Guidelines for the assessment of interference into the broadcasting service
Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

Series of ITU-R Reports

(Also available online at http://www.itu.int/publ/R-REP/en)

<table>
<thead>
<tr>
<th>Series</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO</td>
<td>Satellite delivery</td>
</tr>
<tr>
<td>BR</td>
<td>Recording for production, archival and play-out; film for television</td>
</tr>
<tr>
<td>BS</td>
<td>Broadcasting service (sound)</td>
</tr>
<tr>
<td>BT</td>
<td>Broadcasting service (television)</td>
</tr>
<tr>
<td>F</td>
<td>Fixed service</td>
</tr>
<tr>
<td>M</td>
<td>Mobile, radiodetermination, amateur and related satellite services</td>
</tr>
<tr>
<td>P</td>
<td>Radiowave propagation</td>
</tr>
<tr>
<td>RA</td>
<td>Radio astronomy</td>
</tr>
<tr>
<td>RS</td>
<td>Remote sensing systems</td>
</tr>
<tr>
<td>S</td>
<td>Fixed-satellite service</td>
</tr>
<tr>
<td>SA</td>
<td>Space applications and meteorology</td>
</tr>
<tr>
<td>SF</td>
<td>Frequency sharing and coordination between fixed-satellite and fixed service systems</td>
</tr>
<tr>
<td>SM</td>
<td>Spectrum management</td>
</tr>
</tbody>
</table>

Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.

Electronic Publication
Geneva, 2012

© ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.
Guidelines for the assessment of interference into the broadcasting service* ** **

(2012)

1 Introduction

This Report has been developed following the introduction of Recommendation ITU-R BT/BS.1895 which provides I/N thresholds above which further assessment of the interference should be carried out.

This Report provides approaches for protecting broadcasting from interference originating from other services and interference originating from devices/applications without a corresponding frequency allocation.

This Report is intended to provide guidance to assist administrations in planning the use of the spectrum in an effective and efficient manner. There are many variables involved in this process because many different administrations have different needs and different experiences with the planning and utilization of broadcasting spectrum. Notably, several different television systems are in use throughout the world, i.e. ATSC, DVB, ISDB and DTMB. Also, there are various different station allotment/assignment plans in use, either country-by-country or by regions. Generally, all of the existing television systems have been thoroughly planned and are in operation with well-defined service requirements and protection levels from specific/individual interference sources. These guidelines provide general information for evaluations which can then be amended as required.

* Statement by France: This Report has not obtained agreement and is not the result of consensus, as it contains several unresolved issues that need to be addressed. For example, the methodology proposed in Annex 2 requires a study on the uncertainty produced by not using real network deployments, digital terrain data and by aggregating interfering signals without the knowledge of the right time percentage field strengths to be used. Furthermore, several scenarios presented in this Annex 2 correspond to national compatibility studies, not usable for international sharing studies, and which are under the responsibility of JTG 4-5-6-7 rather than SG 6, in accordance with CPM-15 decisions. Therefore, France opposes the use of this method for sharing studies.

** The Administration of Germany notes that this Report has been approved without having achieved consensus at the meeting. Germany was not able to support the approval of this Report. The method proposed in Annex 2 has not been sufficiently and carefully enough considered and elaborated especially in regard to signal summation as pointed out by WP 3K, which may result in an excessively conservative protection. Furthermore, the proposed method in Annex 2 is not in line with those used in the development of the GE06 Plan and significant parts of Annex 2 do not relate to international coordination. Germany would like to underline that the described method is only an example way of addressing the issue and could in no way claim validity as only method.

*** Switzerland notes that the approval of this ITU-R Report has not been achieved by consensus at the meeting. Switzerland could not support the approval of the Report recognizing that the proposed method presented in Annex 2 of the Report has not been carefully elaborated and tested by the ITU-R Membership. In particular, the issue identified by WP 3K regarding the signal summation has not been solved yet and may result in excessively conservative protection. Furthermore, the proposed method is not in line with the calculation procedures used in the establishment of the GE06 Plan.

Details can be found in the Summary Record of the Study Group 6 meeting (Document 6/93).

1 It should be noted WP 6A is awaiting information from WP 3K on the aggregation of signals.
This Report attempts to supply information to provide administrations with suitable guidance and where there is a lack of information, highlights the need for further study.

2 Guidelines

The assessment of interference from different sources into the broadcasting service can be, based on the concept of noise power increment, viewed as a two-step process: a basic assessment and a further assessment:

- Basic assessment of interference

Interference power may be assessed on the basis of the I/N guideline criteria derived from Recommendation ITU-R BT.1895. These values serve as a threshold in evaluating interference risks into the broadcasting service. A translation into a field-strength value is performed as described in Annex 1. The criterion in terms of C/N degradation is also introduced in Annex 1. If the I/N is found to be less than the value specified by Recommendation ITU-R BT.1895, the assessment can be completed with this basic assessment.

- Further assessment of interference

For further compatibility analysis, administrations may use different methodologies to evaluate the impact of interference to Digital Terrestrial Television Broadcasting (DTTB). The criteria may be a degradation to carrier-to-noise ratio or degradation to reception location probability to evaluate this impact in a numerical form. Different approaches can be used for this purpose. As one of the possible approaches, Annex 2 describes a Monte Carlo methodology to determine the degradation to the reception location probability with the possibility to consider multiple sources of interference.

In this Report, reception location probability is defined as the percentage of locations within a small area, referred to in this Report as “pixel”, where the wanted signal is high enough to overcome noise and interference for a given percentage of time taking into account the temporal and spatial statistical variations of the relevant fields.

2 Recommendation ITU-R BT.1895 recommends:

1. that the values in recommends 2 and 3 be used as guidelines, above which compatibility studies on the effect of radiations and emissions from other applications and services into the broadcasting service should be undertaken;

2. that the total interference at the receiver from all radiations and emissions without a corresponding frequency allocation in the Radio Regulations should not exceed 1 per cent of the total receiving system noise power;

3. that the total interference at the receiver arising from all sources of radio-frequency emissions from radiocommunication services with a corresponding co-primary frequency allocation should not exceed 10 per cent of the total receiving system noise power.

3 Recognizing that a I/N criterion is not commonly used by the broadcasting services when establishing protection rules.

4 Pixel is a small area of typically about 100 m × 100 m where the percentage of covered receiving locations is indicated.
3 Overview of the methodologies

Some example methodologies for assessment of interference into the digital broadcasting service are given in Annexes 1 and 2 which describe in details the methods which may be used in the two steps described above. The features of these methodologies are:

1) Annex 1 shows the relationship between the I/N criterion, the C/N degradation and the corresponding interfering field strength. It provides an analytical methodology to calculate the individual and cumulative field strength (and power flux-density) above which compatibility studies should be undertaken to further assess the effect of interference. Annex 1 also describes the relationship between the I/N criterion and field strength, but taking into account environmental noise as well as thermal noise in different frequency bands. The Appendices to Annex 1 give numerical examples of the results obtained when applying the method in the Annex.

2) Annex 2 describes an example methodology that uses a statistical approach to evaluate the amount of interference in terms of degradation to the DTTB reception location probability when the interfering stations of other services/applications are implemented (“after”) compared to the DTTB reception location probability when the interfering stations of other services/applications are not implemented (“before”). The degradation of the reception location probability is statistically the decrease in the area where reception of the DTTB service is possible.

Multiplying the degradation of the reception location probability by the population (or number of households) of any given pixel, when this information is available, gives the probable loss of population (or number of households) served by DTTB in that pixel due to interference.

Annex 1

Relationship between the I/N criterion, the C/N degradation and the corresponding interfering field strength

Section A1.1 shows the relationship between the noise level N and the equivalent noise field strength E_N.

Section A1.2 shows the relationship between the equivalent noise level E_N and the minimum median field strength required for broadcasting coverage planning E_{MED}.

Section A1.3 shows the relationship between the I/N and the corresponding I/N field strength threshold $E_{I/N, th}$.

Section A1.4 derives the individual median effective interfering field strength E_{eff}.

Section A1.5 shows the relationship between multiple median effective interfering field strengths E_{eff}^X and I/N and introduces the equivalent C/N degradation C/N_{DEG}.

The Appendices to this Annex give numerical examples and details of the relationships described above.

– Appendix 1 gives examples of field strength threshold calculations and C/N degradation for the case of DTTB fixed reception.
– Appendix 2 gives the relationship between co-channel field strength threshold and adjacent-channel field strength threshold.
– Appendix 3 gives examples of co-channel interference assessment thresholds for co-primary frequency allocations.
– Appendix 4 presents numerical examples of adjacent channel field strength interference assessment thresholds for co-primary frequency allocations.
– Appendix 5 gives a method to assess of co- and multiple-adjacent channel interference into the broadcasting service from all radiations and emissions without a corresponding frequency allocation in the bands allocated to broadcasting.

A1.1 Received noise power and equivalent noise field strength

A1.1.1 Thermal noise power and equivalent noise field strength

Thermal noise power N_T (W) is calculated using Boltzmann’s equation:

$$N_T = kTB$$ \hspace{1cm} (1)

where:

- k Boltzmann’s constant ($1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$)
- T temperature (K)
- B receiver bandwidth (Hz).

The receiver inherent noise (noise figure) is used to compute the receiver noise floor (receiving system noise power), N_R (dBW):

$$N_R = 10\log(N_T) + F$$ \hspace{1cm} (2)

where F is the noise figure (dB).

