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REPORT  ITU-R  BT.2540-0 

Display energy reduction through image signal processing 

(2024) 

Scope 

Broadcasting and streaming technologies incur a cost in terms of energy that is distributed over the entire 

transmission chain, from production to distribution/transmission and final viewing by consumers. Television 

displays, when considered the whole quantity around the world, consume a relatively large part of this energy. 

This energy consumption may be mitigated by content-adaptive image signal processing while minimizing the 

impact on visual quality. This Report describes such techniques. 

Keywords 

Energy reduction, television displays 

Abbreviations  

ABC Automatic brightness control 

BSD Berkeley segmentation dataset 

CSF Contrast sensitivity function (see Rec. ITU-T T.800 on Information technology – JPEG 

2000 image coding system: Core coding system) 

CWT Continuous wavelet transform 

DCT Discrete cosine transform 

EWMA Exponentially weighted moving average 

GHG Greenhouse gasses (see, for example, Rec. ITU-T L.1451 on Methodology for assessing 

the aggregated positive sector-level impacts of ICT in other sectors) 

HPCCE Histogram-based power constraint contrast enhancement 

I2GEC Image Integrity-based gray-level error control 

ICT Information and Communication Technologies (see, for example, Rec. ITU-T L.1022 on 

Circular economy: Definitions and concepts for material efficiency for information and 

communication technology) 

IQPC Image-quality-based power control 

JND Just-noticeable difference 

LABS Low-overhead adaptive brightness scaling 

LAPSE Low-overhead adaptive power saving and contrast enhancement 

LCD Liquid crystal display (see, for example, Rec. ITU-T L.1410 on Methodology for 

environmental life cycle assessments of information and communication technology 

goods, networks and services) 

LPIPS Learned perceptual image similarity 

MPEG Moving picture experts group 

OLED Organic light emitting diode 

PLS Physical layer security 
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PSNR Peak signal-to-noise ratio 

ReLu Rectified linear unit 

SJND Saliency-modulated just noticeable difference 

SSIM Structural similarity index measure 

1 Introduction 

The consumption of energy has a direct and significant impact on our climate, as to this day a 

diminishing but still very large proportion of our energy needs is satisfied by the use of fossil fuels 

that emit greenhouse gases (GHGs) such as carbon dioxide (CO2). Addressing climate change may 

proceed by reducing electricity needs, and by transitioning to sustainable sources of electricity. 

An area of interest where the global use of electricity is difficult to evaluate is that of Information and 

Communication Technologies (ICT), of which broadcasting, streaming, and gaming form a part [1]. 

ICT is often seen as a sector that contributes to the reduction of energy elsewhere, but at the same 

time it is a significant user of electricity and therefore has a nontrivial impact on our climate. 

Of all the data that is communicated over the internet, about 70% to 80% is due to video [2]. 

Addressing the energy efficiency of video production, communication and display therefore has the 

potential to have a significant influence on the total environmental impact of the ICT industry. A good 

proportion of the energy used to consume video content is related to the display devices and 

televisions [3][4]. Notably, electricity consumed to produce light in display devices has a high cost. 

Reduction of the amount of light produced is therefore desirable, as this helps to reduce the amount 

of energy necessary to operate the display. The advantage of this is two-fold: less pressure on the 

climate, and longer battery life in mobile devices. 

Techniques currently in use in display devices to reduce their use of electricity include adaptations to 

the viewing environment in the form of automatic brightness control (ABC), reduction of the display 

brightness when a still image is displayed for a certain amount of time (for example when video is 

paused). Detection of the absence of viewers may be used to dim the screen as well. 

Orthogonal to these measures, the content itself affords an opportunity to reduce energy consumption, 

as the human visual perception of spatial patterns and contrasts is often subject to masking, i.e., small 

changes to the content will go unnoticed due to the presence of contrast. Thus, it is possible to reduce 

pixel values by a small amount in such a way that a television screen uses less energy, without it 

affecting the visual quality of the content. Note that a small reduction of energy per device leads to a 

large reduction of energy globally due to the sheer number of devices in use. This leads to the first of 

two use cases: reduce the energy consumption of content as much as possible with the constraint that 

the visual quality is not or only minimally affected. A method matching this use case is presented in 

Annex 1. 

Alternatively, a second use case is defined whereby the amount of reduction in energy use is defined 

first, and the best image quality is sought that satisfies this constraint. This use case would allow the 

user control over the amount of energy that should be saved, while maximizing visual quality. 

A method for this use case is presented in Annex 2. 

Finally, to demonstrate the efficacy of the methods presented in Annexes 1 and 2, a set of 

comparisons with the state-of-the-art is provided in Annex 3 and further tests and experiments are 

reported in Annex 4. 
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2 Display energy consumption dependent on video characteristics 

Energy consumption in displays depends on several factors which relate to the specification of the 

display and the content received and displayed. Design factors influencing the power consumption of 

a given display are its size, resolution, dynamic range, colour gamut, frame rate, and the specific 

display technology employed (currently mostly backlit liquid crystal display (LCD) screens and 

organic light emitting diode (OLED) screens). Some tests have found an approximately linear 

relationship between peak luminance and power consumption for both LCD and OLED displays, as 

well as a linear relationship between a display’s size and power consumption1. 

The energy consumption of displays is also dependent on the content being shown. This affords an 

opportunity to reduce the power consumption of a display device by processing the content. This 

Report outlines such opportunities. 

In OLED displays each pixel is independently emissive. The energy consumption of an OLED display 

is therefore directly proportional to the content being displayed. For LCD displays, however, the 

power consumption is traditionally only weakly dependent on the actual content being displayed. 

Nonetheless, there exist backlight scaling technologies that can reduce the power consumption in the 

presence of dark content. Such technologies simultaneously reduce the strength of the backlight and 

increase the transparency of the displayed pixels. One component of ISO/IEC 23001-11:2019 

(Information technology – MPEG systems technologies – Part 11: Energy-efficient media 

consumption (green metadata)) enables such backlight scaling to be guided by analysing the content. 

For either display type, it is possible to process the content such that, when displayed on a display, it 

uses less energy. For an OLED display, this processing alone will be sufficient. For LCD displays, 

such processing can inform a backlight scaling algorithm, and so indirectly contribute toward a lower 

energy expenditure. It is noted that ISO/IEC 23001-11:2019 standardises such image processing that 

involves either linear scaling or clamping of high luminance pixels. The present Report describes 

content adaptive technologies (Annex 1) that enable higher luminance reductions than could be 

achieved by linear scaling, as shown in the provided comparisons (Annex 2). 

