ITUPublications International Telecommunication Union
Radiocommunication Sector

Report ITU-R BS.2388-6
(09/2025)

BS Series: Broadcasting service (sound)
Usage guidelines for the Audio

Definition Model and Multichannel
Audio Files

ii Rep. ITU-R BS.2388-6

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-
frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit
of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional
Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution
ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are
available from https://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent
Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

Series of ITU-R Reports

(Also available online at https:/www.itu.int/publ/R-REP/en)

Series Title

BO Satellite delivery

BR Recording for production, archival and play-out; film for television
BS Broadcasting service (sound)

BT Broadcasting service (television)

F Fixed service

M Mobile, radiodetermination, amateur and related satellite services
P Radio-wave propagation

RA Radio astronomy

RS Remote sensing systems

S Fixed-satellite service

SA Space applications and meteorology

SF Frequency sharing and coordination between fixed-satellite and fixed service systems
SM Spectrum management

TF Time signals and frequency standards emissions

Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution
ITU-R 1.

Electronic Publication
Geneva, 2025

© ITU 2025

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

https://www.itu.int/ITU-R/go/patents/en
https://www.itu.int/publ/R-REP/en

Rep. ITU-R BS.2388-6 1

REPORT ITU-R BS.2388-6

Usage guidelines for the Audio Definition Model and Multichannel Audio Files
(2015-03/2017-10/2017-2018-2022-2024-2025)

TABLE OF CONTENTS

Page
INEEOAUCTION ..ttt ettt e sbe e st e bt e e e e 2
USE CASES...euteenitiiiterit ettt ettt ettt bttt e bt et e bt st e e bt e e st e e bt e et e bt e eab e nb e e et e e bt e 2
2.1 Generating BWF audio files from scratch.........cccccoevvvieiiiniiieciieniieeeieeieeee, 2
2.2 Reading BWF audio files......c.cccooiiriiriiniiiiiiiiiciceeceeeeeece e 3
2.3 Reading non-ADM WAV fIleS.....ccccocuimiiiiriiniiiiiiiceccneeeceece e 4
2.4 Generating BWF Files without informationccccceceveevcnienenninncnecncnnenn. 4
Recommended PractiCesccuuieiieriieriieiiieeieeite ettt ere et e seeeebeeseaeeseessaessseenenas 5
3.1 Using Common Definitions..........ccovereriiiriiniiiieniinieieceeeeceeecsieceee e 5
3.2 EIemMENt IDS ..ottt e 6
IR TN 14 1 (oI 7 01T USRS 10
34 <chna>chunk and IDSccccceiiiiiiiiiiii e 11
3.5 Defaults for unknown audio INPULS.........ccceeeriieeiiieniieeeie e 15
3.6 Times and dUrationS.........ccueeiuieriiiiiiinie ettt 21
3.7 File Management.........cccoceevueiiiiiiiiinienieeeetee et 26
3.8 <fmt> Chunk handling..........c.cceceeviriiniiiiiiiieece e 27
3.9 Ensuring streaming compatibility........ccccoeereiiiiiiniiiiniiniieeeeiceee e 28
3.10 Interactivity and ensembles of audioObjecCts.......c.eevvuvieriieeriiieeiie e, 28
3.11 Multiple audioOProgrammesc.ccocvieeiiieeiiieeiiee e eeee e eeree e sree e e 31
3.12 Using the ‘IMportance’ parameters.........cccueeereeeereeeeeiieeenirieeereeesreeesreessnreeennees 32
Location of ADM metadata...........cceeieriiiiiiiniieiienieeeeesiee et 35
4.1 BW64 file specified in Recommendation ITU-R BS.2088cccccenieninnnn 36

4.2 A serial representation of the ADM (S-ADM) specified in Recommendation
ITU-R BS. 2125 ettt e 37
WOrked eXamPIESccciiiiiiiieiiie et e e s e 38
5.1 5.1 and Stereo COMDBINATIONccuuieiieriieiieiiie ettt 38
5.2 Object-based with a channel-based bed...........cccoevvieriiiiiiiniiiiiieeeeee, 39

53 Sharing tracks from audioObjects to achieve different mixes...........ccccceeveenienn. 41

2 Rep. ITU-R BS.2388-6

1 Introduction

Recommendation ITU-R BS.2076 — The Audio Definition Model, is an open common metadata
model for describing the technical format and content of audio files and streams. It primarily uses
XML as its format language, and has been designed for incorporation into RIFF based audio files
including those according to Recommendation ITU-R BS.2088 — Long-form file format for the
international exchange of audio programme materials with metadata, on information technology
media (BW64). The model can be converted to other languages, such as JSON, should the need arise;
and also be used in conjunction with other file or stream formats.

This Report describes a set of typical use cases for the Audio Definition Model (ADM) and
WAV-based files as well as recommended practices and commonly-used channel-based
configurations. As the ADM is very flexible in how it can be used, it is possible to generate metadata
that may prove difficult to interpret, therefore following the guidelines in this document will
encourage consistent use by all.

As use of the ADM and BW64 increases more use cases and practices will appear, so this report
should be kept up to date with any new requirements. The potential areas that may need guidelines
are interoperation with streaming formats and renderers.

2 Use cases

Recommendation ITU-R BS.2076 lists a set of use cases that provides a general guide for the use of
the model:

The use of the ADM is recommended especially for the following use-cases:

— For applications requiring a generic metadata language for custom/proprietary formats
(including codecs), or in the case where no metadata exists to describe what is needed.

- For generating and parsing audio metadata with existing general-purpose tools.

— Where experimental metadata can easily be added for an organisation’s internal
developments and where a human-readable and hand-editable file for describing audio
configurations (such as describing a mixing studio channel configuration) in a consistent and
translatable format is needed.

— In WAV-based environments and workflows, where WAV-based broadcast applications
wish to upgrade to be able to handle immersive content, while maintaining forward
compatibility and handle legacy content.

- For archiving of WAV-based content that also may include an extensive immersive metadata
set.

As these use cases are quite general, a more specific and detailed set is required to enable a set of
useful guidelines. The following sub-sections describe a set of typical practical use cases.

2.1 Generating BWF audio files from scratch
Possibly the simplest use case is generating BW64 files with ADM metadata from scratch.

This assumes that the audio that is being written to the file is known, so metadata is being generated
with known information. This can be broken down into different use cases for different types of audio.

2.1.1 UCI1.1: Common single group channel-based files

This is an audio file that consists of a common channel-based configuration, such as mono, stereo
or 5.1. It is known what each channel is (e.g. Front Left, Front Right) and what audio it contains. It

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2076/en

Rep. ITU-R BS.2388-6 3

only contains a single group of channels. This probably covers the vast majority of audio files that
exist already.

2.1.2 UC1.2: Common multiple group channel-based files

The same as UC1.1, but the file will contain multiple groups of channels. For example, it may contain
4 stereo pairs or a 5.1 group and a stereo version. It is known what each channel is and what it
contains.

2.1.3 UC1.3: Non-common channel-based files

This file contains channel-based audio, but the channels are not common definitions in common use.
For example, they might be part of an experimental set of channel locations. It is known what each
channel is.

2.1.4 UC1.4: Transformation/scene-based files

This file contains HOA (Higher Order Ambisonics) audio where all the components/channels are
known.

2.1.5 UC1.5: Object-based files

This file contains object-based audio that can be either static or dynamic (i.e. changing its properties
with time). The object properties are all known.

2.1.6 UCI1.6: Mixed files

This file contains any combination of the channel, scene and object-based audio. A potentially
popular combination would be a channel-based bed (typically stereo or 5.1) with object-based
foreground objects overlaid.

2.2 Reading BWF audio files

The next obvious set of use cases is reading BWF files. It will be assumed that the file to be read
contains correct ADM metadata, possibly generated from one of the UC1.x use cases.

2.2.1 UC2.1: Common single-group channel-based files

Reading a channel-based file containing a single group of common channels, such as stereo or 5.1 as
described in UCI1.1. The ADM metadata will be known and readable. The information from the ADM
that could be of use will be the channel descriptions (such as intended speakers) and some content
information such as loudness.

2.2.2 UC2.2: Common multiple group channel-based files

The same as UC2.1, but reading multiple groups as described in UC1.2. It will be important to ensure
the groups of channels are treated correctly.

2.2.3 UC22.3: Non-common channel-based files

Reading non-common channel-based files such of those described in UC1.3. The useful information
to read and interpret will be the channel positions, which could be unconventional.

2.2.4 UC2.4: Transformation/scene-based files

Reading scene-based (HOA) files as described in UC1.4. Interpreting each channel description as the
correct HOA component to allow correct HOA decoding is important here.

4 Rep. ITU-R BS.2388-6

2.2.5 UC2.5: Object-based files

Reading object-based files as described in UC1.5. Extracting the correct static and dynamic metadata
and interpreting the timing is important here.

2.2.6 UC2.6: Mixed files

Reading mixed channel-based, scene-based, and object-based files as described in UC1.6. Ensuring
all the audio is correctly extracted and matched with the correct metadata is one important factor.

23 Reading non-ADM WAV files

The majority of WAV files in existence do not contain any useful metadata to describe the format or
content of the audio. If there is a need to read these files for conversion into BWF files with ADM
metadata, then a decision needs to be made as to how to handle the lack of information. Following is
a set of use cases covering this scenario.

2.3.1 UC3.1: One-, two-, five- and six-channel files

The vast majority of WAV files contain 1, 2, 5 or 6 channels that usually correspond to mono, stereo,
5.0 or 5.1 configurations. The number of channels in the file being read is known and they are likely
to be channel-based, but there is no other information about the format or content.

2.3.2 UC3.2: Other numbers of channels

If presented with a 12-channel file there are a number of ways the configuration could be interpreted,
such as 2x 5.1, or 6x stereo. There may be some information about the file to give clues, or it might
be necessary to resort to examining the audio signals for guidance. This use case covers channel-
based audio files with numbers of channels that do not provide an easy identification.

2.3.3 UC3.3: Multiple mono files

Sometimes multi-channel audio is stored as a collection of mono WAV files, with each file
representing a particular channel. Without metadata in each file, the clues to determining the channel
for each file could lie in the filename.

24 Generating BWF Files without information

Unlike use cases UC1.x where there is plenty of information about the format and content of the
audio for the files being generated, this set of use cases covers the time when there is a lack of
information and assumptions need to be made. This ties in closely with the use cases UC3.x where it
is necessary to work out what is contained in the files being read.

2.4.1 UCA4.1: Generating one-, two-, five- and six-channel files

Generating conventional channel-based configurations, possibly as read in the manner of UC3.1 or
UC3.3. How to output enough useful ADM metadata to generate a useable BW64 file.

2.4.2 UC4.2: Generating other number of channels

Generating channel-based configurations, possibly read in the manner of UC3.2 or UC3.3. This will
include determining whether multiple groups of audio may exist. There could be information about
the format from configurations defined in documents such as Recommendation ITU-R BS.1738 or
EBU R123.

https://www.itu.int/rec/R-REC-BS.1738/en

Rep. ITU-R BS.2388-6 5

3 Best practices for ADM usage

3.1 Using Common Definitions
Use cases: UC1.1, UC1.2, UCL.6, UC2.1, UC2.2, UC2.6, UC3.1, UC3.2, UC3.3, UC4.1, UC4.2.

To ensure consistent use of ADM definitions, and to save space and effort in defining them, a set of
common ADM definitions covering a set of commonly used channel and pack definitions have been
developed (Recommendation ITU-R BS.2094).

The Common Definitions are represented in an XML file that must be accessed in some way by any
software that reads or writes BW64 files. These ADM definitions do not need to be carried in the
audio file itself.

The elements covered in the Common Definitions are audioTrackFormat, audioStreamFormat,
audioChannelFormat, and audioPackFormat. Currently they only cover commonly-used
channel-based and scene-based definitions (though this may be extended to some matrix-based
definitions in the future).

3.1.1 Using the Common Definitions when reading an audio file with an <axml> chunk

The steps when reading are:
1 Read in the Common Definitions XML file.
2 Read <chna> chunk from the audio file:
a) Inspect each row for the audioChannelFormatID or audioTrackFormatID reference.
1) If IDs occur in the Common Definitions, then use those channel definitions.
i1) If IDs do not occur in the Common Definitions, then refer to the <axml> chunk.
b) Inspect each row for the audioPackFormatID reference.
1i1) If IDs occur in the Common Definitions, then use those pack definitions.
iv) If IDs do not occur in the Common Definitions, then refer to the <axml> chunk.
3 Read <axml> chunk for other ADM definitions:

a) Check for any references in the <axml> chunk to IDs in the Common Definitions.

3.1.2 Using the Common Definitions when writing an audio file with an <axml> chunk

The steps when writing are:

1 Read in the Common Definitions XML file.

2 Search the Common Definitions for the appropriate channel definitions:
a) If one exists, then use the ID and store for use in the <chna> chunk.

b) Ifit does not exist, then generate a custom channel description and add it to the <axmlI>
chunk metadata, with the new ID ready for the <chna> chunk.

3 Search the Common Definitions for the appropriate pack definitions:
a) Ifit exists, then use the ID and store for the <chna> chunk.

b) If it does not exist, then generate a custom pack description and add it to the <axml>
chunk metadata, with the new ID ready for the <chna> chunk.

4 Generate any other ADM metadata ready for the <axmI> chunk.
a) Combine the chunks and audio for the output file.

https://www.itu.int/rec/R-REC-BS.2094/en

6 Rep. ITU-R BS.2388-6

3.2 Element IDs
Use cases: all

Each element in the ADM has its own identification attribute, such as audioChannelFormatID for
audioChannelFormat. The use of these IDs is important as they are used for the elements to be able
to reference each other, they are used by the <chna> chunk in the BW64 file, and are used to determine
whether elements are common definitions or customs ones. The IDs uniquely identify each element,
so care must be taken with their use.

3.2.1 ID prefixes

The IDs always have a prefix that corresponds to the element to which they belong. The prefix is
followed by an underscore, then some hexadecimal digits. The table below shows the prefixes that
should be used for each element.

Element Prefix
audioProgramme APR
audioContent ACO
audioObject AO
alternativeValueSet AVS
audioPackFormat AP
audioChannelFormat AC
audioBlockFormat AB
audioStreamFormat AS
audioTrackFormat AT
audioTrackUID ATU

3.2.2 Hexadecimal codes

The format of the ID is a prefix followed by a number of hexadecimal digits. The hexadecimal letters
(a to f) can be either upper or lower case, so any reading software must be case insensitive
(so AC_0001001a1s the same as AC_0001001A). The number and meaning of the digits depend upon
the element used (see § 6 of Recommendation ITU-R BS.2076). Here are the recommended formats
for each element:

3.2.2.1 audioProgramme
Format: APR wwww

Hex digits wwww: Any value from 0001 to FFFF. This is used to identify the programme
description. Values 0001 to OFFF are reserved for Common Definitions, while values 1000 to
FFFF can be used for user defined or custom programmes.