The field strength, E_{NR} (dBμV/m) that corresponds to the receiving system noise power (noise equivalent field strength) can be expressed as a function of receiving system noise power, receiving antenna gain and frequency as:

$$E_{NR} = N_R - G_R + 20\log(f) + 107.2$$ \hspace{1cm} (3)

where:

- G_R receiving antenna isotropic gain (dBi) including the feeder loss
- f frequency (MHz).

A1.1.2 Environmental noise power and equivalent noise field strength

Recommendation ITU-R P.372 expresses each of average strength of atmospheric noise, man-made noise, and cosmic noise compared with the thermal noise level (F_{am} dB relative to kT) when they are received through a lossless short vertical monopole with a perfectly grounded plane. In all cases, results are consistent with a linear variation of the median value, F_{am}, with frequency f of the form:

$$F_{am} = c - d \log f$$ \hspace{1cm} (dB relative to kT) \hspace{1cm} (4)

5 $\log = \log_{10}$ in this Report.

6 The relationship between power and field strength is further described in formula (5) of Recommendation ITU-R P.845-3.
With \(f \) expressed in MHz, \(c \) and \(d \) take the values given in Table 1.

TABLE 1

Values of the constants \(c \) and \(d \)

<table>
<thead>
<tr>
<th>Environmental category</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>76.8</td>
<td>27.7</td>
</tr>
<tr>
<td>Residential</td>
<td>72.5</td>
<td>27.7</td>
</tr>
<tr>
<td>Rural</td>
<td>67.2</td>
<td>27.7</td>
</tr>
<tr>
<td>Quiet rural</td>
<td>53.6</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Since the above are received values with lossless short vertical monopole above a perfect ground plane, the vertical component of the r.m.s. field strength is obtained as \(F_{am} \) dB above \(E(kTB) \) dB given by equation (4).

\[
E_{NE} = F_{am} + 20 \log f + 10 \log B - 95.5 \quad \text{dB(µV/m)} \tag{5}
\]

where:

- \(E_{NE} \): equivalent field strength of the environmental noise in bandwidth \(B \)
- \(f \): frequency (MHz)
- \(B \): receiver effective noise bandwidth (Hz).

By substituting \(F_{am} \) expressed by equation (4) into equation (5)

\[
E_{NE} = c - d \log f + 20 \log f + 10 \log B - 95.5 \quad \text{dB(µV/m)} \tag{6}
\]

Similarly, for a half-wave dipole in free space:

\[
E_{NE} = c - d \log f + 20 \log f + 10 \log B - 98.9 \quad \text{dB(µV/m)} \tag{7}
\]

For a system with a receiving antenna with an isotropic gain \(G_R \):

\[
E_{NE} = c - d \log f + G_R - 2.15 + 20 \log f + 10 \log B - 98.9 \quad \text{dB(µV/m)} \tag{8}
\]

A1.1.3 Total receiver noise power and equivalent noise field strength

The field strength equivalent to the total receiver noise power can be calculated from both the field strength equivalent to the thermal noise power and the field strength equivalent to the environmental noise power in the following equation\(^7\):

\[
E_N = 10 \log \left(\frac{E_{NR}}{10^{10}} + \frac{E_{NE}}{10^{10}} \right) \tag{9}
\]

Figure 1 illustrates the result of this linear power summation in equation (9) for a dipole in free space. Note that the environmental man-made noise dominates at low frequencies. Thermal noise from the receiving system dominates at the higher frequencies.

\(^7\) If only thermal noise is considered, \(E_N = E_{NR} \).
A1.2 Equivalent noise field strength and minimum median field strength for planning

Minimum median field strength, E_{MED} (dBμV/m) required for broadcasting coverage planning is linked to the noise equivalent field strength by the following relationship:

$$E_{MED} = E_N + \mu \sigma_{BS} + SNR$$

(10)

where:

- μ Gaussian confidence factor related to target location percentage where broadcast coverage is sought
- σ_{BS} standard deviation of the shadowing between the broadcast transmitter and the broadcast receiver (dB)
- SNR signal-to-noise ratio (dB).

A1.3 Field strength threshold related to I/N

The I/N criterion and the I/N field strength threshold, $E_{I/N_{-th}}$ (dBμV/m) are related as follows:

$$E_{I/N_{-th}} = E_N + I/N$$

(11)
Appendix 3 tabulates an example of the interfering field strength thresholds at a dipole receive antenna located in free-space and at the edge of the coverage area. The thresholds, for each of the terrestrial broadcast frequency bands, are relative to I/N equal to -10 dB without consideration for the location correction factor ($E_{IN,th} = E_N + I/N$), E_N is derived from equation (9).

A1.4 Individual median effective interfering field strength

The individual median effective (i.e. taking account of the protection ratio relative to the co-channel case) interfering field strength, E_{eff} (dBμV/m) is defined as:

$$E_{eff} = E_{INT} - D_{DIR} - D_{POL} + PR(f_{INT} - f_{BS}) - PR(0)$$

(12)

where:

- E_{INT} individual median interfering field strength (dBμV/m)
- D_{DIR} broadcast receiver antenna directivity discrimination with respect to the interfering signal (dB)
- D_{POL} broadcast receiver polarization discrimination with respect to the interfering signal (dB)
- $PR(f_{INT} - f_{BS})$ appropriate broadcasting protection ratio for a frequency offset $f_{INT} - f_{BS}$ to protect the broadcast reception from interference (dB)
- $PR(0)$ co-channel protection ratio (dB).

A1.5 Multiple median effective interfering field strengths corresponding to I/N and equivalent C/N degradation

For each interfering source i, calculate its median effective interfering field strength $E_{eff,i}$ using equation (12):

$$E_{eff}^1, E_{eff}^2, ..., E_{eff}^n$$

where n is the number of interfering sources.

Calculate the cumulative median effective interfering field strength, E_{eff}^Σ, using the power sum method:

$$E_{eff}^\Sigma = 10 \log \left(\sum_{i=1}^{n} 10^{\frac{E_{eff}^i}{10}} \right)$$

(13)

The individual median effective interfering field strengths are power summed at the power summation point indicated in Fig. 2.
A1.5.1 Threshold based on median effective field strength

Interference from all interference sources into the broadcasting service E_{eff} within the broadcasting coverage area with respect to the I/N field strength threshold $E_{I/N_{th}}$ is considered to be acceptable if the following equation is satisfied:

$$E_{\text{eff}} \leq E_{I/N_{th}}$$ (14)

A1.5.2 Statistical considerations for threshold based on median effective field strength

Considering the variation of field strength with location, inherent to any terrestrial propagation environment, field strength levels for wanted or interfering signals are usually calculated in terms of median levels, i.e. as levels exceeded in 50% of locations in small areas of 100 m × 100 m. The variation with locations is usually approximated using Log-normal distribution, characterized with a standard deviation obtained from field measurements. The Log-normal assumption permits deriving median field strengths required to insure coverage or protection for any other target location percentages, like 70% or 95%, instead of 50%, by using adequate correction factors (see also Recommendation ITU-R-1368, Appendix 1 to Annex 2 and Appendix 1 to Annex 3). In the interference assessment on a case-by-case basis, suitable parameters such as location and time probabilities, and applicability of directional and polarization discriminations of the receiving antenna could be considered by each administration.

The multiple median effective interfering field strength meets a reception location probability of 50%. If a reception location probability other than 50% is envisaged, equation (15) can be used as the threshold.

$$E_{\text{eff}} + \mu \sigma_{\text{eff}} \leq E_{I/N_{th}}$$ (15)
where:

$$\sigma_{\text{eff}}^x$$
standard deviation of the shadowing of the sum of the signals of the interfering transmitters8.

A1.5.3 Threshold based on C/N degradation

The criterion of the C/N degradation, $\Delta_{C/N}$ can be derived from the I/N 9 criterion as follows:

$$\Delta_{C/N} = 10 \log \left(1 + 10^{\frac{I}{10}}\right)$$ \hspace{1cm} (16)

The C/N degradation, C/N_{DEG} related to the median effective interfering, E_{eff} field strength is as follows.

$$\frac{E_{\text{eff}}}{E_N} \leq C/N_{\text{DEG}}$$ \hspace{1cm} (17)

Similarly to § A1.5.1, interference from all interference sources into the broadcasting service coverage area with the noise equivalent field strength E_N is considered to be acceptable if the following equation is satisfied:

$$C/N_{\text{DEG}} \leq \Delta_{C/N}$$ \hspace{1cm} (18)

Appendix 1 to Annex 1

Examples of field strength threshold calculation and C/N degradation for the case of DTTB fixed reception

Example, for

$$F_{\text{dB}} = 7 \text{ dB}$$

$$T_K = 290 \text{ K}$$

And $B_{\text{MHz}} = 7.61 \text{ MHz}$ (in the case of 8 MHz DVB-T system)

Then $N_{R(dBm)} = -98.2 \text{ dBm}$

And with

$$G_{(dBi)} = 9.15 \text{ dBi} \text{ (consisting in } 12 \text{ dBi antenna gain relative to dipole} \text{ and } 5 \text{ dB feeder loss})$$

8 There are numerous approximations that can be used to derive the standard deviation σ_{eff}^x. In the absence of a suitable method, a possible approximation may be the value $\sigma_{\text{eff}}^x = 5.5 \text{ dB}$.

9 Example:

$I/N = -10 \text{ dB results in } \Delta_{C/N} = 0.414 \text{ dB (often rounded to 0.5 dB)}$.

$I/N = -20 \text{ dB results in } \Delta_{C/N} = 0.04 \text{ dB (often rounded to 0.05 dB)}$.
And $f_{MHz} = 790$ MHz,

No environmental noise is considered.

