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1 Introduction 

The methodology and guidelines introduced in § 2 have been used to model the radiation patterns 
for large antennas used in deep space research and radio astronomy. These methods are described in 
detail in Recommendation ITU-R SA.1345 – Methods for predicting radiation patterns of large 
antennas used for space research and radio astronomy. 

In predicting the radiation pattern of the NASA’s deep space network (DSN) antenna, the latest 
version of a commercially available software package (GRASP9) has been used. For the radiation 
pattern of the radio astronomy antenna, an old version (GRASPC) of the same software has been 
used. The results illustrate the effect of various parameters on the model's predictions and the 
significance of various mechanical and design features. 

2 Model methodology 

The GRASP9/GRASPC is based on well-established analysis techniques of physical optics (PO), 
supplemented with physical theory of diffraction (PTD), geometrical optics (GO), and uniform 
geometrical theory of diffraction (GTD). Geometrical optics and GTD are ray-based analysis 
methods which can only be applied to one single reflector at a time to limit the complexity of the 
associated ray-tracing problem. Physical optics and PTD can be applied to any number of reflector 
analyses in arbitrary order, where the induced currents obtained by a physical optics analysis on one 
reflector can be used as a source illuminating a second reflector. 

For the physical optics calculations, the surface of the reflector is divided into a grid of surface 
elements. The radiated field is found by integration of the surface currents at each point on the grid. 
To simulate the effect of aperture blockage, the surface currents are set to zero in the shadow of the 
feed on the reflector surface. 

The GTD approach follows three steps: 

Step 1: selection of significant rays; 

Step 2: ray tracing; 

Step 3: field calculation. 

A simple caustic correction procedure is applied which smoothes the diffracted field for angles 
close to the caustic direction. It cannot, however, accurately predict the field close to the caustic in 
the boresight direction. The GTD method, in general, requires less computation time than the 
physical optics approach. Therefore, GTD is used for all angles except where GTD is inaccurate. 
Due to the caustic on boresight, the physical optics method is used for angles in this sector. 

The scattering effects from supporting struts are determined by means of physical optics. For thick 
struts the conventional physical optics approach is used, and for thin struts a special technique is 
developed which makes it possible to calculate the surface currents on both the illuminated and the 
shadow side of the strut.  

Two important effects from struts are typical for reflector antennas: 

1 they may block the field from the main reflector travelling towards the far field; 

2 they may shadow the field from the feed illuminating the reflector. 

Both of these effects may be calculated in GRASP9. 

Random surface distortions can be imposed on the surface of the main reflector. The distortions are 
correlated over a distance consistent with the size of the individual panels of the reflector surface. 
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2.1 Guidelines on selecting physical optics-PTD or geometrical optics-GTD 

Physical optics-PTD and geometrical optics-GTD can be used as alternative analysis methods, 
except for the main-beam direction of a focusing aperture where GTD fails. The analysis method 
applied to a particular problem depends on many factors. Typically, physical optics should be used 
in the following cases: 

1 the field is calculated at or near a caustic of the reflected field, i.e. in the focusing region of 
a reflector; 

2 the reflector is in the near field of the feed, (in contrast, GTD always assumes far-field 
conditions); 

3 the antenna is a dual-reflector system with low cross-polarization requirement, since 
physical optics is more accurate in predicting the cross-polarization due to the sub-reflector 
curvature; 

4 the reflector is shaped, (in this case the GTD algorithm may not find all diffraction points 
and there may be more reflection points for one field point); 

5 the reflector has an irregular edge, (in this case the GTD ray tracing algorithm may fail in 
finding all diffraction points, just as the inclusion of a corner-diffracted field may be 
necessary to obtain satisfactory accuracy, an option which is not included in GRASP9). 

On the other hand, GTD may be more appropriate for the following cases: 

1 the antenna has a single electrically large reflector, and the radiation pattern is calculated 
for a wide range of angles, since the physical optics analysis may take substantially longer 
than the GTD analysis, especially for higher frequencies (larger antenna size in terms of 
wavelength). This is due to the fact that many more field point calculations are necessary to 
sample the far-field sufficiently and accurately, and each field point calculation would 
require substantially higher number of current integration points. A GTD analysis does not 
suffer from the second factor since it is almost independent of the antenna size; 

2 the near-field pattern needs to be calculated quickly, and where it can provide insight into a 
particular scattering problem if the edge-diffracted and reflected ray fields are observed 
independently. 