3 Content-adaptive energy reduction framework 

A framework that enables content-adaptive energy reduction will require two main steps: an analysis 

step to assess the potential of each pixel/region in a frame to mask a reduction of light, and a second 

step to apply this reduction, possibly taking into account display parameters. It is noted that the 

analysis is dependent on the content only. It is further noted that such spatially varying analysis is 

often somewhat computationally demanding. Therefore, a suitable way to implement such a 

technique, is to perform the analysis for the content once, prior to broadcasting/streaming, and to 

adapt the content in the television, taking into account specific display capabilities and possibly the 

viewing environment. 

A consequence is that some additional information needs to be attached to the content, in the form of 

metadata. Transmission of this additional information does not require significant additional energy, 

as energy used for transmission is significantly dependent on the available bandwidth, and only 

weakly dependent on the used bandwidth [5]. 

Thus content-adaptive energy reduction of display devices requires the following operations: 

– analysis of content 

– production of a map encoding the potential to reduce energy 

– attachment of this pixel map to the content 

 

1 https://www.rtings.com/tv/learn/led-oled-power-consumption-and-electricity-cost 

https://www.rtings.com/tv/learn/led-oled-power-consumption-and-electricity-cost
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– transmission of content with additional data 

– display-side processing of content according to the received additional data 

– final display of processed content. 

The analysis, production of additional data, and the display-side processing are interlinked. The 

following section presents a specific method to achieve content-adaptive energy reduction. 

The advantage of this framework is that the more costly processing is done once, while the adaptation 

of the content is done in each television set individually. The advantage for broadcasters is that this 

method can help curb their Scope 3 emissions2. The advantage for display makers is that a small 

adjustment to their firmware allows a reduction of energy, making it easier to conform to regulatory 

requirements. For consumers the advantage is that less energy is expended, the framework therefore 

yielding a small economic benefit as well. Finally, the planet benefits in that less energy is used, and 

therefore fewer green-house gas emissions are produced. 

4 Content-adaptive energy reduction methods 

Noting that the production of light in a television is the most energetically expensive part of a display 

device, reducing the amount of light produced has a direct (and linear) impact on the energy 

consumption of a display device. Two methods are briefly introduced in this section: 

– Method A, which aims to reduce display energy consumption as much as possible without 

changing the visual appearance of the content. 

– Method B, which allows a viewer to choose a desired reduction of display energy 

consumption, while minimizing the change in visual appearance. 

Thus, the method presented first in this section, and defined in detail in Annex 1, allows a reduction 

of light that can be configured to be unnoticeable to the viewer, allowing the viewer to enjoy the 

content as intended by its producer. It is, however, also possible to adjust a parameter to enable 

stronger reduction of light, and so obtain a further reduction of energy. This parameter could be 

exposed to the viewer. 

The method is based on the notion of a just-noticeable difference (JND), the amount a patch of light 

can be changed before half the observers notice the change in a direct comparison3. When luminance 

is concerned, such a JND can be obtained from a contrast sensitivity function (CSF), such as the one 

proposed by [6], following the process by which the PQ curve was designed [1], and adopted in 

Recommendation ITU-R BT.2100. Thus, for each pixel a JND is computed, and the luminance of 

each pixel is reduced by an amount derived from this JND. Applying the CSF to each pixel is 

performed within each display, as is the computation of a per-pixel JND and reducing the pixel values 

accordingly. 

For each pixel of a given frame, Barten’s model of contrast sensitivity requires as input a luminance 

and an angular frequency, from which the contrast sensitivity can be calculated. The input luminance 

is simply the luminance of each given pixel. The angular frequency, on the other hand, requires a 

more complex analysis. To arrive at an angular frequency for a given pixel, a wavelet analysis is 

appropriate, as this allows a spatially varying frequency analysis. While it is fundamentally 

impossible to determine exactly which frequencies are available at any given pixel location, the best 

trade-off between a spatial and a frequency analysis is afforded by a continuous wavelet transform 

 

2 https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/briefing-what-are-scope-3-

emissions 

3 Note that this makes the method conservative, in that in an actual use case an observer does not have access 

to the unprocessed image, and would therefore not be able to effect such a direct comparison. 

https://www.itu.int/rec/R-REC-BT.2100/en
https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/briefing-what-are-scope-3-emissions
https://www.carbontrust.com/our-work-and-impact/guides-reports-and-tools/briefing-what-are-scope-3-emissions
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(CWT) [8]. As the orientation of these frequencies is unimportant in this application, a CWT with an 

isotropic wavelet, such as the Mexican hat wavelet, is used. From this wavelet analysis, a map is 

constructed indicating for each pixel the frequency for which the CSF multiplied by wavelet 

magnitude produces the highest sensitivity. 

This frequency map is then transmitted along with the content. Upon reception, a television applies 

the contrast sensitivity function again, and reduces pixel values according to the associated JNDs. For 

OLED displays, the resulting pixel values are displayed directly, leading to a reduction of energy. For 

backlit displays, the reduced pixel values are used in a backlight scaling approach, whereby the 

intensity of the backlight is reduced, and the transparency of the display panel is adjusted according 

to the reduced pixel values. The process is described in an implementable form in Annex 1. 

For use cases where the viewer requires control over the amount of energy reduction, a method may 

be defined that takes as input parameter a desired energy reduction. In this case, the aim of such a 

method is to adjust an image such that the visual quality is maintained as much as possible, while 

achieving the specified energy reduction. While such a method could be developed programmatically 

on the basis of the method specified in Annex 1, an alternative method has been found to perform 

well for this use case. This method, which is based on a lightweight neural-network-based analysis 

of the content, is described in Annex 2. This method has a relatively small number of trainable 

parameters, and it is therefore efficient in execution. The network is used only for the analysis part, 

which in the framework described earlier in this document, would be performed prior to transmission. 

The content adaptation part, which would be carried out by a display device for instance, consists of 

simple subtraction and multiplication, and is therefore straightforward to implement in display 

hardware. 

 

 

Annex 1 

 

Process of content-adaptive processing to maximise energy reduction 

without affecting visual quality (Method A) 

The purpose of the method described here is to reduce pixel values in video frames, so that a television 

uses less energy to reproduce the image [2]. The method is intended to provide the largest energy 

reduction under the constraint that the result is visually indistinct from the unprocessed image. Thus, 

the amount by which each pixel value is changed will be less than a given number of JNDs. Key here 

is that for each pixel the corresponding JND may be different. To determine the amount of reduction 

achievable for each pixel, JNDs are derived from a CSF, which itself takes as input the luminance of 

each pixel, as well as a measure of locally available frequencies obtained through wavelet analysis. 