A value of 1001 is often used for the first custom definitions in the XML, such as specified in
Recommendation ITU-R BS.2168. The range of values for custom definitions may be further
constrained if the composition is compliant with one or more ADM profile specifications.

Each audioProgrammelD within a file must be unique.

3.2.2.2 audioContent

Format: ACO wwww

https://www.itu.int/rec/R-REC-BS.2076/en

Rep. ITU-R BS.2388-6 7

Hex digits wwww: Any value from 0001 to FFFF. Values 0001 to OFFF are reserved for Common
Definitions, while values 1000 to FFFF can be used for user defined or custom contents.

A value of 1001 is often used for the first custom definitions in the XML, such as specified in
Recommendation ITU-R BS.2168. The range of values for custom definitions may be further
constrained if the composition is compliant with one or more ADM profile specifications.

Each audioContentID within a file must be unique.

3.2.2.3 audioObject
Format: A0 wwww

Hex digits wwww: Any value from 0001 to FFFF. A value from 1000 to FFFF for custom objects,
which be any user defined objects; or a value from 0001 to OFFF are reserved for Common objects,
which reside in an external Common Definitions file/resource (though no common objects currently
exist but may in the future).

A value of 1001 is often used for the first custom definitions in the XML, such as specified in
Recommendation ITU-R BS.2168. The range of values for custom definitions may be further
constrained if the composition is compliant with one or more ADM profile specifications.

Each audioObjectID within a file must be unique.

3.2.2.4 alternativeValueSet
Format: AVS wwww zzzz

Hex digits wwww: These must match the digits of the audioObjectID of the parent audioObject
element.

Hex digits zzzz: Any value from 0001 to FFFF. These often commence from “0001” for the first
alternativeValueSet element within the parent audioObject and increase by 1 for each subsequent

alternativeValueSet element within the parent audioObject in order of appearance in the XML, such
as specified in § 2.2.1 of Recommendation ITU-R BS.2168.

Each alternativeValueSetID within a file must be unique.

3.2.2.5 audioPackFormat
Format: AP yyyyxxxx

Hex digits xxxx: A value from 1000 to FFFF for custom packs; or a value from 0001 to OFFF
for common packs, which reside in an external Common Definitions file/resource.

A value of 1001 is often used for the first custom definitions in the XML, such as specified in
Recommendation ITU-R BS.2168. The range of values for custom definitions may be further
constrained if the composition is compliant with one or more ADM profile specifications.

Hex digits yyyy: This value represents the type of audio contained in the pack, see Table 1 for
common type values.

Each audioPackFormatID within a file must be unique.
3.2.2.6 audioChannelFormat
Format: AC_ yyyyxxxx

Hex digits xxxx: A value from 1000 to FFFF for custom channels; or a value from 0001 to OFFF
for common channels, which reside in an external Common Definitions file/resource.

8 Rep. ITU-R BS.2388-6

A value of 1001 is often used for the first custom definitions in the XML, such as specified in
Recommendation ITU-R BS.2168. The range of values for custom definitions may be further
constrained if the composition is compliant with one or more ADM profile specifications.

This value should match the audioStreamFormat xxxx digits that references it.

Hex digits yyyy: This value represents the type of audio contained in the channel; see Table 1 for
common type values.

Each audioChannelFormatID within a file must be unique.

3.2.2.7 audioBlockFormat

Format: AB yyyyXxXXxX zzzzzzzzZ

Hex digits yyyyxxxx: These must match the parent audioChannelFormat values.

Hex digits zzzzzzzz: This is a counter for the blocks in sequence within a channel The first block
must be 00000001, the second 00000002, and so on (counting in hexadecimal).

3.2.2.8 audioStreamFormat

Format: AS yyyyxxxx

Hex digits xxxx: A value from 1000 to FFFF for custom streams; or a value from 0001 to OFFF
for common streams, which reside in an external Common Definitions file/resource. This value
should match the audioChannelFormat xxxx digits to which the audioStreamFormat refers.

A value of 1001 is often used for the first custom definitions in the XML. The range of values for
custom definitions may be further constrained if the composition is compliant with one or more ADM
profile specifications.

Hex digits yyyy: This value represents the type of audio contained in the stream; see Table 1 for
common type values.

Each audioStreamFormatID within a file must be unique.

For PCM audio, the audioStreamFormat and the audioTrackFormat should be omitted (see § 5.1 of
Recommendation ITU-R BS.2076 for further details).

3.2.2.9 audioTrackFormat
Format: AT yyyyxxxx zz

Hex digits xxxx: A value from 1000 to FFFF for custom tracks; or a value from 0001 to OFFF
for common tracks, which reside in an external Common Definitions file/resource.

A value of 1001 is often used for the first custom definitions in the XML. The range of values for
custom definitions may be further constrained if the composition is compliant with one or more ADM
profile specifications.

Hex digits yyyy: This value represents the type of audio contained in the track, see Table 1 for
common type values.

Hex digits zz: This value represents the track number within a stream. This should start at 01 for the
first track and increment for subsequent tracks.

The yyyyxxxx digits should match the audioStreamFormat vyyyxxxx digits to which the
audioTrackFormat refers.

Each audioTrackFormatID within a file must be unique.

https://www.itu.int/rec/R-REC-BS.2076/en

Rep. ITU-R BS.2388-6 9

For PCM audio, the audioStreamFormat and the audioTrackFormat should be omitted (see § 5.1 of
Recommendation ITU-R BS.2076 for further details).

3.2.2.10 audioTrackUID
Format: ATU vvvvvvvv

Hex digits vvvvvvvv: A value from 00000001 to FFFFFFFF to uniquely identify an audio track
(or part of one) within a file, such as specified in Recommendation ITU-R BS.2088, or when
transported, such as specified in Recommendation ITU-R BS.2143. The value 00000000 must not
be used for identifying this element as it is used to represent a silent track.

3.2.3 Recommended ID Numbering for Related Elements

For the audioTrackFormat, audioStreamFormat, audioChannelFormat and audioBlockFormat
elements there is a very close relationship between them. Therefore, it is good practice to keep the
IDs in connected elements well matched.

For PCM audio there is a one-to-one relationship between the essence and the resultant
audioChannelFormat. Given this relationship, audioTrackFormat and audioStreamFormat are not
required and are therefore not present in the ADM composition. Therefore, the recommended rules
for the IDs are:

— audioChannelFormatID: AC YYYYXXXX connects with audioPackFormatID
AP_yyyyxxxx:

* YYYY =yyyy
o XXXX=17??? (any value above 1000).

For coded audio the connection between audioTrackFormat and audioStreamFormat is an N-to-one
relationship, and the other relationship is between audioStreamFormat and audioPackFormat
(not audioChannelFormat as there are multiple channels in the stream). Therefore, the recommended
rules for the IDs are:

— audioStreamFormatID: AS YYYYXXXX connects with audioPackFormatID
AP_yyyyxxxx:

* YYYY =yyyy
o XXXX=17??? (any value above 1000).

— audioTrackFormatID: AT yyyyxxxx nn connects with audioStreamFormatID:
AS YYYYXXXX:

c yyyy=YYYY

o xxxXx = XXXX

« nn=01,02, ...
The audioBlockFormat element is the child of the audioChannelFormat element, so its ID follows
this rule:

— audioBlockFormatID: AB_YYYYXXXX NNNNNNNN with the parent
audioChannelFormatID: AC yyyyxxxx:

* YYYY =yyyy
¢ XXXX = XxxX

*« NNNNNNNN = 00000001, 00000002, ... (i.e. an incrementing counter for successive
blocks within the channel).

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2143/en

10 Rep. ITU-R BS.2388-6

33 Audio types
Use cases: all

The ADM is designed to cover any type of audio that needs describing. Currently, there are five
categories:

1 Direct Speakers — commonly referred to as channel-based, such as stereo and 5.1.

2 Matrix — channels which don’t feed directly to speakers, but which need combining via
matrix operations such as Mid-Side and Lt/Rt.

3 Objects — object-based audio where channels of the audio include positional and other
properties.

4 HOA - scene/transformation-based audio such as Ambisonics where channels represent

spatial harmonic components.

5 Binaural — where the two channels are for the left and right ear.

There is nothing to stop more categories being used if required, but it is recommended that one of the
five categories be used if at all possible.

The method of specifying which category is being used is done in three ways. The first is using the
typeDefinition attribute, which uses a string identifier; the second is using the typeLabel attribute,
which uses a numerical identifier; and the third is using the digits in the ID of the element. Either or
both of typeDefinition and typeLabel must be used. The numerical part of the element’s ID attribute
(the yyyy digits) must match the type used.

Table 1 shows the strings and values used for each of the categories.

TABLE 1
Type definitions

Category typeDefinition typeLabel ID hex digits (yyyy)
Direct Speakers “DirectSpeakers” “0001” 0001
Matrix “Matrix” “0002” 0002
Objects “Objects” “0003” 0003
HOA “HOA” “0004” 0004
Binaural “Binaural” “0005” 0005

User Custom “User Custom” “1000” to “FFFF” 1000 to FFFF

3.3.1 Format types

The audio can be stored in various ways in the file. The most common method ina WAV file is PCM;
however, it is also possible to store audio in the tracks in other ways. To ensure the storage format is
known, both audioStreamFormat and audioTrackFormat have format types associated with them to
allow this format to be specified.

The method of specifying which category is being used is done in three ways. The first is using the
formatDefinition attribute, which uses a string identifier; the second is using the formatLabel
attribute, which uses a numerical identifier; and the third is using the digits in the ID of the element.
Either or both of formatDefinition and formatLabel must be used. When the formatLabel is only used,
the common definitions of the format types must be used. A value from 0001 to OFFF is used for the
common format types and a value from 1000 to FFFF is used for the custom format types.

Table 2 shows an example of the strings and values used for each of the categories.

Rep. ITU-R BS.2388-6 11

TABLE 2
Example of format definitions
Format formatDefinition formatLabel
PCM “PCM” “0001”
MPEG-1* “MPEG1” “1002”
Dolby E* “DolbyE” “1003”
DTS* “DTS” “1004”

* MPEG-1, Dolby E and DTS are assumed as data_types of 4, 28 and 17 specified
in SMPTE ST 338, respectively. The formatLabels for the custom format types
are informative.

Missing both formatDefinition and formatLabel indicates PCM as the default format, so unknown
data is assumed to be PCM unless otherwise specified.

Both Dolby E and DTS require two tracks to be used together to form one stream. Track 1 would be
the ‘left’ track of the pair, and track 2 the ‘right’ track. The audioChannelFormat and
audioPackFormats referred by the Dolby E and DTS audioStreamFormats are what the decoded audio
would be (so typically 5.1).

34 <chna> chunk and IDs
Use cases: all

The <chna> chunk is the connection between the tracks in the WAV file and the ADM descriptions.
Each line in the <chna> chunk corresponds to a track or part of a track. The ADM IDs that are
contained in the chunk are audioTrackFormatID, audioPackFormatID and audioTrackUID. As
audioTrackFormat always refers to an audioStreamFormat, which then refers to either an
audioChannelFormat or an audioPackFormat; the IDs are enough to locate all the Format elements
that describe the track. Recommendation ITU-R BS.2076-2 or later allows for audioTrackFormat and
audioStreamFormat to be omitted in PCM only applications. When using this option,
audioTrackFormat and audioStreamFormat elements are not present in the composition and the chna
chunk contains references to the audioChannelformatID using the format AC yyyyxxxx 00. The
“00” suffix pads out the string to match the required number of bytes in the audioTrackFormatID
field.

The audioTrackUIDs are used to uniquely identify the track, or segment of track, that has a description
attached to it. These IDs are referred to from the audioObject element, which itself is referred from
audioContent and audioProgramme, thus completing all the elements in the ADM.

3.4.1 Simple PCM channel-based files

For WAV files containing PCM channel-based audio (and scene-based too), the <chna> chunk is
straightforward to use. Each line corresponds to each track in order along with its associated
audioChannelFormatID and audioPackFormatID:

12

Rep. ITU-R BS.2388-6

Track Number

audioTrackUID

audioChannelFormatID

audioPackFormatID

ATU_00000001

AC_00010001_00

AP 00010003

ATU_ 00000002

AC_00010002_00

AP 00010003

ATU_00000003

AC_00010003_00

AP 00010003

ATU_ 00000004

AC_00010004_00

AP 00010003

ATU_ 00000005

AC_00010005_00

AP 00010003

N[N | D |W[N |—

ATU_ 00000006

AC_00010006_00

AP 00010003

This example shows the chunk for a 5.1 file. Each track in the file contains a single audioTrackUID
as each track only contains a single description (i.e. the channels exist for the complete duration of
the file). The audioChannelFormatIDs refer to the definitions for PCM FrontLeft, FrontRight, etc.;
and the audioPackFormatIDs all refer to the definition of the 5.1 pack.

Another thing to note with this example is all the Format IDs are using common definitions, i.e. their
last four digits are OFFF or less. As it only uses common definitions this means the WAV file’s
<axml> chunk does not need to carry any ADM metadata for these format definitions. The only
elements the <axml> chunk may need is audioObject, audioContent, audioProgramme
and audioTrackUID.

3.4.2 Simple matrix files

For WAV files containing both “DirectSpeakers” and “Matrix” audio, the <chna> chunk can be used
to identify multiple audioTrackUIDs for one audio track. The audioPackFormatID field of particular
track number and audioTrackUID in the <chna> chunk can reference an audioPackFormatID of the
“Matrix” type. This “Matrix” type audioPackFormatID corresponds to an audiolnputPackFormat.