Then the field strength corresponding to the total system noise level is:

$$E_N = E_{NR} = 27.8 \text{ dBµV/m}$$

With $I/N = -10$ dB according to recommends 3 of Recommendation ITU-R BT.1895, the corresponding I/N field strength threshold obtained from equation (11) is:

$$E_{I/N,th} = 27.8 - 10 = 17.8 \text{ dBµV/m}$$

Co-channel case

Assuming a single interferer with no polarization or directivity discrimination is considered, then

$$D_{POL} = 0 \text{ and } D_{DIR} = 0$$

The median effective interfering field strength which respects the I/N field strength threshold can be calculated using equation (14):

$$E_{I/N,th} = E_{I/N,th}$$

A co-channel interferer has to be equal to or less than $E_{I/N,th} = 17.8 \text{ dBµV/m}$.

The median effective interfering field strength for a reception location probability of 95%, derived from equation (15) is:

$$17.8 - 9 = 8.8 \text{ dBµV/m}$$

where the distribution characteristics of E_{eff} is assumed to be Log-normal distribution of standard deviation 5.5 dB.

The allowable C/N degradation $\Delta_{C/N}$ for $I/N = -10$ dB is calculated as follows using equation (16) of Annex 1:

$$\Delta_{C/N} = 10 \log \left(1 + 10^{(I/N \text{ dB})} \right)$$

$$= 0.414 \text{ dB}$$

The C/N degradation C/N_{DEG} using equation (17) has to be less than or equal to 0.414 dB and calculated as follows:

$$C/N_{DEG} = 10 \log(10^{(E_{I/N,th} / 10)} + 10^{(E_{I/N,th} / 10)}) - E_N$$

$$= 10 \log(10^{17.8} + 10^{27.8}) - 27.8$$

$$= 0.414 \text{ dB}$$

First adjacent channel case

Assuming no polarization or directivity discrimination is considered, then

$$D_{POL} = 0 \text{ and } D_{DIR} = 0$$
Co-channel protection ratio for the interfering system: 21 dB
First adjacent channel protection ratio: –30 dB

The median effective interfering field strength which respects the I/N field strength threshold can be calculated using equation (14):

$$E_{\text{eff}}^\text{th} \leq E_{I/N _th}$$

A first adjacent channel interferer has to have a field strength equal to or less than $E_{I/N _th} = 17.8 \text{ dBµV/m}$ within the receiver channel.

The co-channel and the adjacent channel protection ratios have to be taken into account after reforming equation (12)

$$E_{\text{eff}} = E_{\text{INT}} - D_{\text{DIR}} - D_{\text{POL}} + PR(f_{\text{INT}} - f_{\text{BS}}) - PR(0)$$

$$E_{\text{INT}} = E_{\text{eff}} + D_{\text{DIR}} + D_{\text{POL}} - PR(f_{\text{INT}} - f_{\text{BS}}) + PR(0)$$

$$E_{\text{INT}} = 17.8 \text{ dBµV/m} + 30 \text{ dB} + 21 \text{ dB}$$

$$E_{\text{INT}} = 68.8 \text{ dBµV/m}$$

The median effective interfering field strength in the first adjacent channel has to be less than or equal to 68.8 dBµV/m to respect the I/N threshold.

The median effective interfering field strength for a reception location probability of 95%, derived from equation (15) is:

$$68.8 - 9 = 59.8 \text{ dBµV/m}$$

where the distribution characteristics of E_{eff} is assumed to be Log-normal distribution of standard deviation 5.5 dB.

The allowable C/N degradation $\Delta_{C/N}$ for $I/N = -10 \text{ dB}$ is calculated as follows using equation (16) of Annex 1:

$$\Delta_{C/N} = 10 \log \left(1 + 10^{\frac{I/N}{10}} \right)$$

$$= 0.414 \text{ dB}$$

The C/N degradation C/N_{DEG} using equation (17) has to be less than or equal to 0.414 dB and calculated as follows:

$$C/N_{\text{DEG}} = 10 \log \left(10^{\frac{E_{\text{eff}}^\text{th}}{10}} + 10^{\frac{E_{N}}{10}} \right) - E_N$$

$$= 10 \log \left(10^{\frac{17.8}{10}} + 10^{\frac{27.8}{10}} \right) - 27.8$$

$$= 0.414 \text{ dB}$$
Appendix 2 to Annex 1

Relationship between co-channel field strength and adjacent-channel\(^{10}\) field strength

The explanation of the terms \((PR(f_{\text{INT}} - f_{\text{BS}}) - PR(0))\) in equation (12) of Annex 1 is given in the following:

The protection ratio corresponding to the frequency offset between the wanted broadcasting signal power \(P_{\text{BS}}\) and interfering signal power \(P_{\text{INT}}\) is defined as follows (in dB):

\[
PR(f_{\text{INT}} - f_{\text{BS}}) = P_{\text{BS}} - P_{\text{INT}}
\]

(19)

As shown in Fig. 3, the interfering components \(P_1\) (due to out-of-band emission of the interfering signal, expressed in terms of a finite adjacent channel leakage ratio, ACLR) and \(P_2\) (due to imperfect filtering characteristics of the wanted receiver, expressed in terms of a finite adjacent channel selectivity, ACS) together act as the total co-channel interference. The co-channel protection ratio applies for the power sum \((P_1 \oplus P_2)\), as follows (in dB):

\[
PR_0 = P_{\text{BS}} - 10\log(10^{10} + 10^{10})
\]

(20)

From equations (19) and (20), we can derive:

\[
P_{\text{INT}} = 10\log(10^{10} + 10^{10}) - PR(f_{\text{INT}} - f_{\text{BS}}) + PR_0
\]

(21)

It can be converted to field strength:

\[
E_{\text{INT}} = 10\log(10^{10} + 10^{10}) - PR(f_{\text{INT}} - f_{\text{BS}}) + PR_0
\]

(22)

\(^{10}\) Represents 1\(^{st}\), 2\(^{nd}\), ..., \(n\(^{th}\) adjacent channel.
Appendix 3 to Annex 1

Example of co-channel interference assessment threshold for co-primary frequency allocations

With $I/N = -10$ dB according to recommends 3 of Recommendation ITU-R BT.1895 for co-primary frequency allocations, the corresponding co-channel field strength assessment threshold for a dipole receive antenna located in free-space and at any point within the coverage area can be calculated for a dipole in free space from the power summation of the thermal noise and the environmental noise, and the I/N value of -10 dB. Table 2 below tabulates the assessment thresholds for each of the frequency bands allocated to the broadcasting service in terms of field-strength density (dB (μV/m/Hz)) at the broadcast receiving system without consideration for the location correction factor ($E_{I/N,th} = E_N + I/N$), where E_N is derived from equation (9) of this Annex.

TABLE 2

Co-channel interference field-strength density assessment thresholds for the broadcast frequency bands for an I/N of -10 dB and a dipole antenna (location correction factor is not taken into consideration)

<table>
<thead>
<tr>
<th>Broadcast frequency band*</th>
<th>Interference field-strength density assessment thresholds (dB (μV/m/Hz))**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City</td>
</tr>
<tr>
<td>148.5-283.5 kHz</td>
<td>–25.7</td>
</tr>
<tr>
<td>525-1 705 kHz</td>
<td>–29.9</td>
</tr>
<tr>
<td>2 300-2 498 kHz</td>
<td>–34.9</td>
</tr>
<tr>
<td>3 200-3 400 kHz</td>
<td>–36.0</td>
</tr>
<tr>
<td>3 900-4 000 kHz</td>
<td>–36.7</td>
</tr>
<tr>
<td>4 750-4 995 kHz</td>
<td>–37.3</td>
</tr>
<tr>
<td>5 005-5 060 kHz</td>
<td>–37.5</td>
</tr>
<tr>
<td>5 900-6 200 kHz</td>
<td>–38.0</td>
</tr>
<tr>
<td>7 200-7 450 kHz</td>
<td>–38.7</td>
</tr>
<tr>
<td>9 400-9 900 kHz</td>
<td>–39.6</td>
</tr>
<tr>
<td>11 600-12 100 kHz</td>
<td>–40.3</td>
</tr>
<tr>
<td>13 570-13 870 kHz</td>
<td>–40.8</td>
</tr>
<tr>
<td>15 100-15 800 kHz</td>
<td>–41.2</td>
</tr>
<tr>
<td>17 480-17 900 kHz</td>
<td>–41.7</td>
</tr>
<tr>
<td>18 900-19 200 kHz</td>
<td>–41.9</td>
</tr>
<tr>
<td>21 450-21 850 kHz</td>
<td>–42.4</td>
</tr>
<tr>
<td>25 670-26 100 kHz</td>
<td>–43.0</td>
</tr>
<tr>
<td>47-72 MHz</td>
<td>–45.0</td>
</tr>
<tr>
<td>76-88 MHz</td>
<td>–46.6</td>
</tr>
<tr>
<td>88-108 MHz</td>
<td>–47.1</td>
</tr>
<tr>
<td>174-230 MHz</td>
<td>–49.3</td>
</tr>
</tbody>
</table>
TABLE 2 (end)

<table>
<thead>
<tr>
<th>Broadcast frequency band*</th>
<th>Interference field-strength density assessment thresholds (dB (µV/m/Hz))**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City</td>
</tr>
<tr>
<td>470-806 MHz</td>
<td>−52.1</td>
</tr>
<tr>
<td>806-960 MHz</td>
<td>−50.4</td>
</tr>
<tr>
<td>1 452-1 492 MHz</td>
<td>−45.6</td>
</tr>
</tbody>
</table>

* Broadcast frequency bands do not include regional variations given in Article 5 of the Radio Regulations.

