagnetic activity input (Q-index) which represents the effective geomagnetic activity index if the planetary magnetic index Kp is known. Q-index has a range of [0-8], 0 being quiet, 5 is active and 8 is a major storm condition.
Step 6: Evaluate the integral numerically.

Step 7: Compare the result with the background noise level.

A2.4.1.3 Cumulative PLT tool

The user interface of ICEAREA INVERSE only allows sweeping over 9 different combinations of input parameters, which makes it cumbersome to perform comprehensive analyses. The number of input parameters is five (month, time of day, sunspot number, geomagnetic Q-index and frequency), such that the total number of parameter combinations easily exceeds 1,000, even with a modest number of alternatives for each parameter.

To overcome this problem, the Task Group has developed a MATLAB-based tool "cumulative PLT tool" which will bypass the ICEAREA INVERSE user interface and execute the program directly in batch mode for an arbitrarily large number of parameter combinations. The PLT Tool performs this by modifying the input files before issuing the DOS command in order to start the ICEPAC program without a user interface.

For each parameter combination, the cumulative PLT tool will perform items 1, 4, 6 and 7 in the methodology outlined in the previous section, and save the resulting cumulative PLT signal level to a text file which can easily be imported into Excel, MATLAB, or any other program for post-processing and display. The text file will also contain Recommendation ITU-R P.372 noise levels and the absolute protection requirement (APR) level. The task group proposed an absolute protection requirement of \(-15\) dB(μV/m) per 9 kHz bandwidth is converted to (dBm/Hz) with the following equation for the protection of radio services from PLT generated interference:

\[
APR(f) = -15\ \text{dB(μV/m)} - 20\ \log_{10}(f) - 10\ \log_{10}(b) + 95.5 - 174\ \text{dBm/Hz} \quad (A2-6)
\]

where:

\[
f: \quad \text{frequency (MHz)}
\]

\[
b: \quad \text{noise power bandwidth (Hz)}.
\]

Also, under certain rare circumstances ICEPAC predicts path losses smaller than 30 dB from certain regions to the receiver site. This is clearly physically not possible, and is likely to be due to a flaw in ICEPAC. The cumulative PLT tool will discard any ICEPAC runs which predict the path loss to any region smaller than 50 dB, and tag the predicted cumulative PLT signal level as NaN (Not a Number) to indicate missing data. During testing of this tool NaN occurred at 107 out of a total of 7,992 ICEPAC runs.

Before running the tool, ICEAREA INVERSE should be run once in order to define receiver location and transmitter location grid, and set up the input files (which the tool will later modify) accordingly. The transmitter location grid must be a Latitude/Longitude grid with 0.25° resolution in both directions, and the result should be saved in the “default” subdirectory. The tool is equipped with a text-based user interface rather than a graphical user interface (GUI). Also \(P_{\text{TX}}(f), \eta_{\text{PEN}}(x, y)\) and \(\eta_{\text{USAGE}}(t)\) are constant input parameters, such that variation in these parameters over frequency, location and time is not implemented.

A2.4.1.4 Cumulative PLT tool – Instructions on use

Software files for the cumulative PLT tool can be downloaded from http://www.rta.nato.int/Pubs/RDP.asp?RDP=RTO-TR-IST-050, and steps on how to use the tool are shown below.
To start using the tool, do the following:

1. Run ICEAREA INVERSE once in order to set up the receiver location and transmitter location grid:
 a) Start ICEAREA INVERSE.
 b) Push “Parameters” LOSS (predicts the path loss directly).
 c) Push “Method” Auto select.
 d) Coefficients: URSI88 (no difference observed when using CCIR coefficients, but recommend using URSI88 since these are the newest).
 e) Push “Receiver” to select a receiver location.
 f) Push “Plot Center”, → “Set to receiver”, and select the X-range and Y-range for the transmitter grid. Ensure that the X-range and Y-range covers the same number of degrees. A grid of −4 000 km to +4 000 km should be sufficient, which is approximately the maximum distance for single-hop propagation, limited by the Earth’s curvature, unless interference from farther-away regions is of particular interest. (Examine the map to find proper values of minimum/maximum latitude and longitude. Ensure that the difference between maximum and minimum value is the same for latitude and for longitude such that the angular resolution becomes identical in both directions).
 g) Push “Grid”, select Grid Type = “1 Lat/Lon”, and select the grid size such that each grid cell is 0.25 × 0.25°, e.g., if X-range and Y-range cover 70 × 70°, select a grid size of 281 × 281. Lat/Long grid is convenient when used in conjunction with gridded population density data.
 h) Select “Run” → “Map only” in order to see the extent of the transmitter grid.
 i) Ensure that there is only one parameter combination under “Groups” (the actual parameter values here are irrelevant).
 j) Push “System parameters”, Min. angle = 0.1°, multipath power tolerance = 10 dB, maximum tolerable time delay = 15 ms (the latter two values are increased from the defaults in order to account for different propagation paths). The other system parameters, including transmitter power, are irrelevant when predicting path loss only.
 k) Push “Fprob” Keep default values.
 l) Push “TX antenna” default/isotrope.
 m) Push “RX antenna” default/isotrope, or insert knowledge about antenna at the receiver location if required.
 n) Select “Run” → “Calculate” → “Save/Calculate/Screen”.
 o) When prompted for input file name, go to the subfolder named “default” and enter a meaningful file name.
 p) The program should now perform calculations and produce a plot on the screen. Close the program and all windows it has generated. The files generated by the program will be used by the cumulative PLT tool.

NOTE 1 – If only one case is selected under “Groups”, run “Save/Calculate/Screen”. The result will be output to a map on screen and saved to a file xxx.ig1. If several cases are selected under “Groups”, run “Save/Calculate”. The results will be saved to files xxx.ig1, xxx.ig2, xxx.ig3 and so on. The output files xxx.igx are text files which can be used in further post-processing to evaluate cumulative effects.

38 Isotrope antenna: omnidirectional antenna.
2 Start MATLAB, go to the installation folder and enter “cumulative_plt_tool” in order to start the tool. Follow the on-screen instructions.
 a) The input procedures are intended to be relatively failsafe; in case of unexpected inputs the tool should repeat the question.
 b) The options of the text-based user interface are illustrated in Fig. A2-12.
 c) When prompted to select population data file, note that, e.g., the file name glp05ag15.bi corresponds to population data from 2005, and glp10ag15.bil to 2010 (the middle digits of the file name denotes year).
 d) Be aware that large amounts of processing time and hard disk space may be required if running a large number of parameter combinations.

The tool has three different modes of operation:

1 “Compute new”: The tool will go through a number of parameter combinations and do the following for each parameter combination:
 a) Call ICEAREA INVERSE.
 b) Store the result file generated by ICEAREA INVERSE for later use (optional).
 c) Estimate the cumulative PLT signal level and compare with ITU-R noise curves and with the absolute protection requirement.
 d) Write the resulting numbers to a text file.
“Load previous/Compute all”: The tool will go through files previously generated by ICEAREA INVERSE under mode 1, and do the following for each file:

a) Load ICEAREA INVERSE result file into memory.

b) Estimate the cumulative PLT signal level and compare with ITU-R noise curves with the absolute protection requirement.

c) Write the resulting numbers to a text file.

“Load previous/Plot one”: The tool will prompt the user to select one of the previously computed parameter combinations and produce the type of figure/map shown in Fig. A2-13.

The following files are produced when running the tool:

1. “xxx_summary.txt”: Text file containing the estimated cumulative PLT signal level compared to background noise curves for each parameter combination.

2. “xxx_swept_parameters.mat”: MATLAB data file containing information on which parameter combinations were simulated (to be used in the “Load previous” modes).

3. (Optional) “xxx_00001.ig1”, “xxx_00002.ig1”, and so on: Results generated by ICEAREA INVERSE (one file per parameter combination).

A2.4.1.5 Calculation of HF radio noise from PLT systems

In this section an example where the cumulative PLT tool is used to evaluate the interference potential at a hypothetical receiver location. The location was selected on the basis that it should be a city for easy reference. The input parameters are given as an example in § A2.1.

Example receiver location in Winnipeg, Canada

In this example, a hypothetical receiver location at Winnipeg Canada (49.53N and 97.09W) was used. It was noted that Winnipeg located in the Province of Manitoba is a rural area of Canada with a population density less than two persons per km² and that the use of the “quiet rural” noise level from Recommendation ITU-R P.372 is appropriate in the calculation. In addition, it is noted that CBC Radio-Canada, utilizes many of the frequencies allocated to the broadcasting service in the HF bands below 80 MHz.

The analysis is performed under the following assumptions:

Average e.i.r.p. per PLT installation is $P_{TX} = -80$ dBm/Hz (e.g. -50 dBm/Hz HomePlug modems and equivalent antenna gain from wiring of -30 dBi). The value of -80 dBm/Hz used in this example calculation is consistent with the median levels in the CRC findings (see § A3.2) but may not represent the potential for higher peak levels which were found to be 20 dB higher.

Market penetration is $\eta_{PEN} = 0.05$ PLT modems per capita. Other studies shown in § A2.4.3 have used market penetration (PLT systems per household) ranging from 20% to 35% with an average of 30%.

Duty cycle of each modem is $\eta_{USAGE} = 0.3$. The CRC tests found that the in-house modem would continue to operate and emit RF signal even when no data was being transferred. Some modems may be operating at a 50% duty cycle (100% per modem pair). In an access PLT system individual modems may operate with a much lower duty cycle.

The transmitter location grid used extends from -120° to -50° longitude and -15° to 55° latitude, and PLT modems outside this area are disregarded. No knowledge of receiver antenna characteristics is assumed, hence an isotropic receiver antenna is used in the analysis.

A population data prediction from 2010 is used.
Cumulative PLT tool execution within MATLAB is shown below:

--
Cumulative PLT Tool
Roald Otnes, Norwegian Defence Research Establishment (FFI), October 2006
NATO RTO IST-050/RTG-022 on HF Interference, Procedures and Tools
--
This program will estimate the cumulative effects from PLT,
based on ICEPAC sky wave path loss predictions and population data
from “Gridded population of the world” (gpwv3) database

The program has been tested on MATLAB versions 6.5 and 7.1,
and with ICEPAC version 05.0119WW

Please run ICEAREA INVERSE one time as normal to set up all parameters, before
running this program to sweep some of the parameters.
ICEAREA INVERSE will then be called (batch mode) for all chosen parameter combinations.

Use of text-based interface:

Enter will provide default parameters.
Use MATLAB syntax for the parameters to be swept.
Be aware that using default values for all swept parameters will take very long time to run.
Ctrl-C in MATLAB window to abort.
Do NOT close down the ICEPAC window that pops up; that will make Windows confused.
ICEAREA INVERSE batch calculation: (C)ompute new or (L)oad previous? c
ICEPAC installation directory [c:\itshfbc\]:
Select the input file created from the initial setup run (eg.WINNIPEG.ice)
ICEPACfile =
WINNIPEG
Swept months [2:2:12]: 2:2:12
Swept UTCs [0:4:20]: 0:4:20
Swept SSNs [50 100 200]: [50 100 200]
Swept Qs [0 5]: [0 5]
Swept freqs [2 4 8 16 24]: [2 4 8 16 20 24]
Total number of ICEAREA INVERSE runs planned: 1 512
Save ICEAREA INVERSE results for later use (disk space required: 20 267.1 MB). [Y]/N? Y
Output directory [.\ICEPAC\]:
Select population file (eg. glp10ag15.bil for 2010 data)

EIRP per PLT modem (dBm/Hz) [–80]:
Market penetration (PLT modems per capita) [0.05]:
Duty cycle (fraction of time each PLT modem is transmitting) [0.3]:
Market factor (penetration * duty cycle): –18.2 dB
EIRP per capita: –98.2 dBm/Hz

Results will be saved to file .\icepac\WINNIPEG_summary.txt
Modifying ICEAREA INVERSE input files
copy c:\itshfbc\run\temp1.txt c:\itshfbc\run\iceareax.da1
1 file(s) copied.
copy c:\itshfbc\run\temp2.txt c:\itshfbc\area_inv\default\WINNIPEG.ice
1 file(s) copied.
c:\itshfbc\bin_win\icepacw.exe c:\itshfbc\ INV CALC default\WINNIPEG.ice
copy c:\itshfbc\area_inv\default\WINNIPEG.ig1 .\icepac\WINNIPEG_00001.ig1
1 file(s) copied.

Integral of population / loss over entire area: –31.4 dB
Received PLT noise: –129.7 dBm/Hz
Atmospheric noise lower limit: –159.7 dBm/Hz
Man-made, rural: –115.0 dBm/Hz
Man-made, quiet rural: –129.0 dBm/Hz
Absolute protection requirement: –139.1 dBm/Hz

and so on for 1511 other parameter combinations.

The MATLAB command window presented above starts with documentation and usage explanation followed by user input parameters and brief reports from individual ICEPAC runs. The first of 1512 runs (for 6*6*3*2*7 parameter combinations) is shown above. The 1512 ICEPAC runs with the 281 × 281 grid used in this example took a total of about 22 hours on a standard desktop computer circa 2006, and filled 20 GB of disk space when the detailed ICEPAC results were saved (optional) for later use.

As the input value “EIRP per PLT modem” is bandwidth normalized and given in units of dBm/Hz, the resulting estimate of the cumulative PLT signal is also given in units of dBm/Hz. The results are saved to a tab-separated text file, one line per ICEPAC run, similar to the WINNIPEG example given in § 5.1. (NOTE – In the case of discarded ICEPAC runs, the number in the “PLT noise” column will be replaced by “NaN”).

Winnipeg [Isotrope], 2010 population data, e.i.r.p. = –98.2 dBm/Hz per capita

<table>
<thead>
<tr>
<th>Month</th>
<th>UTC</th>
<th>SSN</th>
<th>Q</th>
<th>Freq</th>
<th>PLT noise</th>
<th>Atm (low)</th>
<th>Rural</th>
<th>Quiet rural</th>
<th>Abs. prot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>2.000</td>
<td>–129.69</td>
<td>–159.65</td>
<td>–114.99</td>
<td>–129.01</td>
<td>–139.06</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>4.000</td>
<td>–134.53</td>
<td>–152.37</td>
<td>–123.18</td>
<td>–137.62</td>
<td>–145.08</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>8.000</td>
<td>–139.32</td>
<td>–146.21</td>
<td>–131.36</td>
<td>–146.23</td>
<td>–151.10</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>16.000</td>
<td>–149.54</td>
<td>–160.64</td>
<td>–139.55</td>
<td>–154.84</td>
<td>–157.12</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>24.000</td>
<td>–165.75</td>
<td>–187.36</td>
<td>–144.34</td>
<td>–159.87</td>
<td>–160.65</td>
</tr>
</tbody>
</table>

Cumulative PLT output maps

The cumulative PLT tool also provides the option of plotting maps illustrating the correspondence between ICEPAC path loss and population density. This requires that the detailed ICEPAC results have been saved to disk. An example for a case where the predicted PLT signal exceeds the median quiet rural man-made noise by more than 6 dB is shown in Fig. A2-13. In general, high predicted PLT signal levels correspond to cases where there is low path loss from densely populated regions. It was concluded by some Sector Members that the parameters used in the example calculation are reasonable and that the results correctly indicate that the PLT signal levels exceed the median “quiet rural” man-made noise by at least 6 dB.
FIGURE A2-13

Top plot: Median path loss (dB) as predicted by ICEPAC for a combination of input parameters for a receiver in Winnipeg; Middle plot: Population per 0.25° × 0.25° grid square in dB (10 log \(\mu \) (population)); bottom plot: Product (dB-sum) of the top two plots.

The maps in Fig. A2-13 are generated using the MATLAB cumulative PLT tool as shown below:

ICEAREA INVERSE batch calculation: (C)ompute new or (L)oad previous? L
ICEPACfile = WINNIPEG
(C)ompute cumulative PLT noise for all files, or (P)lot One? p
Select UTC, one of (0 4 8 12 16 20): 8
Select Freq, one of (2 4 8 16 24): 8

EIRP per PLT modem (dBm/Hz) [-80]:
Market penetration (PLT modems per capita) [0.05]:
Duty cycle (fraction of time each PLT modem is transmitting) [0.3]:
Market factor (penetration * duty cycle): –18.2 dB
EIRP per capita: –98.2 dBm/Hz

Month: 2 / UTC: 8 / SSN: 50 / Q: 0 / Freq: 8.00
Integral of population / loss over entire area: –41.3 dB
Received PLT noise: –139.6 dBm/Hz
Atmospheric noise lower limit: –146.2 dBm/Hz
Man-made, rural: –131.4 dBm/Hz
Man-made, quiet rural: –146.2 dBm/Hz
Absolute protection requirement: –151.1 dBm/Hz

A2.4.1.6 Wire-line system antenna gain

The antenna gain of a wire-line transmission system is defined as the ratio between e.i.r.p. and injected power. For PLT systems, several measurement results were reported in the literature and RTG report recommends following antenna gains:
- -30 dBi for in-house systems;
- -15 dBi for overhead access systems;
- -50 dBi for underground access systems.