Track Number audioTrackUID | audioChannelFormatID | audioPackFormatID
1 ATU 00000001 AC 00010001 _00 AP 00010003
2 ATU 00000002 AC 00010002 00 AP 00010003
3 ATU 00000003 AC 00010003 _00 AP 00010003
4 ATU 00000004 AC 00010004 00 AP 00010003
5 ATU 00000005 AC 00010005 _00 AP 00010003
6 ATU 00000006 AC 00010006 00 AP 00010003
1 ATU 00000011 AC 00020001 00 AP 00021003
2 ATU 00000012 AC 00020002 00 AP 00021003
3 ATU 00000013 AC 00020003 _00 AP_00021003
4 ATU 00000014 AC 00020004 00 AP 00021003
5 ATU 00000015 AC 00020005 _00 AP 00021003
6 ATU 00000016 AC 00020006 00 AP 00021003

Rep. ITU-R BS.2388-6

The corresponding ADM XML is below:

343

<audioObject audioObjectID="A0 1001" audioObjectName="5.1" start="00:00:00.00000"
duration="00:10:00.00000">

<audioPackFormatIDRef>AP 00010003</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000001</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000002</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000003</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000004</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000005</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000006</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="AO 1002" audioObjectName="5.1to2" start="00:00:00.00000"
duration="00:10:00.00000">

<audioPackFormatIDRef>AP 00021003</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000011</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000012</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000013</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000014</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000015</audioTrackUIDRef>

<audioTrackUIDRef>ATU 00000016</audioTrackUIDRef>
</audioObject>

<audioPackFormat audioPackFormatID="AP 00021003" typeDefinition="Matrix”>
<inputPackFormatIDRef>AP 00010003</inputPackFormatIDRef>
<outputPackFormatIDRef>AP 00010002</outputPackFormatIDRef>
<audioChannelFormatIDRef>AC 00021001</audioChannelFormatIDRef>
<audioChannelFormatIDRef>AC 00021002</audioChannelFormatIDRef>
</audioPackFormat>

<audioChannelFormat audioChannelFormatID="AC 00021001" typeDefinition="Matrix”>
<audioBlockFormat audioBlockFormatID="AB 00021001 0000001">
<outputChannelIDRef>AC 00010001</outputChannelIDRef>
<matrix>
<coefficient gain="1.0">AC 00010001</coefficient>
<coefficient gain="0.7">AC 00010003</coefficient>
<coefficient gain="1.0">AC 00010005</coefficient>
</matrix>
</audioBloackFormat>
</audioChannelFormat>
<audioChannelFormat audioChannelFormatID="AC 00021002" typeDefinition="Matrix”>
<audioBlockFormat audioBlockFormatID="AB 00021002 0000001">
<outputChannelIDRef>AC 00010002</outputChannelIDRef>
<matrix>
<coefficient gain="1.0">AC 00010002</coefficient>
<coefficient gain="0.7">AC 00010003</coefficient>
<coefficient gain="1.0">AC 00010006</coefficient>
</matrix>
</audioBloackFormat>
</audioChannelFormat>

PCM object-based files

13

For WAV files containing PCM object-based audio, the <chna> chunk can be used to identify
multiple objects in the same track if they don’t overlap in time. An example <chna> chunk is shown

here:

Track number audioTrackUID audioChannelFormatID | audioPackFormatID

1 ATU_00000001 AC_00031001_00 AP 00031001
2 ATU_00000002 AC_00031002_00 AP_00031002
2 ATU 00000003 AC_00031003 00 AP 00031003
2 ATU_00000004 AC_00031004_00 AP_00031004
3 ATU 00000005 AC_00031005 00 AP 00031005

14 Rep. ITU-R BS.2388-6

In this example there are five audio objects, but as three of them do not overlap in time with each
other they can share a single track (track 2 in this case) in the file. The excerpt of XML code below
shows how the five audioObject elements are defined, with Obj2, Obj3 and Obj4 having non-
overlapping time properties.

<audioObject audioObjectID="AO 1001" audioObjectName="0bj1" start="00:00:00.00000"
duration=700:10:00.00000">

<audioPackFormatIDRef>AP 00031001</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000001</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="AO 1002" audioObjectName="0bj2" start="00:02:00.00000"
duration=700:01:00.00000">

<audioPackFormatIDRef>AP 00031002</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000002</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="AO 1003" audioObjectName="Obj3" start="00:04:00.00000"
duration="00:02:00.00000">

<audioPackFormatIDRef>AP 00031003</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000003</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="AO 1004" audioObjectName="Obj4" start="00:07:00.00000"
duration="00:02:00.00000">

<audioPackFormatIDRef>AP 00031004</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000004</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="AO 1005" audioObjectName="Obj5" start="00:00:00.00000"
duration="00:10:00.00000">

<audioPackFormatIDRef>AP 00031005</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000005</audioTrackUIDRef>
</audioObject>

3.4.4 Coded audio files

While the majority of audio stored in the files will be PCM, there could be situations where coding
audio could be stored. Coded audio could be stored across multiple tracks that need to be combined
to produce a decodable bitstream. The ADM handles this using the audioStreamFormat with multiple
audioTrackFormats connected to it. Often, coded audio contains multichannel audio in a single multi-
track stream. An example of this is Dolby E carrying 5.1 channels in a 2-track stream. Where an
audioStreamFormat element is describing multichannel stream it would refer to an audioPackFormat
element as opposed to an audioChannelFormat element.

Therefore, the in <chna> chunk the audioPackFormatID reference does not need defining because it
is already defined from audioTrackFormatID reference (via audioStreamFormat). A simple example
of a <chna> chunk is shown below:

Track number audioTrackUID audioTrackFormatID | audioPackFormatID

1 ATU 00000001 AT 02011001 01 *
2 ATU_ 00000002 AT 02011001 02 *

* Fill with 11 zero value bytes.

Note that the two audioTrackFormatIDs are identical apart from the two-digit suffix. Therefore, the
audioStreamFormatID that these would refer to would be AS 02011001. The excerpt of XML below
shows how these elements are defined to refer to the audioPackFormatID for a 5.1 pack.

<audioStreamFormat audioStreamFormatID="AS 02011001"
audioStreamFormatName="DolbyE 5.1" formatLabel="1003" formatDefinition="DolbyE">

<audioPackFormatIDRef>AP 00010003</audioPackFormatIDRef>
<audioTrackFormatIDRef>AT 02011001_0l1</audioTrackFormatIDRef>
<audioTrackFormatIDRef>AT 02011001_02</audioTrackFormatIDRef>

Rep. ITU-R BS.2388-6 15

</audioStreamFormat>

<audioTrackFormat audioTrackFormatID="AT 02011001 01" audioTrackFormatName="DolbyEl"
formatLabel="1003" formatDefinition="DolbyE">

<audioStreamFormatIDRef>AS 02011001</audioStreamFormatIDRef>
</audioTrackFormat>

<audioTrackFormat audioTrackFormatID="AT 02011001 02" audioTrackFormatName="DolbyE2"
formatLabel="1003" formatDefinition="DolbyE">

<audioStreamFormatIDRef>AS 02011001</audioStreamFormatIDRef>
</audioTrackFormat>

3.5 Defaults for unknown audio inputs
Use cases: UC3.1, UC3.2, UC3.3

When reading traditional WAV files, with the intention of converting them into BW64 files, it is
possible that no explicit information about the tracks will exist. Therefore, assumptions about the
tracks and their order must be made. Clearly it makes sense to gather as much information about the
input file as possible, to help identify the tracks; for example, if you received a 6-track file called
“Effects 5.1.wav” then it is highly likely to be a 5.1 surround sound file.

Assuming no other knowledge about a file, apart from the number of tracks it contains, and that it
contains a single programme or mix, then there are two approaches to take. The first approach to try
uses the set of Common Definitions to match with the number of tracks in the file. The second
approach to try is based on the Wave Format Extensible channel ordering. The two approaches are
described in more detail in the following sub-sections.

3.5.1 Common Definitions approach

The set of Common Definitions contains both channel definitions and pack definitions. The pack
definitions cover a range of commonly used channel-based configurations, and the number of
channels in each of these packs can be used to match up with the number of tracks in the input WAV
file. The method is simply this:

1 Read the number of tracks in the input file.

2 Find a pack in the Common Definitions with the same number of channels.

3 Generate a list of channel ID references from the chosen pack in the order given in the pack.

4 Match the stream ID references from the channel IDs and generate a <chna> chunk with the

stream IDs and pack ID.

If stage 2 fails (i.e. there is no Common Definition pack of the correct size), then try the second
approach below.

3.5.2 Wave Format Extensible approach

In some multichannel WAV files the method to handle the channel identification was to use the Wave
Format Extensible extension, which provided a set of channel labels in a particular order. The set of
channels in the Common Definitions have been given IDs in an order that matches the first 18 channel
labels in Wave Format Extensible. The table below shows how the dwChannelMasks in Wave Format
Extensible match the audioChannelFormat definitions in the Common Definitions. Some of the
names differ slightly, and as Wave Format Extensible does not provide clear definitions of each of
the channels, these were decided to be the closest matches.

16 Rep. ITU-R BS.2388-6

Wave Format Extensible dwChannelMask audioChannelFormat
Speaker position Flag bit ID Name

SPEAKER FRONT LEFT 0x1 AC 00010001 | FrontLeft
SPEAKER FRONT RIGHT 0x2 AC 00010002 | FrontRight
SPEAKER_FRONT CENTER 0x4 AC 00010003 | FrontCentre
SPEAKER LOW_FREQUENCY 0x8 AC 00010004 | LowFrequencyEffects
SPEAKER BACK LEFT 0x10 AC 00010005 | SurroundLeft
SPEAKER BACK RIGHT 0x20 AC 00010006 | SurroundRight
SPEAKER FRONT_LEFT OF CENTER 0x40 AC 00010007 | FrontLeftOfCentre
SPEAKER FRONT RIGHT OF CENTER 0x80 AC 00010008 | FrontRightOfCentre
SPEAKER BACK CENTER 0x100 AC _00010009 | BackCentre
SPEAKER SIDE LEFT 0200 AC 0001000a | SideLeft
SPEAKER SIDE RIGHT 0x400 AC _0001000b | SideRight
SPEAKER TOP_ CENTER 0x800 AC_0001000c | TopCentre
SPEAKER TOP FRONT LEFT 0x1000 AC 0001000d | TopFrontLeft
SPEAKER TOP FRONT_CENTER 0x2000 AC 0001000e | TopFrontCentre
SPEAKER TOP_FRONT RIGHT 0x4000 AC 0001000f | TopFrontRight
SPEAKER TOP_BACK LEFT 0x%8000 AC 00010010 | TopSurroundLeft
SPEAKER TOP_BACK CENTER 010000 AC 00010011 | TopBackCentre
SPEAKER TOP_BACK RIGHT 020000 AC 00010012 | TopSurroundRight

Therefore, this allows the approach for allocating IDs in the <chna> as simply placing them in

numerical order as shown below:

Track Number audioTrackUID audioChannelFormatID audioPackFormatID
1 ATU 00000001 AC 00010001 _00 AP _00010001*
2 ATU 00000002 AC 00010002 00 AP _00010001*
3 ATU 00000003 AC 00010003 _00 AP _00010001*
4 ATU 00000004 AC 00010004 00 AP _00010001*
NN ATU 000000NN AC 000100NN_00 AP _00010001*

* Depends on number of tracks.

The choice of audioPackFormatID is open to different options. One approach would be to generate a
single custom pack containing the channels used, which will tie together the channels into a single
pack. The other approach is to make each channel a mono pack (so use the ID AP_00010001), so
each channel is treated independently. This second approach would be easier, and the recommended
option to take and does not require any new definitions to be generated.

3.5.3

The two approaches above make use of the Common Definitions to provide descriptions of the tracks
for the audio file. There is therefore no need to generate definitions for the audioTrackFormat,
audioStreamFormat, audioChannelFormat, and audioPackFormat elements (the format elements in
other words). It would be acceptable to leave the <axml> chunk empty and just rely on the <chna>
chunk, looking up the Common Definitions, which are external to the audio file. However, it is useful
to consider generating at least an audioObject element that ties together the tracks in the file with

Generating other metadata for unknown audio inputs

Rep. ITU-R BS.2388-6 17

their format definitions more explicitly. This is particularly important if the audio file contains more
than one mix of audio (for example, a 5.1 mix plus a stereo mix), as the different mixes need to be
clearly identified.

Generation of the audioObjects is best explained with an example. Taking an 8-track audio file, where
it has been identified that it contains a 5.1 (6 tracks) mix and a stereo (2 tracks) mix. Using the
Common Definitions to determine the format elements, the <chna> chunk is as follows:

Track number audioTrackUID audioChannelFormatID audioPackFormatID

ATU_00000001

AC_00010001_00

AP 00010003

ATU_ 00000002

AC_00010002_00

AP 00010003

ATU_00000003

AC_00010003 00

AP 00010003

ATU 00000004

AC_00010004 00

AP 00010003

ATU_00000005

AC_00010005 00

AP 00010003

ATU 00000006

AC_00010006_00

AP 00010003

ATU_00000007

AC_00010001_00

AP 00010002

XX (XN [N | BN

ATU 00000008

AC_00010002_00

AP 00010002

As there are two mixes here then it is a good idea to generate two audioObjects to clearly identify
them, rather than leaving it to assumptions about the nature of the packs. The following XML code
(for inclusion in the <axml> chunk) shows how these objects could be generated:

<audioObject audioObjectID="AO 1001" audioObjectName="5.1 mix">
<audioPackFormatIDRef>AP 00010003</audioPackFormatIDRef>
<audioTrackUIDRef>ATU 00000001</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000002</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000003</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000004</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000005</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000006</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO 1002" audioObjectName="stereo mix”>
<audioPackFormatIDRef>AP 00010002</audioPackFormatIDRef>
<audioTrackUIDRef>ATU 00000007</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000008</audioTrackUIDRef>

</audioObject>

Generating audioObjects is particularly important for files containing multiple mixes of the same
pack type as it can become easy to misidentify how tracks are allocated.

3.5.4 Naming audio channels and loudspeaker labels for Cartesian coordinates

The audioChannelFormat has a name and loudspeaker label. Loudspeaker labels of playback sound
systems for polar coordinates are specified in Recommendation ITU-R BS.2051. Loudspeaker labels
can be expressed such as “M+030,” “B-030" and “U+180,” and consist of E+AAA or E-AAA. Here,
E indicates layer names, they are “B” (Bottom layer, elevation angle -30 degrees), “M” (Middle layer,
elevation angle 0 degree), “U” (Upper layer, elevation angle 30 degrees), “UH” (Upper height layer,
elevation angle 45 degrees) and “T” (Top layer, elevation angle 90 degrees). AAA indicates azimuth
angle, they are “+000” (azimuth angle 0 degree), “+030” (azimuth angle +30 degrees) and so on.
Although loudspeaker labels for Cartesian coordinates are not specified in any ITU-R Texts, they can
be used following the naming rule of loudspeaker labels for polar coordinates. It should also be noted
that the Cartesian audioPackFormats defined in Recommendation ITU-R BS.2094 are intended to be
played back through the loudspeakers defined by polar coordinates as specified Recommendation
ITU-R BS.2051.

https://www.itu.int/rec/R-REC-BS.2051/en
https://www.itu.int/rec/R-REC-BS.2094/en
https://www.itu.int/rec/R-REC-BS.2051/en

18 Rep. ITU-R BS.2388-6

Z-axis values of “—1.00,” “0.00” and ““1.00” specify layers of “B”’ (Bottom layer), “M” (Middle layer),
“U” (Upper layer), respectively. If a layer between the Bottom and Middle or Upper and Middle
layers is required, then composite labels “BMz” or “UMz” are used (where z is replaced by a 2-digit

position value representing the Z-axis). For example, “BM50” can be used when Z =—0.5 or “UMS50”
when Z =0.5.