** The values of the total receiving noise level N for the listed frequency bands have been derived from the curves in Fig. 1 in Annex 1.

Appendix 4 to Annex 1

Example of adjacent channel field strength interference assessment thresholds for co-primary frequency allocations

In addition to co-channel interference, the broadcast receiving system is susceptible to interference from signals on adjacent and multiple adjacent channels as described in Appendix 2 to this Annex. Recommendation ITU-R BT.1368 describes the protection ratios for various digital terrestrial television services in the VHF and UHF bands. For example, the protection ratios for the ATSC digital television system under weak signal conditions near the noise threshold (as may be experienced at the outer limits or even within the coverage area) are tabulated in Tables 3 and 4 below.

TABLE 3

Adjacent channel protection ratios for a weak 6 MHz ATSC wanted signal on channel N

<table>
<thead>
<tr>
<th>Type of interference</th>
<th>Adjacent channel protection ratio (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower adjacent channel interference ($N - 1$)</td>
<td>-28</td>
</tr>
<tr>
<td>Upper adjacent channel interference ($N + 1$)</td>
<td>-26</td>
</tr>
</tbody>
</table>
TABLE 4
Multiple adjacent channels protection ratios, \(N \pm 2 \) to \(N \pm 15 \), for a weak 6 MHz ATSC wanted signal on channel \(N \)

<table>
<thead>
<tr>
<th>Type of interference</th>
<th>Multiple adjacent channel protection ratio (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N \pm 2)</td>
<td>−44</td>
</tr>
<tr>
<td>(N \pm 3)</td>
<td>−48</td>
</tr>
<tr>
<td>(N \pm 4)</td>
<td>−52</td>
</tr>
<tr>
<td>(N \pm 5)</td>
<td>−56</td>
</tr>
<tr>
<td>(N \pm 6) to (N \pm 13)</td>
<td>−57</td>
</tr>
<tr>
<td>(N \pm 14) and (N \pm 15)</td>
<td>−50</td>
</tr>
</tbody>
</table>

The deterioration in the ATSC receiver sensitivity from adjacent-channel and multiple adjacent-channel interference is determined by the total power of the interfering signal within the adjacent channel. Consequently, for a single interfering signal from a radiocommunication service with a corresponding co-primary frequency allocation, the adjacent channel field-strength assessment thresholds can be determined from the ten per cent threshold requirement contained in Recommendation ITU-R BT.1895, the protection ratios contained in Recommendation ITU-R BT.1368, and the equivalent field strength of the total receiving system noise. In the UHF broadcast band (470-806 MHz), the total receiving system noise is dominated by the internal noise. Table 5 illustrates the resulting field-strength threshold for interference into multiple adjacent channels of the ATSC digital television system with a 6 MHz channel. It should be noted that Table 5 considers only a single interferer. Specific applications may need to consider the impact from multiple interferers.

TABLE 5
Adjacent-channel \((N \pm 1) \) and multiple adjacent channel \((N \pm 2 \) to \(N \pm 15 \)) co-primary interference field-strength assessment thresholds for the 6 MHz ATSC broadcast receiving system at various frequencies in the UHF band (dipole antenna in free space)

<table>
<thead>
<tr>
<th>Type of interference</th>
<th>Interference field-strength threshold (dB(µV/m))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>470 MHz</td>
</tr>
<tr>
<td>Lower adjacent channel interference (N − 1)</td>
<td>40.3</td>
</tr>
<tr>
<td>Upper adjacent channel interference (N + 1)</td>
<td>38.3</td>
</tr>
<tr>
<td>(N \pm 2)</td>
<td>56.3</td>
</tr>
<tr>
<td>(N \pm 3)</td>
<td>60.3</td>
</tr>
<tr>
<td>(N \pm 4)</td>
<td>64.3</td>
</tr>
<tr>
<td>(N \pm 5)</td>
<td>68.3</td>
</tr>
<tr>
<td>(N \pm 6) to (N \pm 13)</td>
<td>69.3</td>
</tr>
<tr>
<td>(N \pm 14) and (N \pm 15)</td>
<td>62.3</td>
</tr>
</tbody>
</table>
Appendix 5 to Annex 1

Method to assess co-channel and multiple-adjacent channel interference into the broadcasting service from all radiations and emissions without a corresponding frequency allocation in the bands allocated to broadcasting

This Appendix provides a methodology for assessment of co-channel and adjacent channel interference into the broadcasting service from all radiations and emissions without a corresponding frequency allocation in the bands allocated to broadcasting but nonetheless cause co-channel or multiple adjacent channel interference. It may assist administrations in the assessment of interference from these devices or systems without a frequency allocation while maintaining the performance of terrestrial broadcasting systems at acceptable levels.

1 Co-channel assessment threshold for the broadcasting service

With $I/N = –20$ dB according to recommends 2 of Recommendation ITU-R BT.1895, the corresponding co-channel field-strength assessment threshold for a dipole receive antenna located in free-space can be calculated for a dipole in free space from the power summation of the thermal noise and the environmental noise, and the I/N value of –20 dB. Table 6 below tabulates the assessment thresholds for each of the frequency bands allocated to the broadcasting service in terms of field-strength density (dB (µV/m/Hz)) at the broadcast receiving system without consideration for the location correction factor ($E_{I/N,th} = E_N + I/N$), where E_N is derived from equation (9) of Annex 1.

Table 6

<table>
<thead>
<tr>
<th>Broadcast frequency band*</th>
<th>Interference field-strength density assessment thresholds (dB (µV/m/Hz))**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City</td>
</tr>
<tr>
<td>148.5-283.5 kHz</td>
<td>–35.7</td>
</tr>
<tr>
<td>525-1 705 kHz</td>
<td>–39.9</td>
</tr>
<tr>
<td>2 300-2 498 kHz</td>
<td>–44.9</td>
</tr>
<tr>
<td>3 200-3 400 kHz</td>
<td>–46.0</td>
</tr>
<tr>
<td>3 900-4 000 kHz</td>
<td>–46.7</td>
</tr>
<tr>
<td>4 750-4 995 kHz</td>
<td>–47.3</td>
</tr>
<tr>
<td>5 005-5 060 kHz</td>
<td>–47.5</td>
</tr>
<tr>
<td>5 900-6 200 kHz</td>
<td>–48.0</td>
</tr>
<tr>
<td>7 200-7 450 kHz</td>
<td>–48.7</td>
</tr>
<tr>
<td>9 400-9 900 kHz</td>
<td>–49.6</td>
</tr>
<tr>
<td>11 600-12 100 kHz</td>
<td>–50.3</td>
</tr>
<tr>
<td>13 570-13 870 kHz</td>
<td>–50.8</td>
</tr>
</tbody>
</table>
TABLE 6 (end)

<table>
<thead>
<tr>
<th>Broadcast frequency band*</th>
<th>Interference field-strength density assessment thresholds (dB (µV/m/Hz))**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City</td>
</tr>
<tr>
<td>15 100-15 800 kHz</td>
<td>–51.2</td>
</tr>
<tr>
<td>17 480-17 900 kHz</td>
<td>–51.7</td>
</tr>
<tr>
<td>18 900-19 200 kHz</td>
<td>–51.9</td>
</tr>
<tr>
<td>21 450-21 850 kHz</td>
<td>–52.4</td>
</tr>
<tr>
<td>25 670-26 100 kHz</td>
<td>–53.0</td>
</tr>
<tr>
<td>47-72 MHz</td>
<td>–55.0</td>
</tr>
<tr>
<td>76-88 MHz</td>
<td>–56.6</td>
</tr>
<tr>
<td>88-108 MHz</td>
<td>–57.1</td>
</tr>
<tr>
<td>174-230 MHz</td>
<td>–59.3</td>
</tr>
<tr>
<td>470-806 MHz</td>
<td>–62.1</td>
</tr>
<tr>
<td>806-960 MHz</td>
<td>–60.4</td>
</tr>
<tr>
<td>1 452-1 492 MHz</td>
<td>–55.6</td>
</tr>
</tbody>
</table>

* Broadcast frequency bands do not include regional variations given in Article 5 of the Radio Regulations.

** The values of the total receiving noise level \(N \) for the listed frequency bands have been derived from the curves in Fig. 1 in Annex 1.

2 An example of adjacent and multiple-adjacent channel interference assessment thresholds from all radiations and emissions without a corresponding frequency allocation in the bands allocated to the broadcasting service

The broadcast receiving system is also susceptible to interference from signals on adjacent and multiple-adjacent channels. Recommendation ITU-R BT.1368 describes the protection ratios for various digital terrestrial television systems in the VHF and UHF bands. Appendix 3 to Annex 1 presents an example of the adjacent-channel assessment thresholds for the UHF TV band for those services with a corresponding co-primary frequency allocation. For the case of interference from services or application without a corresponding frequency allocation in the band allocated to the broadcasting service, the value of \(I/N = -20 \) dB applies. In the UHF broadcast band (470-806 MHz) the total receiving system noise is dominated by the internal noise. Table 7 illustrates the resulting field-strength threshold for interference into multiple adjacent channels of the ATSC digital television system with a 6 MHz channel. It should be noted that Table 7 considers only a single interferer. Specific applications may need to consider the impact from multiple interferers.
TABLE 7

<table>
<thead>
<tr>
<th>Type of interference</th>
<th>Interference field strength threshold (dB(µV/m))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>470 MHz</td>
</tr>
<tr>
<td>Lower adjacent channel interference (N – 1)</td>
<td>30.3</td>
</tr>
<tr>
<td>Upper adjacent channel interference (N + 1)</td>
<td>28.3</td>
</tr>
<tr>
<td>N ± 2</td>
<td>46.3</td>
</tr>
<tr>
<td>N ± 3</td>
<td>50.3</td>
</tr>
<tr>
<td>N ± 4</td>
<td>54.3</td>
</tr>
<tr>
<td>N ± 5</td>
<td>58.3</td>
</tr>
<tr>
<td>N ± 6 to N ± 13</td>
<td>59.3</td>
</tr>
<tr>
<td>N ± 14 and N ± 15</td>
<td>52.3</td>
</tr>
</tbody>
</table>

Annex 2

Methodology for assessing degradation in DTTB reception location probability from interfering stations of other services/applications

A2.1 Introduction

In this Annex, a methodology is described, how the degradation to the DTTB reception location probability, (ΔRLP) can be determined when the interfering stations (single or multiple) of other services/applications are implemented (“after”) compared to the DTTB reception location probability when the interfering stations of other services/applications are not implemented (“before”). The calculation of the reception location probability and the degradation to the reception location probability is carried out using a Monte Carlo methodology.