2.2 Analysis of struts 

In single and dual reflector antennas, struts are used to support the feed system and sub-reflector in 
rotationally symmetric or near-symmetric systems. These struts may have a serious impact on the 
antenna performance. The efficiency and cross-polarization are degraded and the side-lobe level is 
increased. The three most important mechanisms by which the strut scattering influences the 
antenna radiation are:  

1 shadowing and changes of the main reflector currents caused by direct feed illumination of 
the struts; 

2 shadowing and changes of the main reflector field by the struts and consequent reflector 
field blockage effects; 

3 reflected field from the main reflector by the scattered field from the struts, which 
originated from the incident field on the strut from the main reflector. 

The degradation of the peak gain (efficiency) is mainly due to the effects (1) and (2) of which (1) is 
only important in a system where the struts are not supported by the outer edge of the main 
reflector. The side-lobes will mainly be affected by the strut scattering (2) and (3) where (3) is 
rarely significant and occurs in very special cases. 
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For circular struts, two types of analyses can be used depending on the size of the struts: 

1 a simple physical optics approach, which is especially useful for struts which are thick 
relative to the wavelength; 

2 a canonical solution for struts with diameters in the order of the wavelength.  

An accurate prediction of the effects of the struts both on the main lobe and on the side-lobes can be 
achieved by taking the current distribution along the circumference of the strut into account. This is 
relatively simple for a circular strut, because the canonical problem (plane wave incidence on an 
infinite circular cylinder) has a simple solution in series form. For thick struts the current 
distribution can alternatively be found by the simple physical optics approximation. To include the 
precise effect of the struts in the radiation pattern requires elaborate and time consuming 
computation. 

3 Example: Deep space research antenna (DSN 34-m) 

3.1 Antenna mechanical parameters 

The major parameters of the 34-m beam-waveguide (BWG) antenna of the DSN, are given in 
Table 1.  

 

TABLE 1 

Parameters of 34-m BWG JPL/NASA DSN antenna 

 34-m BWG antenna 

Main reflector diameter 34 m, circular aperture, shaped 

Subreflector diameter 3.429 m, shaped 

Focal length 11.8 m, primary focus 

Frequency range 8.400-8.450 GHz (rcv) 
7.145-7.190 GHz (tmt) 
25.5-27 GHz (rcv) 
31.8-32.3 GHz (rcv) 
34.2-34.7 GHz (tmt) 

Feed gain pattern Pattern equivalent to a 31 dB gain horn 

Surface distortions 0.25 mm (r.m.s.)  

Surface distortion correlation 
distance 

1-2 m  

 

 

A number of these antennas are located in several places around the world; specifically, 
in Goldstone, California; near Madrid, Spain; and near Canberra, Australia.  

The far-field distances defined for these antennas at various frequencies of operation are given in 
Table 2. 
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TABLE 2 

Far-field distances for the 34-m BWG JPL/NASA DSN antenna 

Mode 
Frequency 

(GHz) 
Wavelength

(mm) 

34-m antenna 

Mid > (km) Far > (km) 

Tmt 2.115 141.75 0.106 16 

Rcv 2.295 130.63 0.109 18 

Tmt 7.1675 41.83 0.159 55 

Rcv 8.425 35.58 0.167 65 

Tmt 34.45 8.70 0.268 266 

Rcv 32.05 9.35 0.261 247 
 

 

3.2 Model results without struts 

The 34-m beam-waveguide antenna was modelled at both 8.425 GHz and 32.05 GHz receive 
frequencies in the far-field and near-field without struts. The effects of varying the observation 
distance within the near-field were examined as well as the effects of surface distortions. 

All the results are for the antenna assumed to be transmitting with linear polarization. All patterns 
are for 0° azimuth plane cut with antenna pointing in 90° elevation direction. The effects of gravity, 
wind, etc. are ignored. 

3.2.1 Far-field and near-field of 34-m antenna at 8.425 GHz (no struts) 

Figures 1a) and 1b) show the gain pattern at 8.425 GHz with no surface errors and no struts in both 
linear and logarithmic scales. 

The physical optics-PTD method was used from 0 to 0.1° (less than 2 beamwidths). The GTD-PO 
(GTD on subreflector, physical optics from main) was used from 0.1 to 4°. Then, geometrical 
optics-GTD method was used at all other angles. The three curves in the figures show the changing 
gain pattern as the observation point moves from far-field to successively shorter near-field 
distances. It should be noted that, the curve spike at around 10° is due to the feed to subreflector 
edge diffraction, while the spike at around 100-110° is due to the subreflector to the main reflector 
edge diffraction in back field region. 