Y-axis values of “—1.00,” “0.00” and “1.00” specify positions of “B” (Back), “Side” (Side) and “F”
(Front), respectively. X-axis values of “—1.00,” “0.00” and “1.00” specify positions of “L” (Left),
“C” (Centre) and “R” (Right), respectively. The position of X =—1.00 and Y = 1.00 can be expressed
by “FL” (Front Left).

If a position between Front Left and Front Centre with Y = 1.00 is required, then composite label
“FLx” is used (where x is replaced by a 2-digit position value representing the X-axis). For example,
“FL50” can be used when X =—0.50.

If a position between Front Left and Side Left with X = —1.00 is required, then composite label
“FSLy” is used (where y is replaced by a 2-digit position value representing the Y-axis). For example,
“FSL50” can be used when Y = 0.50.

On the upper layer, “FLxy” (where x and y are replaced by 2-digit position values of X- and Y-axis)
can be used for the Front Left area. If X = —0.333, Y = 0.667 and Z = 1.00, then composite label
“U_FL3367” (Upper Front Left at x = —0.333 and y = 0.667) can be used. Following this naming
rule, typical loudspeaker labels can be described as shown in Fig. 1.

FIGURE 1
Loudspeaker labels for Cartesian coordinates
a) Middle layer
M_FLSc M_FRSc
(Front Left (Front Right
Screen Edge Screen Edge
M_FL50 M_FC M_FR50
M_FL (Front Left (Front (Front Right (— M?';R o
(Front Left) Centre mid Centre Centre mid) (Front Right)
M_FSL67 M_FSR67

(Front Side
Left far) J

(Front Side
l Right far

M_SR

M_SL
(Side Left)

(Side Right)

M_BL50] ’ M_BC M_BR50 ‘ i
M_BL — -~ - M_BR
ey (Back Left (Back (Back Right =]
[(Back Left) _Centre mid) Centre) Centre mid) (Back Right)

Rep. ITU-R BS.2388-6

b) Upper layer

U_FC
U_FL (Front U_FR

(Front Left) Centre) (Front Right)

c
(]
A

Top Centre

(Side Right)

U_BC67
(Back Centre

far)
U BL U_BC U BR
a

(Back (Back Right)

4
5|
i

Centre)

c) Bottom (lower) layer

(

l B_FC]
B_FL Front B_FR
(Front Left) Centre) (Front Right)

20

Rep. ITU-R BS.2388-6

d) Typical loudspeaker labels for general layers

[FL]—[FL67 I FL50 I FL33]—[FC]—[FR33 IFRSO IFR67]—[FR J

FL6767 FL5067IFL3367] ———————

] *********** FR3367 [FR5067 FR6767‘

FL6750 FLSOSOIFL3350] ””””

FL3350 w FR6750

[FL6733 FL503SIFL3333] *******

,,,,,,,,,,, FL3333 |FR5033 |FR6733

BR3333 |BR5033|BR6733 i

BR3350|BR5050 |BR6750

BR3367 IBR5067 BR6767‘

FSLy
(Front Side Left y)

BSLy
(Back Side Left y)

FLx
(Front Left x)

FRx
(Front Right x)

|

|

[

FL FC FR
(Front Left) (Front Centre) (Front Right)
J — J .

3 P ~ b - ~ 4
| ! FCy i
: : (Front Centre y) :

1 H 1 1
1 | '

i FLxy i ! FRxy !

: (Front Left xy) 1 : (Front Right xy) :

1
; 1 !
| 1 |
| I L 72 3 i3
N e N e
sL TC/C SR
. (Top Centre / . N
(Side Left) [® Centre) <« »”| (Side Right)
J N J N
A - SLx - A - SRx JE— 7'y
\ (Side Left x) ! \ (Side Right x) !
= : = :
! i ! i
| ! | !
! BLxy i ! BRxy i
: (Back Left xy) 1 : (Back Right xy) 1
: I ' I
! : BCy :
! : (Back Centre y) :
E e e 1R e ' v
N s N s
BL BC BR
(Back Left) | (Back Centre) | (Back Right)

)

BLx
(Back Left x)

BRx
(Back Right x)

e) Naming rules for Cartesian coordinated loudspeakers

FSRy
(Front Side Right y)

BSRy
(Back Side Right y)

Rep. ITU-R BS.2388-6 21

3.6 Times and durations
Use cases: UCI1.5, UC2.5.

3.6.1 Timing attributes

The ADM has time and duration attributes in various elements, and their correct use is important to
ensure things work correctly. The elements that contain time related parameters are:

Element Attribute Meaning
audioProgramme start Time for the start of the programme
end Time for the end of the programme
audioObject start Start time of an object in seconds relative to the start of the programme.

duration | Duration in seconds of an object.

audioBlockFormat rtime Start time in seconds of a block relative to the start of the object.

duration Duration in seconds of a block.

To help explain how these elements relate to each the other, the diagram in Fig. 2 shows the
relationships.

The start of audioProgramme can be given a time (this is not essential, but recommended if it known),
but this has no influence on the audio contents of the file; the audioProgramme is describing the whole
file, so it starts at the first sample and ends at the last. In the example in Fig. 2, the time starts at
15:00:00:00 and ends at 15:30:00:00. It is important to ensure that end — start = the actual duration
of the file. All the other timing takes the start of the audio file as time zero.

The audioObject start attribute corresponds to the start time of the object relative to the start of the
file. The duration attribute corresponds to how long this object lasts. If this parameter is omitted the
object lasts for the whole duration of the file. The audio samples in the file will correspond to the start
and duration of the object as shown in the diagram (in the example this will be from 00:08:00.00 to
00:23:00.00).

The audioObject refers to an audioPackFormat (not shown for clarity) and an audioChannelFormat,
which do not possess timing properties. The audioChannelFormat contains one or more
audioBlockFormat that contain the finest level of timing information. The start (rtime) of the
audioBlockFormat is relative to the start of the audioObject. So the positions of the audio samples in
the file corresponding to a particular audioBlockFormat is found by adding its rtime to the start of
the audioObject to get the first sample, and adding its duration to find the last sample.

22

Rep. ITU-R BS.2388-6

FIGURE 2

Timing diagram

Start End
15:00:00:00 15:30:00:00

AudioProgramme

Start
00:08:00:00 Duration
v 00:15:00:00
: { >
[N "
AudioObject
:" """"""""""""""""" T R B R R O S R B R R R B A e A e A S AT S S RS S S RE SRR eSS RD IS
1 AudioChannelFormat 7 n
i rtime rtime
00:00:00:00 Duration 00:05:00:00| | Duration
< 00:05:00:00 00:02:00:00
32 >
v
AudioBlockFormat AudioBlockFormat
Audio file track ‘ Audio samples for the blocks ‘

lj il Y N
00:00:00:00 00:08:00:00 00:13:00:00 |00:15:00:00| |00:30:00:00|

Timescale not to scale.
Seconds given to 2 d.p for clarity

Report BS.2388-01

Is it possible to give timing values that are invalid or problematic, such as values that run off the end
of the audio file or cause overlapping blocks. There are some rules that should be followed to ensure
a correctly functioning file:

1
2

All the time and duration values must be non-negative.
The time attributes should be in the correct format:

a) HH:MM:SS:FF (where FF is the frame number) for the timecode attributes in
audioProgramme. If there is any doubt about what the frame rate is then it is best to avoid
using frame numbers and to use pure time as described in b) below.

b) HH:MM:SS.sssss (where sssss is at least 5 d.p. of the seconds) for the attributes in all
elements other than audioProgramme. More than 5 d.p can be used, and is recommended
for sampling rates greater than 48 kHz. For nanosecond precision 9 d.p. should be used.

The difference between the audioProgramme start and end time should match the duration
of the audio file — within the precision of the timecode representation. Omit the end attribute
if it uncertain what the length it.

The start + duration time of audioObjects should not be more than the duration of the file.

The rtime + duration time of audioBlockFormats should not be more than the start + duration
of the referring audioObject if possible.

If the audioBlockFormats overrun the end of an audioObject, then it will be assumed the
audio samples will only be read for the duration of the audioObject.

Rep. ITU-R BS.2388-6 23

7 The order of audioBlockFormats within an audioChannelFormat should be chronological in
the XML code.

8 Successive audioBlockFormats should be contiguous. Therefore the rtime of a block should
equal the rtime + duration of the previous block.

9 It is recommended to have the first audioBlockFormat in an audioChannelFormat starting at
00:00:00.00000. Use the start time of the audioObject to set the starting time of a sequence
of blocks.

3.6.2 Timing for Nested audioObjects

For many applications is it useful to use nested audioObjects. However, care must be taken to ensure
that the timing of nested audioObjects don’t cause them to become disconnected from each other.
Figure 3 shows eight examples of how two connected audioObjects (AO 1001 refers to AO_1002)
with different timing values can either work or fail.

It is also worth remembering that an audioObject’s start time is relative to the start of the
audioProgramme, not the start of the audioObject that refers to it.

24 Rep. ITU-R BS.2388-6

FIGURE 3
Nested audioObjects timing examples

audioObject audioObject AO 1001 Example 1:
audioObjectID: AO 1001 audioObjectID: AO_1002 AO 1002 OK
audioObjectIDRef: AO 1002 audioTrackUIDref: ATU_00000001
start: Undefined start: 2.0 0.0 20 3.0 50
duration: Undefined duration: 1.0
audioObject audioObject AO_1001 Example 2:
audioObjectlD: AO_1001 audioObjectlD: AO_1002 AO 1002 OK
audioObjectIDRef: AO_1002 audioTrackUIDref: ATU_00000001
audio jeC € - audio lrac e | 00 20 30 50
start 2.0 start: 2.0
duration: 1.0 duration: 1.0
audioObject audioObject | Ao_1001 | Example 3:
audioObjectlD: AO_1001 audioObjectlD: AO_1002 | AO 1002 I OK
audioObjectIDRef: AO_1002 audioTrackUIDref: ATU_00000001 00 20 3.0 50
start: 1.0 start: 2.0) .
duration: 3.0 duration: 1.0
audioObject audioObject | AO_1001 | Example 4:
audioObjectD: AO_1001 audioObjectlD: AO_1002 [A0 1002 | 2‘(;“‘:;,0] N
audioObjectIDRef: AO 1002 audioTrackUIDref: ATU_00000001 5 ends
- - 0.0 2.0 3.0 5.0 before AO_1002
start: 1.0 start: 2.0 -
duration: 1.5 duration: 1.0
audioObject audioObject | AO 1001 | Example 5:
audioObjectID: AO_1001 audioObjectD: AO_1002 | AO 1002 ' Avoid-
audioObjectIDRef: AOQ 1002 audioTrackUIDref: ATU 00000001 — AO_1001 “‘“f*
start: 25 start: 2.0 0.0 2.0 30 50 afier AO_1002
duration: 1.0 duration: 1.0
audioObject audioObject AO_1001 I E“'F:P'“ﬁ:
Avoid-
audioObjectID: AO_1001 audioObjectID: AO_1002 | AO 1002 AO_1001 does not
audioObjectIDRef: AO_1002 audioTrackUIDref: ATU 00000001 0.0 50 10 50 overlap with
start: 0.0 start: 2.0 ' - - . AO_1002
duration: 1.0 duration: 1.0
audioObject audioObject | AO_1001 E‘“WPIE 7
= Avoid-
audioObjectID: AO_1001 audioObjectID: AO_1002 AO 1002 ' AO 1001 does not
audioObjectiDRef: AO_1002 audioTrackUIDref: ~ ATU_00000001 N overlap with
2
start: 4.0 start: 2.0 00 20 30 50 AO_1002
duration: 1.0 duration: 1.0
audioObject audioObject AQ_1001 E“':;""*S:
Avoid-
;an?uOhJ:cUIID: AO_1001 audEoOhqu[Il'): AO .IOGZ AO_1002 AO_1002 starts
audioObjectIDRef: AO_1002 audioTrackUIDref: ~ ATU_00000001 0.0 20 30 50 beforc and ends
start: 2.0 start: Undefined : o : after AO 1001
duration: 1.0 duration: Undefined

Report BS.2388-02

3.6.3 Block sizes for dynamic objects

The audioBlockFormat element carries the parameters required for object-based audio with the time
attributes to enable dynamic use. The audioChannelFormat can contain up to 4 294 967 295
audioBlockFormat blocks, and the duration of an audioBlockFormat can be 10 ps (i.e. less than a
sample in length at a 48 kHz sample rate). It is therefore possible to use very fine temporal resolution,
and thereby produce very large files. Such large files would be unwieldy, and there is unlikely to be
the need for such short blocks, except when generating step changes in positional metadata. Specific
ADM/S-ADM profiles may constrain block sizes, for example Recommendation ITU-R BS.2168.
Otherwise, the following should be considered when deciding upon the sizes of the blocks:

Rep. ITU-R BS.2388-6 25

1 If successive blocks carry identical parameter values, then combine them into one single
block. In other words, new a block should only be generated when a change in parameter
values is required.

2 Positions will be interpolated (unless chosen not to be), so smoothness of movement can be
achieved without very fine blocks.

3 The speed and trajectory of the movement of objects. Slower objects could be represented
with longer and fewer blocks.

4 Is there enough movement in an object to require multiple blocks? An object might not be
moving by a noticeable amount, so one fixed position could suffice.

5 The larger the file, the more processing power and memory it will require. Too many small
blocks will produce large files that will be slow to process and memory-hungry for digital
audio workstations (DAWs).

6 Consider what will happen to the positional values if the coordinate system needs to be
remapped. Will the interpolation between successive positions have a noticeably different
trajectory when performed in another coordinate system? Keep the positional changes small
enough to make such difference imperceptible.

The decisions depend upon the judgement of the sound engineer or software designer weighing up
perceptual quality of the result and file size requirements. At this stage no recommended values are
given, but some may be given in the future after more research.

3.6.4 Dealing with preambles

When programmes were exchanged using tapes rather than using files, it would be common practice
for preambles and postambles to appear before and after the actual programme content. These would
often include a video test card and line up tones, as well as a countdown timer, which are very useful
when playing back from tape. While the need for these preambles is largely removed in a file-based
world, there will still be programmes that have been transferred from tape to file that will contain
them. Therefore, it makes sense to use the ADM timing metadata in a manner to ensure the file can
be played out correctly.