It should be recognized that there are uncertainties in these numbers of the order of ±5 to ±10 dB due to statistical spread. Furthermore, in the case of overhead Access system power lines, at resonant frequencies the antenna gain may be higher by 10-13 dB.

A2.4.1.7 Current PLT market penetration estimation

In § 5.6.5 an estimated value of market penetration of $\eta_{PEN} = 0.05$ was used for the example calculations. Market information is generally difficult to obtain and hard to predict into the future, since vendors do not disseminate this information readily, and the technology is still in development. An attempt to predict the market development for PLT\(^{39}\) predicts that by 2010 there will be between 2.5 and 5 million Access PLT (BPL) subscribers in USA. This corresponds to a market penetration of 0.9-1.7% of the population. In Germany, the number of HomePlug devices “on the market” in February 2005 was 300,000, and in February 2006 was 800,000\(^{40}\). This information was given to the Task Group from the German BITKOM (Industry) via the German Ministry of Commerce. The population in Germany was 82 million, thus the HomePlug market penetration as of February 2006 is 0.01 modems per capita. As of April 2006, Intellon had sold 10 million HomePlug chipsets worldwide and shipped 5 million\(^{41}\). (Intellon, DS2 and Panasonic are major vendors of PLT chipsets). Users of the cumulative PLT tool can enter an appropriate value for this parameter.

A2.4.1.8 Conclusions

The absolute protection requirement is a term developed by the research task group, and has been retained in this text to preserve the integrity of the cumulative PLT tool. The absolute protection level does not affect the calculations and it is used only for comparison, similar to how the various environmental noise levels are used. Working Party 5C has not concluded studies on protection levels for terrestrial radio services from PLT systems. The methodology presented in this document is based on the ICEPAC propagation prediction method, and can be used to predict cumulative HF skywave interference from PLT systems. This technique can be utilized to analyze impact of PLT signals received at a receiver location for terrestrial radiocommunication interference studies.

A2.4.2 NTIA study on ionospheric propagation and aggregation of Access PLT emissions

A2.4.2.1 Introduction

The purpose of this study is to review and analyze the potential effect of a large scale Access PLT deployment on aggregate noise levels over a national scale. An aggregate effect from PLT interference, if any, would occur due to ionospheric or “sky wave” propagation. Since current PLT systems make use of HF frequencies, and since modeling of PLT-energized power lines indicates much of the PLT emissions appear to radiate in an upward direction, these HF PLT emissions have

\(^{40}\) BITKOM-Informationen zu Anwendungen der Powerline-Technologie, Stand März 2006.

\(^{41}\) BPL Today, April 11, 2006, p.3.
the potential to travel many miles from their source. Moreover, because a given listening point may receive radiated PLT emissions from many sources, it is conceivable that an aggregation of signals could occur, raising the receiver noise floor level and rendering weak, desired signals unintelligible. In general, ionospheric propagation occurs for frequencies between 1.7 MHz and 30 MHz, as discussed in the NTIA PLT Phase 1 Study42.

A2.4.2.2 Analytical modeling of sky wave propagation

Background

The analysis presented here employed the VOACAP HF statistical propagation prediction software43 and overhead and underground power line models using the NEC software44.

NTIA used VOACAP in its “area” mode to calculate aggregate emissions received at multiple points from widespread PLT deployments. In the geographic center of every county in the United States, NTIA placed effective PLT emitters, each representing the total PLT emissions from its respective county. Propagation simulations were sequentially run for each effective emitter to a fixed grid of receive points covering the continental United States, and the results were summed in the power domain. NTIA ran these simulations over a large set of time and frequency conditions.

Approach

Power line models

For this report, NTIA determined radiated power levels for each effective PLT emitter using an elaborate overhead power line model. These power levels were calculated using the measurement guidelines adopted in the FCC’s PLT Report and Order45. NTIA calculated the radiated power output from the power line model which would result in electric fields that met Part 15 limits, and the result was scaled by NTIA’s deployment model and county population to arrive at the power output of each effective PLT emitter (Table A2-1).

The overhead model was based upon an actual power line structure at which NTIA conducted measurements of PLT emissions (Figs A2-14 and A2-15). The model was created with the help of \textit{in-situ} observations and measurements, and was designed for simulation using NEC-4.1. As closely as possible and within program constraints, this model was designed to conform to the actual features of the power grid, including the use of catenary wires, correct placement of transformers loads, wire height and placement on power poles, grounding wires, riser, pole placement and wire junctions.

The overall extent of the model was approximately 328 m in the x-axis direction, and 435 m in the y-axis direction. The modelled power line height was 12 m. The power line spacing was 0.6 m with a multi-grounded neutral line 1 m below the other lines. All wires were 12.6 mm in diameter and given the conductivity of copper (5.8×10^7 S/m). The ground plane for the model (a flat earth structure beneath the wires) had characteristics typical of “good” ground (dielectric constant of 15.0, conductivity of 0.005 S/m).

43 NTIA/ITS ionospheric propagation software package available for download from http://www.greg-hand.com/hfwin32.html.

44 Numeric Electromagnetic Code method-of-moments electromagnetic modeling software is available through Lawrence Livermore National Laboratory: https://ipo.llnl.gov/?q=technologies-software-browse_software-app&s=NEC.

45 BPL Report and Order, at Appendix C, Measurement Guidelines 2.b.
FIGURE A2-14
Angle view of the elaborate overhead power-line model

FIGURE A2-15
Overhead view of the power line model depicting PLT injection points (red dots). Injection point 3 was used for this analysis. Distribution transformers (impedance loads to neutral) are shown by black dots.
An example radiation pattern calculated with the use of this model is presented in Fig. A2-16. This radiation pattern was calculated for 16 MHz.

![Example far-field directive gain radiation pattern at 16 MHz, using signal injection at injection point 3](image)

NTIA created an additional NEC model of an underground PLT system (Figs A2-17 and A2-18). As with the overhead model, NTIA used NEC to derive frequency-dependent directive-gain radiation patterns and radiated power necessary to meet Part 15 limits from the underground model. Radiated power calculations were again performed using the new PLT measurement guidelines in the PLT Report and Order\(^\text{46}\). The radiated power levels are listed in Table A2-1.

\(^{46}\) BPL Report and Order, at Appendix C, Measurement Guidelines 2.b.
FIGURE A2-17
Underground power line model with ground removed. The underground line, comprised of three neutral wires surrounding a dielectric-insulated central wire, extends 340 m end to end.

FIGURE A2-18
Underground power line model with ground included. The visible wire frame box represents a pad-mounted transformer, in which the PLT source is installed.
TABLE A2-1

PLT structural radiated power at Part 15 limit

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Radiated power (dBW/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overhead</td>
</tr>
<tr>
<td>2</td>
<td>-103.04</td>
</tr>
<tr>
<td>4</td>
<td>-106.71</td>
</tr>
<tr>
<td>6</td>
<td>-104.38</td>
</tr>
<tr>
<td>8</td>
<td>-102.99</td>
</tr>
<tr>
<td>10</td>
<td>-102.89</td>
</tr>
<tr>
<td>12</td>
<td>-102.93</td>
</tr>
<tr>
<td>14</td>
<td>-104.06</td>
</tr>
<tr>
<td>16</td>
<td>-106.32</td>
</tr>
<tr>
<td>18</td>
<td>-97.48</td>
</tr>
<tr>
<td>20</td>
<td>-103.48</td>
</tr>
<tr>
<td>22</td>
<td>-104.29</td>
</tr>
<tr>
<td>24</td>
<td>-101.04</td>
</tr>
<tr>
<td>26</td>
<td>-105.71</td>
</tr>
<tr>
<td>28</td>
<td>-100.98</td>
</tr>
<tr>
<td>30</td>
<td>-98.04</td>
</tr>
</tbody>
</table>

Greater NEC-calculated radiated power from underground structures is not unexpected, as ground losses in NEC-calculated directive gain patterns subsequently attenuate this power significantly. Thus, it is to be expected that NTIA’s underground model radiated significantly more power than overhead systems while meeting Part 15 limits. With both the overhead and underground models, increased variability of radiated power with frequency is largely due to the vast increase in complexity of the model used over previous work.

The PLT Report and Order specified that compliance measurements should take place at ¼ wavelength intervals down the power line from the PLT device, to a distance of one wavelength of the mid-band frequency, at a measurement height of 1 m47.

The radiated power levels were derived by exciting the NEC models in question using a unit voltage source, finding the magnetic or electric field values through NEC simulation at appropriate points around the models as specified in the PLT measurement guidelines, and scaling all subsequent electric field values by the dividend of calculated electric field divided by the Part 15 limit. To translate the scaling to the power domain, NEC-calculated radiated power levels were scaled by the square of this factor.

47 BPL Report and Order, at Appendix C, Measurement Guidelines 2.b.2, for a description of additional measurements that may be required if the mid-band frequency of the PLT signal is two or more times greater than the lowest PLT signal injected onto the power line.
Use of voice of America coverage analysis program

NTIA calculated PLT interference and man made noise power values using VOACAP’s area mode in a fixed 31×31-point grid of receiving points covering CONUS and centered on Kansas City, Missouri. NTIA assumed PLT deployment densities based in part on U.S. Census data to simulate effective PLT emitters in the geographic center of each county in the United States of America (including Alaska and Hawaii). These emitters were given frequency-dependent directive-gain radiation patterns calculated using the elaborate NEC overhead power line model or the underground model and located in the geographic center of each county. The radiation patterns used were arithmetically averaged in azimuth to simulate the random orientation of multiple PLT-energized power lines represented by each effective emitter.

For the elaborate overhead power line model, NTIA ran full ionospheric aggregation simulations over a comprehensive set of more than 8,500 sets of conditions (including all months of the year, hours of the day, low and high levels of solar activity and frequencies from 2 to 30 MHz in 2 MHz increments). NTIA used these simulations to calculate the Interference-plus-Noise-to-Noise ratio, or $(I + N)/N$, conditions due to large numbers of deployed PLT devices. The results presented here were examined in terms of sets of conditions producing worst-case increases to the local receiver noise floor.

Similar propagation analyses were completed for the underground model over a large sample of hours of the day, frequencies, months of the year and solar conditions (more than 1,300 sets of conditions), including the same conditions that resulted in the greatest aggregated interference-to-noise ratios using the overhead power line model as an emitter.

VOACAP reports results of propagation in terms of signal-to-noise ratio (SNR). Table A2-2 indicates how the SNR values reported by VOACAP translate into noise floor increases.

<table>
<thead>
<tr>
<th>Noise floor increase $(I + N)/N$ (dB)</th>
<th>SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>−5.868</td>
</tr>
<tr>
<td>0.5</td>
<td>−9.135</td>
</tr>
<tr>
<td>0.1</td>
<td>−16.327</td>
</tr>
<tr>
<td>0.05</td>
<td>−19.363</td>
</tr>
<tr>
<td>0.01</td>
<td>−26.373</td>
</tr>
<tr>
<td>0.005</td>
<td>−29.386</td>
</tr>
</tbody>
</table>

49 In this Report, $(I + N)/N$ is also referred to as noise floor increase.
A2.4.2.3 Simulation characteristics

NTIA ran simulations both with the Smoothed Sunspot Number (SSN) parameter set to a high value (150) to simulate excellent propagation characteristics during the peak of the 11-year solar cycle, and to a low value (25) to simulate depressed propagation characteristics at the low point in the solar cycle. Because of software design, all receive points used VOACAP’s quarter-wave vertical monopole antenna (type 22) over ground with dielectric constant $\varepsilon_r=15$ and conductivity $\sigma=0.005 \text{ S/m}$50. In reality, ground characteristics vary in the United States of America, ranging from very poor ($\varepsilon_r=3$ and $\sigma=0.001 \text{ S/m}$) to excellent ($\varepsilon_r=20$ and $\sigma=0.030 \text{ S/m}$).

The man-made noise level was set to remote or quiet rural levels (-164 dBW/Hz at 3 MHz) at all receive points, to best address receiving conditions at many U.S. Government sites51. As with receive-point antennas, software design allows one manmade noise level to be assigned to all receive points in VOAAREA’s calculation grid. Actual man-made noise levels in the United States of America can vary from quiet rural conditions to the very high noise levels that can be found in industrial areas.

NTIA individually scaled the NEC-calculated radiated power levels of each county’s effective emitter by the number of active PLT devices expected to serve the urban households in that county. Urban households (as defined by the U.S. Census Bureau) were used in this analysis as they present greater deployment densities than rural households, and as such, are more likely to be the bulk of early deployments of Access PLT service. As in the earlier analysis, NTIA assumed that a PLT injector had the data handling capacity to support an average of 30 customers, and 1 of 4 urban households was a PLT customer. In other words, one PLT injector was assumed per 120 urban households. With nearly 85 million urban households in the United States of America, this assumption resulted in a total of over 705,000 modelled PLT devices in this analysis52.

Several other factors were taken into consideration when predicting the receiver noise floor increase. First, NTIA considered that not all PLT devices will operate at the Part 15 limit; therefore, the average radiated signal was assumed to be 4 dB below the Part 15 limit. Second, the VOAAREA analysis was based on root-mean-square (RMS) values; therefore an adjustment was made to convert the quasi-peak PLT signal level, as measured for FCC limit compliance, to an RMS level53. Third, since the devices in the system do not all operate at the same frequency54, an allowance of 6 dB was given (i.e., 1 in 4 PLT injectors are assumed to be co-frequency). Finally, the assumed duty cycle of PLT devices was set at a mean of 55%. These adjustments to the PLT radiated power levels are listed in Table A2-3.

50 VOAAREA allows one to set the length of the vertical antenna either to a fixed value in meters or to allow it to vary with frequency. In this analysis, it was assumed that a receiver subject to potential interference at any given frequency would make use of an antenna designed for that frequency; therefore, the antenna in this case was set to quarter-wave length for each frequency (e.g., 7.5 m at 10 MHz). VOACAP automatically adjusts this length such that the receive pattern stays the same regardless of frequency. As is appropriate for a monopole antenna, the maximum gain for the antenna at any height was set to 3 dB above that of a dipole.

51 Noise level used in this analysis is based on Recommendation ITU-R P.372, implemented in VOACAP/VOAAREA.

52 NTIA Comments, at Technical Appendix, § 4.

53 The choice of quasi-peak-to-r.m.s conversion factor was based on the measurement data from the NTIA Phase 1 Study, which indicated that the PLT signal power measured using a quasi-peak detector typically exceeded the level measured using an average detector by 0 – 5 dB. NTIA Phase 1 Study, at Volume II, section D.3.4.

54 NTIA Phase 1 Study, Vol. I, a section 2.2.
The receive points in the VOAAREA calculation grid used 1 Hz bandwidths (set by adjusting the radiated interfering PLT signal power of each transmitting point to the power (dB(W/Hz)). The noise power levels provided by VOAAREA were in dB(W/Hz). The received signal power from all effective PLT emitters at a given receive point was summed in the power domain independent of the noise power level, and the resulting summed PLT interfering power and the noise power at that point were used to calculate interference-to-noise. Thus, the aggregate interference-to-noise ratio at a point was into a 1 Hz bandwidth.

Table A2-4 summarizes the assumptions listed above as they were applied to this simulation.