The wavelet analysis produces a map of frequencies which can be transmitted along with the video 

content. 

A receiving television then uses this map to compute a per-pixel contrast sensitivity, which in turn is 

used to compute a per-pixel scale factor which is to be applied to the input frame. This produces an 

output frame that will cause a display device to use less energy. The amount of processing can be 

adjusted through a free parameter which can be set so as to produce a transparent result. Alternatively, 

for higher values of this parameter, additional energy reduction could be achieved. 
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1.1 Contrast sensitivity function 

Barten’s contrast sensitivity function is defined as: 
 

  𝑆(𝐿, 𝑢) =
𝑀𝑜𝑝𝑡(𝑢)/𝑘

√
2

𝑇
 (

1
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2+

1

𝑋𝑚𝑎𝑥
2  +
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2  )(
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η𝑝𝐸
+
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using the following quantities: 

  𝑀𝑜𝑝𝑡(𝑢) = 𝑒−2π2σ2𝑢2
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√σ0
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60
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  𝐸 =
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)

4
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In these equations, 𝑢 is an angular frequency, 𝑀𝑜𝑝𝑡(𝑢) is the optical modulation transfer function, 

σ models the width of 𝑀𝑜𝑝𝑡(𝑢) which is dependent on the lens aberrations 𝐶𝑎𝑏 and pupil diameter 𝑑. 

The retinal illumination is modelled by 𝐸. 

The constants in these equations with their values are: the signal-to-noise ratio of the eye 𝑘 = 3.0, 

a constant modelling average visual acuity σ0 = 0.5 arcmin, the impact of lens aberrations 

𝐶𝑎𝑏 = 0.08 arcmin, the integration time of the eye 𝑇 = 0.1 s, the angular extent of the object 𝑋0 = 2∘, 

the maximum integration angle of the eye 𝑋𝑚𝑎𝑥 = 12∘, the maximum number of cycles over which 

the eye can integrate 𝑁𝑚𝑎𝑥 = 15 cycles, the quantum detection efficiency of the eye η = 0.03, the 

spectral density of neural noise φ0 = 3𝑒−8 s deg2, the frequency above which lateral inhibition ceases 

𝑢0 = 7 cycles/deg, and the luminous flux to photon conversion factor 𝑝 = 1.2𝑒6 photons/s/deg2/Td. 

1.2 Wavelet analysis and map construction 

The luminance of a pixel 𝑥 is given by 𝐿(𝑥). A continuous wavelet transform 𝐶 using a Mexican hat 

wavelet is applied to the luminance values. The wavelet pyramid consists of 10 levels 𝑖, representing 

spatial scales 𝑠𝑖 of 1.00, 1.64, 2.69, 4.42, 7.26, 11.91, 19.54, 32.08, 52.64 and 86.4 pixels. The 

subsequent analysis is applied on the absolute values of the wavelet coefficients, which are 

subsequently filtered with a Gaussian convolution kernel of size 3𝑠𝑖 for coefficients at level 𝑖. This 

process conditions the wavelet coefficients which avoids unstable behaviour in regions that are 

uniform but containing noise. 

For each of the spatial scales 𝑠𝑖 a corresponding angular frequency can be constructed: 
 

  𝑢𝑖 =
π

180
 
0.5

𝑠𝑖
 
𝑑 𝑛𝑥

𝑙𝑥
  

 

In this equation, 𝑑 is an assumed distance between the viewer and the television screen (in metres), 

𝑛𝑥 is the horizontal pixel resolution of the screen/content, and 𝑙𝑥 is the horizontal size of the screen 

(in metres). An average distance of 𝑑 = 2.8 𝑚 may be assumed. The horizontal distance of a 50” 

television is 𝑙𝑥 = 1.3 𝑚. 
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The continuous wavelet decomposition 𝐶 along with the pixel luminance 𝐿(𝑥) can be used to 

determine the angular frequency 𝑢(𝑥) at pixel 𝑥 for which the human visual system is most sensitive, 

given the frequencies locally available in the image. This is achieved by solving the following 

optimization: 

  𝑢(𝑥) = argmax
𝑢𝑖

𝐶(𝑥, 𝑢𝑖)  𝑆(𝐿(𝑥), 𝑢𝑖) 

As for any reasonable image size there are no more than 10 wavelet levels 𝑖 necessary, the output 

𝑢(𝑥) of this process has one of only 10 different values. This process is carried out for all pixels 

individually, so that the pixel-map of frequencies 𝑢 also contains only ten different values, which are 

logarithmically spaced. 

A filtering step is then applied to remove sharp transitions in the frequency map. As the above 

equation should be implemented as a loop over all wavelet levels 𝑖, while keeping track for each pixel 

which angular frequency produces the highest response, this filtering step can be incorporated into 

the same loop. Thus, a separate map 𝑀𝑖(𝑥) is created for each wavelet level 𝑖. Each element 𝑥 in map 

𝑀𝑖(𝑥) will have a value of either 0 or 𝑢𝑖. 

The maps 𝑀𝑖(𝑥) are then filtered by Gaussian convolution with a filter kernel that depends on 

the angular frequency 𝑢𝑖 associated with wavelet level 𝑖. The kernel size 𝜎𝑖 for wavelet level 𝑖 is 

given by: 

  σ𝑖 = max (1, min (512, (
10

𝑢𝑖
)

4
)) 

 

The filtered frequency map is then constructed by summation: 
 

  𝑢′(𝑥) = ∑ 𝑀𝑖𝑖 ⊗ 𝐺σ𝑖
 

 

As this filtering may affect the range of values in the map, a rescaling is performed: 
 

  𝑢′′(𝑥) = 𝑢′(𝑥)
max(𝑢)

max(𝑢′)
 

 

This scaling is not applied when the frame is all black. Further, this scaling step may lead to temporal 

artifacts if applied to video. A solution to this problem is to apply leaky integration to the scaling 

factor max(u)/max(u’). If for frame 𝑡 − 1 the scaling factor is given by 𝑠𝑡−1, then the scaling factor 

𝑠𝑡 to be applied to frame 𝑡 is given by: 
 

  𝑠𝑡 = 𝛼𝑠𝑡−1 + (1 − α)
max(𝑢)

max(𝑢′)
 

 

The scaled frequency for each pixel 𝑥 in frame 𝑡 is then obtained by setting 𝑢𝑡
′′(𝑥) = 𝑢𝑡

′(𝑥)𝑠𝑡, with 

α = 0.8 producing flicker-free results. 

The map 𝑢𝑡
′′(𝑥) is attached as auxiliary data to frame 𝑡. 