Many broadcasters use an agreed start timecode for all their programmes, such as 10:00:00.00000.
So anything that appears before this time is considered as a preamble and is not broadcast on playout.
An object-based approach can be used to separate the preamble from the main programme by making
them as separate objects. The preamble object can then start before the programme start time (so,
before 10:00:00.000), with the main programme as a following object starting at 10:00:00.000. The
upper diagram in Fig. 4 illustrates how this can be done. This method ensures the audioObjects all
have non-negative start times. The lower diagram shows the wrong way to approach this, by starting
the file at 10:00:00.000 and using a negative start time for the preamble audioObject.

26

3.7

Rep. ITU-R BS.2388-6

FIGURE 4

Adding a preamble to a file

"Programme title or
Color bar" + "1 kHz"

Audio and video of programme

Audioprogramme start = '09:59.30.000", end = '10:15:00.000"

audioContent ='"ACO_1001"

AudioObject = ‘AO 1001’
name = 'check signal’

start ="00:00:00.000",
duration = '00:00:30.000'

AudioObject = 'AO 1002’
name = ‘alternative programme’
start =' 00:00:30.000’,

duration = '00:15:00.000"

Audioprogramme start = '09:59.30.000", end = '10:15:00.000'

audioContent ="ACO_1002'

AudioObject = "AO_1001’
name = ‘check signal’

start ="00:00:00.000°,
duration = '00:00:30.000"

AudioObject = 'AO 1003’
name = ‘alternative programme’
start ='00:00:30.000°,

duration = '00:15:00.000"

timecode = '09:59:30.000' '10:00:00.000"
relative time = '00:00:00.000" 00:00:30.000°

Start timecode of the

Start timecode of the real

programme (the track)

programme

Audioprogramme start = '10:00.00.000", end = '10:15:00.000"

audioContent ="ACO 1001’

AudioObject = 'AO_1001"
name = ‘check signal’
start ="-00:00:30.000",
duration = '00:00:30.000"

AudioObject = '"AO 1002’
name = ‘main programme’
start =" 00:00:00.000",
duration = '00:15:00.000"

File management

Report BS.2388-03

While the BW64 format can handle files over 4GB in size, both for the audio samples and XML
metadata, care must be taken when generating such large files. Section 3.6.3 describes how the block
sizes with audioBlockFormat should be considered which have a large influence on the size of the
<axml> chunk. When generating large files, it is worth bearing in mind the following:

1

3
4

The audio data (in the <data> chunk) may be directly read from file, rather the stored in

memory in its entirety.

The XML metadata in the <axml> chunk is likely to be required to be read into memory in
its entirety, even if it is later stored in a more compact form. Therefore having an <axml>
chunk that is several gigabytes in size could cause memory problems.

As well as memory limitations, large files can also be slower to read and process.

The XML metadata also needs interpreting which could take a long time.

To overcome these issues there are some measures that can be taken:

1

Consider increasing audioBlockFormat blocks sizes based on the considerations described in
§3.6.3.

Avoid duplicating metadata. The “format” ADM elements are not directly tied to audio data,
so make use of the Common Definitions if possible and identify any audioChannelFormat
elements that are identical which can be reused.

Rep. ITU-R BS.2388-6 27

3 Take advantage of non-overlapping objects. These can share audio tracks to reduce the
number of tracks used in the file.

The advice given in this section is not an exhaustive list and should be added to or refined in the
future if required.

3.8 <fmt> Chunk handling

The <fmt> chunk in WAV files is a mandatory that specifies the format of the data within the file.
The <fmt> chunk is defined as follows:

<fmt> ->fmt (<common-fields>
<format-specific-fields>)
<common-fields> ->

Struct {
WORD wFormatTag; // Format category
WORD nChannels; // Number of channels
DWORD nSamplesPerSec; // Sampling rate
DWORD nAvgBytesPerSec; // For buffer estimation
WORD nBlockAlign; // Data block size

}

<format-specific-fields>) ->

Struct {
WORD WBitsPerSample; // Bits per sample
WORD cbSize; // Size of the extension (0 or 22)
WORD wValidBitsPerSample; // Number of valid bits
DWORD dwChannelMask; // Speaker position mask
CHAR[16] SubFormat; // GUID, including the data format code

}

The <format-specific-fields> are optional and are used in the Wave Format Extensible mode. The
format code in wFormatTag specifies the type of data used, and a small selection of these types are
shown below:

wFormatTag Symbol Format
0x0000 WAVE _FORMAT UNKNOWN Unknown
0x0001 WAVE FORMAT PCM PCM
0x0003 WAVE FORMAT IEEE FLOAT IEEE float
0xFFFE WAVE FORMAT EXTENSIBLE Determined by SubFormat

If the format is set to WAVE FORMAT EXTENSIBLE then the file uses the <format-specific-
fields> with the dwChannelMask to specify the channels.

When reading a WAV file the <format-specific-fields> may or may not be specified, but if they do
exist they should be read to try and determine as much about the channels and format as possible.

When generating a BW64 file, it is recommended to avoid using the Wave Format Extensible mode
as there is the risk of generating information that contradicts the <chna> and <axml> chunk
information. The recommended approach is to only use one of two wFormatTag values according to
these rules:

— If all the audio track in the file are PCM then set wFormatTag to 0x0001 (PCM)
— If any of the audio tracks are non-PCM then set wFormatTag to 0x0000 (unknown).

28 Rep. ITU-R BS.2388-6

3.9 Ensuring streaming compatibility

The way in which the ADM is used, and the way in which multichannel audio files are created, will
have an impact on the efficiency with which the audio data can later be streamed. The use cases in
this area are still being developed.

3.10 Interactivity and ensembles of audioObjects

AudioObjects may have an “interact” attribute, and audioObjectInteraction sub-elements. These
signal that the user may interact with the audioObject, changing position or gain, or turning off an
object. In addition, audioObjectInteraction sub-elements can be used to signal limits on the size of
changes to position or gain.

Note that positions and gains are sub-elements not in audioObjects, but of audioBlockFormats. An
audioBlockFormat represents a single sequence of audioChannelFormat samples within a specified
time interval. An audioChannelFormat represents a single sequence of audio samples on which some
action may be performed in a rendered scene. An audioChannelFormat is sub-divided in the time
domain into one or more audioBlockFormats.

Because audioObjects may refer to other audioObjects, it is possible to interact with a referent object
in order to change the referenced objects. It may also be possible to interact with a referenced
audioObject, without changing the referent object.

An example scenario in which this might be desired, and the expected behaviour, are described in
§§ 3.10.1 and 3.10.2.

3.10.1 Example of interaction with an ensemble of audioObjects

A broadcast that includes a performance by a string trio uses multiple objects to create the sound of
the orchestra. A different audioObject is used for the sound of each instrument. An audioObject

99 ¢C

named “ensemble” refers to audioObjects named “violin”, “viola”, and “cello”.

The “violin”, “viola”, and “cello” audioObjects each refer to their own audioPackFormat,
audioChannelFormat, and audioBlockFormat. Each audioBlockFormat includes a position from
which the renderer should, by default, render the sound of the respective instrument. The positions
signalled in the metadata correspond to a reasonable spacing and order of the instruments:

violin --- viola --- cello
By default, the three instruments are spaced 30 degrees apart, symmetrically either side of 0 degrees.

The broadcaster allows the listener to change the azimuth of the ensemble by +90 degrees. It does
this by enabling interaction on the “ensemble” audioObject, and setting the positionInteractionRange
minimum and maximum attributes accordingly.

The broadcaster further allows the listener to move the instruments within the ensemble to a limited
extent. It does this by enabling interaction on the “violin” and “cello” audioObjects. The
positionInteractionRange limits on the “violin” and “cello” are set such that the overall width of the
ensemble may be reduced to 30 degrees.

The desired behaviour is that an interaction with a referent object is applied to all referenced objects.
Interaction with a referenced object is not applied to the referent object.

Interaction with the “ensemble” audioObject, applying a change of azimuth of 45 degrees, causes a

2 <6

change in azimuth of each of the “violin”, “viola”, and “cello” audioBlockFormats.

Rep. ITU-R BS.2388-6 29

A subsequent interaction with the “violin” and “cello” audioObjects that applies a change of azimuth
of —10 and 10 degrees respectively is still considered to be within the interactionRange limit for those
objects, because the earlier interaction with the referent “ensemble” object should not be taken into
account.

In this way, the listener may change both the width and the position of the ensemble, with a tighter
constraint on the change of width than on the change of position.

The control used by the listener to effect the interaction might be presented in a way that facilitates
either rotation or translation. The signalling of interactionRange limits would logically be done using
a coordinate system that is consistent with the control. For example, if a control were provided to
change the azimuth of a sound source, it would be logical to signal the interactionRange in polar
coordinates. Conversely, if a control were provided to move a sound source in a straight line from
side to side, it would be logical to signal the range in Cartesian coordinates.

The value of attributes in the position or gain sub-elements of an audioBlockformat can change over
time. The existing offsets caused by earlier interactions should persist after a change to the attributes.

There are several combinations of interaction being enabled or not in an ensemble of audioObjects.
The following diagram in Fig.5 illustrates the possibilities and the interactions that are allowed as a
result, using position as the example.

30 Rep. ITU-R BS.2388-6

FIGURE 5
Possible combinations of positional interactivity in an ensemble of audioObjects, and the changes enabled

Interactivity state

N Object behaviours
(red means “interactive”)

AO
(referent)
= < Both references move with the relative motion that is applied to the referent
¥
AO AO Movement may not be applied independently to any reference, only by changing
(reference) (reference) the position of the referent
AO
(referent) ..
. \ The position of the referent may not be changed
¥)
AO AO Only the interactive reference may have its position changed
(reference) (reference)
AO
(referent) Both references move with the relative motion that is applied to the referent
$ kY The interactive reference may have its position changed independently of its
AO AO referent and of the non-interactive reference
(reference) (reference)
AO
(referent) Both references move with the relative motion that is applied to the referent
¥ “a
o o Both references may have their positions changed independently of each other
A A
(reference) (reference)
AO The position of the referent may not be changed
(referent)
’/ Y Both references may have their positions changed independently of each other
AO AO
(reference) (reference)

Report BS.2388-04

3.10.2 Behaviour of interaction with ensembles of audioObjects

If an audioObject allows interaction, the change to an attribute that can be set by the user should be
within the limits of the interaction range of that audioObject. In this context, a “change” is the
difference between a condition before and after the interaction.

The resultant position and gain of a sound source is the combination of the attributes of the position
and gain sub-elements of the audioBlockFormat and all the changes caused by interaction in the
hierarchy of audioObjects that refer to the audioBlockFormat.

Rep. ITU-R BS.2388-6 31

3.11 Multiple audioProgrammes

It is possible to define more than one audioProgramme within a BW64 file, and there could be several
different reasons for doing so. These include:

- Different language versions of the same programme;

— Different length versions of the same programme;

- Versions of the programme that have been mixed on different reproduction systems
(e.g. a stereo version and an object-based version);

— Adjustments in content to cater for age ratings or music rights.

There could also be the need for carrying multiple unrelated programmes in a single file, but it is
more likely that a file will contain versions of the same programme.

3.11.1 Using multiple audioProgrammes versus audioContents and audioObjects

Taking the example of a programme with two different language versions, this can be approached in
two different ways. The first approach consists in two different audioProgrammes to be used, one for
each language. The second approach is a single audioProgramme with interactive audioObjects that
are complementary. Figure 6 shows the two audioProgramme approach with an English and German
version, and both audioProgrammes share the same music and effects audioContent. Figure 7 shows
the single audioProgramme version where either the English or German audioObject can be selected.

FIGURE 6

Two audioProgramme approach

APR_1001 APR_1002
English version German version
ACO 1001 ACO_1003 ACO_1002

English dialogue

Effects and music

German dialogue

'

l

'

AO 1001

AO_1003

AO 1002

English dialogue

Effects and music

German dialogue

Report BS.2388-05

32 Rep. ITU-R BS.2388-6

FIGURE 7
Single audioProgramme approach

APR_1001

Interactive version

gl B

ACO 1001 ACO 1002 ACO _1003
English dialogue German dialogue Effects and music
AO_1001
AO_1002 AO_1003

English dialogue

audioObjectComplementarylDRef: German dlalOgu“ Effects and music

AO 1002

Report BS.2388-06

Which approach should be used when?

The multiple audioProgramme approach should be used when interactivity is not expected to be used.
In the example given, the playout system is expected to be fixed to either English or German and to
select the appropriate programme to use. The user is not expected to switch between languages while
watching.

The single audioProgramme approach should be used when interactivity is expected to be used. In
the example, some language selectors are expected to be available. The user can therefore switch
between languages while watching.

3.11.2 Default audioProgramme

When a file contains more than one audioProgramme, and only one audioProgramme can be handled
by the receiver of the file, then a choice has to be made to select one. In the example of a
multilanguage programme, the target language may be known. By inspecting the language parameters
in audioProgramme (or the related audioContents) should be determined which audioProgramme to
use.

However, there might be situations where no other information is known about which
audioPrograame should be selected, yet one needs to be chosen to play or process. When there is no
other information to help select an audioProgramme, then a default one must be chosen. The simplest
rule for determining which is the default audioProgramme to use it to select the one with the lowest
audioProgrammelD value. In the example shown in Fig. 6, the default audioProgramme would be
APR _1001.

3.12 Using the ‘importance’ parameters

The ‘importance’ parameter appears in the following elements: audioObject, audioPackFormat and
audioBlockFormat. The integer value of the parameter ranges from 0 (least important) to 10 (most
important). The main use for the importance parameter is when compromises have to made to the
quantity of audio objects in the file. For example, a renderer on a device can only handle 64 objects
at once, but the ADM file it receives contains 90 objects, so some sort of reduction has to be made.
A pre-processer can make this reduction from 90 to 64, but by having some sort of guide to which
objects are more important than others it can make this reduction in a manner that retains the content
creator’s intent more closely.

The behaviour for the importance parameter differs between each of the elements it is used in.

Rep. ITU-R BS.2388-6 33

3.12.1 The audioBlockFormat importance parameter

While the importance parameter is in the audioBlockFormat, it does not mean it should be treated as
a dynamic parameter, as stated in Recommendation ITU-R BS.2076-1 § 9.2. Therefore, it should be
considered to be a fixed value for that particular audioChannelFormat. While Recommendation
ITU-R BS.2076 suggests that audioBlockFormats below a certain value are discarded, it is not
recommended to take this action. The importance parameter in audioPackFormat should take
precedent for this action, and the audioBlockFormat importance parameter should only be used for
informative uses.