3.2.2 Far-field and near-field of 34-m antenna at 32.05 GHz (no struts) 

Figures 2a) and 2b) show the gain pattern at 32.05 GHz with no surface distortions and no struts in 
both linear and logarithmic scales.  
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FIGURE 1 

34-m antenna radiation pattern at 8.425 GHz 
with no surface distortion (no struts) 

a)  Linear angle axis 
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b)  Logarithmic angle axis 
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FIGURE 2 

34-m antenna radiation pattern at 32.05 GHz  
with no surface distortion (no struts) 

a)  Linear angle axis 
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b)  Logarithmic angle axis 
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Again, the physical optics-PTD method was used from 0-0.1° (less than 6 beamwidths). 
The GTD-physical optics (GTD on subreflector, physical optics on main) was used from 0.1-4°, and 
geometrical optics-GTD method was used at all other angles. The four curves in the figures show 
the changing gain pattern as the observation point moves from far-field to successively shorter near-
field distances. It should be noted that, the curve spike at around 10° is due to the feed to 
subreflector edge diffraction, while the spike at around 100-110° is due to the subreflector to the 
main reflector edge diffraction in back field region. 

3.2.3 Far-field and near-field of 34-m antenna at 32.05 GHz with statistical surface 
distortions (no struts) 

Figures 3a), 3b), 4a) and 4b) show the effect of including surface distortion by statistical approach. 
The nominal surface distortion of 0.25 mm is considered in Fig. 3 and 1 mm surface distortion in 
Fig. 4. The nominal correlation length for the errors is assumed to be 2 m, which is approximately 
the average size of the individual panels of the reflector surface. It can be observed that for the 
range of surface error and correlation lengths included, the surface distortions cause primarily to 
reduce the gain in the region 0-0.1° off-boresight, and there is no significant effect beyond this 
region. 

3.3 Model results with struts 

Many approximate strut representations have been introduced in the literature to calculate the 
effects of the struts on the field pattern. Here, a very accurate approximation is provided for the 
34-m antenna with 4 struts, where each strut is represented by two metal beams with different cross 
sections. This is very close to the actual strut configuration, ignoring only the very thin bars 
connecting these two beams. Then, physical optics-PTD methods are applied to the struts.  

A detailed study showed that the most significant contributions from the struts to the radiated field 
are due to the following components:  

1 feed field to subreflector currents, then to strut currents, and finally to radiated field;  

2 feed field to subreflector currents, then to main-reflector currents, then to strut currents, and 
finally to radiated field;  

3 feed field to subreflector currents, then to strut currents, then to main-reflector currents, and 
finally to radiated field.  

Even with the use of geometric symmetry wherever possible, the calculations are very computer- 
time consuming. On an average PC, calculations for the 8-GHz case can take tens of hours, and for 
the 32-GHz case can take hundreds of hours. Therefore, the calculations were carried out using the 
latest version of the GRASP software on a parallel processing supercomputer (JPL COSMOS) with 
128 processors. The required time for the 8-GHz case is then reduced to about 30 min, while the 
32 GHz case still takes about 20 h. By comparison, on the supercomputer, the calculation of fields 
in the absence of struts takes only about a minute for the 8 GHz case, and less than an hour for the 
32 GHz case.  

For the 32-GHz case, since the software could not perform parallelization of the PTD method for 
the struts, and the PTD contributions by the struts are negligible, only physical optics method was 
used. For the 8-GHz case, however, where the PTD contribution can be significant, physical optics-
PTD methods were applied to the struts. The results showed that the struts contributed to alter the 
polarization of the sidelobe fields, where the cross-polarization is substantially increased for 
antennas with linear or circular polarizations. In addition, the co-polarization has increased by about 
20 dB at 120° off-boresight for antennas with circular polarization. Below, the struts effects for far- 
and near-field of 34-m antenna with linear polarization are given. 
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FIGURE 3 

34-m antenna radiation pattern at 32.05 GHz  
with 0.25-mm (r.m.s.) surface distortion (no struts) 

a)  Linear angle axis 
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FIGURE 4 

34-m antenna radiation pattern at 32.05 GHz  
with 1-mm (r.m.s.) surface distortion (no struts) 

a)  Linear angle axis 
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b)  Logarithmic angle axis 
 

Report SA.2166-04

Far and near-fields of 34 m JPL/NASA BWG antenna at 32.05 GHz
Linear polarization (with surface distortion, r.m.s. = .  mm, C = 2 m and without struts)1 0

80

60

40

20

0

–20

–40

–60

–80

G
ai

n 
(d

B
i)

10
3–

Angle (degrees)

Far

100 m

Far, > 247 km

10
2–

10
–1

10
0

10
1

10
2

10
3

100 m

 

 



12 Rep.  ITU-R  SA.2166 

3.3.1 Far-field and near-field of 34-m antenna at 8.425 GHz with struts 

Figures 5a) and 5b) show the gain pattern along the 0° cut at 8.425 GHz with no surface distortions, 
but including strut effects in linear and logarithmic scales. Figures 6a) and 6b) show the same 
antenna gain pattern along the 45° cut.  