A Monte Carlo methodology has been described which is suitable for determining the two cases of either co-channel or adjacent channel\(^{11}\) interference of other service/application stations into DTTB by means of calculating the degradation of the DTTB reception location probability. The methodology takes into account the statistical variations of all the parameters.

It is noted that broadcast planning is made for a specific reception location probability, which in this Report is defined as the percentage of locations within a small area, referred to in this Report as “pixel”\(^{12}\), where the wanted signal is high enough to overcome noise and interference for a given percentage of time taking into account the temporal and spatial statistical variations of the relevant fields.

\(^{11}\) Represents 1\(^{st}\), 2\(^{nd}\), …, n\(^{th}\) adjacent channel.

\(^{12}\) Pixel is a small area of typically about 100 m × 100 m where the percentage of covered receiving locations is indicated.
The coverage area\(^{13}\) is, in digital terrestrial broadcasting, the area that comprises all pixels, where a given reference reception location probability (e.g. 95\%) is reached or exceeded for a predetermined percentage of the time.

Appendix 1 to Annex 2 provides more elements regarding the definition of the reception location probability, as used in this Report.

The closer the point of assessment is made to the transmitter, the higher the wanted field strength may be and thus the higher the actual reception location probability. If the interference impact should be limited by using this methodology, there could be at least two possible approaches to set a limit of the degradation to the reception location probability:

1) the degradation to a specific reception location probability is limited to \(X\%)\) calculated with respect to an actual reception location probability at different points within the coverage area. Consequently, the accepted degradation to the reception location probability does not change within the coverage area, including for those points within the coverage area where the actual reception location probability is higher than the planned reception location probability;

2) the degradation to the reception location probability is limited such that the planned reception location probability is fulfilled at all points within the coverage area. Consequently, the accepted degradation to the reception location probability could vary at different points within the coverage area.

A2.2 Methodology

The highlights of the methodology are the following:

a) It allows the analysis of the cumulative interference impact of interfering stations of other services/applications on DTTB transmissions both in co-channel and in adjacent channel situations. In co-channel cases interfering stations can only operate outside the DTTB service area, while in adjacent channel cases they might operate within the service area of DTTB as well.

b) It can be used for the calculation of protection of fixed roof top as well as mobile and portable DTTB reception.

c) The interfering impact is expressed in terms of the degradation, \(\Delta RLP\), to the DTTB reception location probability when the interfering stations of other services/applications are implemented (“after”) compared to the DTTB reception location probability when the interfering stations of other services/applications are not implemented (“before”).

d) The degradation in the reception location probability, \(\Delta RLP\), is calculated in any given pixel or test points of the DTTB service area.

\(^{13}\) Recommendation ITU-R V.573 No. A51b defines “coverage area” as the “area associated with a transmitting station for a given service and a specified frequency within which, under specified technical conditions, radiocommunications may be established with one or several receiving stations. Note 4 explains that “the term “service area” should have the same technical basis as for “coverage area”, but also include administrative aspects”. Reference to the administrative aspects in the definition of service area is understood to mean that in that service area protection is required. For the case of broadcast services which are usually planned with multiple overlapping transmissions from different transmitter sites and it is usual to protect only the best coverage. Furthermore, spill over coverage into international neighbours or adjacent regions of a country do not usually form part of the intended service area and may not require protection.
More specifically, if within a given pixel (or at given test points) within the DTTB service area, “P_{before}” is the DTTB reception location probability in the presence of noise and existing DTTB interferers, and “P_{after}” is the DTTB reception location probability in the presence of interferers from other services/applications, and noise, and existing DTTB interferers, then the degradation of the reception location probability is $\Delta_{RLP} = P_{before} - P_{after} \%$. Thus, if the protection criterion specifies an allowed degradation of $x\%$ of reception location probability, protection would be considered to be achieved if, when introducing an additional interfering station, $\Delta_{RLP} \leq x\%$, whereas protection would not be considered to be achieved if, when introducing an additional interfering station, $\Delta_{RLP} > x\%$.

If networks of other services/applications are built up gradually, introducing interfering stations over a period of time, it is necessary to calculate the degradation of reception location probability due to the entire network as each new interferer is introduced.

The interference due to noise as well as all DTTB interferers is taken into account in the calculations, “before” and “after”.

It should be noted that for the co-channel case, where the interfering stations of other services/applications can only be situated outside of any co-channel DTTB service area, the largest interference effects (single entry and cumulative) are likely to arise in the pixels located at the DTTB coverage edge, and the resulting degradations in reception location probability are also likely to be the highest in those pixels.

For the adjacent channel case the interfering stations of other services/applications may be situated anywhere inside of a DTTB service area. However, the DTTB reception cannot be protected in the immediate vicinity of an interfering station, because adjacent channel interference is strongest “locally”, i.e. can cause blocking field strength values in the close proximity of the interfering transmitter.

Assuming that the location of the interfering station of other services/applications can be chosen in a manner to avoid interference, then a specific minimum separation distance, “D” can be defined between the interfering station and test points to be protected. In § A2.3, “Parameters”, ‘test points’ and suitable separations distances are defined at which the protection criterion is to be met.

The interference (single entry and cumulative) and the resulting reception location probabilities are calculated at the test points.

For cases where co-channel and adjacent channel interference are to be aggregated, a combination of calculations described in h) and i) is undertaken.

The following sections give more details about some of the parameters, some of the calculations, as well as describing the proposed Monte Carlo methodology.

A2.3 Parameters

The calculations are based on the following parameters:

14 Note that this case may also apply to the out-of-channel interference case, if the interfering station e.i.r.p. and the relevant protection ratio are sufficiently large.

15 In the immediate vicinity of an interfering station of other services/applications, the field strength could be high enough to cause interference even when the out-of-channel protection ratio is very small; DTTB overload thresholds may also play a significant role in causing interference.

16 The parameters used here are representative for countries in Europe. However some of these parameters may be different in other countries.
a) Protected sites:
 - Pixels: a spatial resolution involves 100 m × 100 m; pixels within the DTTB service area17 are relevant.
 - Test points: The test points are defined as:
 Case 1: Adjacent channel interference sources are located within a pixel inside the DTTB service area.
 In this case, the interferers will be restricted by their interference effects at ‘nearby’ test points. Calculation of interference at these test points will use the following test geometry:
 - For the case of handheld/mobile other-service transmitters and for portable or mobile DTTB reception, the test points are located at 1.5 m height, with 2 m lateral separation as shown in Fig. 4.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure4.png}
\caption{Handheld/mobile other-service transmitters and portable or mobile DTTB reception}
\end{figure}

\begin{itemize}
\item For the case of fixed other-service transmitters and portable or mobile DTTB reception, the test points are located at 1.5 m height with up to 20 m lateral separation as shown in Fig. 5. See Note below on the range of “D”
\end{itemize}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure5.png}
\caption{Fixed other-service transmitters and portable or mobile DTTB reception}
\end{figure}

17 A practice within DTTB planning for many decades has been to assess coverage within a target area within an assessment area of 100 m × 100 m. This is regarded as a “pixel” within the total coverage within a target area – whatever the total coverage/service area might be.
For the case of handheld/mobile other-service transmitters and fixed DTTB reception the test points are located at 10 m height with a distance, D, ranging of up to 20 m of lateral separation. These test points are positioned such that the other-service transmission falls in the front beam of the fixed DTTB receiving antenna as shown in Fig. 6.

FIGURE 6
Handheld/mobile other-service transmitters and fixed DTTB reception

For the case of fixed other-service transmitters and fixed DTTB reception, the test points are located at 10 m height with a distance, D, of at least 6 m of lateral separation as shown in Fig. 7. See Note below on the range of “D”. These test points are positioned such that the other-service transmission falls in the front beam of the fixed DTTB receiving antenna.

FIGURE 7
Fixed other-service transmitters and fixed DTTB reception

NOTE on the range of (D) – In practice the distance D may vary across the DTTB service areas, depending on fixed other-service transmitters to the DTTB receive antenna (depending on e.g. street width in urban or rural environment, availability of already existing sites or selection of sites which are outside residential areas).

The calculations dealing with reception location probability are to be carried out at those test points. The same test points will also be used when including the aggregate interference effects of other, more distant interferers.

Case 2: Interference sources (co-channel, adjacent channel) are located outside the DTTB service area.
In this case, the interferers are more distant from the DTTB receivers; in particular, they lie outside the DTTB service area. The calculations for the degradation in reception location probability are to be carried out at 10 m height for fixed DTTB reception, and 1.5 m height for portable or mobile DTTB reception. The same test points/pixels are used when calculating the effects of aggregate interference from a multitude of interferers. Depending on the situation involved, it may be necessary to do calculations at a large number of test points.