3.12.2 The audioPackFormat importance parameter

The importance parameter in audioPackFormat can be used to make compromises in the spatial
quality of an audio object. As an audioPackFormat is intended to group together channels that belong
together, they can be considered to be equally important. However, audioPackFormats can be nested,
so less important packs can be referred to from a parent pack. Figure 8 shows a simple use of nested
audioPackFormats, where a parent pack (‘Speech’) contains two child packs (‘SpeechDirect’) and
(‘SpeechEarly’). The ‘SpeechDirect’ pack contains a single channel and has an importance of 10, so
should never get discarded. The ‘SpeechEarly’ pack contains two channels and has an importance of
5, so may get discarded. In this example, the ‘SpeechDirect’ could contain the direct signal of some
dialogue, so it critical to the sound; but the ‘SpeechEarly’ could contain some reverb sounds of the
dialogue, so discarding them will only adjust the feel of the sound slightly.

FIGURE 8

Nesting audioPackFormats for importance parameter use

AP 00031001

Speech

Importance = 10

/N

AP 00031002 AP 00031003

SpeechDirect SpeechEarly

Importance = 10 Importance = 5

\

AC_00031001 AC_00031002 AC_00031003

SpeechDirect SpeechNearl SpeechNear2

Report BS.2388-07

So, a pre-processor that aims to reduce the number of objects or tracks in a file, could discard or
ignore the audioPackFormats below a certain importance value. The quality might be compromised,
but the actual object will still exist. So in the example given, the ‘Speech’ pack will either contain
one or three channels depending on the importance level chosen.

This is not restricted to the ‘Objects’ type either, and is just as useful for other types too. It is also
worth remembering that audioPackFormats can be reused for different content, so any importance
parameter will be reused for the different content in the same way. So the importance parameter here
is very much for compromising the quality of the format, not the content.

https://www.itu.int/rec/R-REC-BS.2076/en

34 Rep. ITU-R BS.2388-6

3.12.3 The audioObject importance parameter

The importance parameter in audioObject has a slightly different behaviour from the of the
audioPackFormat version. Whereas the audioPackFormat makes compromises on quality (primarily
the spatial quality), the audioObject version allows less important sounds to be potentially discarded
too. Unlike the audioPackFormat, this allows for content-dependant compromises to be made. For
example, minor atmospheric effects could be discarded to ensure the main effects are properly
reproduced.

Discarding is not the only option for handling audioObjects of low importance. A processor could
also combine audioObjects that share similar properties, such as close positional proximity.

As with audioPackFormats, nesting can be used to allow selection of the audioObjects that can either
be discarded or combined. The example shown in Fig. 9 shows and audioObject (AO_1001) that
contains two sub-audioObjects, Speech (AO_1002) and RoomReverb (AO_1003). The RoomReverb
audioObject has a lower importance, so it could potentially be discarded, as it contains less
importance sounds. Alternatively, if the processor is so designed, it could examine the properties of
AO 1002 and AO_1003 and merge them together to make a single combined object (this will have
to include mixing of the audio samples too).

FIGURE 9

Nesting audioObjects for importance parameter use

AO_1001

Speech

importance = 10

[\

AO_1002 AO 1003
Speech RoomReverb
importance = 10 importance = 7
AP_00031001 AP_00031002
Speech RoomReverb

Report BS.2388-08

However, it is recommended that any audioObject with an importance of 10 be left untouched if
possible.

3.12.4 Using an importance threshold

A processor that receives ADM files with the intention of reducing the number of tracks or objects
can use a thresholding technique to achieve this reduction. The steps taken would be:
1) Set threshold to 0.

2) Inspect audioPackFormats and audioObject importance parameters. If any are less than the
threshold then discard or ignore those elements.

3) Count the number of tracks and/or objects remaining.
4) If the number of tracks/objects is below the target then stop.
5) Else increase the threshold by 1 and repeat from step 2.

Other methods could be used for reducing ADM files, such as combining objects, intermediate
rendering or downmixing.

Rep. ITU-R BS.2388-6 35

3.13 Using tagList sub-element

The tagList sub-element can contain one or more tagGroup sub-elements which define a group of one
or more tags associated with one or more ADM elements. The tag sub-element can be used to attach
descriptive text, keywords and short names to selected ADM elements. Applications may use tag
values for automatic selection, discarding, and searching of ADM elements. The values of the tag
sub-elements and their class attributes provide additional information and do not influence the way
ADM elements are parsed or interpreted. Additionally, the contents of the tag elements are not used
to duplicate or replace any other existing ADM elements. This section introduces examples to use the
taglist sub-element

3.13.1 Using tagList sub-element for audio format type

The tagList can describe types of audio format, programme genre and mixing method, such as “legacy
2.0”, “AdvSS/NGA”, “Sports”, “News”, “dialogue boosted”, etc.

3.13.1.1 Sample code

<tagList>

<tagGroup>
<tag class=“audioFormat”>stereo</tag> ### Audio format
<tag class=“programme genre”>sport</tag> ### Programme genre
<audioProgrammeIDRef>APR 1001</audioProgrammeIDRef>

</tagGroup>

<tagGroup>
<tag class=“audioFormat”>NGA 5.1+2dialogues</tag>### Audio format
<tag class=“programme genre”>sport</tag> ### Programme genre

<audioProgrammeIDRef>APR 1002</audioProgrammeIDRef>
<audioProgrammeIDRef>APR 1003</audioProgrammeIDRef>

</tagGroup>

<tagGroup>
<tag class=“dialogue type”>boosted</tag> ### Dialogue type
<audioObjectIDRef>A0 1005</audioObjectIDRef>

</tagGroup>

</tagList>

3.13.2 Using tagList sub-element for presets (ARIB TR-B48)

This example shows how multilingual programmes can be constructed by multiple audioProgrammes
or multiple audioObjects as shown in ARIB TR-B48. A preset can specify a set of audioObjects
reproduced at the same time. The taglist can describe presets consisted of a combination of
audioProgramme, audioContent and audioObject, such as “main (ENG)”, “home (JPN)”, “main with
boosted dialogue (ENG)” etc.

3.13.2.1 Sample code

<tagList>
<tagGroup>

<tag class=“presetID”>PS 0001</tag> ### Preset ID
<tag class=“presetlLabel”>main (ENG)</tag> ### Preset Label
<tag class=“associatedVideo”>main (L0)</tag> ### Related wvideo
<tag class=“language”>ENG</tag> ### Language
<tag class=“contentType”>main</tag> ### Content type
<tag class=“accessibility”>normal mix</tag> ### Accessibility
<tag class=“audioTrackOffset”>4</tag> ### audio track offset

<audioProgrammeIDRef>APR 1001</audioProgrammeIDRef>
<audioContentIDRef>ACO 1001</audioContentIDRef> ### Background sound
<audioContentIDRef>ACO 1003</audioContentIDRef> ### Main Dialogue
<audioContentIDRef>A0 1001</audioContentIDRef>
<audioContentIDRef>A0 1003</audioContentIDRef>

</tagGroup>

36 Rep. ITU-R BS.2388-6

<tagGroup>
<tag class=“presetID”>PS 0005</tag> ### Preset ID
<tag class=“presetLabel”>Home (ENG)</tag> ### Preset Label
<tag class=“associatedVideo”>Home (L1)</tag> ### Related video
<tag class=“language”>ENG</tag> ### Language
<tag class=“contentType”>altertiveView</tag> ### Content type
<tag class=“accessibility”>dialogueBoosted</tag> ### Accessibility
<tag class=“audioTrackOffset”>4</tag> ### audio track offset

<audioProgrammeIDRef>APR 1002</audioProgrammeIDRef>
<alternativeValueSetIDRef>AVS 1004 000l1</alternativeValueSetIDRef>
<audioContentIDRef>ACO 1002</audioContentIDRef> ### Background sound
<audioContentIDRef>ACO_ 1004</audioContentIDRef> ### Dialogue for Home
<audioObjectIDRef>A0 1002</audioObjectIDRef>
<audioObjectIDRef>A0 1004</audioObjectIDRef>
</tagGroup>
</tagList>

4 Location of ADM metadata

The parent or top level element of the ADM is audioFormatExtended. Recommendation ITU-R
BS.2076 does not specify the structure of other audio-related metadata with respect to
audioFormatExtended. The audioFormatExtended element can be located within the ebuCoreMain
element or within the other XML elements, as specified in Recommendations ITU-R BS.2088, ITU-R
BS.2125 and ITU-R BS.2168. Other audio-related metadata may accompany the ADM metadata (see
§ 6). Figure 10 illustrates such examples, and the following sections provide details pertaining to
Recommendations ITU-R BS.2088 and ITU-R BS.2125.

FIGURE 10

Examples of location of the audioFormatExtended element

<ebuCoreMain>

<coreMetadata> <coreMetadata>

<format> <format> <format>

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

Report BS.2388-09

4.1 BW64 file specified in Recommendation ITU-R BS.2088

In BW64 files the ADM metadata is carried in the axml chunk, that may also contain other XML
code. The ebuCoreMain element and the coreMetadata sub-element of the ebuCoreMain are used to
describe information of the bext / ubxt chunk. In this case the audioFormatExtended element is
located within the format element of the coreMetadata element as shown in Fig. 11.

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2168/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2088/en

Rep. ITU-R BS.2388-6 37

FIGURE 11
Location of the audioFormatExtended element specified in Recommendation ITU-R BS.2088

<ebuCoreMain>

<coreMetadata>

<format>

<date/> etc. for bext

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

other

other

Report BS.2388-10

4.2 A serial representation of the ADM (S-ADM) specified in Recommendation ITU-R
BS.2125

The frame element is the top level element of the S-ADM. When only audio-related metadata is used,
the frame element directly includes the audioFormatExtended element, which includes the ADM
metadata (excluding the frameHeader element). Alternatively, the frame element includes the
coreMetadata element when broadcaster metadata and the other additional metadata are used.
Then, the format sub-clement of the coreMetadata includes the audioFormatExtended element.
Figure 12 shows the two structures of how the audioFormatExtended element is carried in S-ADM.

FIGURE 12
Location of the audioFormatExtended element specified in Recommendation ITU-R BS.2125

<frame> <frame>
<frameHeader> <frameHeader>
<frameFormat/> <frameFormat/>

<transportTrackFormat/> <transportTrackFormat/>

<coreMetadata>

<format>

<date/> etc. for bext

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

other

<audioFormatExtended>
--ADM is here --

</audioFormatExtended>

other

other

Report BS.2388-11

https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2125/en

38

Rep. ITU-R BS.2388-6

5 Examples of ADM usage

5.1 5.1 and Stereo combination

A common delivery configuration is to carry a 5.1 surround main mix alongside a stereo version to
cater for non-5.1 compatible systems. In Recommendation ITU-R BS.1738, Production Scenario 5

describes such a configuration, as shown the table below.

Channel number

5.1 Surround sound audio signal

Left channel, complete mix

Right channel, complete mix

Centre channel, complete mix

Low frequency effects

Left surround channel

Right surround channel

Optional left channel international sound

X N[N N[W N

Optional right channel international sound

This is straightforward to deal with by using the Common Definitions to describe the channels, and

audioObjects to classify the two mixes. The <chna> can be generated like this:

Track number

audioTrackUID

audioChannelFormatID

audioPackFormatID

ATU_ 00000001

AC _00010001_00

AP 00010003

ATU 00000002

AC_00010002_00

AP 00010003

ATU_00000003

AC_00010003 00

AP 00010003

ATU 00000004

AC_00010004_00

AP 00010003

ATU_ 00000005

AC_00010005 00

AP 00010003

ATU 00000006

AC_00010006_00

AP 00010003

ATU 00000007

AC_00010001_00

AP 00010002

(eI IR I e N O, T N VS N S

ATU_ 00000008

AC _00010002_00

AP 00010002

The tracks can now be connected to audioObjects so these need to be defined. The XML code for

these two audioObjects is below:

</audioObject>

</audioObject>

<audioObject audioObjectID="AO 1001" audioObjectName="5.1 mix">
<audioPackFormatIDRef>AP 00010003</audioPackFormatIDRef>
<audioTrackUIDRef>ATU 00000001</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000002</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000003</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000004</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000005</audioTrackUIDRef>
<audioTrackUIDRef>ATU_00000006</audioTrackUIDRef>

<audioObject audioObjectID="AO 1002" audioObjectName="stereo mix”>
<audioPackFormatIDRef>AP 00010002</audioPackFormatIDRef>
<audioTrackUIDRef>ATU 00000007</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000008</audioTrackUIDRef>

More information can be added, as the two mixes may have some additional information. This

information can be placed in the audioContent and audioProgramme elements:

https://www.itu.int/rec/R-REC-BS.1738/en

Rep. ITU-R BS.2388-6 39

<audioProgramme audioProgrammelID="APR 1001” audioProgrammeName="Complete+International”>
<audioContentIDRef>ACO 1001</audioContentIDRef>
<audioContentIDRef>ACO 1002</audioContentIDRef>

</audioProgramme>

<audioContent audioContentID="ACO 1001" audioContentName="CompleteMix">
<audioObjectIDRef>A0 1001</audioObjectIDRef>
</audioContent>

<audioContent audioContentID="ACO 1002" audioContentName="InternationalMix">
<audioObjectIDRef>A0 1002</audioObjectIDRef>
</audioContent>

This is all the XML code that is required for the <axml> chunk: all the track, stream and channel
information resides in the Common Definitions resource.

5.2 Object-based with a channel-based bed

This example shows how a pair of audio objects can be combined with a stereo channel-based bed.
Figure 13 shows how the channels and objects are arranged (the timings are HH:MM).

FIGURE 13

Arrangement of channels and objects with corresponding timings

Channel 1: front left

Background music

Channel 2: front right

Channel 3: object 1

1 1
1 1
1 1
1 1
1 . 1
' Narration '
: 1 1 :
1 1 1 1
] .

P | Channel 4: object 2 :
1 1 1 e 1

!] i Effects

1 1

- : :
1 1 I ! ! 1
| 1 I ! ! I
' 1 1 ! ! 1
g 3 g g g g
S = =) %) ~ >
S o S = — —_

Report BS.2388-12

The background music part is a stereo channel-based bed that lasts the duration of the file. The first
object is narration that lasts from 01:00 to 06:00. The second object is effects and lasts from 08:00 to
17:00, and this object is also dynamic as its position changes over time.

The channel-based channels can be described using common definitions, so those IDs need to be
selected from the Common Definitions set of channels. The two objects will be custom definitions,
so will need to be explicitly defined and included in the <axml> chunk.