FIGURE 5 

34-m antenna radiation pattern at 8.425 GHz  
with no surface distortions (with struts) (0° cut) 

a)  Linear angle axis 
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b)  Logarithmic angle axis 
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FIGURE 6 

34-m antenna radiation pattern at 8.425 GHz  
with no surface distortions (with struts) (45° cut) 

a)  Linear angle axis 
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b)  Logarithmic angle axis 
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Linear polarization (with no surface distortion and with struts) – 45° cut

80

60

40

20

0

–20

–40

–60

–80

G
ai

n 
(d

B
i)

10
3–

Angle (degrees)

Far

100 m

Far, > 65 km

10
2–

10
–1

10
0

10
1

10
2

10
3

1 km

1 km

10 km 100 m

 

 

As seen from Figs 5 and 6, the struts create asymmetry in the radiated field pattern in different cuts 
around the main beam direction. This is in contrast to the relative circular symmetry of the radiated 
field in the no-strut case.  
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3.3.2 Far-field and near-field of 34-m antenna at 32.05 GHz with struts 

Figures 7a) and 7b) show the gain pattern along the 0° cut at 32.05 GHz with no surface distortions, 
but including strut effects in linear and logarithmic scales. Figures 8a) and 8b) show the same 
antenna gain pattern along the 45° cut.  

FIGURE 7 

34-m antenna radiation pattern at 32.05 GHz  
with no surface distortions (with struts) (0° cut) 

a)  Linear angle axis 
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b)  Logarithmic angle axis 
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FIGURE 8 

34-m antenna radiation pattern at 32.05 GHz  
with no surface distortions (with struts) (45° cut) 

a)  Linear angle axis 
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4 Example: Radio astronomy antenna (Lovell Mk 1A) 

4.1 Antenna mechanical parameters 

The Lovell Mk1A radio astronomy antenna, located at Jodrell Bank in the United Kingdom was 
modelled. The major parameters of this antenna are shown in Table 3. 

 

TABLE 3 

Parameters of Mk 1A radio astronomy telescope 

Diameter 76.2 m, circular aperture 

Focal length 22.9 m, primary focus 

Frequency range 150-5 000 MHz 

Support struts The Mk 1A has a central pylon supporting the feed, this has been 
modelled as four individual struts, diameter 0.2 m 

Feed housing 3.8 m diameter 

Feed gain pattern Parabolic, 13 dB below maximum at 59° 

Surface distortions 6 mm (r.m.s.) (25 mm peak-peak) 

Surface distortion correlation distance 2.8 m 
 

 

4.2 Model results 

The antenna was modelled at 150 MHz and at 5 000 MHz. It was modelled in the far-field, both 
with and without struts. The effects of varying the observation distance within the near-field were 
examined and the effects of surface distortions were examined. 

The antenna was also modelled at the 1 420 MHz in order to compare the results with measured data 
taken at the same frequency. 

All the results are for the Mk 1A antenna assumed to be transmitting with circular polarization. The 
receiver is assumed to be using vertical polarization. All patterns are for the azimuth plane, with the 
antenna pointing at 0° elevation. 

4.2.1 Far-field and near-field at 150 MHz 

Figure 9 shows the gain pattern at 150 MHz, with surface distortions included and with no struts. 
The physical optics method was used within 7.06° of boresight, and the GTD method at other 
angles. The 4 plots show the changing gain pattern as the observation point moves from far-field to 
successively shorter near-field distances. At this frequency, the far-field distance is 5.8 km. 