1.3 Content adaptation 

A television receiving content will decode frame 𝑡 as well as the auxiliary map 𝑢𝑡
′′(𝑥). The luminance 

𝐿(𝑥) of a pixel 𝑥 and its associated frequency 𝑢𝑡
′′(𝑥) is used to first determine the contrast sensitivity 

of this pixel by evaluating 𝑆(𝑥) = 𝑆(𝐿(𝑥), 𝑢𝑡
′′(𝑥)). The contrast sensitivity value 𝑆(𝑥) is converted 

to a minimum detectable modulation 𝑚(𝑥) = 1/𝑆(𝑥). To arrive at a pixel luminance adjustment 
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𝐿𝑎𝑑𝑗(𝑥), it is observed that the minimum detectable modulation can be equated to Michelson contrast 

𝑀(𝑥) = (𝐿(𝑥) − 𝐿𝑎𝑑𝑗(𝑥)) ∕ (𝐿(𝑥) + 𝐿𝑎𝑑𝑗(𝑥)): 

 

  𝑚(𝑥) = 𝑀(𝑥) 
 

From this it follows that the adjustment applied to pixel 𝑥 is: 
 

  𝐿𝑎𝑑𝑗(𝑥) = 𝐿(𝑥) 
1−𝑓 𝑚(𝑥)

1+𝑓 𝑚(𝑥)
 

 

where a free parameter 𝑓 is introduced that can guide the amount of adjustment. Small values of 𝑓 

produce a small reduction of light (and therefore energy), while a larger value of 𝑓 further reduces 

the demand for energy. The choice of 𝑓 determines whether the resulting imagery is distinguishable 

from the unprocessed images or not. 

The above equation shows that each pixel is multiplied by a ratio: 
 

  𝑟(𝑥) = (1 − 𝑓 𝑚(𝑥)) / (1 + 𝑓 𝑚(𝑥)) 
 

This ratio could in principle be applied to luminance only. However, the perception of luminance and 

chromaticness are related, and therefore an additional chrominance scaling is required. A better 

approach is therefore to apply the adjustment after converting the image to CIE Lab and from there 

to CIE LCh. Here, the 𝐿-channel represents lightness, and the appropriate reduction of lightness is 

therefore defined as 𝑟(𝑥)1/3. In addition, in CIE LCh space chroma is adjusted as: 
 

  𝐶𝑎𝑑𝑗(𝑥) = 𝐶(𝑥)(𝑘 + (1 − 𝑘) 𝑟(𝑥)1/3) 
 

where 𝑘 = 0.5 is a constant that determines the amount of chroma adjustment. 

 

 

Annex 2 

 

Process of content adaptive processing to achieve a desired amount  

of energy reduction (Method B) 

The method presented in this annex is intended to provide the best visual quality given a desired 

reduction in energy. It matches the framework described in § 3 of this Report, and it is based on a 

neural network implementation that is both memory and energy-efficient, flexible, and lightweight. 

The memory footprint and energy consumption of a neural network is strongly related to the number 

of trainable parameters. This number therefore needs to be as small as possible. Such a lightweight 

network offers the opportunity to be deployed in different environments, such as embedded hardware, 

video encoding or display environments. 
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The method [3] enables an operator to define an energy-saving rate 𝑅𝑒, upon which the neural network 

determines a pixel-wise map 𝑀𝑅 that can be transmitted to a display device. The display device can 

then use this map to adjust an RGB image to achieve an energy-saving rate 𝑅𝑒,final ≤ 𝑅𝑒. This is 

achieved by subtracting the map: 

  𝑅display = 𝑅 −
𝑅𝑒,final

𝑅𝑒
𝑀𝑅 

 

  𝐺display = 𝐺 −
𝐺𝑒,final

𝐺𝑒
𝑀𝑅 

 

  𝐵display = 𝐵 −
𝐵𝑒,final

𝐵𝑒
𝑀𝑅 

 

Further, an alternative hue-preserving reduction of RGB values is then achieved as follows4: 
 

  𝑅display = 𝑅 
(𝑌−

𝑅𝑒,final
𝑅𝑒

𝑀𝑅)

𝑌
 

 

  𝐺display = 𝐺
(𝑌−

𝑅𝑒,final
𝑅𝑒

𝑀𝑅)

𝑌
 

 

  𝐵display = 𝐵
(𝑌−

𝑅𝑒,final
𝑅𝑒

𝑀𝑅)

𝑌
 

 

In Annex 3, both approaches are evaluated (as Method B and Method B (hue preserving), 

respectively). In the above equations, 𝑌 represents the luma (in Yuv space) of the input image. 

Thus, the display device may select an energy saving rate 𝑅𝑒,final that is less than or equal to the 

energy saving rate 𝑅𝑒 used to produce map 𝑀𝑅. 

With the aid of a neural network, the map 𝑀𝑅 can be constructed to minimise visual artefacts, and it 

can be directed to be as smooth as possible, which has the advantage that the map itself can be 

compressed prior to transmission and thereby save bandwidth. 

2.1 Neural network architecture 

The model architecture for producing map 𝑀𝑅 is illustrated in Fig. 1. To make the neural network as 

lightweight as possible, the number of trainable parameters should be kept small. This is achieved by 

limited the number of channels in each layer to either four or eight. Second, the method features an 

Atrous spatial pyramid [4] which allows the reproduction of fine-to-coarse image-level features using 

a small number of trainable parameters without the need for down-/up-sampling. This pyramid has 

five levels with dilatation rates equal to 1, 2, 4, 8 and 16. The pyramid outputs are concatenated, 

leading to 20 channels which are passed into channel and spatial attention layers. The channel 

attention layer consists of adaptive 2D average pooling followed by a rectified linear unit (ReLu) and 

a sigmoid activation layer. These attention layers are subsequently followed by a two ReLu-based 

convolution layers, which produce the final map 𝑀𝑅. All convolution layers use 3 by 3 kernels. The 

network has a total of a mere 4 832 trainable parameters. 

 

4 Note that this adjustment is hue-preserving because the ratio between R and G, R and B, and G and B are 

preserved. This method yields improved performance relative to the method presented in [3]. 
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FIGURE 1 

Model architecture 

 

Note to Fig. 1: #In and #Out represent the number of input and output channels, respectively. #DR stands for 

dilatation rate. 