TABLE A2-3

Adjustment factors for access PLT devices

<table>
<thead>
<tr>
<th>Factor</th>
<th>Adjustment (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices operating at levels below Part 15 limits</td>
<td>−4</td>
</tr>
<tr>
<td>Quasi-peak to r.m.s conversion</td>
<td>−3</td>
</tr>
<tr>
<td>Co-frequency distribution factor</td>
<td>−6</td>
</tr>
<tr>
<td>Duty cycle</td>
<td>−2.6</td>
</tr>
<tr>
<td>Total</td>
<td>−15.6</td>
</tr>
</tbody>
</table>

TABLE A2-4

Simulation conditions

<table>
<thead>
<tr>
<th>Effective PLT emitters</th>
<th>Overhead</th>
<th>Underground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excitation</td>
<td>Voltage source on single line, centrally located</td>
<td>Voltage source in pad-mounted transformer, centrally located</td>
</tr>
<tr>
<td>Far field pattern</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>NEC-4.1 overhead model</td>
<td>NEC-4.1 underground model</td>
</tr>
<tr>
<td>Variability</td>
<td>Averaged over azimuth, variable by elevation and frequency</td>
<td>Directive gain</td>
</tr>
<tr>
<td>Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>NEC-4.1 overhead model</td>
<td>NEC-4.1 underground model</td>
</tr>
<tr>
<td>Structure emissions limits</td>
<td>Limited by Part 15 limits, as measured using PLT measurement guidelines</td>
<td></td>
</tr>
<tr>
<td>County-level scaling</td>
<td>Scaled by urban households in county</td>
<td></td>
</tr>
<tr>
<td>Parameter used</td>
<td>NEC-4.1 “radiated power” value (specified as output power after structure losses, but not ground losses, are considered)</td>
<td></td>
</tr>
<tr>
<td>Placement</td>
<td>Geographic centers of all counties in the United States of America</td>
<td></td>
</tr>
<tr>
<td>Antenna type</td>
<td>Quarter-wave monopole (VOACAP type 22)</td>
<td></td>
</tr>
<tr>
<td>Ground conditions</td>
<td>“Average” ground</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td>0.005 S/m</td>
<td></td>
</tr>
<tr>
<td>Relative permittivity</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Placement</td>
<td>31 × 31 grid of receive points throughout CONUS</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td>“Quiet rural” noise conditions at 3 MHz (−164 dB(W/Hz))</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A2-4 (end)

<table>
<thead>
<tr>
<th>Effective PLT emitters</th>
<th>Overhead</th>
<th>Underground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F requencies</td>
<td>From 2 to 30 MHz in 2 MHz steps</td>
<td></td>
</tr>
<tr>
<td>Times of day</td>
<td>From 0 to 23 hours UTC in 1-hour increments</td>
<td></td>
</tr>
<tr>
<td>Months of year</td>
<td>From January to December</td>
<td></td>
</tr>
<tr>
<td>Solar conditions</td>
<td>Smoothed Sunspot Numbers (SSN) 25 and 150</td>
<td></td>
</tr>
<tr>
<td>Primary path geometry</td>
<td>Short path</td>
<td></td>
</tr>
<tr>
<td>Calculation methodology</td>
<td>Short/long path smoothing</td>
<td></td>
</tr>
<tr>
<td>Calculated parameters</td>
<td>Received signal strength (SDBW), received noise (NDBW)</td>
<td></td>
</tr>
<tr>
<td>Power adjustment factor</td>
<td>–15.6 dB (detailed in Table A2-3)</td>
<td></td>
</tr>
</tbody>
</table>

A2.4.2.4 Simulation results

In order to gauge whether a given aggregated PLT signal level presents a risk of harmful interference to U.S. government radiocommunication receivers, NTIA considered two threshold values of \((I + N)/N\), or receiver noise floor increase\(^{55}\). The lower threshold, a 1 dB increase in the noise floor (corresponding to a PLT interference-to-noise ratio of approximately –5.9 dB), was chosen as the level at which some harmful interference might occur. The higher threshold, increasing the noise floor by 3 dB (a PLT interference-to-noise ratio of 0 dB), was selected as a level at which harmful interference was considered to be a significant risk.

Analysis of the impact of PLT aggregation was done by combining the PLT signal levels of the modelled overhead and underground PLT systems with the background noise levels, such that the combination met the noise floor increase thresholds listed above. This analysis enabled NTIA to examine the ionospheric aggregation effects while varying the relative numbers of overhead and underground systems.

Comparison of overhead and underground analysis results

The simulations found overhead systems produced aggregated signal levels greatly in excess of underground systems, even when both classes of systems were adjusted to meet Part 15 limits. The median value for overhead aggregated PLT signal level was approximately 20 dB higher than that of an equal number of underground systems, given the same ionospheric propagation characteristics, over all the conditions modelled. This finding suggests that, where feasible, installation of PLT devices operating in the 1.7 to 30 MHz frequency range on underground wiring could have significant advantages over the same devices operating on overhead systems, from the standpoint of signal aggregation due to ionospheric propagation.

The relative impact of overhead and underground PLT aggregation can be seen graphically in the following results. Figures A2-19 and A2-20 illustrate the number of overhead plus underground devices needed to cause a worst-case 1 or 3 dB increase in the noise floor at any geographic location in the United States under best propagation and lowest local noise floor conditions.

For these graphs, ionospheric aggregation modelling was used to derive sets of conditions for both low and high solar activity during which the greatest ratios of signal-to-noise level due to aggregated PLT was produced. For all other sets of conditions and geographic locations, calculated aggregation resulted in less impact to the noise floor. Thus, for most calculated conditions, more

\(^{55}\) The term “I” refers to the interfering signal power associated with radiated PLT emissions.
PLT devices would be required to produce the same impact on the local noise floor as that illustrated in Figs A2-19 and A2-20.

Calculations for periods of high solar activity indicated that maximum aggregated PLT signal levels occur primarily at higher frequencies in the HF band (18-30 MHz) during mid-to-late afternoon hours in the fall and winter. Calculations using low solar activity conditions found maximum aggregated PLT signal levels primarily at lower frequencies in the HF band (4-8 MHz). As was indicated by calculations assuming high solar activity conditions, maximum aggregated PLT signal levels were found during late afternoon hours during the fall and winter.

Figure A2-19 depicts combinations of underground and above-ground PLT devices that produce increases in the noise floor of 1 dB (lower curve) and 3 dB (upper curve). This figure is generated for the combination of ionospheric propagation and noise conditions (15:00 UTC during November at 30 MHz, with high-level solar activity) that produce the highest aggregate PLT signal relative to the local noise floor at any geographic point. Under these conditions, more than 1.35 million overhead PLT devices alone could be deployed before realizing a 1 dB increase in the noise floor at any geographic location. This number increases to 5.23 millions overhead PLT devices for a 3 dB aggregate noise floor increase. By reducing the number of overhead devices and adding underground PLT devices, the total number of deployed PLT devices can be greatly increased, while meeting the same levels of noise floor increase.

![Figure A2-19](image)
Figure A2-20 depicts numbers of overhead PLT devices compared to the number of underground PLT devices that would result in a 1 dB and 3 dB increase in the receiver noise floor under low solar cycle conditions. As with solar cycle maxima results, the fewest overall PLT devices necessary to meet the thresholds occurs when overhead PLT devices are used exclusively. For these conditions, approximately 916,000 overhead PLT devices would be required to raise the noise floor by 1 dB. By contrast, the exclusive use of underground PLT devices in the 1.7 to 30 MHz frequency range would allow nearly 10 million PLT devices to be deployed before producing a 1 dB noise floor increase.

A2.4.2.5 Maps of Ionospheric Aggregation

Figures A2-21 through A2-33 depict aggregated PLT interference-to-noise ratio (labelled as signal-to-noise) contour maps across the continental United States of America (CONUS) for a number of PLT deployment cases. These maps combine the aggregate power contributions of overhead and underground PLT devices distributed by population throughout the United States in various ratios such that the maximum aggregate PLT SNR encountered at any geographic point produces an approximate 1 dB or 3 dB increase in the noise floor.

Because of the way VOACAP produces output, only signal-to-noise ratios are indicated in the legends of the contour maps. To aid in interpreting Figs A2-22 through A2-33, a sample contour map is provided in Fig. A2-21. Figure A2-21 illustrates the translation of the values in these legends to the respective increases in the noise floor. The lighter shaded regions correspond to greater levels of noise floor increase due aggregation of PLT emissions. The peak location or locations are identified on the contour maps by a circular symbol having a cross inside it.
FIGURE A2-21
Sample VOAArea output map detailing the increase in the noise floor for each signal-to-noise value in the map legend

15ut 30,000 MHz Nov 150ssn above: 1510000 underground: 26,770,000

FIGURE A2-22
Aggregation under high SSN conditions due to 24,095,730 underground devices and no overhead devices with maximum noise floor increase of 1 dB

15ut 30,000 MHz Nov 150ssn overhead: 0 underground: 24, 095, 730
FIGURE A2-23
Aggregation under high SSN conditions due to 12,047,865 underground devices and 760,168 overhead devices with maximum noise floor increase of 1 dB
15ut 30.000 MHz Nov 150ssn overhead: 760,168 underground: 12,047,865

FIGURE A2-24
Aggregation example under high SSN conditions due to no underground devices and 1,355,002 overhead devices with maximum noise floor increase of 1 dB
15ut 30.000 MHz Nov 150ssn overhead: 1,355,002 underground: 0
FIGURE A2-25
Aggregation example under high SSN conditions due to 93,055,084 underground devices and no overhead devices with maximum noise floor increase of 3 dB
15ut 30.000 MHz Nov 150 ssn overhead: 0 underground: 93,055,084

FIGURE A2-26
Aggregation example under high SSN conditions due to 46,527,542 underground devices and 2,935,689 overhead devices with maximum noise floor increase of 3 dB
15ut 30.000 MHz Nov 150 ssn overhead: 2,935,689 underground: 46,527,542
FIGURE A2-27
Aggregation example under high SSN conditions due to no underground devices
and 5,232,871 overhead devices with maximum noise floor increase of 3 dB
15uti 30,000 MHz Nov 150ssn overhead: 5,232,871 underground: 0

FIGURE A2-28
Aggregation example under low SSN conditions due to 9,816,125 underground devices
and no overhead devices with maximum noise floor increase of 1 dB
15uti 6,000 MHz Dec 25ssn overhead: 0 underground: 9,816,125
FIGURE A2-29
Aggregation example under low SSN conditions due to 4,908,062 underground devices and 458,047 overhead devices with maximum noise floor increase of 1 dB

15υt 6.000 MHz Dec 25ssn overhead: 458,047 underground: 4,908,062

FIGURE A2-30
Aggregation example under low SSN conditions due to no underground devices and 916,094 overhead devices with maximum noise floor increase of 1 dB

15υt 6.000 MHz Dec 25ssn overhead: 916,094 underground: 0
FIGURE A2-31
Aggregation example under low SSN conditions due to 37,908,805 underground devices and no overhead devices with maximum noise floor increase of 3 dB

15ut 6.000 MHz Dec 25ssn overhead: 0 underground: 37,908,805

FIGURE A2-32
Aggregation example under low SSN conditions due to 18,954,402 underground devices and 1,768,927 overhead devices with maximum noise floor increase of 3 dB

15ut 6.000 MHz Dec 25ssn overhead: 1,768,927 underground: 18,954,402
The aggregation examples of Figs A2-21 through A2-32 depict the two circumstances (one for low solar cycle activity and one for high) in which the fewest devices are needed to reach the thresholds indicated at any geographic point and across all conditions of time and frequency simulated. As can be seen from the figures, under these conditions of best propagation/lowest noise and using the assumptions developed in this study, more than 916,000 overhead PLT devices deployed nationwide would be necessary to produce increases in the noise floor of 1 dB at any geographic point – well above the 705,000 PLT devices expected in NTIA’s deployment model for passing 100 percent of the urban households in the United States of America. Far more devices could be deployed without reaching either 1 dB or 3 dB thresholds if a significant percentage are deployed on underground power lines.

In the vast majority of cases modelled (other times of day, months of the year and frequencies), many more devices, both underground and above ground, were required to produce the stipulated increases in the noise floor.

A2.4.2.6 Summary

NTIA modelled two power line structures and conducted comprehensive aggregation studies using VOAAAREA propagation software to determine the potential for harmful interference to U.S. Government radiocommunication systems in the 1.7 to 30 MHz frequency range due to PLT signals propagated via the ionosphere.

The simulation results conducted by the United States of America for the deployment of Access PLT on MV overhead power lines operating in the 1.7 to 30 MHz band show that, for a wide scale deployment of overhead PLT devices (such that PLT services passes 100 percent of the urban households in the United States of America) and under the assumptions in this study, the noise floor increase is expected to be less than 1 dB for the worst case propagation conditions. In reality, approximately 20% of the MV power lines are underground and many PLT systems operate in the VHF band. From these results, a widespread deployment of Access PLT systems in the United States of America is not expected to pose a problem for U.S. Government radiocommunication
systems (land-mobile and fixed-service systems represented by quarter-wave dipoles) operating in the 1.7 to 30 MHz band due to ionospheric propagation and aggregation of signals.

A2.4.3 Results on calculation of cumulative HF sky-wave interference caused by power line telecommunication systems

A2.4.3.1 Introduction

This section describes examples of calculation of the cumulative electric field strength caused by PLT systems due to the sky-wave propagation that is modelled in Recommendation ITU-R P.533 – HF propagation prediction method.

In this calculation, the following assumptions were made:
- The territory of Japan is divided into nine areas, each having an imaginary radiation source with a power proportional to the sum of the assumed number of PLT systems.
- A total of 1.5×10^7 PLT systems corresponding to the coverage of 30% households are used.
- 100% Duty cycle (All PLT systems are up and running but only a single PLT modem in a system output power at a time) is used.

A2.4.3.2 Calculation of the cumulative PLT sky-wave field

Calculation procedures

1. Power radiated from a single PLT system

The radiation power was estimated as follows:
- for a PLT modem, the power radiated from power lines is calculated from a signal power of $-60 \text{ dBm/Hz (r.m.s. value)}$ and the longitudinal conversion loss (LCL) of the power lines to be 30 dB;
- in addition, considering the bandwidth of an interfered receiving system, the radiation power from a single PLT system is evaluated for the radio service bands as shown in Table A2-5;
- therefore the following formula was used:

\[
\text{Radiated power (dBW)} = \text{Signal power (dBm/Hz)} - 30 + 10 \log (\text{bandwidth (Hz)}) - \text{LCL (dB)};\]

and

receiver points are assumed to be far enough from the PLT systems and therefore the radiation source can be treated as a point source.

<table>
<thead>
<tr>
<th>TABLE A2-5</th>
</tr>
</thead>
</table>

| Radiation power of a single PLT system |
|---|---|
| **Frequency band** | **Radiation power** |
| Radio astronomy | | |
| 13 MHz band (Center frequency: 13.385 MHz) | $-73.0 \text{ dBW (r.m.s. value, bandwidth 50 kHz)}$ |
| 25 MHz band (Center frequency: 25.610 MHz) | $-69.2 \text{ dBW (r.m.s. value, bandwidth 120 kHz)}$ |
| Amateur radio | | |
| 3.5 MHz band (Calculation frequency: 3.538 MHz) | $-86.2 \text{ dBW (r.m.s. value, bandwidth 2.4 kHz)}$ |
| 7 MHz band (Calculation frequency: 7.050 MHz) | $-86.2 \text{ dBW (r.m.s. value, bandwidth 2.4 kHz)}$ |
2 Cumulative treatment of distributed PLT systems

In the calculation, the territory of Japan was divided into 9 areas as shown in Table A2-6, each having an imaginary radiation source of a power estimated from the following formula:

\[
\text{Radiation power of an imaginary source in an area (dBW)} = \text{Power radiated from a single PLT system (dBW)} + 10 \log (\text{number of PLT systems}) - \text{Shielding effect (dB)}
\]

where:

\[
\text{Number of PLT systems} = \text{Number of households in the area} \times \text{PLT penetration rate}
\]

with:

\[
\begin{align*}
\text{Number of households based on government data (as of 2004 March),} \\
\text{in the area:} \\
\text{PLT penetration rate: estimated from the broadband service penetration rate at the} \\
\text{prefectural and city levels (as of 2005 March) under the condition} \\
\text{of the nationwide average of 30%}, \\
\text{Shielding effect: assumed to be 0 dB (no effect)}.
\end{align*}
\]

For each PLT modem, a duty cycle of 100% was assumed for the worst case analysis. It means all PLT modems are up and running.

3 Calculation of the cumulative field strength distribution through HF sky-wave propagation

The electric field strength distribution (median value) through the HF sky-wave propagation radiated from a total of \(1.5 \times 10^7\) PLT systems was calculated in the following way:

- for each area the electric field strength distribution from an imaginary radiation source was calculated through the HF sky-wave propagation;
- the nine calculation results above were summed in terms of the power.

Actual calculation using the propagation model in Recommendation ITU-R P.533

Calculation of the field strength distribution was made using the public domain free software, RECAREA\(^{56}\), published by Radiocommunication Study Group 3, with the following parameters:

a) Radiation power

Because of a constraint of the software, calculations were made for certain levels of the radiation power above 0 dBW. Then, the results were corrected corresponding to the radiation power listed in Tables A2-5 and A2-6.

b) Transmit antenna

Antenna type was set to the isotropic antenna.

c) Conditions in the ionosphere

Various characteristics of the ionosphere change by month and time. Electric field strength and its distribution also change because of this characteristics variation. The maximum electric field strength in the plot area shown in f) varies according to the month and time used for the calculation, as shown in Fig. A2-34. In this calculation, parameters “Month: April, time: 0600UT” were used, which corresponded to approximately the maximum electric field strength.

\(^{56}\) This software is downloadable from http://elbert.its.bldrdoc.gov/pc_hf/hfwin32.html.
FIGURE A2-34

Example of the field intensity changed with month/time

Monthly change (13.385 MHz, 0600UT)

- JAN
- FEB
- MAR
- APR
- MAY
- JUN
- JUL
- AUG
- SEP
- OCT
- NOV
- DEC

Field intensity (dB)

- Sapporo
- Tokyo
- Naha

Time change (13.385 MHz, APR)

- 0200
- 0400
- 0600
- 0800
- 1000
- 1200
- 1400
- 1600
- 1800
- 2000
- 2200
- 2400

Field intensity (dB)

- Sapporo
- Tokyo
- Naha

Monthly change (25.61 MHz, 0600UT)

Time change (25.61 MHz, APR)

Monthly change (3.538 MHz, 1200UT)

Time change (3.538 MHz, JUL)

d) SSN (Sun spot number)

Figure A2-35 shows an example of maximum electric field strength variation for various SSN. SSN = 100 was set for the calculation. (Solar activity is relatively active.)

e) Receiving antenna / receiver bandwidth

It is an irrelevant parameter in the calculation of electric field strength.

f) Plot area

The reference point of the plot was set to Tokyo, and the plot area covered an area around Japan: 700 km East, 1300 km West, 1200 km North and 1000 km south relative to the reference point.