Case 3: Some interference sources are located outside the DTTB service area and some other interference sources are located inside the DTTB service area.

In this case, interference calculations are carried out at test points which are selected according to Case 1 and also test points/pixels selected according to Case 2. The same test points are used when calculating the effects of aggregate interference from a multitude of interferers, inside and/or outside the DTTB service area.

b) The frequencies used by DTTB and the other services/applications.

c) The median field strength m_w and its standard deviation σ_w of the received DTTB signal for each pixel or test point. In the case of SFN, the set of wanted median field strengths and their respective standard deviations are required.

d) The median field strength m_i and its standard deviation σ_i of each of the existing DTTB interfering signals for each pixel or test point.

e) The permissible degradation, Δ_{RLP}, in the DTTB reception location probability when the new interfering signal is introduced.

f) The appropriate protection ratios for the DTTB service and overload thresholds of the DTTB receivers, co-channel and adjacent channel, for interference within DTTB, and for DTTB versus the other services/applications. The protection ratios for interference to DTTB by other services/applications can be found in Recommendation ITU-R BT.1368.

g) The e.i.r.p. of each interfering station of other services/applications:

g.1) Case 1: No TPC is used (e.g. as often assumed for base stations).

 In this case, the maximum e.i.r.p. of the station is used in the interference calculations, together with the corresponding protection ratios and overload thresholds for the DTTB receivers.

g.2) Case 2: TPC is used (e.g. as often is true for mobile transmissions).

 In this case, the appropriate TPC algorithms are used during Monte Carlo simulations to determine the appropriate interfering e.i.r.p. levels for the specific transmission paths; the corresponding protection ratios and overload thresholds for the DTTB receivers are to be used. These protection ratios are usually higher and overload thresholds are usually lower (i.e. more stringent) than for the non-TPC case.

h) A “long distance” propagation prediction model, for DTTB and the other services/applications based on Recommendation ITU-R P.1546, or another appropriate model. The standard broadcast planning practice is to use 1% time curves for the interfering field strengths and 50% time curves for the wanted field strengths. Recommendation ITU-R P.1546 is to be used for distances greater than 1 km (“long distance”).

A “short distance” (e.g. distances less than or equal to 40 m) propagation prediction model for the interfering field strength caused by, say, an adjacent channel transmission, which is assumed to be calculated according to free space propagation with e.g. a 3.5 dB standard deviation (or another appropriate model):

$$E_{fs} \text{ (dB} \mu\text{V/m)} = ERP(\text{dBkW}) + 106.9 - 20\log d_{km} = e.i.r.p._{co}(\text{dBm}) + 44.75 - 20\log d_{km} \quad (23)$$
For the transition between ‘long distances’ and ‘short distances’, a model based on the Hata model\(^{18}\) for distances less than (or equal to) 100 m and Recommendation ITU-R P.1546 for distances greater than (or equal to) 1 km could be used. This propagation model uses equation (23) for distances ≤ 40 m, the Hata prescription for distances between 40 m and 100 m and Recommendation ITU-R P.1546 for distances ≥ 1 km, with a log-linear interpolation between 100 m and 1 km.

i) Terrain-based prediction methods could be used on an agreed basis for specific local interference situations.

j) The degradation in the reception location probability \(\Delta_{RLP}\) is determined at (or within) the DTTB coverage edge in the following ways:

j.1) Co-channel case:
- Depending on the distance of the interfering station of other services/applications from the pixels on the corresponding “long distance” or “short distance” propagation model is used, or the interpolation between these two distances, as appropriate.
- The reception location probabilities, \(P_{\text{before}}\) and \(P_{\text{after}}\), are calculated within the entire pixel:
 j.1.1) The relevant propagation distances are those between the interfering station of other services/applications and the (randomly chosen) DTTB reception locations within the pixel.
 j.1.2) The relevant receive antenna discriminations/polarization discriminations are determined by the relative geometry.
 - In the case of two or more co-channel interferers, the cumulative interference within any given pixel (or at any test point) is calculated.
 - For all other pixels, the actual distance between the interfering station and the centre of the pixel is used for the calculation.

j.2) Adjacent channel case:
- Adjacent channel interfering fixed or handheld/mobile stations of other services/applications could be situated within any pixel of fixed or portable/mobile DTTB coverage area. The interference from such a station or stations (single entry and cumulative) and the resulting locations probabilities are calculated at test points as defined in a) above. These results are related to the pixel in which the interfering station is located.
- Where the adjacent channel interfering station is a fixed station of other services, the test geometry will also be applied to the eight pixels surrounding the pixel where the interfering station is. For each pixel, the actual wanted and existing interfering signals applicable to an individual pixel will be used for the calculation of reception location probabilities before the additional interference is considered.
- For all other pixels, the actual distance between the interfering station and the centre of the pixel is used for the calculation.
- In the case of two or more interfering adjacent channel stations of another service/application, the cumulative interference and the degradation in the reception location probability, \(\Delta_{RLP}\), are calculated at test points within the

\(^{18}\) The “Hata” model indicated here refers to the “Modified Hata” propagation model described in § 2 of Appendix 1 to Annex 2 of Report ITU-R SM.2028-1.
pixels in which the interfering stations are located19, at the specific distance “D” from each respective interfering station. Note that this may also require the use of the “long distance” propagation models for the larger distances involved with respect to the interfering stations of other services/applications not lying within the pixel under consideration.

A2.4 Nuisance fields and power summation

If, at a given point, the wanted DTTB field strength is E_w and a (single) interfering DTTB field strength is $E_{dit,1}$, then the wanted DTTB reception is “acceptable” (in the absence of noise) if:

$$E_w > E_{dit,1} + PR(\Delta f) - POL - DIR, \text{ and}$$

$$E_{dit,1} < E_{Oth,dtt,1} - POL - DIR$$

where $PR(\Delta f)$ is the required protection ratio for a given frequency offset (carrier centre to carrier centre), Δf, POL is the polarization discrimination when relevant, and DIR is the receive antenna discrimination, vis-à-vis the interfering signal of other services/applications, when relevant. $E_{Oth,dtt,1}$ is the relevant overload field-strength threshold for the frequency offset, Δf. It is derived from the relevant overload threshold, $O_{th,dtt}$, in dBm taking into account the antenna gain (G_R) in dBi including the feeder loss.

$$E_{Oth,dtt,1} = O_{th,dtt} + 20 \log f \text{ MHz} + 77.2 - G_R \quad \text{(24b)}$$

Values for POL and DIR are specified in Recommendation ITU-R BT.419-3. In the case of portable/mobile DTTB reception, no antenna directivity or polarization discrimination need to be considered.

E_w is the wanted field strength. In the case of an SFN, this would be the power sum of the wanted signals received from the SFN transmitters.

$E_{dit,1}$ is the interfering DTTB field strength.

We define the “nuisance field”, $NU_{dit,1}$, corresponding to the interfering field $E_{dit,1}$ to be:

$$NU_{dit,1} = E_{dit,1} + PR(\Delta f) - POL - DIR$$

(25)

The nuisance field, NU_N, for the noise, N, is20:

$$NU_N = N + C/N$$

where N is the noise equivalent field strength, and C/N is the required DTT carrier-to-noise ratio to ensure acceptable DTT reception in the presence of noise only.

If we take noise and a single interferer into account, then the requirement for an acceptable reception is:

$$E_W > 10 \log \left(\frac{NU_{dit,1}}{10} + \frac{NU_N}{10} \right)$$

If there are K interfering DTTB signals, $E_{dit,1}, E_{dit,2}, ..., E_{dit,K}$, then the summed nuisance field for all of the interfering signals (including noise) is:

19 NOTE – This means that the wanted DTTB field strength increases as the pixel approaches the DTTB transmitter.

20 Sometimes the nuisance field for the noise is called the “minimum field”, E_{min}.
\[
10 \log \left(\frac{NU_{\text{dt}}}{10} + 10 \frac{NU_{\text{os},1}}{10} + \ldots + 10 \frac{NU_{\text{os},k}}{10} + 10 \frac{NU_{\text{os},N}}{10} \right)
\]

For an acceptable DTTB reception:

\[
E_W > 10 \log \left(\frac{NU_{\text{dt}}}{10} + 10 \frac{NU_{\text{os},1}}{10} + \ldots + 10 \frac{NU_{\text{os},k}}{10} + 10 \frac{NU_{\text{os},N}}{10} \right)
\] (26)

Similarly, the nuisance field for a single interferer of other services/applications, producing a field strength \(E_{os,1}\) at the DTTB receiver, would be:

\[
NU_{os,1} = E_{os,1} + PR(\Delta f) - POL - DIR
\] (27)

If there are \(L\) interfering other service/application signals, \(E_{os,1}, E_{os,2}, \ldots, E_{os,L}\), then the power summed other service/application nuisance field is:

\[
NU_{OS} = 10 \log \left(\frac{NU_{os,1}}{10} + 10 \frac{NU_{os,2}}{10} + \ldots + 10 \frac{NU_{os,L}}{10} \right)
\] (28)

If DTTB and other service/application interference are included together, then for an acceptable DTTB reception:

\[
E_W > 10 \log \left(\left(\frac{NU_{\text{dt}}}{10} + 10 \frac{NU_{\text{os},1}}{10} + \ldots + 10 \frac{NU_{\text{os},k}}{10} + 10 \frac{NU_{\text{os},N}}{10} \right) + \left(\frac{NU_{os,1}}{10} + 10 \frac{NU_{os,2}}{10} + \ldots + 10 \frac{NU_{os,L}}{10} \right) \right)
\] (29)

At any given frequency offset, \(\Delta f_j\), no interfering field \(E_i(\Delta f_j)\) (either \(E_{\text{dt}}(\Delta f_j)\) or \(E_{os}(\Delta f_j)\)), should exceed the relevant overload threshold for that frequency offset, \(E_{Oth}(\Delta f_j)\) (either \(E_{Oth,\text{dt}}(\Delta f_j)\) or \(E_{Oth,os}(\Delta f_j)\)):

\[
E(\Delta f_j) > E_{Oth}(\Delta f_j)
\] (30)

leads to overload for any individual interfering field with frequency offset \(\Delta f_j\).