2.2 Loss functions 

To produce a network that has the aforementioned desired features, a total of four loss functions are 

linearly combined. Given the input and desired output luma images 𝑌 and 𝑌display, the associated 

display power 𝑃𝑌 and 𝑃𝑌,display, as well as the map 𝑀𝑅, the loss functions are: 

– The mean absolute error loss is given by 𝐿MAE =
1

𝑁
∑ (𝑌𝑖 − 𝑌𝑖,display)𝑁

𝑖=1  

– The structural similarity index measure (SSIM) loss is 𝐿SSIM = 1 − SSIM(𝑌, 𝑌display) 

– The mean per pixel power loss is defined as 𝐿power =
1

𝑁
‖𝑃𝑌,display − 𝑃𝑌(1 − 𝑅𝑒)‖

2
 

– The total variance loss, defined in terms of the map 𝑀𝑅 is given by 𝐿TV =
1

𝑁
∑ ((∇𝑣𝑀𝑅)2 + (∇ℎ𝑀𝑅)2)𝑁

𝑖=1 , where ∇𝑣 and ∇ℎ are the vertical and horizontal gradients. 

Note that for the purpose of training, a rudimentary model of the power use of a display is given by: 
 

  𝑃𝑌 =
1

𝑁
∑ 𝑌𝑖

𝛾𝑁
𝑖=1  

 

  𝑃𝑌,display =  
1

𝑁
∑ 𝑌𝑖,display

𝛾𝑁
𝑖=1  

 

where 𝛾 = 2.2 is the assumed gamma non-linearity employed by the display device. Note that an 

image is assumed to have 𝑁 pixels, indexed by the variable 𝑖 in the above definitions. 

2.3  Training protocol  

The network is trained and assessed on the Berkeley Segmentation Dataset (BSD) [5]. This dataset 

consists of 300 images, of which 200 for training, 40 for validation, and 60 for testing. The images 

have a pixel resolution of 481 by 321, in either landscape or portrait format. The images are randomly 

cropped into patches of size 128 by 128 pixels, which undergo random data augmentation (i.e. 
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horizontal flip, vertical flip and rotation of 90 degrees). The network is trained using the following 

parameters: Adam solver, learning rate of 1𝑒−3, a weight decay of 1𝑒−5, and a batch size of 4. 

During the first two epochs, to ensure the quality of the output image, the loss function is only 

composed of the 𝐿MAE and 𝐿SSIM losses. The training phase converges quickly with a very good 

quality of reconstruction; the average peak signal-to-noise ratio (PSNR) value is above 50 dB. After 

these first epochs, the 𝐿power and 𝐿TV losses are added, to further ensure the energy reduction and the 

smoothness constraint on the map 𝑀𝑅. The full loss function is given by: 
 

  αMAE𝐿MAE +  αSSIM𝐿SSIM +  αpower𝐿power +  αTV𝐿TV 
 

The coefficients of this linear combination are empirically set to 

{αMAE, αSSIM,  αpower,  αTV} = {0.5, 1.0, 10, 0.013}. 

 

 

Annex 3 

 

Benchmarks and subjective evaluation 

There exist several methods for reducing the energy consumption associated with specific content, of 

which the methods presented in this Report are part. In general, three different classes can be 

discerned, namely histogram-based, scaling-based, and subtraction-based. Further classifications can 

be made based on whether the processing is linear or non-linear and whether the method is based on 

a (deep) neural network or not. In addition, some methods aim to preserve quality while reducing 

power requirements as much as possible, while others fix a power reduction requirement and within 

this constraint aim to maintain visual appearance. Of the methods currently known (and summarized 

in Table 1), twelve were chosen for a benchmark. These are listed in bold in the Table, forming a 

representative selection of methods. 

TABLE 1 

Taxonomy of energy-aware image processing methods 

Model Type 
Spatially 

varying 

Linear/Non-

Linear/Deep 

Quality/

Power 
Summary 

I2GEC [8] Hist – NL Q Hard thresholding 

HPCCE [9] Hist – NL Q, P Contrast enhancement 

IQPC [10] Hist – NL Q Roll-off clipping 

PQPR [11] Scaling – L Q SSIM-based scaling 

S-VS [12] Scaling Yes NL – Helmholtz-Kohlrausch effect 

SJND [13] Scaling Yes NL Q JND and saliency-based scaling 

LAPSE [14] Scaling – NL Q, P Polynomial scaling 

LABS [15] Scaling – L Q, P Linear scaling 

PLS [16] Scaling – L P Power-rate reduction scaling 
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Model Type 
Spatially 

varying 

Linear/Non-

Linear/Deep 

Quality/

Power 
Summary 

ACE Net [16] Scaling Yes D Q, P CNN-based contrast 

enhancement 

DeepBattery [17] Scaling Yes D Q, P Encoder-decoder network 

TABLE 1 (end) 

Model Type 
Spatially 

varying 

Linear/Non-

Linear/Deep 

Quality/

Power 
Summary 

EWMA [18] Scaling – NL – Content-dependent filter 

R-ACE net [19] Subtract Yes D Q, P CNN-based attenuation map 

Method A [2] Scaling Yes NL Q CSF-based scaling 

Method B [3] Subtract Yes D Q, P CNN-based attenuation map 

 

Among the histogram-based methods, I2GEC and IQPC search a clipping point at which the 

luminance of the content is clipped. This is done while remaining above a target PSNR value. The 

HPCCE method performs histogram equalization guided by an energy consumption model. This 

jointly reduces power consumption and increases global contrast. HPCCE is therefore not transparent 

in terms of visual quality. 

Scaling-based methods modify all pixels in the image by applying a scaling factor to each. The scaling 

factor can be the same or it can be different for each pixel. The following methods apply the same 

scaling factor to all pixels. The exponentially weighted moving average (EWMA) method recursively 

applies a gain-offset model to the luma component in 𝑌𝐶𝑏𝐶𝑟 color space. The physical layer security 

(PLS) method reduces luma with a scaling factor 𝑘 determined by the desired percentage power 

reduction 𝑅 using 𝑘 = (1 −
𝑅

100
)

1/𝛾

. The PQPR method instead determines its scaling factor 𝑘 on the 

basis of a target SSIM value. Each of these methods either consider quality or energy reduction 

targets, but not both jointly. 

The LAPSE and LABS methods, on the other hand, do incorporate a trade-off between quality and 

power reduction. LAPSE makes use of a third order polynomial to reduce luma. The LABS method 

bases its scaling factor on both SSIM and a desired power reduction. 

The following scaling-based methods are spatially variant. The SJND method aims to preserve visual 

quality through the calculation of a just-noticeable difference obtained through a saliency model, in 

link with a contrast sensitivity function and an analysis of spatial frequencies in the discrete cosine 

transform (DCT) domain. Method A also falls in this class, and it is described in detail in Annex 1 of 

this Report. The S-VS method exploits the Helmholtz-Kohlrausch effect, in which the perception of 

a pixel’s luminance is modified by its level of saturation. 