The first stage is to define the channels for the two objects. The XML generated for the
audioChannelFormat and audioBlockFormat elements is here:

40 Rep. ITU-R BS.2388-6

<audioChannelFormat audioChannelFormatID="AC 00031001" audioChannelFormatName="0Objectl"
typeDefinition="Objects">
<audioBlockFormat audioBlockFormatID="AB_00031001_00000001" rtime="00:00:00.00000"

duration="00:05:00.00000">
<position coordinate="azimuth">0.0</position>
<position coordinate="elevation">-10.0</position>
<position coordinate="distance">1.0</position>
</audioBlockFormat>
</audioChannelFormat>

<audioChannelFormat audioChannelFormatID="AC 00031002" audioChannelFormatName="Object2"
typeDefinition="0Objects">
<audioBlockFormat audioBlockFormatID="AB 00031002 00000001" rtime="00:00:00.00000"

duration="00:03:00.00000">
<position coordinate="azimuth">-22.5</position>
<position coordinate="elevation">5.0</position>
<position coordinate="distance">1.0</position>
</audioBlockFormat>
<audioBlockFormat audioBlockFormatID="AB 00031002 00000002" rtime="00:03:00.00000"
duration="00:03:00.00000">
<position coordinate="azimuth">0.0</position>
<position coordinate="elevation">5.0</position>
<position coordinate="distance">1.0</position>
</audioBlockFormat>
<audioBlockFormat audioBlockFormatID="AB 00031002 00000003" rtime="00:06:00.00000"
duration="00:03:00.00000">
<position coordinate="azimuth">22.5</position>
<position coordinate="elevation">5.0</position>
<position coordinate="distance">1.0</position>
</audioBlockFormat>
</audioChannelFormat>

The two objects also need audioPackFormat definitions. As both objects are single channels, these
packs are just single channel ones:

<audioPackFormat audioPackFormatID="AP 00031001” audioPackFormatName="Objectl” typeLabel="0003"
typeDefinition="0Objects”>

<audioChannelFormatIDRef>AC 00031001</audioChannelFormatIDRef>
</audioPackFormat>

<audioPackFormat audioPackFormatID="AP 00031002” audioPackFormatName="Object2” typeLabel="0003"
typeDefinition="0Objects”>

<audioChannelFormatIDRef>AC 00031002</audioChannelFormatIDRef>
</audioPackFormat>

The next stage is to prepare the <chna> chunk. As the two audio objects do not overlap in time it is
possible for them to share the same track in the file. Here is an example <chna> chunk:

Track number audioTrackUID audioChannelFormatID audioPackFormatID
1 ATU_00000001 AC_00010001_00 AP_00010002
2 ATU 00000002 AC 00010002 _00 AP 00010002
3 ATU_00000003 AC_00031001_00 AP_00031001
3 ATU 00000004 AC 00031002 _00 AP 00031002

The tracks and the packs can now be connected using audioObject elements. There are three
audioObjects: one for the stereo channels, and one each for the two objects. The two objects will have
start and duration times applied to them. The XML is shown here:

<audioObject audioObjectID="AO 1001" audioObjectName="StereoBed">
<audioPackFormatIDRef>AP 00010002</audioPackFormatIDRef>
<audioTrackUIDRef>ATU 00000001</audioTrackUIDRef>
<audioTrackUIDRef>ATU 00000002</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="A0 1002" audioObjectName="0ObjectNarration” start=”00:01:00.00000"

Rep. ITU-R BS.2388-6 41

duration=700:05:00.00000">
<audioPackFormatIDRef>AP 00031001</audioPackFormatIDRef>
<audioTrackUIDRef>ATU 00000003</audioTrackUIDRef>
</audioObject>

<audioObject audioObjectID="A0 1003" audioObjectName="0ObjectEffects” start=”00:008:00.00000"
duration="00:09:00.00000">

<audioPackFormatIDRef>AP 00031002</audioPackFormatIDRef>

<audioTrackUIDRef>ATU 00000003</audioTrackUIDRef>
</audioObject>

These audioObjects can be connected to audioContent elements. To add some extra information to
the audioContents elements, the dialogue and loudness sub-elements have been added.

<audioContent audioContentID="ACO 1001" audioContentName="BackgroundMusic">
<audioObjectIDRef>A0 1001</audioObjectIDRef>
<dialogue dialogueContentKind="1">0</dialogue>
<loudnessMetadata loudnessMethod="BS.1770”>
<integratedLoudness>-29</integratedLoudness>
</loudnessMetadata>
</audioContent>

<audioContent audioContentID="ACO 1002" audioContentName="Narration">
<audioObjectIDRef>A0 1002</audioObjectIDRef>
<dialogue dialogueContentKind="2">1</dialogue>
<loudnessMetadata loudnessMethod="BS.1770”>
<integratedLoudness>-21</integratedLoudness>
</loudnessMetadata>
</audioContent>

<audioContent audioContentID="ACO 1003" audioContentName="Effects">
<audioObjectIDRef>A0 1003</audioObjectIDRef>
<dialogue dialogueContentKind="2">0</dialogue>
<loudnessMetadata loudnessMethod="BS.1770”>
<integratedLoudness>-25</integratedLoudness>
</loudnessMetadata>
</audioContent>

The three audioContent elements are connected together within the audioProgramme element at the
top level:

<audioProgramme audioProgrammeID="APR 1001” audioProgrammeName="InterestingProgramme”>
<audioContentIDRef>ACO 1001</audioContentIDRef>
<audioContentIDRef>ACO 1002</audioContentIDRef>
<audioContentIDRef>ACO 1003</audioContentIDRef>

</audioProgramme>

The XML is now ready for the <axml> chunk, and so the audio file can be constructed with the
<axml> and <chna> chunks and three tracks of PCM audio.

5.3 Sharing tracks from audioObjects to achieve different mixes

The ADM allows multiple audioObjects to reference the same audioTrackUID, and therefore the
same audio track. This feature allows the different mixes to be made from the same audio tracks by
using audioObject’s gain parameter.

5.3.1 Basic example

To illustrate this approach the diagram in Fig. 14 shows how two mixes of a programme that share
the same audioTrackUIDs (and therefore the same audio tracks) can be achieved. Each
audioProgramme (“Default” and “Dia-boost) has its own audioContent elements for “Effects” and
“Dialogue”; and each of these audioContent elements reference their own audioObject elements. For
the “Default” audioProgramme the two audioObjects (AO 1001 and AO_1002) have their gains set
to 1.0. For the “Dia-boost” audioProgramme the two audioObjects (AO 1001 and AO 1002) have
their gains set to 0.5 and 2.0 respectively.

42 Rep. ITU-R BS.2388-6

The audioObjects AO 1001 and AO 1011 (each representing the “Effects”) both reference
audioPackFormat AP 00031001 as they have the same format (the audioChannelFormat references
have been omitted for clarity). They also both reference the same audioTrackUID ATU_ 00000001,
which in turn references the same audio track carrying the “Effects” audio.

Similarly, the audioObjects AO 1002 and AO 1012 (each representing the “Dialogue”) both
reference audioPackFormat AP 00031002. They also both reference the same audioTrackUID
ATU 00000002, which in turn references the same audio track carrying the “Dialogue” audio.

FIGURE 14

Two versions of a programme using the same tracks

APR 1001 APR 1002
Default Dia-boost
x z b b N . . . 5
ACO_1001 ACO_1002 ACO_1011 ACO_1012
Effects Dialogue Effects Dialogue
. ¢ . , .
AO 1001 AO 1002 AO 1011 AO_1012
gain= 1.0 gain= 1.0 gain=0.5 gain = 2.0
" \ \
- g r =

AP 00031001 AP_00031002

|

. W : "
ATU_00000001 ATU_00000002
(effects track) (dialogue track)

Report BS.2388-13

This approach allows audio tracks to be re-used in different mixes with different gains.

5.3.2 Using time parameters in audioObjects for different mixes

Another further feature of this approach is when dealing with different mixes where the audio in
different tracks needs its gain adjusted differently over time depending on the levels in other objects.
For example, if you have two different language versions of a programme with a common effects
track, then the sound levels of the two dialogue tracks may differ. The difference in the dialogue
tracks levels may require different mixing over time with the effects track. Therefore, the effects track
may have to be referenced from two different audioObjects with different gains to handle these
differences. Not only that, but the gains may have to vary over time, so the audioObjects will have to
be divided into time-limited chunks.

Note, in this use-case, the gain transition between audioObjects is described as instantaneous.
However, instantaneous changes of level may cause audible artifacts, therefore, gain interpolation or
smoothing might need to be implemented (the behaviour is not specified here) in the renderer or
playback device.

The diagram in Fig. 15 shows the basic layout of the ADM for this (audioPackFormat and below are
omitted for clarity). Here the audioObjects AO 1001 and AO 1003 act as parents to time-limited

Rep. ITU-R BS.2388-6 43

audioObjects which can contain different gains. In this case AO_1032 has a gain of 0.6, whereas its
corresponding audioObject, AO 1012, on the “English” side has a gain of 1.0.

FIGURE 15
Using time-limited audioObjects to adjust gain over time

APR 1001 APR 1002
English Japanese
— - - A - - — = - .
ACO_1002 ACO_1001 ACO_1003 ACO 1004
En Dialogue Effects Effects Jp Dialogue
t ' , 2 . .
AO 1002 AO 1001 AO 1003 AO 1004
gain= 1.0 ‘ gain= 1.0
L :
AO 1011 AO 1031
gain=1.0 gain = 1.0
X - .
AO 1012 AO 1032
gain= 1.0 gain = 0.6
A N . | RS .
™ ~
\AO 1013 AO 1033
gain=10 | gain= 1.0
’ L ¢ » B WA § . |
ATU_00000004 ATU,_90000001 ATU_00000005
(dialogue track) (effeets track) (dialogue track)
‘ ‘ Al
ATU 00000002
(effects track)
—

ATU 00000003 |
(effects track) ‘

Report BS.2388-14

To get a better understanding of the time-related parameters are used, the diagram in Fig. 16 shows
how the audioObjects are arranged on a time-line. AO 1002 and AO 1004, which carry the two
dialogue objects, start at 0.0s and end at 100.0s. The green tracks show the envelopes of the signals
in those tracks. In AO 1002 (ATU 00000004, track 1) the audio ducks at 50.0s. In AO_1004
(ATU 00000005, track 2) the audio ducks later at 70.0s. The effects audio in track 3
(ATU_00000001/2/3) is at low level from 0.0s to 50.0s (to duck under the dialogue in AO_1002)
then rises from 50.0s to 100.0s. However, the raised level from 50.0s to 70.0s is too high for the
dialogue in AO_1004, so this needs to be ducked. Therefore, AO_ 1032, which covers this 50.0s to
70.0s period provides a gain of 0.6 to duck this part of the effects track (as shown by the shading).

44 Rep. ITU-R BS.2388-6

FIGURE 16

Time-based view of audioObjects and gain values

AO 1002
gain=1.0
| start = 0.00, duration = 100.00
Track 1 N
IATU_00000004. N
AO 1011 AO 1012 AO 1013
gain=1.0 gain= 1.0 gain= 1.0
start = 0.00, duration = 50.00 start = 50.00, duration = 20.()()“ start = 70.00, duration = 30.00
AO 1031 AO 1032 AO 1033
gain=1.0 gain = 0.6 | gain=1.0
start = 0.00, duration = 50.00 start = 50.00, duration = 20.00] start = 70.00, duration = 30.00
Track 3 / |
ATU_00000001, /s ///// A
ATU00000002] == \y////////é/’
ATU 00000003
AQ 1004
gaih = 1.0
start = (.00, duration = 100.00
Track 2 8
ATU 00000004 |

Report BS.2388-15

This approach does require knowledge of the levels of the audio in the tracks and splitting the
audioObjects up accordingly.

6 Other audio-related metadata that may accompany ADM

6.1 Introduction

This section provides information about other audio-related metadata not specified in
Recommendation ITU-R BS.2076, but which may accompany ADM metadata.

6.2 RIFF/WAYV-related Metadata

RIFF/WAYV formats can contain various information in specific chunks. The information should be
converted to XML code when the BW64 format specified in Recommendation ITU-R BS.2088 is
used instead of RIFF/WAYV format.

6.2.1 Broadcast Metadata

The XML broadcast metadata described in this section is used to provide extra parameters needed for
programme exchange between broadcasters instead of the broadcast audio extension chunk specified
in Recommendation ITU-R BS.1352. The Broadcast Wave Format (BWF) specified in
Recommendation ITU-R BS.1352 has the Broadcast Audio Extension chunk (<bext> chunk) and the
Universal Broadcast Audio Extension chunk (<ubxt> chunk) to carry extra parameters needed for

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.1352/en
https://www.itu.int/rec/R-REC-BS.1352/en

Rep. ITU-R BS.2388-6

45

programme exchange between broadcasters. These extra parameters are converted to the XML
broadcast metadata in the BW64 format specified in Recommendation ITU-R BS.2088.

TABLE 3
Specifications of the <bext> and <ubxt> chunks
<bext> chunk <ubxt> chunk Description

CHAR Description[256] CHAR uDescription[256] Description of the sound sequence

CHAR Originator[32] CHAR uOriginator[32] Name of the originator

CHAR CHAR Reference of the originator

OriginatorReference[32] uOriginatorReference[32]

CHAR OriginationDate[10] | CHAR OriginationDate[10] | yyyy:mm:dd

CHAR OriginationTime[8] | CHAR OriginationTime[8§] hh:mm:ss

DWORD DWORD First sample count since midnight, low word

TimeReferenceLow TimeReferenceLow

DWORD DWORD First sample count since midnight, high word

TimeReferenceHigh TimeReferenceHigh

WORD Version WORD Version Version of the BWF; unsigned binary number

BYTE UMID 0 BYTE UMID 0 Binary byte 0 of SMPTE UMID

BYTE UMID 63 BYTE UMID 63 Binary byte 63 of SMPTE UMID

CHAR Reserved[190] CHAR Reserved[190] 190 bytes, reserved for future use

CHAR CodingHistory[] CHAR uCodingHistory[] History coding
A set of “A: Coding algorithm”, “F: Sampling
frequency (Hz)”, “B: Bit-rate (kbit/s per channel)”,
“W: Word length (bits)”, “M: Mode” and “T: Text”
Example:
A=PCM,F=48000,W=16,M=stereo, T=original, CR/LF

6.2.1.1 Elements and Attributes

The ebuCoreMain element contains the coreMetadata sub-element. The XML broadcast metadata for
the <bext> and <ubxt> chunks is specified as sub-elements of the coreMetadata as shown in Tables

4 to 12.
TABLE 4
Sub-elements of coreMetadata
Sub-elements Attribute Description
creator Contain information on the originator.
description typeDefinition Set to “bextDescription” or “ubxtDescription” for the Attribute
date Contain information on the origination date and time.
format Contain information on time reference.
identifier formatLabel Set to “UMID” for the Attribute
formatLink Set to
“http://www.ebu.ch/metadata/cs/ebu_IdentifierTypeCodeCS.xml#1.1”
for the Attribute

https://www.itu.int/rec/R-REC-BS.2088/en

46 Rep. ITU-R BS.2388-6
TABLE 5
Sub-elements of creator
Sub-elements Description
contactDetails Contain the name on the originator.
organisationDetail Contain the reference on the originator.
TABLE 6
Sub-elements of contactDetails
Sub-elements Description
name This contains the name of the originator of the audio file. The value of the sub-
element is matched with Originator in the <bext> chunk or uOriginator in the
<ubxt> chunk.
TABLE 7
Sub-elements of organisationDetail
Sub-elements Description
organisationName This contains the reference of the originator of the audio file. The value of the

sub-element is matched with OriginatorReference in the <bext> chunk or
uOriginatorReference in the <ubxt> chunk.