FIGURE A2-35

Example of the field intensity changed with SSN

13.385 MHz, April 0600UT

Field intensity (dB)

- Sapporo
- Tokyo
- Naha

SSN (sun spot number)

- 0
- 20
- 40
- 60
- 80
- 100
- 120
- 140
TABLE A2-6
Radiation power of the imaginary radiation sources

<table>
<thead>
<tr>
<th>Area</th>
<th>Location of the imaginary source</th>
<th>Number of households (x 10^4)</th>
<th>Penetration</th>
<th>Number of PLT systems (x 10^4)</th>
<th>Radiation power of the imaginary source (dBW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hokkaido Sapporo (43.06N, 141.33E)</td>
<td>252</td>
<td>20%</td>
<td>50.4</td>
<td>13MHz band: –16.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –12.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –29.2</td>
</tr>
<tr>
<td>2</td>
<td>Touhoku Sendai (38.26N, 140.90E)</td>
<td>341</td>
<td>25%</td>
<td>85.3</td>
<td>13MHz band: –13.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –9.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –26.9</td>
</tr>
<tr>
<td>3</td>
<td>Kanto Tokyo (35.67N, 139.77E)</td>
<td>1,717</td>
<td>35%</td>
<td>600.9</td>
<td>13MHz band: –5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –8.4</td>
</tr>
<tr>
<td>4</td>
<td>Shinetsu, Hokuriku Kanazawa (36.59N, 136.63E)</td>
<td>263</td>
<td>25%</td>
<td>65.8</td>
<td>13MHz band: –14.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –28.0</td>
</tr>
<tr>
<td>5</td>
<td>Toukai Nagoya (35.17N, 136.97E)</td>
<td>536</td>
<td>35%</td>
<td>187.5</td>
<td>13MHz band: –10.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –6.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –23.5</td>
</tr>
<tr>
<td>6</td>
<td>Kinki Osaka (34.68N, 135.52E)</td>
<td>829</td>
<td>30%</td>
<td>248.7</td>
<td>13MHz band: –9.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –22.2</td>
</tr>
<tr>
<td>7</td>
<td>Chugoku, Shikoku Hiroshima (34.40N, 132.46E)</td>
<td>464</td>
<td>25%</td>
<td>116.0</td>
<td>13MHz band: –12.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –8.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –22.2</td>
</tr>
<tr>
<td>8</td>
<td>Kyushu Fukuoka (33.58N, 130.38E)</td>
<td>531</td>
<td>25%</td>
<td>132.9</td>
<td>13MHz band: –11.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –8.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –25.0</td>
</tr>
<tr>
<td>9</td>
<td>Okinawa Naha (26.21N, 127.69E)</td>
<td>50</td>
<td>20%</td>
<td>10.0</td>
<td>13MHz band: –23.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25MHz band: –19.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5MHz/7MHz band: –36.2</td>
</tr>
</tbody>
</table>

A2.4.3.3 Calculation results

Figure A2-36 shows calculation results of radiation from a single PLT system. The electric field strength by the sky-wave propagation may have a maximum value point far away from the radiation point and the maximum value point varies by month, time and frequency, and so on.

However the absolute value of the electric field strength from a single PLT system is extremely low. Additionally, as the distance from the radiation point increases, the interference electric field strength decreases as illustrated in Fig. A2-37.

Figures A2-38 and A2-39 shows calculation results of the cumulative electric field strength distribution (median value) from a total of 1.5 x 10^7 PLT systems in Japan.

According to the calculation results, similarly to the case of a single PLT system, the electric field strength by the sky-wave may have a maximum value point far away from the radiation point. However, the cumulative electric field strength generated by all PLT systems is found to be low and that is less than rural-area noise level.
FIGURE A2-36
Example of HF sky wave field strength distribution caused by a single PLT system

a) 13 MHz band, radiant point: Tokyo

b) 13 MHz band, radiant point: Naha
FIGURE A2-37
Example of HF sky wave field strength distribution caused by a single PLT system
(13 MHz band, radiant point: Tokyo)

TOKYO, Japan (ISOTROPE) 5W –1° 06ut 06ut 13.385 MHz APR 100ssn

Field strength median (dBu)

After radiated power correction:
*Correction value: –80 dB
*In plot area:
*Bandwidth: 50kHz

Min. = –127 dB (V/m)
Max. = –69 dB (V/m)

Before radiated power correction

CCIR coefficients
63 × 63 gridsize

NTIA/ITS

Report 2158-A2-37
FIGURE 2A-38
Example of the cumulative field strength distribution of HF sky waves radiated by all PLT systems (for 13 MHz band and 25 MHz band)

Cumulative effect 13.385 MHz (21)

(a) Sky-wave 13 MHz band, bandwidth: 50 kHz

Cumulative effect 25.610 MHz (21)

(b) Sky-wave 25 MHz band, bandwidth: 120 kHz
FIGURE 2A-39
Example of the cumulative field strength distribution of HF sky waves radiated by all PLT systems
(for 3.5 MHz band and 7 MHz band)

Cumulative effect 3.538 MHz (21)

Min = 26.00
Max = 34.70
CCIR coefficients
63 × 63 gridsize

a) Sky-ware: 3 MHz band, bandwidth: 2.4 kHz

Cumulative effect 7.050 MHz (21)

Min = –14
Max = –5
CCIR coefficients
63 × 63 gridsize

b) Sky-ware: 7 MHz band, bandwidth: 2.4 kHz
A2.4.4 Compatibility study results between the radio astronomy observations in the HF band and cumulative HF sky-wave interference caused by in-house power line telecommunication systems

A2.4.4.1 Introduction

The radio astronomy service has frequency allocations in the HF band on a primary basis: 13.36-13.41 MHz and 25.55-25.67 MHz. The threshold levels of interference detrimental to the radio astronomy observations in these bands, expressed in terms of the electric field strength shown in Report ITU-R RA.2131, are –55.2 dB(\(\mu\)V/m) for the 13 MHz band and –53.2 dB(\(\mu\)V/m) for the 25 MHz band, respectively.

A2.4.4.2 Calculation results

Figure A2-38 shows calculation results of radiation from a single PLT system. The electric field strength through the sky-wave propagation may have a maximum value point far away from the radiation point and the maximum value point varies by month, time and frequency, and so on. Figure 2A-39 shows calculation results of the cumulative electric field strength distribution (median value) from a total of \(1.5 \times 10^7\) PLT systems. According to the calculation results, similarly to the case of a single PLT system, the electric field strength by the sky-waves may have a maximum value point far away from the radiation point.

In Fig. 2A-39 the maximum electric field strengths are 2 dB(\(\mu\)V/m) for the 13 MHz band and –2 dB(\(\mu\)V/m) for the 25 MHz band, which are far above the threshold levels of interference detrimental to the radio astronomy observations in these bands, –55.2 dB(\(\mu\)V/m) for the 13 MHz band and –53.2 dB(\(\mu\)V/m) for the 25 MHz band. The discrepancies are about 57 dB for the 13 MHz and about 51 dB for the 25 MHz band. Since the calculated field strengths are approximately proportional to the total radiated power, such discrepancies could be resolved by reducing the number of PLT systems from \(1.5 \times 10^7\) to 30. However, such a situation would not be realistic.

A2.4.4.3 Possible mitigation measures for protecting the radio astronomy service in the HF band

It is found that the frequency sharing between the radio astronomy observations in the HF band and large number of PLT systems would not be feasible. Possible mitigation measures to avoid interference detrimental to the radio astronomy observations in the HF band would be:

– implementation of fixed notch filters to the radio astronomy bands, i.e, a PLT system do not use the frequency bands allocated to the radio astronomy service in the HF band; or
– reduction of the radiation power from a single PLT system by more than 50 dB.

Since the radio astronomy observations are quite sensitive and cannot escape from radiation caused by the PLT systems, a permanent reduction of the power spectral density of PLT devices (i.e., permanent notching) should be implemented to the frequency bands allocated to the radio astronomy service.

A2.5 Experimental results of the subjective assessment test on HF analogue broadcast reception interfered with by PLT

This section reports the subjective assessment test on interference of PLT with HF broadcast reception conducted in Japan. This test was carried out with two steps; acquisition of HF broadcast reception audio samples interfered with by PLT and subjective assessment test using the audio samples. To acquire the audio samples, an HF signal modulated by audio signals (30% modulation) was generated at 6.055 MHz in a shielded room (GTEM cell). HF broadcast signal, PLT noise and Gaussian noise were generated inside the isolated GTEM cell.
Two types of PLT modems with different modulation technologies were used, that is, spread spectrum (SS) and OFDM.

With respect to the test frequency, the middle frequency band in three frequency bands used by Nikkei Radio Broadcasting Co. was selected.

The subjective assessment test was performed according to the DSIS (double stimulus impairment scale) method described in Recommendation ITU-R BS.1284.

These tests were performed in the following dates and the venues:
- 29 August 2005 (Acquisition of audio samples): NICT
- 15 September 2005 (Subjective assessment test): NHK STRL

A2.5.1 Test methods

A2.5.1.1 Acquisition of audio samples

Figure A2-40 and Table A2-7 show the test configuration and the test conditions, respectively.

The following three signals were combined and injected to TEM cell.
- PLT modem signal via V-LISN (V-Line Impedance Stabilization Network).
- Noise generator output to simulate man-made noise.
- AM standard signal generator output to simulate HF broadcasting signal (30% modulation).

Field strength of man-made noise (N_{ex}) was set to a value for the assumed noise environment, and field strength of HF broadcasting signal (E_{sig}) was set to the minimum value required. (See Table A2-7) By varying field strength of PLT signal (E_{plc}), audio samples were acquired.

The audio output signals through a headset port were recorded as audio samples to be tested.

A2.5.1.2 Subjective assessment test

Figure A2-42 and Table A2-8 show the test configuration and the test condition, respectively.

The subjective assessment test was performed according to Recommendation ITU-R BS.1284. Twenty-four non-expert listeners joined the listing tests after a short training. The quality of the audio samples was evaluated using the double stimulus impairment scale (DSIS) method with the five-grade impairment scale:

5: Imperceptible.
4: Perceptible but not annoying.
3: Slightly annoying.
2: Annoying.
1: Very annoying, where the quality of audio signal with both the Gaussian background noise and the PLT noise was compared with that of the audio signal with the background noise only (reference).
Audio sample test condition

To eliminate outside induced noise:
- All equipment in the cell are battery-driven.
- Audio signal is digitized by DAT, converted to optical signal and transmitted by optical fiber.

Subjective audio sample acquisition
<table>
<thead>
<tr>
<th>Receiver</th>
<th>Antenna</th>
<th>Field strength of HF broadcasting signal (E_{sig})$^{(1),(4)}$</th>
<th>Field strength of man-made noise (N_{ext})$^{(2),(4)}$</th>
<th>Field strength of PLT modem signal (E_{plc})$^{(3),(4)}$</th>
<th>E_{sig}/E_{plc} ratio between 10 and 40 dB at 2 dB steps (See Table A2-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table top receiver$^{(5)}$</td>
<td>Rod antenna</td>
<td>40 dB(µV/m)</td>
<td>5.3 dB(µV/m) (Rural)</td>
<td>14.9 dB(µV/m) (Business)</td>
<td>E_{sig}/E_{plc} ratio between 10 and 40 dB at 2 dB steps (See Table A2-6)</td>
</tr>
<tr>
<td>Table top receiver$^{(5)}$</td>
<td>Loop antenna$^{(6)}$</td>
<td>30 dB(µV/m)</td>
<td>5.3 dB(µV/m) (Rural)</td>
<td>14.9 dB(µV/m) (Business)</td>
<td>E_{sig}/E_{plc} ratio between 10 and 40 dB at 2 dB steps (See Table A2-6)</td>
</tr>
</tbody>
</table>

$^{(1)}$ Field strength of HF broadcasting signal corresponds to the minimum field strength required for HF broadcasting signal. 40 dB(µV/m) is for international (The WARC HFBC(2), Geneva 1987), 30 dB(µV/m) is for Japan. The field strength is measured for non-modulated carrier signal.

$^{(2)}$ Field strength of man-made noise is 5.3 dB(µV/m) (BW = 9 kHz) for rural, or 14.9 dB(µV/m) (BW = 9 kHz) for business as described in Recommendation ITU-R P.372-8.

$^{(3)}$ Field strength of PLT modem signal is measured for 9 kHz bandwidth, which is minimum required frequency bandwidth for HF broadcasting. Two different types of PLT modems were used in the experiments, that is, OFDM and SS systems.

$^{(4)}$ Gaussian noise (background) and PLT noise were superposed to the HF signal in the GTEM cell.

$^{(5)}$ A Sony HF receiver installed inside the cell received the HF signals interfered with by the noises and reproduced audio signals to be assessed. The receiver intrinsic noise was as low as it yielded a ratio of the audio signal to noise (S/N) better than 26 dB for a signal field strength of 40 dB(µV/m).

$^{(6)}$ AN-LP1 by Sony Co. is used in case of the field strength of 30 dB(µV/m).
FIGURE A2-41
Receiver in GTEM cell

FIGURE A2-42
Subjective assessment test configuration

OUTPUT
RCA pin

TASCAM DAT
DA-45HR

STAX amplifier
SRM-3 or
SRM-1/MK2

Amplifier

STAX headphone
lambda NOVA
signature

Headset

STAX amplifier
SRM-3 or
SRM-1/MK2

Amplifier

STAX headphone
lambda NOVA
signature

Headset

Cascade connection

Amplifier

•••12set headphones

Headset

Headset

Headset
Subjective assessment test condition

| Method | Double Stimulus Impairment Scale (DSIS)
| Reference Sound (11 s)-Evaluation Sound (11 s) |
| Reference sound | Received HF broadcasting signal with man-made noise only with the condition of Table A2-7 |
| Evaluation sound | Received HF broadcasting signal with man-made noise and PLT modem signal with the condition of Table A2-7 |
| Grading scale | Five-grade impairment scale
| 5: Imperceptible
| 4: Perceptible, but not annoying
| 3: Slightly annoying
| 2: Annoying
| 1: Very annoying |
| Audio content | P1: Speech (Female)
P2: Music (Male vocal and music accompaniment) |
Average modulation depth	30% (Equivalent to ITU-R BS.703)
Man-made noise	By noise generator
PLT modem	SS and OFDM
Field strength of PLT modem signal	$E_{\text{sig}}/E_{\text{plc}}$ ratio was varied from 10 dB to 40 dB at 2 dB steps to cover all the evaluation grades from 1 through 5
Evaluator	24 non-expert listeners
Listening method	Open-air headset

A2.5.2 Test results

Figures A2-43 through A2-46 show the results of the subjective assessment test for the HF broadcast signal field strength of 30 dB(μV/m) and 40 dB(μV/m) in simulated rural and business noise environments. Each graph shows the assessment results for two types of PLT modems.

As described in Table A2-8, this subjective test employed the double stimulus impairment scale for investigating the permissible level of PLT noise in comparison with the environmental man-made noise. The reference sound for Grade 4.5 was presented to the test listeners where the HF broadcast signal was interfered with by the environmental noise only. Then, the HF broadcast signal was presented with the environmental noise and the PLT noise. The radio receiver employed in the test had an S/N ratio better than 26 dB for a broadcast signal of 40 dBμV/m.

For example, in Fig. A2-43, the reference sound was a broadcast signal of 40 dB(μV/m) with a rural noise of about 5 dB(μV/m). Hence the listening condition for rating score better than Grade 4 but less than Grade 5 with a carrier-to-noise (C/N) ratio of about 35 dB.

On the other hand, in Fig. A2-44, the environmental noise level was increased up to the business area noise level of about 15 dB(μV/m). Accordingly the reference listening condition was not good but slightly annoying with a C/N ratio of 25 dB. However, we assumed that, even under such a poor listening condition, people accustomed to noisy sound might score the broadcast signal with Grade 4.5 as shown in this figure.