Finally, several models are known which uses deep learning to reduce the power consumption of 

content without unduly affecting visual quality. Typically a network is designed along with loss 

functions that drive the desired power reduction and other loss functions that aim to maintain image 

quality. The ACE network is designed to directly produce a power-reduced image. With a different 

architected, the R-ACE network outputs an attenuation map which is later added to the input image 

to produce a power-reduced image. Finally, Method B, as described in Annex 2 of this Report is a 

further development of R-ACE, with a significantly simplified architecture while improving on its 

performance. 
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3.1 Benchmark with objective metrics 

The methods are benchmarked using two objective metrics on images drawn from two datasets. The 

datasets are the Kodak24 set [20] and BSDS300 test set [21]. The evaluation uses all 24 images from 

the Kodak24 set and 60 randomly drawn images from the BSDS300 database. The objective metrics 

used for the evaluation are the SSIM [7] and the learned perceptual image similarity (LPIPS) [22]. 

SSIM is a perception-based method that measures image degradation between an input image and a 

processed image as the perceived change in structural information [7]. The values obtained with SSIM 

range between 0 and 1, where values close to 1 mean that the difference between the input and the 

processed image is small. High values are therefore better. LPIPS is a neural network-based image 

similarity metric [22]. The values obtained with this network also range from 0 to 1, but in this case 

lower values means greater similarity between input and processed images. 

To understand the power consumption associated with each image for a specific OLED display, which 

has red, green, blue and white sub-pixels, a power model was developed [23]. For a given RGB pixel 

(𝑟in, 𝑔in, 𝑏in)𝑇 as input, the model begins by determining red, green, blue and white values for the 

four sub-pixels. This is achieved by using Murdoch’s model [24] which assumes that the display 

gamma 𝛾 is known, and that a rotation matrix 𝑅rot has been derived which transforms the input RGB 

values into the RGB color space corresponding to the red, green and blue sub-pixels. It further 

assumes that the white point (𝑟𝑤, 𝑔𝑤, 𝑏𝑤)𝑇 of the display is available. The (𝑟, 𝑔, 𝑏, 𝑤) sub-pixels are 

then computed as follows: 

  (
𝑟′
𝑔′

𝑏′

) = 𝑅rot (

𝑟in

𝑔in

𝑏in

)

𝛾

(

1/𝑟𝑤

1/𝑔𝑤

1/𝑏𝑤

)

𝑇

 

 

  𝑐min = min(𝑟′, 𝑔′, 𝑏′) 
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FIGURE 2 

Objective evaluation of histogram-based methods (HPCCE, IQPC and I2GEC)  

for different power reduction values 

 

Note to Fig. 2: The plots at the top show SSIM values, while the bottom plots show LPIPS values. 

  (

𝑟
𝑔
𝑏
𝑤

) = (

𝑟′ − 𝑐min

𝑔′ − 𝑐min

𝑏′ − 𝑐min

𝑐min

) (

𝑟𝑤

𝑔𝑤

𝑏𝑤

1

)

𝑇

 

Assuming that (𝑟, 𝑔, 𝑏, 𝑤) are normalised, a pixel that is supplied with these values will then consume 

an amount of power that can be estimated as: 
 

  𝑃𝑟,𝑔,𝑏,𝑤 = 𝑟 𝑃𝑅,max + 𝑔 𝑃𝐺,max + 𝑏 𝑃𝐵,max + 𝑤 𝑃𝑤,max 
 

The power consumption 𝑃im associated with an image is then the sum of the power consumption of 

each pixel. This model can be used to evaluate the power consumption associated with an image. 

Any method that reduces the power consumption of a display when it is displaying said image, can 

be evaluated in terms of this method. The input and output images (𝐼in and 𝐼out) will consume an 

estimated amount of power 𝑃in and 𝑃𝑜𝑢𝑡, respectively. The power reduction �̂� can then be expressed 

as a percentage: 

  �̂� = 100 (1 −
𝑃out

𝑃in
) 
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FIGURE 3 

Objective evaluation of scaling-based methods (PQPR, LAPSE, LABS, PLS, EWMA and Method A)  

for different power reduction values 

 

Note to Fig. 3: The plots at the top show SSIM values, while the bottom plots show LPIPS values. 

For each energy-aware image processing method, their parameters were varied to cover a range of 

power reductions. Methods based on histogram clipping were configured for PSNR values of 20, 25, 

30 and 35. For the scaling-based models PQPR and LAPSE, the SSIM was used to determine 

parameter settings. Here, SSIM values of 0.88, 0.90, 0.95 and 0.99 were used. For the PLS method 

the luminance scaling was calculated for target power reductions of �̂� = 10, 20, 40 and 60. The α 

parameter of the LABS method was varied in the range between 0.5 and 2. In each case the parameters 

were chosen to be reasonably close to target power reduction values of �̂� = 10, 20, 40 and 60. 

Figure 2 shows the results obtained for the histogram-based methods involved in the comparison. The 

top two plots show SSIM values as function of obtained power reduction �̂�. The bottom two results 

show LPIPS values as function of obtained power reduction �̂�. The plots on the left are for the 

Kodak24 set, whereas the plots on the right are for the BSDS300 dataset. The results for scaling based 

methods are shown in Fig. 3, and the results for the neural-network-based methods are shown in Fig. 4. 

In general, a stronger power reduction produces a lower SSIM value and a higher LPIPS value, which 

is consistent with expectation. For the histogram-based methods, IQPC and I2GEC perform similarly, 

although it should be noted that in these evaluations the IQPC method has produced an outlier 

(see Fig. 2). For this class of methods HPCCE offers the best trade-off between quality and power 

reduction. Within the class of scaling-based methods, the best trade-off is achieved by Method A, as 

described in this Report, as shown in Fig. 3. Between the neural-network-based methods, it is 

Method B that produces the best trade-off between quality and power reduction, as can be seen in Fig. 4. 
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FIGURE 4 

Objective evaluation of neural-network-based methods (ACE, R-ACE and Method B)  

for different power reduction values 

 

Note to Fig. 4: The plots at the top show SSIM values, while the bottom plots show LPIPS values. 

Figure 5 compares the best performing methods from each of the three classes (HPCCE, Method A 

and Method B). This plot shows that in terms of SSIM, both Method A and Method B perform 

similarly, and outperform HPCCE. The LPIP metric indicates an advantage for Method A relative to 

Method B, while both Methods A and B outperform HPCCE. 