It can be seen that the far-field pattern and the near-field pattern at 1 000 m are almost identical. For 
distances of 100 m and 50 m, the width of the main lobe increases and the maximum gain 
decreases. Beyond ±130°, there is little change in the level of the side-lobe envelope. At these 
angles the dominant rays are the edge diffracted rays. 
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FIGURE 9 

Far- and near-field of Mk 1A at 150 MHz (no struts) 
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4.2.2 Far-field at 5 000 MHz, with and without struts 

Figure 10 shows the far-field gain pattern of the Mk 1A at 5 000 MHz. Random surface distortions 
are included. The physical optics method was used within 0.21° of boresight, and the GTD method 
at other angles. One plot shows the pattern with no struts, the other has struts included. The 
reference radiation pattern from Recommendation ITU-R SA.509 is included. 

 

FIGURE 10 

Far-field of Mk 1A at 5 000 MHz with and without struts 
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Without struts, the effect of spillover (radiation directly to or from the feed) is visible from the 
peaks at about ±100°. When struts are included, the high level of strut scattering predicted by the 
model tends to mask the spillover effects. With struts included, the gain pattern just exceeds the 
reference radiation pattern for angles less than 100° from boresight. 

4.2.3 Far-field at 5 000 MHz, with and without surface distortions 

Figure 11 shows the effect of using a different random number seed for the distribution of random 
surface deviations. Three far-field plots are shown for the MK 1A at 5 000 MHz. They are separated 
by 50 dB for clarity. One gives the predicted pattern with no surface distortion, the others show the 
effect of different random distributions. The physical optics method was used within 0.21° of 
boresight, and the GTD method at other angles. 

 

FIGURE 11 

Far-field at 5 000 MHz with and without surface distortion 
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One can see that the surface distortions produce “spikes” near the main beam. The “spikes” are 
about 10 dB higher than the level with no surface distortion. Beyond about 10° from boresight, 
surface distortions appear to have little effect. If strut scattering were included (as indicated by 
Fig. 10), the “spikes” close to boresight would be masked. 

4.2.4 Far-field and near-field at 5 000 MHz, without struts 

Figure 12 shows the effect of viewing the antenna in the near-field. The plots are for the Mk 1A at 
5 000 MHz with surface distortions, viewed from the far-field and at three different near-field 
distances. The physical optics method was used within 0.21° of boresight, and the GTD method at 
other angles. The plots are separated by 70 dB for clarity. 



 Rep.  ITU-R  SA.2166 19 

FIGURE 12 

Far- and near-field of Mk 1A at 5 000 MHz (no struts) 
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The prediction for a near-field distance of 10 km is almost identical to the far-field plot. At the 1 km 
observation distance the main beam becomes wider and the maximum gain is lowered. At 100 m 
the main beam is wider still and maximum gain is lowered again. Beyond ±50° there is little 
difference in the level of the side-lobe gain. The peaks at around 100° are due to spillover from the 
feed. The angle at which the spillover peaks occurs is seen to change as the observation distance is 
shortened. This is because the centre of the coordinate system is at the centre of the main reflector 
and the angle between boresight and the edge of the main reflector changes with distance. 

4.2.5 Comparison of measured pattern with model prediction 

Figure 13a) shows a far-field prediction for the Mk 1A at 1 420 MHz. The gain is relative to the 
maximum gain of 57 dBi. Figure 13b) shows the measured gain of the Mk 1A at the same 
frequency. The peak in the measured signal at around 95° is due to spillover. 

The model appears to underestimate the level of the side lobes close to the main beam (to about 
15°), and the high level of spillover. For the side-lobe level between 15° and 80°, there are a limited 
number of samples but the predicted level appears approximately to be correct. 
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FIGURE 13 

Predicted and measured far-field of Mk 1A at 1 420 MHz 

a)  Model prediction 
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5 Conclusions 

The importance of the feed support struts, feed gain pattern, and surface distortions to the modelling 
of the side-lobe gain pattern of large antennas of the DSN and radio astronomy has been considered. 

For a wide range of angles, the side-lobe level is dominated by scattering from the struts. For the 
side-lobes the accuracy of the treatment of struts is therefore the dominant factor. 

At certain angles of view, spillover (radiation direct from the feed) can be a dominant factor. 
For many antennas, spillover produces the highest peak in the far-out side-lobe envelope. Generally, 
spillover is dominant in the range of 80° to 120°. Thus knowledge of the feed horn gain pattern, 
particularly at angles near the spillover angle, is an important parameter. 

The distortions to the surface of the reflector can cause an increase in the level of the both near-in 
and far-out side lobes. The correlation length has a direct bearing on the increase. Smaller 
correlation length spreads the errors towards far-out side lobes, while larger correlation lengths 
focus the increase at near-in side lobes. The effect becomes more significant as the size of the 
surface errors increases in terms of the wavelength. 
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