\(E_{Oth}(\Delta f_j)\) is the relevant overload field strength threshold for the frequency offset, \(\Delta f_j\). It is derived from the relevant overload threshold, \(O_{th}(\Delta f)\) in dBm, taking into account the antenna gain, \(G_R\), in dBi including the feeder loss:

\[
E_{Oth}(\Delta f_j) = O_{th}(\Delta f_j) + 20 \log \frac{f}{\text{MHz}} + 77.2 - G_R
\] (30a)

If there are two or more interfering fields, \(E_{i,1}(\Delta f_j), E_{i,2}(\Delta f_j), \ldots\) with a frequency offset \(\Delta f_j\), then the power sum of these fields, \(E_{PS}(\Delta f_j)\), should not exceed the overload threshold for that frequency offset, \(E_{Oth}(\Delta f_j)\):

\[
E_{PS}(\Delta f_j) = 10 \log \left(\frac{E_{i,1}(\Delta f_j)}{10} + 10 \frac{E_{i,2}(\Delta f_j)}{10} + \ldots + 10 \frac{E_{i,L}(\Delta f_j)}{10} \right) > E_{Oth}(\Delta f_j)
\] (31)

leads to overload for all interfering field with frequency offset \(\Delta f_j\).

If there are two or more interfering fields, \(E_{i,1}(\Delta f_j), E_{i,2}(\Delta f_j), \ldots\), with frequency offsets \(\Delta f_j, \Delta f_k, \ldots\), then none of the individual interfering fields and none of the power sums of these fields, \(E_{PS}(\Delta f_j), E_{PS}(\Delta f_k), \ldots\), for each frequency offset should exceed the overload threshold for that frequency offset, \(E_{Oth}(\Delta f_j)\):

\[
E_{PS}(\Delta f_j) > E_{Oth}(\Delta f_j)
\] (32)
for any frequency offset, Δf_j, leads to overload.

A methodology to calculate the overall (‘cumulative’) effect of all interferers taken together, with respect to overloading, is still subject to further study.

A2.5 Monte Carlo simulation

In a Monte Carlo simulation, the statistical variations of the signals are taken into account. To this end, the following values for the relevant parameters are assumed:

- **a)** The median wanted DTTB field strength $E_{w, med}$ and the i^{th} median interfering DTTB field strength $E_{dtt,i, med}$, are calculated using the wanted DTTB test point coordinates, the wanted and interfering DTTB transmitter coordinates, ERPs, transmit and receive antenna patterns, etc. The standard deviations for wanted σ_w and interfering fields $\sigma_{dtt,i}$ depend on the propagation prediction model. Typical values are $\sigma_w = 5.5$ dB, $\sigma_{dtt,i} = 5.5$ dB.

- **b)** The median other service/application interfering field strengths $E_{os,i, med}$ for the other service/application interferers are calculated using the wanted DTTB test point coordinates, the other service/application interfering transmitter coordinates, e.i.r.p.s, transmit and receive antenna patterns, etc. The standard deviations $\sigma_{os,i}$ depend on the propagation prediction model.

- **c)** If some of the interfering stations of other services/applications are already implemented, with agreed transmission parameters, these are the parameter values that are used to determine the relevant statistical field strength values. For the other stations where the suitable technical characteristics are to be determined, initial parameter values can be assumed and varied, and used to determine the resulting degradation of the DTTB reception location probability ΔRLP.

- **d)** The appropriate protection ratios corresponding to the relevant Δf (frequency offset) have to be used, see Recommendation ITU-R BT.1368.

- **e)** Polarization discrimination POL and receive antenna discrimination DIR (see Recommendation ITU-R BT.419-3), for DTTB to DTTB and other service/application to DTTB interference, if applicable and depending on the network configurations, have to be considered.

A Monte Carlo simulation will be required for each test point/pixel to be protected in the DTTB service area. For example, in the adjacent channel case when a new other service/application station is proposed inside of a DTTB service area, the test points within the pixel in which the new station is to be situated and also in the neighbouring pixels must be investigated. Because Monte Carlo simulations can often involve a very large number of calculations, the relationship between I/N and the degradation of reception location probability is explained in Appendix 1, and an example is given in Appendix 2 whereby a large amount of calculation iteration time can be saved.

A2.6 Conclusion

An example methodology has been described which is suitable for determining the two cases of either co-channel or adjacent channel interference of other service/application stations into DTTB by means of calculating the degradation of the DTTB reception location probability. In this methodology, no approximations are made with respect to the treatment of the statistical variables relating to reception location probability, for example, in the calculation of the statistical distributions of the wanted and interfering fields as well as their cumulative interference effects.

This methodology should be applied for the protection of fixed roof top as well as mobile and portable DTTB reception in the presence of fixed or portable/mobile stations of other

Rep. ITU-R BT.2265

27
service/application. It is advised to use characteristics of broadcasting and mobile deployments in order to apply this methodology.

Appendix 1 to Annex 2

1 Introduction

The limits of the broadcasting coverage area may be defined as the point at which the reception location probability is reduced to a specified value. The reception location probability is usually taken to be 95%, but sometimes 90% or even 70% is used.

If a specific value of I/N is chosen as a protection criterion, it is of interest to know the value of the corresponding degradation to the reception location probability, Δ_{RLP}.

Calculations to determine the relationship between I/N and Δ_{RLP} can be carried out using Monte Carlo simulations.

2 Relationship between I/N and degradation of the reception location probability

The Monte Carlo calculations are carried out using the following model:

- A pixel of a given area is taken within the area of interest.
- It takes the median wanted field strength of the pixel.
- The reception location probability within the pixel in the presence of noise only, RLP_N, is taken to be $RLP_N = 95\%$, $RLP_N = 90\%$, or $RLP_N = 70\%$.
- An interference, I, is taken which has a strength given as $I_{med}/N = -X\,\text{dB}$; that is, the median interfering field, I_{med}, is X dB less than the noise field, $I_{med} = N - X$.
- The standard deviation of the wanted and interfering fields is 5.5 dB; noise is assumed to have 0 dB standard deviation.

The Monte Carlo simulations were performed with the following parameters:

- N: noise value (expressed as an equivalent field strength)
- $(C/N)_{\text{ref}}$: reference required carrier-to-noise value for acceptable reception
- PR: required protection ratio
- σ: standard deviation of the wanted field
- μ_x: statistical factor corresponding to $x\%$ location probability; e.g. $\mu_{95} = 1.645$, $\mu_{90} = 1.28$, $\mu_{70} = 0.52$
- $E_{w_{\text{med}}}$: median wanted field strength for the required location probability in the presence of noise only

$$
E_{w_{\text{med}}} = N + (C/N)_{\text{ref}} + \mu_x \sigma
$$

- $I_{med} = N - \delta$: median interfering field strength (δ to be varied from 0 dB to 24 dB)

In a Monte Carlo simulation, a large number of ‘trials’ are calculated (in order to give a statistically meaningful result).
In each ‘trial’ the following is done:

- The value of the received wanted signal is calculated: $E_w = E_{w,med} + SV_r \times \sigma$, where SV_r is a randomly generated ‘statistical value’ corresponding to a Gaussian distribution.
- The value of the received interfering signal is calculated: $E_i = I_{med} + SV_r \times \sigma$, where SV_r is a randomly generated ‘statistical value’ corresponding to a Gaussian distribution.
- The values SV_r are generated randomly for each field value as it is calculated.
- The noise nuisance field, $N_{nuis} = N + (C/N)_{ref}$, is constant (0 standard deviation).
- The interference nuisance field is $I_{nuis} = E_i + PR$.
- The total interference nuisance field is $T_{nuis} = (E_i + PR) \oplus (N + (C/N)_{ref})$, where \oplus represents power summing.

A) In the case of noise only (i.e. no other interference source)

A comparison is made:

if $E_w \geq N_{nuis}$, then the ‘trial’ is noted as being ‘acceptable reception’

if $E_w < N_{nuis}$, then the ‘trial’ is noted as being ‘unacceptable reception’.

B) In the case of noise and interference

A comparison is made:

if $E_w \geq T_{nuis}$, then the ‘trial’ is noted as being ‘acceptable reception’

if $E_w < T_{nuis}$, then the ‘trial’ is noted as being ‘unacceptable reception’.

After the large number of trials has been carried out (for case A when noise only is being considered, for case B when noise and interference are both being considered) the total number of ‘acceptable reception’ trials is divided by the total number of trials to determine the location probability, RLP_N for case A and $RLP_{N\oplus I}$ for case B.

The overall results, for X ranging from $X = 0$ dB to $X = 24$ dB are shown in Fig. 8. The results for $RLP_N = 95\%$, $RLP_N = 90\%$, $RLP_N = 70\%$, respectively, are superposed on Fig. 8. The horizontal axis (the ‘I/N’ axis) represents the median I/N values; the vertical axis (the ‘ΔRLP’ axis) represents the corresponding degradation to the reception location probability.