It is summarized from these test results that PLT noise could degrade the perceived audio quality of HF broadcasting and that the impact depends on the noise environment (field strength of man-made noise), field strength of the broadcast signal, total receiving power, and the type of PLT modem.
FIGURE A2-43
Degradation in sound quality caused by PLT noises
(Signal 40 dB(μV/m) + Rural-area noise)

PLT noise level (dB(μV/m), BW = 9 kHz)

FIGURE A2-44
Degradation in sound quality caused by PLT noises
(Signal 40 dB(μV/m) + Business-area noise)
FIGURE A2-45
Degradation in sound quality caused by PLT noises
(Signal 30 dB(μV/m) + Rural-area noise)

PLT noise level (dB(μV/m), BW = 9 kHz)

Score in five-grade

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

-10 0 10 20 30

FIGURE A2-46
Degradation in sound quality caused by PLT noises
(Signal 30 dB(μV/m) + Business-area noise)

PLT noise level (dB(μV/m), BW = 9 kHz)
A2.5.3 Test equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Specification or Part No.</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEM Cell</td>
<td>Frequency range: 3.9-26.1 MHz</td>
<td>1</td>
</tr>
<tr>
<td>EGT-1100 (ELENA ELECTRONICS CO., LTD)</td>
<td>Noise floor: 0 dB(μV/m) or less</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. EUT size: 600 cubic mm or larger</td>
<td></td>
</tr>
<tr>
<td>PLT modem</td>
<td>(OFDM)</td>
<td>1</td>
</tr>
<tr>
<td>PLT modem</td>
<td>(SS)</td>
<td>1</td>
</tr>
<tr>
<td>V-LISN</td>
<td>V-LISN</td>
<td>1</td>
</tr>
<tr>
<td>Adjustable attenuator</td>
<td>2 – 3 dB step</td>
<td>2</td>
</tr>
<tr>
<td>Noise generator</td>
<td>Agilent E4438C</td>
<td>1</td>
</tr>
<tr>
<td>Modulation signal source</td>
<td>CD Player</td>
<td>1</td>
</tr>
<tr>
<td>Standard signal generator</td>
<td>Panasonic VP-8121B</td>
<td>1</td>
</tr>
<tr>
<td>Sending signal combiner</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Spectrum analyzer</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HF radio</td>
<td>SONY ICF-SW35</td>
<td>1</td>
</tr>
<tr>
<td>Antenna for HF radio</td>
<td>SONY AN-LP1</td>
<td>1</td>
</tr>
<tr>
<td>DAT</td>
<td>SONY TCD-D100</td>
<td>1</td>
</tr>
<tr>
<td>O/E converter</td>
<td>MOTU 308</td>
<td>1</td>
</tr>
<tr>
<td>USB converter</td>
<td>M.Audio Audiophile USB</td>
<td>1</td>
</tr>
<tr>
<td>Recorder</td>
<td>DAT (TASCAM DA45HR)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PC (IBM THINKPAD R51)</td>
<td>1</td>
</tr>
<tr>
<td>Speaker for monitor</td>
<td>FOSTEX 6301B</td>
<td>1</td>
</tr>
<tr>
<td>Subjective listening test equipment</td>
<td>Player, Headset (TASCAM DAHR) STAX Lambda Nova Signature STAX SRM-3, SRM-1/MK2</td>
<td>24</td>
</tr>
<tr>
<td>Evaluator</td>
<td>Non-expert</td>
<td>24</td>
</tr>
<tr>
<td>Cable, etc.</td>
<td></td>
<td>As needed</td>
</tr>
</tbody>
</table>

A2.6 Compatibility analysis regarding protection requirements of HF aeronautical mobile radio in relation to PLT in-house devices

A2.6.1 Introduction

For broadband communications within LV AC mains grids and in-house installations, modern PLT systems use the frequency range 1 705 kHz to 30 MHz.

Since such networks and installations were not constructed to ever carry wanted signals at frequencies much higher than the power frequency (i.e. 50 or 60 Hz), the level of radiated RF disturbances from such installations will significantly increase with utilization of PLT in the field. There is no doubt that such an increase of the radio noise may result in a much higher probability of interference with radio reception in general, in locations well populated with operational PLT appliances.
This compatibility analysis focuses on the protection of airborne receivers in the aeronautical mobile service.

The calculations in this text are intended to show the extent to which PLT applications may interfere with the aeronautical mobile receiver and which possibilities there are to avoid or at least mitigate this interference.

A2.6.2 Study assumptions

According to the functional standards, PLT devices for in-house communications operate with a maximum power spectral density (PSD) of -55 dBm/Hz or -73 dBm/Hz, respectively. Typical utilization of frequencies in the cable presently covers the range from 1 705 kHz to 30 MHz. All commercially available systems operate with multi-carrier transmission and use OFDM (orthogonal frequency division multiplex) in combination with CSMA/CA (carrier sense multiple access/collision avoidance) modulation schemes.

Taking into account statistically proven HF properties of typical AC mains in-house installations in Europe one is able to estimate the level of radiated RF disturbances which emanate from buildings where PLT communication is active. For consideration of the impact of these disturbances on airborne receivers, a point source was developed using finite-element modelling. The resulting radiation characteristics of this source are shown in Fig. A2-47 (blue curves).

FIGURE A2-47

Non-access PLT appliances, true electric component of radiated RF disturbances from AC mains installations in a building carrying PLT (10 m distance from the outer wall or roof of the building), effect of power management and notching (at around 6 MHz) (situation in Europe where the ECC Rec. (05)04 applies, end-to-end loss of the PLT communications link = 20 dB)
These radiation characteristics represent the normal case scenario for operation of PLT devices. The building simulated may accommodate two or more communicating PLT devices and may also cover more than one separate flat. For reasons of comparison, Fig. A2-47 also contains the limits found in ECC Recommendation (05)04 which can be regarded as reference measure for a tolerable AC mains installation quality and radiation from buildings caused by wire-bound broadband communications in general.

The dotted blue curve represents the RF disturbance field strength at 10 m distance slant from the cable carrying PLT communications or, for purposes of this analysis, from the building, in z-direction. Without any mitigation measures a significant RF disturbance field strength will be observed at all frequencies utilized in the cables for PLT. The curve represents the RF disturbance field strength caused by operation of PLT devices which use a PSD of -55 dBm/Hz. For this type of PLT device, some functional requirements can ensure that PLT devices are equipped with mitigation features such as power management and notching. EMC testing this way demands performance checks for these features at product level.

The fortunate effects of these mitigation features in practise are that, under normal operation conditions, power management will reduce the PSD level by 18 dB and results in a respective reduction of the RF disturbance field strength also by 18 dB, are shown in Fig. A2-47 (blue curves).

A further reduction of the PSD level by another 30 dB can be achieved by several notching techniques, but is usually restricted to certain sensitive frequencies or frequency bands used for terrestrial radiocommunications. The effect of notching plus power management is shown in the range of 6 MHz. For sensitive frequencies the resulting RF disturbance field strength can be reduced by some 48 dB.

A2.6.3 Compatibility model/geometrical computation

To be able to assess possible interference to airborne receivers due to summation effects from PLC sources the following compatibility model is used:

The receiver of the aircraft sees an increase in the apparent noise floor. The geometry of the problem is derived from Fig. A2-48.
For an interference which hits the receiver directly (free-space propagation):

\[f[x] = \frac{1}{4\pi l^2} \]

\[l = \sqrt{R_E^2 - 2\cos\left(\frac{x}{R_E}\right)R_E(h + R_E) + (h + R_E)^2} \]

where the values of \(x \) and \(l \) are physically constrained not to exceed:

\[x_{\text{max}} = R_E \arccos\left[\frac{R_E}{(R_E + h)}\right] \quad \text{and} \quad l_{\text{max}} = \sqrt{h(h + 2R_E)} \]

\[f[x] = \frac{1}{4\pi \left(R_E^2 - 2\cos\left(\frac{x}{R_E}\right)R_E(h + R_E) + (h + R_E)^2 \right)} \]

\[PFD = \frac{p_{TX} \cdot g_{TX} \cdot D \cdot R_E}{2} \int_{x_1}^{x_2} \frac{\sin\left(\frac{x}{R_E}\right)}{\left(R_E^2 - 2\cos\left(\frac{x}{R_E}\right)R_E(h + R_E) + (h + R_E)^2 \right)} \, dx \]

and, for the normalized form:

\[PFD_{\text{for unit EIRP density}} = \frac{R_E}{2} \int_{x_1}^{x_2} \frac{\sin\left(\frac{x}{R_E}\right)}{\left(R_E^2 - 2\cos\left(\frac{x}{R_E}\right)R_E(h + R_E) + (h + R_E)^2 \right)} \, dx \]

This model considers the summation effects of a specific interferer surface in relation to the interferer density (interferer/km\(^2\)). The corresponding interfering field strength is derived from the power flux density which may then be compared with various evaluation thresholds. The calculations were carried out using the arithmetic program Mathcad.

A2.6.4 Evaluation threshold for the aeronautical radio

As evaluation thresholds for interference:

- the maximum permissible interfering field strength for the airborne receiver measured in the laboratory;
- the noise floor measured during measuring flights;

are used (shown in Fig. A2-49).

The measuring flights were carried out within the scope of a working group of the BNetzA in cooperation with the NARFA (National Allied Radio Frequency Agency), the air force shipyard Landsberg and the association of German cable net operator (ANGA). Three measuring flights took place at various altitudes and the respective noise floor was measured at the frequencies 5 MHz, 14 MHz and 30 MHz. These measuring values constitute, beside the maximum permissible
interferer field strength (black curve in Fig. A2-49), a second evaluation threshold (magenta curve in Fig. A2-49). As a third threshold on Fig. A2-49 (red curve) an around 9.5 dB decreased curve is illustrated, in that a noise similar interference signal generates a total noise which would increase the measured noise floor by not more than 0.5 dB.

An increase of the noise floor by 0.5 dB is considered just still admissible to a radio service relevant for safety such as aeronautical mobile radio.

FIGURE A2-49

Evaluation threshold regarding the compatibility between PLT and aeronautical radio

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>Maximum field strength compared to flight receiver pk-values</th>
<th>Increasing of the environment noise by 0.5 dB</th>
<th>Environment noise measured at the flight receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 MHz</td>
<td>Maximum field strength compared to flight receiver pk-values</td>
<td>Increasing of the environment noise by 0.5 dB</td>
<td>Environment noise measured at the flight receiver</td>
</tr>
<tr>
<td>14 MHz</td>
<td>Maximum field strength compared to flight receiver pk-values</td>
<td>Increasing of the environment noise by 0.5 dB</td>
<td>Environment noise measured at the flight receiver</td>
</tr>
<tr>
<td>30 MHz</td>
<td>Maximum field strength compared to flight receiver pk-values</td>
<td>Increasing of the environment noise by 0.5 dB</td>
<td>Environment noise measured at the flight receiver</td>
</tr>
</tbody>
</table>

A2.6.5 Results of the analysis

The field strengths generated by PLT application in relation to the three evaluation thresholds were examined. The following tables illustrate by how many dB the PLT interfering signal needs to be decreased to achieve compatibility in relation to the relevant evaluation criterion. The cases involving power management and notching as well as the case involving a combination of these two mitigation measure are listed.
The presented calculations are based on an interferer density of 250 interferers/km², an aircraft altitude of 1 km and a radius of the interfering area of 10 km. For the radiation characteristics of these interferers see Fig. A2-47. Tables A2-10, A2-11, and A2-12 specifying for different criteria (receiver sensitivity, noise increase by 0.5 dB, noise increase by 3 dB) by how many dB the interfering field surface radiated from all PLT point sources needs to be decreased (for the cases outlined above), to ensure a compatibility at the airborne receiver. A compatibility is even not given when using power management and notching. Table A2-13 sets out the relevant correction values for different interferer densities.

TABLE A2-10

<table>
<thead>
<tr>
<th>Receiver sensitivity</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>25 MHz</th>
<th>30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT (–55 dBm/Hz)</td>
<td>–65 dB</td>
<td>–59 dB</td>
<td>–55 dB</td>
<td>–52 dB</td>
<td>–50 dB</td>
<td>–49 dB</td>
</tr>
<tr>
<td>PLT (power management)</td>
<td>–47 dB</td>
<td>–41 dB</td>
<td>–37 dB</td>
<td>–34 dB</td>
<td>–32 dB</td>
<td>–31 dB</td>
</tr>
<tr>
<td>PLT (power management + notch)</td>
<td>–17 dB</td>
<td>–11 dB</td>
<td>–7 dB</td>
<td>–4 dB</td>
<td>–2 dB</td>
<td>–1 dB</td>
</tr>
</tbody>
</table>

For maximum increase by 0.5 dB of the noise compared with the noise caused by the PLT interference signals, a power management and notching of the relevant frequencies of all PLT devices ensures a compatibility only above 20 MHz (green highlighted fields in the bottom line of the Table A2-11). Below 20 MHz the calculated values are higher with a maximum of 3.5 dB.

TABLE A2-11

<table>
<thead>
<tr>
<th>Noise increase by 0.5 dB</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>25 MHz</th>
<th>30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT (–55 dBm/Hz)</td>
<td>–50.5 dB</td>
<td>–51.5 dB</td>
<td>–51.5 dB</td>
<td>–49 dB</td>
<td>–46.5 dB</td>
<td>–45.5 dB</td>
</tr>
<tr>
<td>PLT (power management)</td>
<td>–32.5 dB</td>
<td>–33.5 dB</td>
<td>–33.5 dB</td>
<td>–31 dB</td>
<td>–28.5 dB</td>
<td>–27.5 dB</td>
</tr>
<tr>
<td>PLT (notch)</td>
<td>–20.5 dB</td>
<td>–21.5 dB</td>
<td>–21.5 dB</td>
<td>–19 dB</td>
<td>–16.5 dB</td>
<td>–15.5 dB</td>
</tr>
<tr>
<td>PLT (power management + notch)</td>
<td>–2.5 dB</td>
<td>–3.5 dB</td>
<td>–3.5 dB</td>
<td>–1 dB</td>
<td>1.5 dB</td>
<td>2.5 dB</td>
</tr>
</tbody>
</table>

In case of the 3rd evaluation threshold (noise increasing maximum 3 dB) only a power management in combination with a notching across the relevant frequency range would be sufficient (green highlighted fields of the Table A2-12). However, this evaluation threshold should be deemed unrealistic, because of a doubling of the noise power, so the requirements of the safety-relevant radio services are not fulfilled.

TABLE A2-12

<table>
<thead>
<tr>
<th>Noise increase by 3 dB</th>
<th>5 MHz</th>
<th>10 MHz</th>
<th>15 MHz</th>
<th>20 MHz</th>
<th>25 MHz</th>
<th>30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT (–55 dBm/Hz)</td>
<td>–41 dB</td>
<td>–42 dB</td>
<td>–42 dB</td>
<td>–39.5 dB</td>
<td>–37 dB</td>
<td>–36 dB</td>
</tr>
<tr>
<td>PLT (power management)</td>
<td>–23 dB</td>
<td>–24 dB</td>
<td>–24 dB</td>
<td>–21.5 dB</td>
<td>–19 dB</td>
<td>–18 dB</td>
</tr>
<tr>
<td>PLT (notch)</td>
<td>–11 dB</td>
<td>–12 dB</td>
<td>–12 dB</td>
<td>–9.5 dB</td>
<td>–7 dB</td>
<td>–6.5 dB</td>
</tr>
<tr>
<td>PLT (power management + notch)</td>
<td>7 dB</td>
<td>6 dB</td>
<td>6 dB</td>
<td>8.5 dB</td>
<td>11 dB</td>
<td>12 dB</td>
</tr>
</tbody>
</table>
For other interferer densities than 250 interferer/km² the following correction values can be used.

TABLE A2-13

Disturber density correction

<table>
<thead>
<tr>
<th>Interferer density (interferer/km²)</th>
<th>Correction value (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>150</td>
<td>2</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>250</td>
<td>0</td>
</tr>
<tr>
<td>300</td>
<td>–1</td>
</tr>
</tbody>
</table>

A2.6.6 Other determinants

In the above examination the interferer density was used as the most relevant compatibility parameter. Investigations with other parameters like flight altitude, the radius of the considered interferer surface or so-called Hot Spots proved a negligible influence on the calculations.

A2.6.7 Requirements toward PLT devices for protecting the HF aeronautical mobile service

Adequate protection of aeronautical mobile airborne receivers from interference is indisputable. The question is up to which extent and by which means this can be guaranteed without compromising the evolving PLT technology.

The CISPR is considering whether at sensitive radio frequencies, mitigation measures such as notching can be used in order to reduce the PSD of the wanted PLT signal either permanently or, in adaptation to the local conditions of radio reception and the type of radio service, dynamically.

Annex 3

Radio frequency emissions from PLT systems

A3 Radio frequency emissions from PLT systems

A3.1 Measurement of access PLT non intentional radiated RF levels on HF bands

A3.1.1 Introduction

Power Line Telecommunication systems (PLT) have being widely used to provide new facilities to customers as data transmission, Internet services and last mile connecting solution. Nevertheless, energy not intentionally radiated, generated by PLT, can cause harmful interference on neighbour systems operating from 1 700 kHz to 80 MHz, which include HF bands.
A3.1.2 Objective
Elaborate a comprehensive and practical analysis of PLT radiated levels and potential interference on HF systems.

A3.1.3 Interference concept
The basic interference concept is explained by devices, which irradiate enough energy to interrupt or disturb the operation of other regulated systems. Then, as a first approach it is important to have an idea about the maximum RF levels from interference sources that are possible to be supported by HF communication systems without causing any disturb.

A3.1.4 Test description
In order to do a preliminary investigation on the radiated levels, in HF bands, some tests were performed in Brazil. The tests were developed in Campinas, Sao Paulo, using the configuration showed on Fig. A3-1. A PLT equipment of second generation operating in a low voltage electrical line (380 m) and a HF antenna located 41 m from it were installed. Campinas’s station was connected with Brasilia’s by a HF link to transmit and receive voice and data. Due to the dimension of HF antenna (wide band dipole), it was not possible to relocate the position easily, so it remained on a unique position.

In the beginning some environmental noise measurements were collected in order to obtain spectrum occupation data without the PLT operation. Measurements were taken in blocks of 2 MHz bandwidth from 3 to 30 MHz, as the example indicated on Fig. A3-2.