TABLE 8

Sub-elements of description

Sub-elements

Description

dc:description

This contains description of the sound sequence. The value of the sub-element
is matched with Description in the <bext> chunk or uDescription in the <ubxt>
chunk.

TABLE 9
Sub-elements of date
Sub-elements Attributes Description
created startDate The value of the attribute is matched with OriginationDate in
the <bext> or <ubxt> chunk.
startTime The value of the attribute is matched with OriginationTime in
the <bext> or <ubxt> chunk.

TABLE 10

Sub-elements of format

“CodingHistory”

Sub-elements Attributes Description
audioFormatExtended This contains a set of the audio definition model.
technical AttributeString | typeDefinition = This contains CodingHistory in the <bext> chunk or

uCodingHistory in the <ubxt> chunk.

Rep. ITU-R BS.2388-6 47

TABLE 11

Sub-elements of audioFormatExtended

Sub-elements Attributes Description

audioProgramme start TimeReference in the <bext> or <ubxt> chunk.is set to a
value of the “start” attribute.

TABLE 12
Sub-elements of identifier
Sub-elements Description
dc:identifier UMID in the <bext> or <ubxt> chunk is described here.

6.2.1.2 Sample code

<?xml version="1.0" encoding="UTF-8"7?>
<ebuCoreMain
xmlns="urn:ebu:metadata-schema:ebuCore 2015"
xmlns:dc=http://purl.org/dc/elements/1.1/
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<coreMetadata>
<creator>
<contactDetails>
<name>
<!--BEXT: Originator/UBXT: uOriginator -->
</name>
</contactDetails>
<organisationDetails>
<organisationName>
<!-BEXT: OriginatorReference/UBXT: uOriginatorReference -->
</organisationName>
</organisationDetails>
</creator>

<description typeDefinition="bextDescription" or "ubxtDescription">
<dc:description>
<!-BEXT: Description/UBXT: uDescription -->
</dc:description>
</description>

<date>
<!-BEXT: OriginationDate/UBXT: OriginationDate and
BEXT: OriginationTime/UBXT: OriginationTime below-->
<created startDate="2000-10-10" startTime="12:00:00"/>
</date>

<format>
<audioFormatExtended>
<!--BEXT: TimeReference/UBXT: TimeReference below-->
<audioProgramme audioProgrammeID="..." start="00:00:00:00">
<!--Other audioProgramme metadata here -->
</audioProgramme>
<!--Other ITU-R BS.2076 ADM metadata here -->
</audioFormatExtended>
<technicalAttributeString typeDefinition="CodingHistory">
<!--BEXT: CodingHistory/UBXT: uCodingHistory -->
</technicalAttributeString>
</format>

http://purl.org/dc/elements/1.1/

48 Rep. ITU-R BS.2388-6

<identifier formatLabel="UMID"
formatLink="http://www.ebu.ch/metadata/cs/ebu
IdentifierTypeCodeCS.xml#1.1">
<dc:identifier>
<!--BEXT: UMID/UBXT: UMID-->
</dc:identifier>
</identifier>
</coreMetadata>
</ebuCoreMain>

6.3 Audio Format Custom Metadata

The audioFormatCustom element may be used to convey any application-specific metadata sets and
may be a sub-element of the frame or format element specified in Recommendation ITU-R BS.2125
or Recommendation ITU-R BS.2088, respectively.

6.3.1 Sub-Elements and Attributes

The audioFormatCustom element should include at least one audioFormatCustomSet sub-element.
The attributes of the audioFormatCustomSet element are used to signal the application type for the
custom metadata set shown in Table 13. The sub-elements of the audioFormatCustomSet are defined
for each custom metadata set as shown in Table 14.

TABLE 13

Attributes of audioFormatCustomSet

Attributes Description

audioFormatCustomSetID ID for the custom set of metadata of the form “AFC_xxxx” with unique hex
digits xxxx. Hexadecimal value xxxx shall not indicate a value less than
“1001”.

audioFormatCustomSetName Min length 1 char, max length 64 chars (encoded as UTF-8). Human readable
name for the custom set of metadata.

audioFormatCustomSetType Unique type for the custom set of metadata, see Table 15.

audioFormatCustomSetVersion Version for the custom set of metadata.

TABLE 14

Sub-elements of audioFormatCustomSet

Sub-element Requirement/constraint Min Qty Max Qty

Arbitrary number of XML sub-elements for
the definition of application-specific
metadata sets dependent on the value of
attribute audioFormatCustomSetType.

<defined for each custom metadata set>

6.3.1.1 Sample code

Sample code for Audio Format Custom Metadata in audio files specified in Recommendation
ITU-R BS.2088
<format>

<audioFormatExtended>

<!-- ADM metadata here -->

https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2088/en

Rep. ITU-R BS.2388-6

49

</audioFormatExtended>
<audioFormatCustom>
<audioFormatCustomSet audioFormatCustomSetID="AFC 1001"
audioFormatCustomSetName="MPEG-H 3D Audio"
audioFormatCustomSetType="CUSTOM SET TYPE MPEGH3DA"
audioFormatCustomSetVersion="1.0.0">

<!-- custom metadata here -->
</audioFormatCustomSet>

</audioFormatCustom>
</format>

Sample code for Audio Format Custom Metadata in audio streams with S-ADM specified in

Recommendation ITU-R BS.2125

<frame>
<frameHeader>
<!-- S-ADM header metadata here -->

</frameHeader>
<audioFormatExtended>

<!-- ADM metadata here -->

</audioFormatExtended>
<audioFormatCustom>
<audioFormatCustomSet audioFormatCustomSetID="AFC 1001"
audioFormatCustomSetName="MPEG-H 3D Audio"
audioFormatCustomSetType="CUSTOM SET TYPE MPEGH3DA"
audioFormatCustomSetVersion="1.0.0">

<!-- custom metadata here -->
</audioFormatCustomSet>

</audioFormatCustom>
</frame>

6.3.2 Types of audioFormatCustomSet

Applications making use of audioFormatCustomSet with unique audioFormatCustomSetType values

are shown in Table 15.

50 Rep. ITU-R BS.2388-6

TABLE 15

Examples of unique audioFormatCustomSetType values

audioFormatCustomSetType Description

CUSTOM_SET TYPE MPEGH3DA Provides additional information for MPEG-H 3D
Audio, e.g. clements for indication of the
applicable MPEG-H ADM Profile and Level

CUSTOM_SET TYPE DOLBYE DBMD_ CHUNK | Provides additional information about Dolby E and
AC-3 programme metadata from a converted
Dolby E asset

6.3.2.1 Custom_Set_ Type MPEGH3DA

MPEG-H 3D Audio, as specified in ISO/IEC 23008-3, is a codec that supports the Advanced Sound
System (AdvSS) that offers immersive sound and advanced user interactivity features. In production
workflows for MPEG-H 3D Audio, a broadcaster can control the set of MPEG-H metadata in a
flexible way. Although most MPEG-H metadata can be described based on ADM metadata, some
metadata is codec specific and therefore outside of the scope of ADM. One example for such codec
specific metadata is metadata for loudness and dynamic range control as applied by the MPEG-H
decoder dependent on the specific playback device and listening environment. For maintaining
interoperability with existing production workflows for MPEG-H 3D Audio, MPEG-H specific
metadata is transported as part of an audioFormatCustomSet element.

6.3.2.2 Custom_Set_Type Dolbye DBMD_Chunk

Many broadcasters have built up considerable libraries of Dolby E content and several of them are
transitioning towards fully embracing IP technology for the transport of media throughout facilities,
and for links between facilities and cloud infrastructure. These broadcasters are faced with the
problem of what to do with the Dolby E content that already exists. This must be transported across
the network and presented to the encoder. Broadcasters have expressed that they rely on existing
requirements which need to be carried forward, specifically:

- Artistic intent must be preserved (Dialnorm, Downmix Coefficients, downmix mode, etc.)
— Encoder control must be preserved (Audio Coding Mode, Phase 90 control, filtering, etc.)

Several alternative options to a custom metadata payload were explored, but these did not fully meet
the requirements of broadcasters. One key requirement beyond maintaining artistic intent is the ability
to recreate the Dolby E asset at some later time should it be required. Almost all parameters defined
in SMPTE RDD 6 [1] (conveyed as part of the Dolby E stream) are codec specific, and therefore
outside of the scope of ADM. They are however very tightly coupled to the essence, and their
inclusion into the overall ADM/S-ADM structure ensures that the overall asset remains complete.
This custom metadata payload is present when the composition is compliant with the Dolby E ADM
and S-ADM Profile for emission [2].

References
[1] SMPTE RDD 6, Description and Guide to the Use of the Dolby E Audio Metadata Serial Bitstream
[2] Dolby E ADM and S-ADM Profile for emission,

https://professionalsupport.dolby.com/s/article/Dolby-E-ADM-and-S-ADM-Profile-for-emission

https://professionalsupport.dolby.com/s/article/Dolby-E-ADM-and-S-ADM-Profile-for-emission

	Report ITU-R BS.2388-6 (09/2025) Usage guidelines for the Audio Definition Model and Multichannel Audio Files
	Foreword
	Policy on Intellectual Property Right (IPR)
	TABLE OF CONTENTS
	1 Introduction
	2 Use cases
	2.1 Generating BWF audio files from scratch
	2.1.1 UC1.1: Common single group channel-based files
	2.1.2 UC1.2: Common multiple group channel-based files
	2.1.3 UC1.3: Non-common channel-based files
	2.1.4 UC1.4: Transformation/scene-based files
	2.1.5 UC1.5: Object-based files
	2.1.6 UC1.6: Mixed files

	2.2 Reading BWF audio files
	2.2.1 UC2.1: Common single-group channel-based files
	2.2.2 UC2.2: Common multiple group channel-based files
	2.2.3 UC2.3: Non-common channel-based files
	2.2.4 UC2.4: Transformation/scene-based files
	2.2.5 UC2.5: Object-based files
	2.2.6 UC2.6: Mixed files

	2.3 Reading non-ADM WAV files
	2.3.1 UC3.1: One-, two-, five- and six-channel files
	2.3.2 UC3.2: Other numbers of channels
	2.3.3 UC3.3: Multiple mono files

	2.4 Generating BWF Files without information
	2.4.1 UC4.1: Generating one-, two-, five- and six-channel files
	2.4.2 UC4.2: Generating other number of channels

	3 Best practices for ADM usage
	3.1 Using Common Definitions
	3.1.1 Using the Common Definitions when reading an audio file with an <axml> chunk
	3.1.2 Using the Common Definitions when writing an audio file with an <axml> chunk

	3.2 Element IDs
	3.2.1 ID prefixes
	3.2.2 Hexadecimal codes
	3.2.2.1 audioProgramme
	3.2.2.2 audioContent
	3.2.2.3 audioObject
	3.2.2.4 alternativeValueSet
	3.2.2.5 audioPackFormat
	3.2.2.6 audioChannelFormat
	3.2.2.7 audioBlockFormat
	3.2.2.8 audioStreamFormat
	3.2.2.9 audioTrackFormat
	3.2.2.10 audioTrackUID

	3.2.3 Recommended ID Numbering for Related Elements

	3.3 Audio types
	3.3.1 Format types

	3.4 <chna> chunk and IDs
	3.4.1 Simple PCM channel-based files
	3.4.2 Simple matrix files
	3.4.3 PCM object-based files
	3.4.4 Coded audio files

	3.5 Defaults for unknown audio inputs
	3.5.1 Common Definitions approach
	3.5.2 Wave Format Extensible approach
	3.5.3 Generating other metadata for unknown audio inputs
	3.5.4 Naming audio channels and loudspeaker labels for Cartesian coordinates

	3.6 Times and durations
	3.6.1 Timing attributes
	3.6.2 Timing for Nested audioObjects
	3.6.3 Block sizes for dynamic objects
	3.6.4 Dealing with preambles

	3.7 File management
	3.8 <fmt> Chunk handling
	3.9 Ensuring streaming compatibility
	3.10 Interactivity and ensembles of audioObjects
	3.10.1 Example of interaction with an ensemble of audioObjects
	3.10.2 Behaviour of interaction with ensembles of audioObjects

	3.11 Multiple audioProgrammes
	3.11.1 Using multiple audioProgrammes versus audioContents and audioObjects
	3.11.2 Default audioProgramme

	3.12 Using the ‘importance’ parameters
	3.12.1 The audioBlockFormat importance parameter
	3.12.2 The audioPackFormat importance parameter
	3.12.3 The audioObject importance parameter
	3.12.4 Using an importance threshold

	3.13 Using tagList sub-element
	3.13.1 Using tagList sub-element for audio format type
	3.13.1.1 Sample code

	3.13.2 Using tagList sub-element for presets (ARIB TR-B48)
	3.13.2.1 Sample code

	4 Location of ADM metadata
	4.1 BW64 file specified in Recommendation ITU-R BS.2088
	4.2 A serial representation of the ADM (S-ADM) specified in Recommendation ITU-R BS.2125

	5 Examples of ADM usage
	5.1 5.1 and Stereo combination
	5.2 Object-based with a channel-based bed
	5.3 Sharing tracks from audioObjects to achieve different mixes
	5.3.1 Basic example
	5.3.2 Using time parameters in audioObjects for different mixes

	6 Other audio-related metadata that may accompany ADM
	6.1 Introduction
	6.2 RIFF/WAV-related Metadata
	6.2.1 Broadcast Metadata
	6.2.1.1 Elements and Attributes
	6.2.1.2 Sample code

	6.3 Audio Format Custom Metadata
	6.3.1 Sub-Elements and Attributes
	6.3.1.1 Sample code

	6.3.2 Types of audioFormatCustomSet
	6.3.2.1 Custom_Set_Type_MPEGH3DA
	6.3.2.2 Custom_Set_Type_Dolbye_DBMD_Chunk

	References