A closer view of the results is given in Fig. 9, for X ranging from $X = 10$ dB to $X = 24$ dB.

A still closer view of the results is given in Fig. 10, for X ranging from $X = 18$ dB to $X = 24$ dB.
\[\Delta_{RLP} = f(I/N) = (RLP_N - RLP_{N0}) \]

FIGURE 8

Degradation of \(RLP = f(I/N) \)

- **Target = 95%**
- **Target = 90%**
- **Target = 70%**

FIGURE 9

Degradation of \(RLP = f(I/N) \)

- **Target = 95%**
- **Target = 90%**
- **Target = 70%**
FIGURE 10
\[\Delta_{RLP} = f(I/N) = RLP_N - RLP_{N0} \]

The individual results are given in Table 8 (for \(RLP_N = 95\% \)), Table 9 (for \(RLP_N = 90\% \)), and Table 10 (for \(RLP_N = 70\% \)). The relationships between \(I/N \) and \(\Delta_{RLP} \) are seen in Fig. 8.

TABLE 8
Reception location probability degradation (\(\Delta_{RLP} \)) as a function of median \(I/N \): RLP target = 95%

<table>
<thead>
<tr>
<th>(I/N) (50%)</th>
<th>–6 dB</th>
<th>–10 dB</th>
<th>–19.05 dB</th>
<th>–20 dB</th>
<th>–22.77 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C/N \geq PR)</td>
<td>95.00%</td>
<td>95.00%</td>
<td>95.00%</td>
<td>95.00%</td>
<td>95.00%</td>
</tr>
<tr>
<td>(C/(I\oplus N) \geq PR)</td>
<td>90.53%</td>
<td>93.16%</td>
<td>94.77%</td>
<td>94.81%</td>
<td>94.90%</td>
</tr>
<tr>
<td>(\Delta_{RLP})</td>
<td>4.47%</td>
<td>1.84%</td>
<td>0.23%</td>
<td>0.18%</td>
<td>0.10%</td>
</tr>
</tbody>
</table>

TABLE 9
Reception location probability degradation (\(\Delta_{RLP} \)) as a function of median \(I/N \): RLP target = 90%

<table>
<thead>
<tr>
<th>(I/N) (50%)</th>
<th>–6 dB</th>
<th>–10 dB</th>
<th>–19.05 dB</th>
<th>–20 dB</th>
<th>–22.77 dB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C/N \geq PR)</td>
<td>90.00%</td>
<td>90.00%</td>
<td>90.00%</td>
<td>90.00%</td>
<td>90.00%</td>
</tr>
<tr>
<td>(C/(I\oplus N) \geq PR)</td>
<td>83.36%</td>
<td>87.11%</td>
<td>89.62%</td>
<td>89.69%</td>
<td>89.83%</td>
</tr>
<tr>
<td>(\Delta_{RLP})</td>
<td>6.64%</td>
<td>2.89%</td>
<td>0.38%</td>
<td>0.31%</td>
<td>0.17%</td>
</tr>
</tbody>
</table>

\[I/N = –19.05 \text{ dB at 50\% of the locations corresponds to } I/N \geq –10 \text{ dB at 5\% of the locations.} \]

\[I/N = –22.77 \text{ dB at 50\% of the locations corresponds to } I/N \geq –10 \text{ dB at 1\% of the locations.} \]
3 Summary

It is seen in Fig. 8 that a permitted median I/N level greater than –10 dB will lead to large RLP degradations, i.e. RLP degradations greater than 1.5% to 4% for a median value of I/N = –10 dB, and RLP degradations greater than 4% to 10% for a median value of I/N = –6 dB.

For a median value of I/N = –20 dB (see Fig. 9), the RLP degradation for RLP = 95% is 0.2%, for RLP = 90% is 0.3%, and for RLP = 70% is 0.6%.

For a median value of I/N = –23 dB (see Fig. 10), the RLP degradation for RLP = 95% is 0.1%, for RLP = 90% is 0.15%, and for RLP = 70% is 0.3%.

This demonstrates that there is a relationship between the I/N criterion and criteria based on a corresponding degradation to the reception location probability. The statistical nature of some of these variables leads to the use of Monte Carlo simulations as a possible method to assess the degradation of reception.

Appendix 2 to Annex 2

Example Monte Carlo simulation with calculation saving methods

In a Monte Carlo simulation, a large number of “trials” are considered in which, for each trial, random values for the fields of interest are selected, according to the relevant statistical distributions; and on the basis of the statistics of the results of the trials, the relevant probabilities (in this case, reception location probabilities) can be calculated.

For each trial the following calculations are carried out and the results are stored in a table, such as the table shown below:

- a random wanted DTTB field strength is calculated using:

 \[E_W = E_{W_{\text{med}}} + \text{random (Gaussian, } \sigma_W) \text{ variation} \]

- random interfering DTTB field strengths are calculated using:

 \[E_{dtt_i} = E_{dtt_i_{\text{med}}} + \text{random (Gaussian, } \sigma_{dtt_i}) \text{ variation} \]

The corresponding nuisance fields, \(NU_{dtt_i} \), are calculated using equation (25) above and the relevant protection ratios, \(POL, DIR, \) etc.:

- random interfering other service/application field strengths are calculated using:
\[E_{os_i} = E_{os_med_i} + \text{random (Gaussian, } \sigma_{os_i}) \text{ variation.} \]

The corresponding total other service nuisance field, \(NU_{os}\), is calculated using equation (28) above and the relevant protection ratios, \(POL\), \(DIR\), etc.; the power sums for the \(NU_{dt_i}\) and \(NU_N\) are carried out for each trial, leading to a value \(NU_{before}\), which is compared to the trial value of \(E_w\).

The ratio of the number of trials where \(E_w > NU_{before}\), to the total number of trials, gives the reception location probability, \(RLP_{before}\), for acceptable DTTB reception in the presence of the interfering DTTB signals and the noise.

For each trial, the power sum of \(NU_{before}\) and \(NU_{os}\) is carried out leading to a value \(NU_{after}\).

The ratio of the number of trials where \(E_w > NU_{after}\), to the total number of trials, gives the reception location probability, \(RLP_{after}\), in the presence of the interfering DTTB signals, the noise, and the other service interference.

If \(RLP_{before} - RLP_{after} \leq x\%\), we are done: the assumed other service/application transmission characteristics are acceptable.

If \(x\%\) is exceeded, another set of calculations may be carried out after introducing modifications to the interfering stations of other services/applications.

If \(RLP_{before} - RLP_{after} > x\%\), the other service/application technical characteristics must be altered (e.g. e.i.r.p.s decreased, transmit antenna patterns modified, separation distance increased, etc.), until the overall degradation to the DTTB reception location probability in the pixels of interest has been reduced to an acceptable level. This involves iterative calculations which can be time consuming. A method which requires less calculation time (but more computer storage) can proceed as follows:

The calculated values are stored in a table (see the shaded columns in the Table below)\(^{23}\). It is only necessary to iterate on the values of \(NU_{os_i}\), which were derived from the “initial variable” parameter assumptions.

If changes in these initially assumed parameters lead to changes in the respective initial median field strength values, \(E_{med_os_i_\alpha} = E_{med_os_i} + \delta_i\), the corresponding changes are to be made to the initial nuisance fields, to yield \(NU_{med_os_i_\alpha} = NU_{med_os_i} + \delta_i\), without going through additional Monte Carlo simulations, and then the corresponding overall values, \(NU_{os_\alpha}\), can be calculated.

Then the modified power sums can be carried out to determine \(NU_{after_\alpha} = NU_{before} \oplus NU_{os_\alpha}\), as before. With a few such iterations the appropriate other service/application parameters can be found for the interfering stations under consideration (i.e. when \(RLP_{before} - RLP_{after} \leq x\%\)).

Using this procedure, only one Monte Carlo simulation is necessary, and the iteration needed for finding acceptable other service/application transmission characteristics is reduced to a simple iteration involving analytic calculations based on previously stored quantities only.

NOTE – A Monte Carlo simulation, involving 30 000 trials, and 20 iterations takes less than 0.1 second calculation time on a personal computer.

\(^{23}\) NOTE – Depending on the details of the Monte Carlo simulation, it may also be necessary to store the coordinates used for each transmitter and receiver site used in each trial, in order to recalculate the relevant median field strengths for modified other service/application technical characteristics.
<table>
<thead>
<tr>
<th>Trial #</th>
<th>E_w</th>
<th>$NU_{a,1}$</th>
<th>...</th>
<th>$NU_{a,k}$</th>
<th>NU_N</th>
<th>$NU_{before} = \sum_{i=1}^{k} \oplus NU_{int,i} \oplus NU_N$</th>
<th>$NU_{a,t}$</th>
<th>...</th>
<th>$NU_{int} = \sum_{i=1}^{L} \oplus NU_{int_i}$</th>
<th>$NU_{after} = \frac{NU_{before} \oplus NU_{int}}{NU_{after}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>30000</td>
<td></td>
</tr>
</tbody>
</table>

NOTE – The shaded columns are to be stored during the Monte Carlo simulation, in order to rapidly calculate NU_{after} for each iteration on e.i.r.p.\(_{oa}\).

In the case where adjacent channel interference to DTTB reception is being calculated, similar simulations to those just described are required, except that the simulation distances between interfering stations of the other services/applications and affected DTTB receive antenna are taken to be those described in Annex 2, § A2.3, indent a) Case 2.