On Fig. A3-3 we can see the spectrum from 3 to 12 MHz without PLT operation and in Fig. A3-4 with the presence of PLT energy in the same band.

Figure A3-5 shows PLT spectrum operation from 7.98 to 12.5 MHz and Fig. A3-6 shows other PLT equipment operating in a wide band from almost 3 to 30 MHz.
FIGURE A3-2
Environment spectrum occupation

FIGURE A3-3
3 to 12 MHz without PLT operation

FIGURE A3-4
PLT spectrum operation

FIGURE A3-5
PLT operation from 7.98 to 12.5 MHz

FIGURE A3-6
PLT operation in wide band
The PLT levels were captured by HF antenna to provide the same information received by HF system. The PLT operation indicated levels greater than 60 dB(µV) in some parts of the spectrum.

The HF link provided reception levels in Campinas from approximately 13 to 49 dB(µV) (measurements based on 1 kHz test tone). When PLT was operating, HF data transmission was blocked and there was a strong noise on the audio receiver, totally disturbing the voice reception.

The PLT level in the concerned distance had enough intensity to cause harmful interference. The PLT level was reduced in steps to verify the interference threshold. However, in this distance, in any PLT level, the data transmission was blocked, so it was not possible to reach the threshold.

A3.1.5 Comments

The energy irradiated by PLT systems has potential capacity to cause interference in HF communications and in other bands as clearly demonstrated in the tests. Therefore, it is necessary to apply some mitigation techniques in order to make possible the shared use of the HF spectrum.

Theoretically, if we consider the HF equipment sensibility parameters it could be possible to estimate a maximum acceptable PLT level that would avoid interference. For example, to 10 dB SINAD to 0.5µV, that is equivalent to –6 dB(µV) (HF minimum input levels), the maximum level generated by PLT had to be –16 dB(µV), which can be lower than background noise level in some places.

An irradiating model for electrical lines that develop an analogy with antenna faces some complex questions like how to consider geometry irregularities, different neighbour environments, rural and residential areas, etc. These aspects can change dramatically the wave propagation behaviour and provide no confident results. Besides that, the neighbour areas will be on near fields (reactive or Fresnel zone), and then the task to predict the levels of irradiated radiofrequency using a general model becomes a challenge.

These considered aspects conduct to empirical tests in order to have a practical idea about the required coordination minimum distances to PLT from HF systems. Therefore, more tests were performed in Porto Alegre, Rio Grande do Sul, Brazil, where there is a PLT system working.

A HF link between Porto Alegre and Rio de Janeiro stations was established. The tests were conducted on April 2008, using a mobile HF station with a whip antenna. The procedures were basically the same as performed in Campinas, the difference was the HF station capacity to move far from the PLT source and collect more data continuously.

The harmful interference from PLT on HF systems occurred and was minimized in distances greater than 450 m from electrical lines. It is important to say that it is considered a short distance HF link (one hope on ionosphere) that generally has a stronger signal than a long distance link, so the minimum distance from PLT probably would have to be increased to avoid interferences.

A3.1.6 Possible mitigation technique

Using as criteria an average of HF receiver levels to long (more than 1,500 km) and short links (up to 1 500 km), it is feasible to consider some practical distances from PLT systems to HF stations to mitigate or minimize interferences.

a) HF long distance link: 1 000 m; and
b) HF short distance link: 500 m.

The geographical separation is necessary to guarantee the minimum confidence to avoid interference from PLT to HF.
A3.1.7 Conclusions

Modelling techniques to estimate RF levels irradiated by electrical lines from PLT will be useful only around linear lines.

The PLT levels estimated with loop antennas can give us a rough estimation about the potential interference, however it is not possible to consider accuracy threshold levels because of the drastic HF levels variation during the day and the night.

In the PLT proximities the AM broadcast services probably will be interfered when PLT operate in the same frequency.

A collection of measurements in PLT neighbour sites with HF systems can provide a good idea about signal level propagation in practical terms and seems to be the most appropriated way to determine interference distances.

A practical mitigation approach can be to consider the worst situation of interference where an HF station was installed in the proximities of an operating PLT system, and use the distances indicated on item 6 as a protection criteria to stations that are used to short and long HF links.

A3.2 Measurements of the radiated emissions from in-house power line telecommunications devices into the residential environment in Canada

A3.2.1 Introduction

Subsequent to the measurements made by Kitagawa and Ohishi57, the North American Broadcasters Association (NABA) contracted the Communications Research Centre, Canada (CRC) to carry out emission measurements from Power Line Telecommunications (PLT) devices operating in a residential environment. This section describes the test procedures and results of field strength measurements of PLT emissions to determine the possibility of interference from PLT devices. The CRC report58 is attached in Appendix 1. The measurements clearly demonstrate the need to provide interference protection to the broadcasting service (BS). Since PLT devices operate without a frequency allocation in the ITU Radio Regulations, the appropriate protection criterion for the broadcasting service can be found in Recommendation ITU-R BT.1786.

A3.2.2 Conducted power measurement – Test procedure and results

A total of eight commercially-available PLT devices representing the various PLT standards were considered for testing. These devices were readily available in the United States of America, Canada, and Japan. The PLT devices, shown in the Table A3-1, were evaluated in the CRC laboratory prior to the field tests.

As can be seen in Table A3-1, many of the PLT devices use the same standard or different versions of the same standard. Following the laboratory evaluation, it was decided to limit the number of PLT devices at one per standard for the field test. PLT devices 2, 3, and 6 were chosen for field tests.

58 http://www.nabanet.com/nabaweb/members/pdf/itur/CRCReport.pdf.
The laboratory setup for the conducted power measurement is presented in Fig. A3-7. The a.c electrical source came from the CRC main power through a step up transformer and a breaker box to isolate and convert the a.c to 110 to 120 V, 60 Hz single phase voltage. Two outlets, used to plug in the PLT device pairs, were linked with a grounded 14/2 electrical cable of 1.75 m typical of residential construction. A computer was assigned to each PLT device for the transfer of data. One computer sent a large file to a receiving computer.

The power measurements for signals below 30 MHz were made using an Agilent E4405B spectrum analyzer, set with a resolution bandwidth of 9 kHz and using peak detection and a maximum hold trace of 10 s. In order to measure the conducted signal from the PLT devices with the spectrum analyzer, an a.c filter was required to remove the 60 Hz, 110 to 120 V component. The a.c filter was a 2nd order LC filter with a cut-off frequency of 1 MHz.

<table>
<thead>
<tr>
<th>Device No.</th>
<th>Manufacturer</th>
<th>Model</th>
<th>PLT Standard</th>
<th>Manufacturer specification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data rate (Mbit/s)</td>
</tr>
<tr>
<td>1</td>
<td>TrendNet</td>
<td>TPL-202E</td>
<td>HomePlug 1.0 Turbo</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>Panasonic</td>
<td>BL-PA100</td>
<td>HD-PLC</td>
<td>190</td>
</tr>
<tr>
<td>3</td>
<td>Linksys</td>
<td>PLK200</td>
<td>HomePlug AV</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>NetGear</td>
<td>XE102GNA</td>
<td>HomePlug 1.0</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>NetGear</td>
<td>XE103G-100NAS</td>
<td>HomePlug 1.0</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>NetGear</td>
<td>HDX101-100NAS</td>
<td>UPA</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>Logitec</td>
<td>LPL-TX/S</td>
<td>UPA</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>CNC</td>
<td>CNC-1000</td>
<td>HomePlug 1.0</td>
<td>85</td>
</tr>
</tbody>
</table>

In order to measure low signal levels above 30 MHz with better precision, a high-pass filter was used to attenuate the main PLT signal carriers present in the operating frequency range. This was necessary to measure the emissions up to 110 MHz without overloading the spectrum analyzer. As shown in Fig. A3-7, two laboratory setups were used; one without and one with the high-pass filter. The high-pass filter was supplied by Tin Lee Electronics Ltd., model number HP7 30/33(40) B50, with a –3 dB cut-off frequency of 32 MHz. Only measurements above 35 MHz were done and recorded using this high-pass filter. The resolution bandwidth for these measurements was 120 kHz.

The conducted power measurements were made over the frequency range from 0 to 110 MHz using two modes of operation: Data Transfer mode and Idle mode (no active data transfer). The goal of the tests was to determine the output level injected into electrical lines up to 110 MHz in both modes and the bandwidth and spectral shape of the PLT devices.
In order to achieve good precision, the measurements were made from 0 to 110 MHz in consecutive frequency spans of 10 MHz wide with the spectrum analyser set to a resolution bandwidth of 9 kHz and using peak detection. In general, the reference level of the spectrum analyzer was adjusted as low as possible without creating spectral overload. Since a high-pass filter was used to obtain improved measurement precision for frequencies above 35 MHz, a discontinuity in the noise floor can be observed in the results at 35 MHz.

The measurement of the test bed noise floor is shown in Fig. A3-8. The figure illustrates that the electrical line test setup acted as an antenna that captured signals from other radiocommunication systems. The spikes between 85 MHz and 108 MHz are from local FM radio stations, while other spikes at other frequencies were intermittent and probably caused by other radiocommunication systems. It was necessary to take this into account when looking at the conducted emission results.

The results for PLT devices 2, 3 and 6 are shown in Figs A3-9, A3-10, and A3-11 respectively. The blue curve shows the conducted signal during data transfer and the green curve (generally, the lower trace) shows the conducted signal in the idle mode. As can be seen in the figures, the signal level in idle mode does not exceed the signal level in data transfer mode. Additionally, the devices tested don’t operate identically in idle mode. PLT devices 2 and 3 were transmitting occasional carriers to keep the channel open and synchronized, while device 6 was constantly transmitting its full signal bandwidth. The results of conducted measurements for the other PLT devices are shown in Appendix A of the CRC Report contained in Appendix 1 to this Annex.
FIGURE A3-8
Conducted measurements test setup noise floor

Test bed noise floor

FIGURE A3-9
Conducted power from Device 2 (HD-PLC standard)
Device 3 conducted emission

Frequency (MHz)

Amplitude (dBμV)

Report 2158-A3-38
These results illustrate that even if the PLT device is not transmitting data, the device is actively generating emissions. It is also observed that even if the PLT device operates below 30 MHz, the device has emissions to at least 80 MHz.
A3.2.3 Field strength measurements – Procedure and results

RF field strength measurements were made using one and two-story residential houses near Ottawa, Canada. Most of the houses are connected to the electricity distribution grid (220 V single phase) through underground lines, but some were connected using overhead lines. The front and the back of the houses had enough clearance to make field strength measurements at three and ten metres from the outer walls, thus these orientations were selected for the measurements.

A total of 17 houses were selected for the field tests as shown in Table A3-2 representing various layouts and construction materials. The table summarises each test site, including the type of house, the material of the outer walls and the type of electrical line used to connect the house to the electricity grid of the neighbourhood (underground or overhead lines). Appendix B of the CRC Report contained in the Attachment to this Annex provides the full description of all 17 test sites, including pictures and a diagram of each house.

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Type of house</th>
<th>Exterior wall material</th>
<th>Electrical line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Front wall</td>
<td>Back wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st floor 2nd floor</td>
<td>1st floor 2nd floor</td>
</tr>
<tr>
<td>1</td>
<td>Two-story single-detached</td>
<td>Brick Vinyl</td>
<td>Vinyl</td>
</tr>
<tr>
<td>2</td>
<td>Two-story single-detached</td>
<td>Brick Brick/Canaxel</td>
<td>Brick Canaxel</td>
</tr>
<tr>
<td>3(1)</td>
<td>Two-story single-detached</td>
<td>Brick Brick/Vinyl</td>
<td>Vinyl</td>
</tr>
<tr>
<td>4</td>
<td>Two-story single-detached</td>
<td>Brick Brick</td>
<td>Brick Aluminium</td>
</tr>
<tr>
<td>5</td>
<td>Two-story single-detached</td>
<td>Brick Brick</td>
<td>Brick Aluminium</td>
</tr>
<tr>
<td>6</td>
<td>Two-story townhouse</td>
<td>Brick Brick/Vinyl</td>
<td>Vinyl</td>
</tr>
<tr>
<td>7</td>
<td>Two-story single-detached</td>
<td>Brick Brick</td>
<td>Brick Vinyl</td>
</tr>
<tr>
<td>8</td>
<td>Two-story single-detached</td>
<td>Brick Brick</td>
<td>Brick Vinyl</td>
</tr>
<tr>
<td>9</td>
<td>Bungalow single-detached</td>
<td>Brick N/A</td>
<td>Vinyl N/A</td>
</tr>
<tr>
<td>10</td>
<td>Two-story townhouse</td>
<td>Brick Aluminium</td>
<td>Aluminium Aluminium</td>
</tr>
<tr>
<td>11</td>
<td>Bungalow single-detached</td>
<td>Stucco N/A</td>
<td>Stucco N/A</td>
</tr>
<tr>
<td>12</td>
<td>Two-story single-detached</td>
<td>Brick Vinyl</td>
<td>Vinyl</td>
</tr>
<tr>
<td>13</td>
<td>Sides split single-detached</td>
<td>Brick Brick</td>
<td>Vinyl Underground</td>
</tr>
</tbody>
</table>
TABLE A3-2 (end)

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Type of house</th>
<th>Exterior wall material</th>
<th>Electrical line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Front wall</td>
<td>Back wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st floor</td>
<td>2nd floor</td>
</tr>
<tr>
<td>14</td>
<td>Two-story single-detached</td>
<td>Brick</td>
<td>Shingle</td>
</tr>
<tr>
<td>15</td>
<td>Two-story single-detached</td>
<td>Brick</td>
<td>Aluminium</td>
</tr>
<tr>
<td>16</td>
<td>Two-story single-detached</td>
<td>Brick</td>
<td>Brick/Shingle</td>
</tr>
<tr>
<td>17</td>
<td>Two-story single-detached with loft</td>
<td>Brick</td>
<td>Brick/Vinyl</td>
</tr>
</tbody>
</table>

(1) The data from Test site 3 was not used in the analysis. It was found that PLT devices in use in an adjacent house during the tests interfered with the results.

The PLT devices (2, 3, and 6) were tested in pairs of the same model, connected to AC outlets inside the houses. The devices were positioned inside the house to be far apart from each other, representing a realistic home network. The devices were positioned as to have one device from a PLT pair in a room near the front of the house and the other device near the back of the house. In the case of two-story homes, one PLT device was on the first floor and one was on the second floor. Each PLT device was connected to a personal computer. Two modes of PLT operation were tested: Data Transfer mode for all the houses and the Idle mode for a few selected houses. For the data transfer mode, measurements were made while a large file was transferred between the two computers. Reference measurements of the ambient noise were also performed at each measurement location.

The RF field strength was measured using a calibrated passive loop antenna for the frequency range of 0 to 30 MHz (EMC Test Systems, Model 6512) and a calibrated passive dipole antenna for the frequencies of 30 to 108 MHz (A.H. Systems Inc. Model SAS-530 balun and SAS-542 folding elements). The antenna factor of these antennas was precisely calibrated to yield RF field strength measurements (dB(µV/m)). The antennas were positioned at 2 m above ground level. The measurements were made at three metres and ten metres from the front and back outer walls of the houses.

Figure A3-12 shows the test setup for RF field strength measurements. A low pass filter (Tin Lee Electronics Ltd. Model LP7E-30-37 B50, –1 dB cut-off at 31 MHz, –40 dB cut-off at 35 MHz) connected between the antenna and the spectrum analyser was used to remove high-powered VHF signals (FM and TV stations) when measuring below 30 MHz, so as not to overload the spectrum analyser.
The minimum, maximum average ambient noise measurement (linear voltage average converted back to a dB scale) for 16 test sites is shown in Fig. A3-13. The contribution of the ambient noise in the field strength measurement was not negligible at certain frequencies. Most of the strong signal spikes were believed to be from amateur or short wave band stations. Other noise sources such as electric motors (furnace, refrigerator and other appliances) may have contributed in raising the ambient noise.

For the purpose of analysing the measured RF field strength, all measurements done on the 16 houses were grouped by their respective devices and distance from the houses. Note that Test Site 3 is not included in this statistical analysis because of interference from neighbouring PLT devices. Figure A3-14 through Fig. A3-19 show the statistical analyses for the three devices. Each figure shows the maximum, minimum, and average RF field strength measured for each device. Furthermore, the study used the measurements from the 16 houses to calculate a confidence interval that should represent the expected maximum field strength from PLT devices radiated from typical houses. A 95% confidence interval of the RF field strength is calculated from the standard deviation of the 16 houses sampled, given a normal distribution. The upper and lower bound of this 95% confidence interval is shown. The calculations in this statistical analysis were done with linear values. As explained above, the contribution of interference from sources other than PLT devices was not negligible and cannot be removed from the statistical analysis.
FIGURE A3-13
Average ambient noise distribution at 3 and 10 m for 16 test sites

FIGURE A3-14
RF field strength distribution, PLT Device 2 (HD-PLC) at 3 m
FIGURE A3-15
RF field strength distribution, PLT Device 2 (HD-PLC) at 10 m

FIGURE A3-16
RF field strength distribution, PLT Device 3 (Homeplug AV) at 3 m
FIGURE A3-17
RF field strength distribution, PLT Device 3 (Homeplug AV) at 10 m

FIGURE A3-18
RF field strength distribution, PLT Device 6 (UPA) at 3 m
A3.2.4 Conclusions
The results of laboratory and field testing by the CRC show that maximum emissions from PLT devices in a typical residential house exceeded the average ambient noise levels by more than 30 to 40 dB at a distance of 10 to 3 m, respectively, from the outer wall of the house. At 10 m, the average PLT emissions exceeded the average ambient noise by about 5 to 10 dB. At some frequencies and distances, the PLT emission levels are intentionally notched and were below the ambient noise. Thus, as observed by the CRC, PLT devices are capable of interfering with radiocommunication services, especially those services operating on a noise-limited basis. The broadcasting service is particularly vulnerable to interference from PLT devices. The planning factors for the BS support reception at much lower field strengths than may be possible in the presence of emissions from PLT devices. For example, Recommendation ITU-R BS.703 sets the minimum useable field strength for an average HF broadcast receiver at 40 dB(μV/m). The CRC test results presented here show that PLT devices will generate interference levels 20 to 30 dB higher than the signal levels for which an HF broadcast receiver is expected to receive, depending on frequency, separation distance, receiver antenna configuration and other factors.