Further, to understand the effect of producing a hue-preserving power reduction, Method B was 

further evaluated with and without a hue preserving reduction, as presented in Annex 2. Both variants 

are also compared with Method A (which has its own colour management approach), as well as with 

the PLS method with and without hue-reserving power reduction. The results produced for the images 

from the Kodak24 set are shown in Fig. 6. As can be seen, both PLS and Method B improve 

significantly when a hue-preserving reduction is introduced. In the context of the SSIM metric, 

Method B now produces the best results, whereas for the LPIPS metric, Method A and PLS perform best. 

3.2 Subjective test 

Given the results of the benchmark presented in § 3.1, the best performing methods were subjected 

to an additional psychophysical evaluation. The methods in question are PLS (hue preserving), 

Method A and Method B (hue preserving), and for each method for different levels of energy 

reduction were created. 
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FIGURE 5 

Plots comparing the best methods from each of the three classes, namely histogram-based (HPCCE),  

scaling-based (Method A) and neural-network-based (Method B) 

 

The protocol involved pairwise judgements on a Likert-like scale, where similarity between two 

images presented side-by-side was judged. The scale ranged from ‘very dissimilar’, ‘dissimilar’, 

‘neutral’, ‘similar’, to ‘very similar’. Each pair of images was presented side-by-side for 5 seconds, 

and a decision had to be recorded within those 5 seconds by checking one of five checkboxes. The 

first ten images were discarded from analysis, as these are intended for training the participant. These 

ten images were followed by 250 trials on images extracted from the Kodak 24 dataset. The 

experiment was carried out by forty participants (28 male, 12 female). 

The experiment was carried out using an LG OLED display in a controlled viewing environment 

(dark walls and the only illumination in the room came from the display itself). 

The average subjective scores obtained with this protocol are shown in Fig. 7. The lines indicate mean 

subjective scores, whereas the grey zone around each line represents the standard error. These results 

generally show a correlation between reducing the energy consumption and the detectability of 

differences with the input image. The PLS method (hue preserving) scores lower than Method A and 

Method B (hue preserving), whereas the latter two methods perform equivalently in this experiment. 
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FIGURE 6 

Plots comparing hue preserving variants for PLS and Method B with the original versions of PLS  

and Method B as well as with Method A 

 

FIGURE 7 

Mean subjective scores for PLS (hue preserving), Method A, and Method B (hue preserving) 

 

Note to Fig. 7: The blue ‘Observers’ line represents the score given when the input image was judged against 

itself. The grey zones around each line indicate the standard error. 
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The horizontal blue ‘Observers’ line reports the score given to comparisons of input images with 

itself. As this line is not at 5.0, this means that even when the input image is shown twice side-by-

side, some participants on occasion report small differences. It is interesting to note that for Method A 

and Method B (hue preserving) the standard error zones overlap with the standard error zone of the 

horizontal ‘Observers’ line for power reductions up to around 20%. This means that with either 

method power reductions up to 20% produce to imagery that, when placed side-by-side, are difficult 

to distinguish from the input imagery. This goes toward the suggestion that a 20% power reduction 

can be achieved with either method. 

 

 

Annex 4 

 

Further experiments 

First, the process for achieving energy reduction in display devices by means of adjusting the content, 

as described in Annex 1, is evaluated in this section. This process is labelled A in this Annex. The 

neural network-based method described in Annex 2 is also evaluated, and it is labelled B in this Annex. 

Derived and alternative methods are introduced as follows: 

– Method C: This method is the same as Method A, but removes the spatially varying wavelet 

analysis, and uses a fixed frequency estimate instead. This method is included to test the 

relative merit of the wavelet analysis of Method A. 

– Method D: This method implements linear scaling, as this is the most basic way in which the 

display power consumption associated with an image can be reduced. 

4.1 Performance of Method A 

To assess the performance of Method A, images are created for different values of free parameter 𝑓, 

ranging between 5 and 75 in increments of 5. This parameter is described in § 1.3 of Annex 1. 

Method A is also compared against two alternatives. The first alternative, labelled C, omits the spatial 

analysis step. Barten’s contrast sensitivity function is seeded with a fixed angular frequency of 

5 cycles per degree, instead of a per-pixel angular frequency: 
 

  𝑆fixed(𝑥) = 𝑆(𝐿(𝑥), 5) 
 

The contrast sensitivity 𝑆fixed(𝑥) is then used to compute an adjusted image 𝐿𝐵(𝑥; 𝑓) as in Method A. 

The angular frequency of 5 cycles per degree was chosen because human vision (and Barten’s model) 

is most sensitive at this frequency. This, therefore, produces an alternative that is conservative which 

is desirable in a broadcast scenario where preserving visual quality is paramount. This variant could 

be implemented in its entirety in a display device without requiring spatial processing. 

The second alternative is a simple linear scaling, labelled D. To determine the scaling factor that 

would produce a comparable result, for each image the mean ratio 𝑟 between input image and the 

result obtained with Method A is determined: 
 

  𝑟 =
1

𝑛𝑥 𝑛𝑦
∑

𝐿A(𝑥;𝑓)

𝐿(𝑥)𝑥  
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The ratio is then applied to the input image to produce a linearly scaled image 𝐿𝐶(𝑥; 𝑓) that has on 

average the same reduction of values as that achieved by Method A: 
 

  𝐿𝐶(𝑥; 𝑓) = 𝑟 𝐿(𝑥) 
 

For the purpose of comparison, a dataset of 157 images known as the INRIA Holidays database was 

used [6]. Method A has a single free parameter 𝑓, which can be varied to drive the strength of the 

processing. In the following, parameter 𝑓 is varied between 5 and 75, in increments of 5, leading to 

fifteen different results per input image for each of Methods A, C and D. 

During a critical viewing session, for each of the three algorithmic variants, the largest value of 𝑓 was 

determined for which no differences were visible in a direct side-by-side comparison with the input 

image. The viewing environment is a room painted matte black, has no windows and no light other 

than that emanating from the screen used for the experiment. This screen showed images side-by-side 

on a grey background, with the input image on the left and a processed image on the right. For each 

image and for each variant, a trained expert was able to go back and forth between different values 

of 𝑓. Using this protocol, the expert selected the value of 𝑓 for which no differences with the input 

image were visible. 

In the following, these threshold values are denoted 𝑓threshold. 