A3.3 Measurement results of the radiated emissions from in-house power line telecommunications systems into the residential environment in the test conducted in Japan

A3.3.1 Introduction
This section reports measurement results of the radiated emissions from in-house power line telecommunication systems into the residential environment conducted in Japan.
A3.3.2 Measurement method
Radiated emission from the in-home PLT devices measured at surrounding area of house by following conditions. Two different types of PLT devices were used in the experiments, that is, OFDM and Spread Spectrum devices.

a) Measurement equipments
 - **Antenna**: Loop antenna which calibrated
 - **Spectrum analyzer**: Spectrum analyzer should have ability of following setup and battery operation (see Note 1).

 NOTE 1 – At field measurement, noise from power cable of measurement equipments or cable which is using for measurement will lose reproducibility. Battery operation is desirable. If they could not use a battery, power supply should be provided by independent source and care about placement of power line cable.

b) Placement of measurement equipments
 - Measurement points are 5m from external wall of house and the points are 8 directions from house. (If measurement points can not set because of land features or less space than 5 m, 4 points are minimum).
 - Distance of 5 m is from nearest external wall toward to the house.
 - Height of antenna (bottom of loop antenna) is 1m from land surface.

c) Measurement frequency range
 - 1 to 30 MHz.

d) Setup of measurement equipment (Spectrum analyzer)
 - RBW = 10 kHz, VBW = 100 kHz, Span = 29 MHz, Centre frequency = 15.5 MHz
 - Point = around 1 000 points, Sweep = Auto
 - Detect mode: RMS mode.
 - Averaging: More than 20 times with above detect mode.

A3.3.3 Condition of PLT communication

a) House
 Use typical house.
 - Describe wooden construction/non-wooden construction, single family home (floor number)/apartment.
 - Measure the PLT system which is not a house use, measure at actual environment.

b) Measure more than 2 distribution paths at one house (see Fig. A3-21)
 - If the house has more than 2 floors, it is recommended using the path which is distributed to other floor.

c) Measurement condition
 - Condition 1: no PLT system in the house.
 - Condition 2: Install PLT system and communicate at maximum speed with UDP by application software like FTP. (Uni-direction.)

d) Other condition
 Measure noise at actual usage environment and other consumer electronics or lighting equipment are not removing from home for measurement. And also those are not on/off during measurement.
To avoid affect from measurement coax cable.
Place spectrum analyzer and cable from antenna behind of antenna and have distance more than 5m from external wall.
The cable from antenna should use 5D2W or double shielded cable.
Measure direction X, Y and Z to the external wall or on the elongation from external wall.
A3.3.4 Measurement result

<table>
<thead>
<tr>
<th>Measurement conditions</th>
<th>Type of PLT devices</th>
<th>OFDM</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>House classification</td>
<td>wooden construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single family home/</td>
<td>Single family home / 2 floors</td>
<td>Building (School 4 floors)</td>
<td></td>
</tr>
<tr>
<td>apartment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC outlet which install PLT system</td>
<td>See Fig. A3-22</td>
<td>See Fig. A3-23</td>
<td></td>
</tr>
<tr>
<td>Frequency range of PLT system</td>
<td>4 MHz-28 MHz</td>
<td>4 MHz-20 MHz</td>
<td></td>
</tr>
<tr>
<td>Application of PLT system</td>
<td>For consumer</td>
<td>For industrial</td>
<td></td>
</tr>
</tbody>
</table>

Measurement equipments

| Spectrum analyzer | Agilent E7401A | Agilent E4402B |
| Loop antenna | EMCO 6502 | EMCO 6502 |

Figures A3-24 and A3-25 show measurement result of OFDM system and Figs A3-26 and A3-27 show result of SS system.

Figures A3-24 to A3-27 show result of direction-X and direction-Y at point which detected radiated emission by OFDM system and SS system. And also show result of neighbourhood point.

Spectrums of pulse are broadcasting wave or noise from consumer electronics. And those are observable any time even if PLT system is not operated. Those PLT systems transmit all the time and using frequency range of 2 to 30 MHz (Except frequency ranges which are used by armature radio.) So that, the transmitting spectrum form PLT system is not pulse and observed as wide range noise.

From this measurement result, radiated emission of direction-X and direction-Y of same point were different. And the radiated emission measured in the adjacent measurement points is different.

As shown by measurement result, radiated emission from PLT system and mains line is not transmitting to any direction and it has directional characteristics. Only specific direction can see radiated emission.
FIGURE A3-24
OFDM Distribution path 2 East 5 m

Antenna: direction X, field intensity at 5 m
- X (dB(μV/m))
- Ambient X (dB(μV/m))

Antenna: direction Y, field intensity at 5 m
- Y (dB(μV/m))
- Ambient Y (dB(μV/m))

FIGURE A3-25
OFDM Distribution path 2 Southeast 5 m

Antenna: direction X, field intensity at 5 m
- X (dB(μV/m))
- Ambient X (dB(μV/m))

Antenna: direction Y, field intensity at 5 m
- Y (dB(μV/m))
- Ambient Y (dB(μV/m))

FIGURE A3-26
SS Distribution path 4 Northeast 5 m

Antenna: direction X, field intensity at 5 m
- X (dB(μV/m))
- Ambient X (dB(μV/m))

Antenna: direction Y, field intensity at 5 m
- Y (dB(μV/m))
- Ambient Y (dB(μV/m))
A3.4 Measurement results of leaked emissions by access PLT system in the HF and the UHF bands

A3.4.1 Introduction

Recently, high speed power line telecommunication equipments to archive data rates of several to ~200 Mbit/s have been developed, and broadband PLT systems with extending the available frequency bandwidth up to 80 MHz have been available. However, because power lines are designed not for telecommunication purpose but for the 50/60 Hz power distribution, the power lines may emit substantial level of electromagnetic noise. In the HF and VHF bands below 80 MHz, there are a lot of radio stations for the broadcasting service, the amateur service, the aeronautic service, the radio astronomy service, and so on. If the PLT modems using the frequency range below 80 MHz are widely used, large portion of the HF/VHF spectrum may become unusable. The HF band is also worth for scientific observations to research the earth's environments and astronomical objects. Because the received signal levels from astronomical sources are usually very weak, it could be a serious damage to conduct sensitive radio astronomical observations not only in the frequency range below 80 MHz but in higher frequency bands, including the UHF bands, due possibly to the harmonics and/or intermodulation effects of the PLT wanted signals.

The problems described above were investigated from April to July in 2002 by the PLT study group organized by the Ministry of Internal Affairs and Communications (MIC) of Japan. The study group held a working group on the field experiments, and executed collaborative field experiments on the PLT facility. In July 8-9 and 22-23, 2002, the field experiments were carried out at Mt. Akagi in Gunma Prefecture, Japan. In the experiments, we measured leaked emissions caused by the PLT modems in the HF and the UHF bands in order to evaluate impact of the expansion of PLT bandwidth on the radio astronomical observations and examine the presence of spurious emissions over higher frequency. In this text, we report the experimental results in the field experiments, and compare the PLT noise levels with the interference thresholds detrimental to radio astronomical observations, which are given in Recommendation ITU-R RA.769.

A3.4.2 Field experiment at Mt. Akagi, Japan, in July 23, 2002

Figure A3-28 shows the configuration of the field experiment. Power lines used for the experiment were extended between electric poles (poles No. 1, No. 2, and No. 3 in Fig. A3-28) and a model house. Two pairs of PLT modems listed in Table A3-4 were used, and we carried out measurements of the leaked emissions in the HF and the UHF bands. The PLT modems and laptop computers...
connected at the outdoor side of the power lines were set on the pole No. 2. The output powers of the PLT modems 1/2 and 3/4 are shown in Figs A3-29 and A3-30, respectively. It is noted that three pairs of in-house PLT modems were also prepared at the experiment site, however they were not used for the measurements reported in this text.

FIGURE A3-28
Map of the experiment site

TABLE A3-4
Access PLT modems used for the field experiments

<table>
<thead>
<tr>
<th>No.</th>
<th>Modulation form</th>
<th>Frequency range (MHz)</th>
<th>Nominal output power (dBm/Hz)</th>
<th>Nominal output impedance (Ω)</th>
<th>Notch frequency (MHz)</th>
</tr>
</thead>
</table>

For the purpose of the experiment in the HF band, two sets of equivalent T2FD antennas of 25 m long were set up at distances of 57 m and 180 m apart from the pole No. 2 (T2FD No. 1 and No. 2 in Fig. A3-28, respectively). Height of each antenna from the ground was about 5 m. It is noted that these T2FD were not sensitive to the vertically polarized component of the electric field because they were set horizontally. Therefore, the T2FD might not have received the total power of the PLT noise. Output from the T2FD antennas were directly connected with spectrum analysers which measured electric power up to 30 MHz. For the quantitative measurements, we obtained 10 spectral traces for one spectrum measurement, and we evaluated the deviations of the measurements.

In order to examine the spurious emissions from the PLT facility, a log-periodic antenna (Create Design, CLP-5130-1) and a receiver were set up at a distance of 55 m apart from the pole No. 2 (UHF No. 2 in Fig. A3-28), which were moved to a distance of 35 m (UHF No. 1) for some occasions. The receiver consisted of a high pass filter, a low noise pre-amplifier, and a wide band amplifier. The pre-amplifier had a power gain of 40 dB at the centre frequency of 327 MHz, the bandwidth of about 20 MHz, and the minimum noise figure of 0.8 dB. The high pass filter which had a cut-off frequency at 260 MHz prevented saturation of the pre-amplifier by strong broadcasting signals in the VHF range. Spectra around 327 MHz were measured by spectrum analysers, and automatically recorded by a personal computer via the GPIB interface. In order to check that the spurious emissions were actually originated from the PLT facility, we measured the HF spectra simultaneously and examined dependences of spurious emission on distance and direction from the PLT facility.

A3.4.3 Leaked emissions in the HF band

Figure A3-31 shows the results of the spectral measurements in the HF band. When the PLT modems were not in operation, many broadcasting signals showed up over a flat noise floor which represented a noise level of the spectrum analyser. After the modems were turned on, the noise floor level significantly increased in the frequency range from 4 to 20 MHz. There were some narrow drops in the increased noise floor at frequencies around 7, 10, 14, and 18 MHz, which were identical with the notch frequencies of the modems (see Table A3-4). These characteristics indicated that the increased noise level was caused by the PLT modems. Both OFDM (No. 1/2) and SS (No. 3/4) modems produced large increases of the noise floor, and the noise level due to the SS modems was about 5 dB larger than that of the OFDM modems. As shown in Fig. A3-31, many broadcasting signals were interfered with and some of them were completely masked by the PLT noise.
Distance dependence of the PLT noise level was examined assuming that the leakage electric field E is proportional to the power law of distance r, that is:

$$E \propto r^{-\alpha}$$ \hspace{1cm} (A3-1)

where α is an attenuation coefficient. The coefficients were calculated based on the measurements with two T2FD antennas. The calculated coefficients scattered depending on frequency but distributed around 1.0.

In order to evaluate the leaked emission level quantitatively, the T2FD antennas were calibrated. A standard loop antenna (Anritsu MP414B) was set just below the T2FD antenna, and we measured electric field strengths of some broadcasting frequencies simultaneously. The antenna factor K of T2FD was calculated by:

$$K = E/V$$ \hspace{1cm} (A3-2)
where V (μV) and E (μV/m) are output from the T2FD antenna and the standard loop, respectively. For example, the antenna factor of the T2FD antenna at the frequency of 9.6 MHz was derived to be -8.0 ± 2.5 dB. The T2FD antenna was also analysed based on the moment method and an antenna gain G_a was calculated to be 2.3 dBi at 9.6 MHz. The antenna factor is also derived from the antenna gain by:

$$K = \sqrt{\frac{4\pi\eta_0}{Z_0 G_0 \lambda^2}}$$ \hspace{1cm} (A3-3)

where η_0 is the wave impedance and equal to 120π, Z_0 is 50Ω, and λ is the wavelength. By using equation 3 and considering a transmission loss through a coaxial cable to be 0.8 dB, the antenna factor was calculated to be -5.8 dB, which is consistent with the value estimated by the calibration.

Figure A3-32 shows a comparison between the PLT noise and the Galactic level calculated by referring to known Galactic spectra and the calibrated antenna factors. The PLT noise exceeded the level of the Galactic noise by more than 30 dB.

A3.4.4 Spurious emission in the UHF band

The UHF band is an atmospheric window for the radio astronomical observations, and high sensitive measurements of weak radio sources are possible. Although the broadband PLT modems do not use such a higher frequency band, it is necessary to examine the spurious emissions levels due to the PLT modems.

FIGURE A3-32

HF spectrum measured by T2FD No. 1 when all the PLT modems were running (upper line) and estimated Galactic emission level (lower line)

2002/7/23 10:19 T2FD No. 1 (57m)
ALL PLC Modem ON

Figure A3-33 shows a dynamic spectrum in the frequency range from 297 to 357 MHz during an operation of PLT modem 3/4. When the modems were turned off at 15:04, it is clearly observed that the broadband noise and some narrow-band emissions disappeared. In other words, spurious emissions due to the PLT modems were clearly observed.

There was no obvious cause for the spurious emissions generated by the modems under test. Further studies would be required to investigate the production of harmonics and/or intermodulation products in PLT modems. Moreover, when PLT modems employ notching, the presence of non-linear elements in the mains wiring may result in the generation of intermodulation products and filling of notches.

Figure A3-34 shows dependence of the spurious emission level on the distance and direction of the log-periodic antenna with respect to the PLT facility. When the all PLT modems were turned off or the antenna did not direct to the PLT facility, no spurious emissions were detected. On the other hand, the strong spurious emissions were received when the antenna was close to the PLT facility and was directed toward it. At the position of UHF No. 1, the increase of the noise floor reached about 4 dB. These results indicate the presence of spurious emissions from the PLT modems in the UHF band.
Distance dependence of the PLT noise level was also evaluated in the UHF band. By using equation 1, the attenuation coefficient was calculated to be 1.3, which was close to but somewhat larger than the far field value.

Distance dependence of spurious emissions and direction of the log-periodic antenna with respect to the PLT facility measured at 35 m point (left) and at 55 m point (right). Top: PLT modems were not operational. Middle: PLT modems 3/4 were running and the antenna was directed to the pole No. 2. Bottom: Same as middle panels but the antenna pointed the opposite direction. In each panel, solid lines are averaged spectra around the frequency of 327 MHz and gray dotted line shows a spectrum when input of the receiver was terminated. Some environmental noises which were not related to PLT were also identified as narrow-band emissions which were received when the PLT modems were turned off and the antenna was directed northward. A typical error bar in the measurements is indicated in the left-bottom panel.

A3.4.5 Comparison of the PLT noise level with Recommendation ITU-R RA.769 at 327 MHz

Threshold levels for interference detrimental to the radio astronomy service are given in Recommendation ITU-R RA.769. At 327 MHz we derived the spurious emission levels from the PLT facility at both frequencies, and compared them with the threshold levels. The band around 327 MHz is allocated to the radio astronomy service on a primary basis, and the threshold level of interference detrimental to the radio astronomy observations is given to be $-258 \, \text{dB(W/(m}^2 \cdot \text{Hz}))$ in Recommendation ITU-R RA.769. From Fig. A3-34, the noise levels at the UHF no. 1 at around 327 MHz were $-72.1 \, \text{dBm}$ when the PLT modem 3/4 were operational and $-75.9 \, \text{dBm}$ when they were turned off. Considering the system gain of 51.2 dB, measured bandwidth of 100 kHz, and the antenna gain of 12 dBi, the spectral power flux-density of the spurious emission was estimated to be $-206 \, \text{dB(W/(m}^2 \cdot \text{Hz}))$. Applying the far-field attenuation coefficient of 1.0, the separation distance needed to protect radio astronomical observatories were estimated to be about 12 km (see Table A3-5).
We also intended to make similar calculations at 13.5 MHz, however, the measured leaked emission levels at the distance of 180 m (T2FD No. 2) were too close to the noise floor to conduct reliable calculations.