To understand whether differences between the three methods in threshold values also lead to 

differences in light reduction, for each image the corresponding reduction of light (in cd/m2, assuming 

a display with 100 cd/m2 peak luminance) was computed as follows: 
 

  Δ𝐿A(𝑥; 𝑓threshold) = 𝐿(𝑥) − 𝐿A(𝑥; 𝑓threshold) 
 

Analogously, light reductions for Methods C and D, labelled Δ𝐿C(𝑥; 𝑓threshold) and 

Δ𝐿D(𝑥; 𝑓threshold), are computed, the results of which are shown in Fig. 8. This Figure shows the 

merit of Method A, in that on average this method produces a more significant light reduction than 

Methods C and D. 
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FIGURE 8 

A histogram showing the number of images for each reduction in luminance for Methods A, C and D 

 

FIGURE 9 

Some representative results from the INRIA Holidays database 
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Note to Fig. 9: The numbers on the left are the file names of the images shown. 

To assess visual quality, the image selected by the expert viewer were subjected to analysis with the 

PSNR and the SSIM [7]. It is noted, however, that the PSNR metric is only included for completeness, 

as this metric is sensitive to peak values in the images, and this is what the algorithm deliberately 

reduces – in this use case it is therefore more a measure of success than an image quality metric. 

The SSIM metric combines three types of measurement to assess image differences, namely 

luminance, contrast, and structure. It is applied in a windowed fashion on pairs of images. A pair of 

identical images would produce a value of 1, where is two images that are maximally different would 

produce a value of 0. 

The results are shown in Table 2, indicating that on average the images selected for Method A have 

a somewhat lower PSNR than Methods C and D, suggesting that the peak luminance has reduced a 

little more. The SSIM results, however, are not significantly different among the three variants. 

Figures 9 and 10 present several example results as well as numerical results, as obtained by the 

expert viewer. Here, 3D plots show difference images Δ𝐿A(𝑥; 𝑓threshold), Δ𝐿C(𝑥; 𝑓threshold) and 

Δ𝐿D(𝑥; 𝑓threshold) as height fields. The red line in the backplanes of the plots shows the mean 

luminance reduction, whereas the blue line shows the maximum reduction. The spatial variation in 

light reduction is significantly more pronounced in Method A compared with Method C, allowing an 

increased overall reduction of image luminance. 

TABLE 2 

Image quality metrics applied to the images selected by the expert viewer  

(157 images per method) 

Metric Method A Method C Method D 

PSNR (dB) 29.67 33.25 37.52 

SSIM 0.98 0.98 0.99 
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FIGURE 10 

For each example of Fig. 9, the plots show height fields for light reduction achieved  

with Methods A, C and D relative to the input images 

 

The average reduction of light output, assuming a 100 cd/m2 peak display luminance, over all 

157 images of the INRIA Holidays dataset, amounts to 3.36 cd/m2 for Method A, 2.25 cd/m2 for 

Method C and 1.55 cd/m2 for simple linear scaling (Method D). Thus, according to this relatively 

limited test, Method A is able to reduce light output twice as much as could be achieved with linear 

scaling. 

It should be noted that these results are obtained by an expert viewer in a dark room, and in a 

side-by-side comparison. In a real-world scenario, viewers would not have access to the unprocessed 

imagery, and this would allow a significantly larger reduction in luminance before the content would 

be seen as noticeably reduced in luminance. 

Further, the results obtained with Method C show that the wavelet-based analysis used in Method A 

significantly adds to the ability to reduce luminance, even if the light reduction is already improved 

relative to linear scaling (Method D). 
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4.2 HDR Tests (Methods A, C and D) 

Methods A, C and D are also evaluated on HDR images, which are taken from Table 8 of 

Report ITU-R BT.2245-9 – HDTV and UHDTV including HDR-TV test materials for assessment of 

picture quality. For these images, results are computed for a value of f = 75. For a set of 104 images, 

the average reduction is 13.7 cd/m2 for Method A, 11.3 cd/m2 for Method C and 13.3 cd/m2 for 

Method D. These values are more or less similar for equivalent parameter settings. However, the 

distribution of this reduction over the pixels will be different, and therefore for the same parameter 

settings, a difference in visual quality is to be expected. 

The change in peak luminance is assessed as well. Here, over the same set of images, the peak 

luminance is reduced by on average 180 cd/m2 for Method A, 156 cd/m2 for Method C, and 

201 cd/m2 for Method D. 

It is noted here that for equivalent parameter settings, Method D reduces the peak luminance more 

than Method A. Combined with the observation that the mean luminance reduction is similar for 

Methods A and D, this means that the distribution of luminance reduction over the image is different 

for the two methods, resulting in a higher final peak brightness for Method A. 

Some example results are shown in Fig. 11. 
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FIGURE 11 

Example HDR results 

 

4.3 Metadata tests (Method A) 

Given that the frequency map produced by Method A is intended to be transmitted as metadata, the 

question arises as to what happens if the metadata goes missing, or arrives corrupt. To test the case 

of corrupt data, a simulation was performed whereby a block (a quarter the size of the frequency map) 

in the centre of the frequency map is randomly permuted, thus producing noise. Images with values 

of f as chosen by the expert viewer were produced in this manner. 

For this test, the differences between images with and without corrupted metadata are computed. 

The mean of the absolute value of the differences found over all 157 images is 1.4 codeword values 

(i.e. on a range of 0 to 255). Example difference images are shown in Fig. 12, where 0 difference is 
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mapped to middle grey, darker and lighter values represent negative and positive differences. 

Note that both the mean and maximum differences are very small, indicating that corrupted metadata 

has a minimal effect on the quality of the final result. 

A second simulation was carried out by replacing the centre block in the frequency map with zeros, 

to test the case where a part of the metadata is missing. Given that the analysis step of Method A does 

not ordinarily create zero values in the map, the absence of metadata in (parts of) the map can be 

detected. If all metadata is missing, then the method replaces the map with a fixed frequency applied 

to all pixels. If only some of the metadata is missing, the missing values are set to the average of the 

data that is present. An example of the latter case is shown in Fig. 13 (right). Note that this produces 

a result that is essentially indistinguishable from the case whereby metadata is preserved (i.e. the part 

of the image around the central block). 

For this test, difference images were also computed, showing much the same behaviour as the case 

where metadata is corrupted. The mean of the absolute values of all differences computed over all 

157 images is 1.17 codeword values. Example results of image differences are shown in Fig. 12. 

A difference of 0 is mapped to middle grey, whereas positive and negative differences are lighter and 

darker. 

FIGURE 12 

Example results for corrupted metadata 
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Note to Fig. 12: Shown here is a processed image (left), a processed image with frequency map randomly 

permuted (i.e. corrupted; middle), and the difference map between the two images (right). 

FIGURE 13 

Example results for missing metadata 

 

Note to Fig. 13: Shown here is a processed image with the middle section of the frequency map set to zero 

(i.e. missing; left), and the difference map between the left image and the input image (right). 
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