A3.4.6 Conclusions

From the spectral measurements in the HF band, it was shown that the noise floor levels were significantly increased due to Access PLT modems. The leaked emission levels were found to be much higher than that of the radio astronomical signals. From the experiments in the UHF band, it was found that the spurious emissions were generated from the PLT modems. In both frequency bands, the leaked emissions due to the PLT modems were much greater than the interference threshold levels detrimental to the RAS given in Recommendation ITU-R RA.769. The separation distance at 327 MHz appropriate to protect the radio astronomical observatories from the spurious emissions caused by a single pair of the Access PLT modems was found to be about 12 km. If the Access PLT modems were widely deployed, the aggregated leaked emission levels would be increased much more and the separation distance would become much longer.

For the purpose of establishing limits on the output power of PLT modems, these studies clearly demonstrate that leaked emissions from PLT modems with a power spectral density of -50 dBm/Hz raise the ambient noise floor by a great amount and are capable of causing severe interference. An effective practical limit would have to take account of factors such as the cumulative impact of multiple PLT units, distance and propagation paths to potential victim receivers and the characteristics of mains wiring systems encountered in real life.

A3.5 Distance separation measurements

A3.5.1 Distance separation measurements in Brazil

The relation between field strength and distance was investigated to define both the size of the exclusion zone required to protect HF stations from PLT interference and the extrapolation factor to be used in the measurements. Figure A3-35 shows the field strength measured at horizontal distances of 3 and 10 m.

As the distance increases, there is an average measured field strength reduction of 11.7 dB for frequencies between 4 MHz and 30 MHz.

The results demonstrated that a 40 dB/decade extrapolation factor represents a good first approximation once the average calculated field strength reduction would lead to 9.47 dB (2.3 dB difference) for line-of-site attenuation.
A3.5.2 Distance separation measurements in Canada

The ratio of the RF field strength between 3 m and 10 m was studied by the Canadian Communications Research Centre to understand propagation loss in the operating frequencies of PLT devices. The theoretical field strength ratio between measurements at 3 m over 10 m can be derived from the free space loss propagation equation. Since it is a ratio, the equation can be simplified to:

\[
\text{Field strength ratio (dB)} = 20 \log \left(\frac{10 \text{ m}}{3 \text{ m}} \right) \approx 10.5 \text{ dB}
\]

The equation above assumes an extrapolation factor of 20 dB per decades of distance for free space propagation. Thus, there should theoretically be 10.5 dB more power at three metres than at ten metres from the houses.

Figure A3-36 shows the field strength ratio of 3 m over 10 m for each device at each test site. To reduce the effect of the ambient noise, the calculations were done from 16 to 28 MHz only. The average field strength ratio over all the devices and test sites is 9.56 dB, 1 dB lower than the theoretical value. Based on these test results, the extrapolation factor was actually 18.2 dB per decade of distance.

A3.5.3 Distance dependence of the leaked electric field caused by in-house PLT systems separation measurement in Japan

A3.5.3.1 Introduction

Information on the distance dependence (decrease of the electric field as a function of distance from a house where in-house PLT modems are operating) would be important to study and derive compatibility conditions toward the coexistence between the radiocommunications systems that are operating in accordance with the Radio Regulations and the PLT systems. In this regard a study was made to measure the leaked electric field at a distance of 5, 10 and 30 m from the outer wall of a house where in-house PLT systems operate, and succeeded to derive the distance dependence of the field strength as a function of distance and wavelength.
FIGURE A3-36
Field strength ratio of 3 m over 10 m at each test site

*Test site 3 is shown on the graph but not taken into consideration for the calculation of the average due to PLT interference from an adjacent house.

A3.5.3.2 Measurement

The measurements were performed in an actual rural environment using a single-story wooden house shown in Fig. A3-37. The coordinate of the house is 37° 42' N and 140° 40' E. The house is located in a remote, mountain area. Although the house is surrounded by forest, there is sufficient clearance toward west, south and southeast from the house.

For the leaked electric field, the measurement points were located at a distance of 5, 10 and 30 m from the outer wall of the house toward west, south and southeast. We used a passive loop antenna (ETS-Lindgren 6512; 60 cm φ) at a height of 1 m (lower edge). The antenna output was measured by a spectrum analyser (NEC SpeCAT2) over a frequency span of 2 to 26 MHz at every 8 kHz, with a resolution bandwidth of 8 kHz. The measurements were conducted in the rms mode and recorded in the MAXHOLD. Because the leaked electric field has three independent components (x-, y-, z-directions), we measured three components at every measuring point, which were then synthesized into the total electric field strength.

We also measured the common-mode current inside the house. Because the in-house power lines of this measurement house were exposed on its inner wall, it was possible to conduct direct measurements of the common-mode current at several points along the power lines by using a current probe. The output power from the current probe was measured by the same spectrum

61 OHISHI, M., KITAGAWA, M., MISAWA, H. and TSUCHIYA, F. [September, 2009] Leaked emissions due to the in-house broadband power line communications (1) – Measurement of the electric field strength at a distance and direct measurements of the common-mode current-. IEIEC Tech. Rep., EMCJ2009-40.
analyzer as that used for the field measurements, with the same frequency span, measurement
points, frequency resolution and measurement mode. The common-mode current was then derived
from the output of the current probe. The differential- and common-mode currents flowing from
the PLT modems were measured with the same procedure.

FIGURE A3-37
The house used for the measurements and the map around the house

Table A3-6 shows details of the in-house PLT modems used, which are commercially available in
Japan. A pair of PLT modems was plugged into the in-house outlets. Each modem was connected to
a personal computer. Data was transmitted by sending a large file from one computer to the other
through the PLT modems. Measurements of the leaked electric field strength and the currents were
made during the file transfer. For the measurements of the ambient noise, the PLT modems were
plugged off from the outlets.

TABLE A3-6
PLT Modems used for the measurements

<table>
<thead>
<tr>
<th>PLT standard</th>
<th>Frequency range (MHz)</th>
<th>Data rate (PHY layer) (Mbit/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-PLC</td>
<td>2-28</td>
<td>210</td>
</tr>
<tr>
<td>UPA</td>
<td>2-30</td>
<td>200</td>
</tr>
</tbody>
</table>
A3.5.3.3 Measured data

Figure A3-38 illustrates the differential mode and common mode currents immediately after the PLT output port. A PLT modem injects the differential mode current into the power line for the data transfer, and a fraction of the differential mode current would be converted to the common mode current at unbalanced elements that are distributed on the power line. The degree of the conversion depends on the unbalanced elements. The common mode currents shown in Fig. A3-38 are not the converted common mode current, but are those generated in the PLT modem (injected or launched common mode current).

FIGURE A3-38

Differential mode (DM) and common mode (CM) Currents for the HD-PLC modem (upper panel) and the UPA modem (lower panel)
Figures A3-39 through A3-41 illustrate the leaked electric field strength for the HD-PLC modem toward the south, southeast and west direction, respectively.

FIGURE A3-39

Leaked electric field strength (dB(\(\mu\)V/m)) for the HDPLC modem toward south

![Graphs showing leaked electric field strength](image-url)
FIGURE A3-40
Leaked electric field strength (dB(µV/m)) for the HDPLC modem toward southeast
Figures A3-42 through A3-44 illustrate the leaked electric field strength for the UPA modem toward the south, southeast and west direction, respectively. Note that we are unable to include the electric field data at a distance of 5 m toward south due to measurement error.
FIGURE A3-42
Leaked electric field strength (dB(µV/m)) for the UPA modem toward south

South

No measurement data

Ambient @ 10 m
FIGURE A3-43
Leaked electric field strength (dB(µV/m)) for the UPA modem toward southeast

SouthEast
5 m

10 m

30 m

Ambient @ 10 m

Frequency (MHz)

Field strength (dB(µV/m))
Figure A3-45 shows the distribution of the in-house power line of the measurement house together with the points where we made direct measurements of the common-mode current. The dimension of the house was 5.4×3.6 m. The power line distribution network of the measurement house was a simple one; the main part of the power lines is extended horizontally from the switchboard. We chose three points:

- line 1 is a location where a power line is branched into two,
- line 2 is another branch where a lamp is connected, and
- line 3 is close to the end point of a power line.

Figure A3-46 shows the measured common-mode currents at three points. It is clearly seen that the common-mode current varies from point to point along the power line. In this example the maximum common-mode current of about 40 dB(µA) was measured at around 2.8 MHz at line 2 and line 3. It should be noted that several broadcasting signals are clearly observed (e.g., around 6 MHz). This, in turn, means that the power line would be a good receiving antenna.
FIGURE A3-45
Distribution of the in-house power line network of the measurement house

FIGURE A3-46
Example of direct measurement of common-mode current on the in-house power line
A3.5.3.4 Derivation of the distance dependence

In order to derive the distance dependence, we selected three frequency ranges: 2 896-3 200 kHz, 10 304-10 592 kHz and 14 502-14 792 kHz. These were selected because there are no distinct signals for the radiocommunications services judged from the actually measured ambient data (Figs A3-39 through A3-44). For each frequency range we calculated the averaged field strength and its standard deviation, which are plotted in Fig. A3-47.

In the HF range the boundary between the near-field and the far-field ($\lambda/2\pi$) is about 25 (for 2 MHz) to 1.5 (for 30 MHz) m. Therefore it is required to take this fact into account to find an appropriate model to explain the measured field strength distributions. We have found that the dipole radiation model will give a good approximation:

$$E = \frac{Z_0 I L}{2\pi D} \sqrt{1 - \left(\frac{\lambda}{2\pi D}\right)^2 + \left(\frac{\lambda}{2\pi D}\right)^4}$$ \hspace{1cm} (A3-4)

where:

- E: field strength
- Z_0: impedance of the space
- I: current
- L: length of the wire
- λ: wavelength
- D: distance.

Assuming $L = 5$ m, it was possible to derive the current, I, by comparing the model curve and the measured field strengths. The derived (common-mode) current values were 42 dB(μA) for the 3 MHz range, 24 dB(μA) for the 10 MHz range and 20 dB(μA) for the 14 MHz range, respectively. The model curves are also plotted in Fig. A3-47.

The derived common-mode current values in Fig. A3-47 are slightly less than the measured ones in Fig. A3-46. When we take the wall attenuations into account, it would be possible to reconcile the differences between the direct measurement values and the estimated ones of the common-mode current. The simple power line structure (Fig. A3-45) would be consistent with the dipole radiation approximation\(^{62}\).

A3.5.3.5 Summary

The leaked electric field strengths and the common-mode currents along the power line were measured with the in-house PLT modems. Based on these measured data, it was found that the dipole radiation model would be a good approximation to express a relation between the field strength and the distance from the radiation source.

\(^{62}\) VICK, R. Estimating the radiated emissions of domestic main wiring caused by power-line communication systems. EMC Zurich Conf., (February, 2003), p.87-92.
Equation (A3-4) can be expressed for the near-field case as

$$E \approx Z_0 \frac{IL \lambda}{8\pi^2 D^3}$$

for \(\frac{\lambda}{2\pi D} \gg 1\)

and for the far-field case as

$$E \approx Z_0 \frac{IL}{2\lambda D}$$

for \(\frac{\lambda}{2\pi D} \ll 1\)

Therefore the distance dependence would not be a simple one (e.g., 20 dB/decade or 40 dB/decade), and should be carefully chosen according to the ratio of the wavelength to the distance.

Appendix 1
to Annex 3

Measurements of EM radiation from in-house PLT devices operating in a residential environment – Field Test Report

A4 Design examples of PLT technology

A4.1 Examples of a PLT network topology

Figure A4-1 shows an example of a PLT network topology. In this example, the optical backhaul is connected to MV electrical distribution lines or rings through optical-PLT gateways. MV rings are connected to the LV electrical distribution network, where the customer premises equipments (CPE) are connected, through MV-LV PLT gateways. Data flows between terminals located at customer premises (CPE”) through home gateways to and from head ends (not shown) that might be connected to the network at MV/LV gateways (transformer stations).

The PLT network architecture can be split in three main parts, each one having its own architecture:

– A backhaul, ideally an optical ring.
– A MV PLT ring, either in frequency division or time division scheme.
– A LV PLT ring, normally with a tree topology or a star topology.
A4.2 General design considerations

A4.2.1 Media access control

The goal of the media access control (MAC) is to distribute the access among the different users. It has to be able to cope with different architectures and it has to allow:

- A master-slave approach, where there is a data connection between the head end equipment (HE) and the customer premises equipment (CPE). This is the normal approach for LV networks.
- A Central Controller approach, allowing a direct communication between two devices of the network, and normally used in MV rings.

A4.2.2 Repeaters

Due to the high attenuation in power line channels, the use of repeaters (both in MV and LV networks) is sometimes necessary to achieve the full coverage of the electrical network. These repeaters are not explicitly shown in Fig. A4-2 and may be installed in an as-needed basis in order to guarantee that the signal arriving at each node is adequate.

A4.2.3 Multiplexing and multiple access approaches

PLT systems may be designed with different multiplexing and multiple access approaches:

- Frequency division.
- Time division.

In order to avoid interferences between MV and LV, each of the PLT networks can use a different frequency range. This is also true in the LV/in-home border. In general, frequency division is used between MV and LV. Frequency division can also be used in LV repeaters placed at the bottom of buildings, which allows reusing frequencies in different buildings. If PLT devices are deployed only on LV or only on MV, time division multiple access (TDMA) may be used.
A4.2.4 Distance

The distance between two nodes of the PLT network (in a ring topology) or between the head-end (master) and the home gateway (slave) is sometimes too big and the receiving equipment may not be able to correctly get the data. In this case, the use of repeaters is necessary.

A4.3 PLT network architectures on MV distribution lines

Figure A4-3 shows an example of a MV-PLT architecture where MV rings are connected to an optical backhaul. These rings can either use Time Division either Frequency Division, depending on the latency required and characteristics of the installation. Each node of the ring can be connected to an LV-PLT network.

A4.4 PLT network architectures on low voltage distribution lines

The PLT network on LV distribution lines is the final step of the network connecting the backhaul to the customer. It is directly affected by the characteristics of the mains network within the customer premises. These are the main factors influencing the LV PLT architecture:

Network Location – A PLT network can be placed in a residential, industrial or business area. Furthermore, there is a difference between rural, suburban and urban residential areas. Industrial and business areas are characterized by a higher number of customers which are potential users of the PLT services. It is also expected that subscribers from the business areas have different requirements than industrial and especially the subscribers from the residential areas. Similar differences can be found between urban and rural application areas, as well.
Subscriber density – The number of users/subscribers in a LV network as well as user concentration may vary from network to network. The subscribers can be mostly placed in single houses (low subscriber density), which is typical for the rural and suburban application areas, within small blocks including several individual customers (e.g. urban residential area), in buildings with a larger number of flats or offices, or within apartment or business towers (very high subscriber density), such as in big commercial quarters.

Network length – The longest distance between the transformer unit and a customer within a LV network also differs from place to place. Usually, there is a significant network length difference between the urban and rural application areas.

Network design - Low-voltage networks usually consists of several network sections (branches) of varying number, which differs from network to network, as well.

A4.4.1 Low density PLT network topology

This topology corresponds to low density residential areas, mainly with single houses. A head end must be installed in the transformer station. Then, in order to get good performance, the distance between repeaters (or the head end and one repeater) should not be more than 100 m. This normally means that between two repeaters there are not more than two street cabinets. Another requirement is the distance between the repeaters and the network termination units (NTUs). In some places is necessary to install additional repeaters in intermediate street cabinets to increase the performance of some customers. An example of deployment in this topology is shown in Fig. A4-4. Normally there are three to four repeaters in a feeder of 300 m long. In Fig. A4-4, the dotted lines show that data from some NTUs must transit though a second street cabinet before reaching a repeater.
A4.4.2 High density PLT network topologies

These topologies correspond to high-density area with buildings. The meters may be grouped in a meter room. There is a direct connection from the transformer to the meter room. There are two cases: the feeder goes directly to the meter room (tree topology) or there is more than one meter room connected to each feeder (star topology). These two different topologies are presented in the following sections. There may also be a single meter between the transformer and the building wiring.

A4.4.3 PLT star network topology

A head end must be installed in the transformer station. The repeaters are normally installed in the meter rooms but in those cases where the distance between the transformer and the meter room is too big additional repeaters should be installed in the intermediate street cabinets.

A4.4.4 PLT tree network topology

With this topology, a head end must be installed in the transformer station and a repeater in each meter room.

A4.4.5 PLT multi-floor network topology

This topology corresponds to high-density area with buildings where meters may be distributed in different floors.

A head end must be installed in the transformer station. Normally one repeater is installed inside each building. The repeater should be as centered in the building as possible in order to cover the all building, but always there should be visibility with the master or other repeater. For example, in a building of six floors, the repeater should be at floor three, but it can be put in floor two to increase the throughput with the head end. As shown in Fig. A4-7, in a building of three floors the repeater should be between floor one and floor two.
FIGURE A4-6
Example of PLT tree network topology

FIGURE A4-7
Example of PLT multi-floor network topology