
 International Telecommunication Union

 Radiocommunication Sector

Report ITU-R BS.2388-5

(11/2024)

BS Series: Broadcasting service (sound)

Usage guidelines for the Audio
Definition Model and Multichannel
Audio Files

ii Rep. ITU-R BS.2388-5

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-

frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit

of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional

Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution

ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are

available from https://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent

Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

Series of ITU-R Reports

(Also available online at https://www.itu.int/publ/R-REP/en)

Series Title

BO Satellite delivery

BR Recording for production, archival and play-out; film for television

BS Broadcasting service (sound)

BT Broadcasting service (television)

F Fixed service

M Mobile, radiodetermination, amateur and related satellite services

P Radiowave propagation

RA Radio astronomy

RS Remote sensing systems

S Fixed-satellite service

SA Space applications and meteorology

SF Frequency sharing and coordination between fixed-satellite and fixed service systems

SM Spectrum management

TF Time signals and frequency standards emissions

Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution

ITU-R 1.

Electronic Publication

Geneva, 2025

© ITU 2025

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

https://www.itu.int/ITU-R/go/patents/en
https://www.itu.int/publ/R-REP/en

 Rep. ITU-R BS.2388-5 1

REPORT ITU-R BS.2388-5

Usage guidelines for the Audio Definition Model and Multichannel Audio Files

(2015-03/2017-10/2017-2018-2022-2024)

TABLE OF CONTENTS

 Page

Policy on Intellectual Property Right (IPR) ... ii

1 Introduction .. 2

2 Use cases .. 2

2.1 Generating BWF audio files from scratch .. 2

2.2 Reading BWF audio files .. 3

2.3 Reading non-ADM WAV files ... 4

2.4 Generating BWF Files without information ... 4

3 Recommended practices ... 5

3.1 Using Common Definitions .. 5

3.2 Element IDs .. 6

3.3 Audio types ... 10

3.4 <chna> chunk and IDs .. 11

3.5 Defaults for unknown audio inputs ... 15

3.6 Times and durations .. 21

3.7 File management ... 26

3.8 <fmt> Chunk handling .. 27

3.9 Ensuring streaming compatibility ... 28

3.10 Interactivity and ensembles of audioObjects .. 28

3.11 Multiple audioProgrammes .. 31

3.12 Using the ‘importance’ parameters ... 32

4 Location of ADM metadata .. 35

4.1 BW64 file specified in Recommendation ITU-R BS.2088 35

4.2 A serial representation of the ADM (S-ADM) specified in Recommendation

ITU-R BS.2125 ... 35

5 Worked examples ... 36

5.1 5.1 and Stereo combination .. 36

5.2 Object-based with a channel-based bed .. 37

5.3 Sharing tracks from audioObjects to achieve different mixes 40

2 Rep. ITU-R BS.2388-5

1 Introduction

Recommendation ITU-R BS.2076 – The Audio Definition Model, is an open common metadata

model for describing the technical format and content of audio files and streams. It primarily uses

XML as its format language, and has been designed for incorporation into RIFF based audio files

including those according to Recommendation ITU-R BS.2088 – Long-form file format for the

international exchange of audio programme materials with metadata, on information technology

media (BW64). The model can be converted to other languages, such as JSON, should the need arise;

and also be used in conjunction with other file or stream formats.

This Report describes a set of typical use cases for the Audio Definition Model (ADM) and

WAV-based files as well as recommended practices and commonly-used channel-based

configurations. As the ADM is very flexible in how it can be used, it is possible to generate metadata

that may prove difficult to interpret, therefore following the guidelines in this document will

encourage consistent use by all.

As use of the ADM and BW64 increases more use cases and practices will appear, so this report

should be kept up to date with any new requirements. The potential areas that may need guidelines

are interoperation with streaming formats and renderers.

2 Use cases

Recommendation ITU-R BS.2076 lists a set of use cases that provides a general guide for the use of

the model:

The use of the ADM is recommended especially for the following use-cases:

– For applications requiring a generic metadata language for custom/proprietary formats

(including codecs), or in the case where no metadata exists to describe what is needed.

– For generating and parsing audio metadata with existing general-purpose tools.

– Where experimental metadata can easily be added for an organisation’s internal

developments and where a human-readable and hand-editable file for describing audio

configurations (such as describing a mixing studio channel configuration) in a consistent and

translatable format is needed.

– In WAV-based environments and workflows, where WAV-based broadcast applications

wish to upgrade to be able to handle immersive content, while maintaining forward

compatibility and handle legacy content.

– For archiving of WAV-based content that also may include an extensive immersive metadata

set.

As these use cases are quite general, a more specific and detailed set is required to enable a set of

useful guidelines. The following sub-sections describe a set of typical practical use cases.

2.1 Generating BWF audio files from scratch

Possibly the simplest use case is generating BW64 files with ADM metadata from scratch.

This assumes that the audio that is being written to the file is known, so metadata is being generated

with known information. This can be broken down into different use cases for different types of audio.

2.1.1 UC1.1: Common single group channel-based files

This is an audio file that consists of a common channel-based configuration, such as mono, stereo

or 5.1. It is known what each channel is (e.g. Front Left, Front Right) and what audio it contains. It

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2076/en

 Rep. ITU-R BS.2388-5 3

only contains a single group of channels. This probably covers the vast majority of audio files that

exist already.

2.1.2 UC1.2: Common multiple group channel-based files

The same as UC1.1, but the file will contain multiple groups of channels. For example, it may contain

4 stereo pairs or a 5.1 group and a stereo version. It is known what each channel is and what it

contains.

2.1.3 UC1.3: Non-common channel-based files

This file contains channel-based audio, but the channels are not common definitions in common use.

For example, they might be part of an experimental set of channel locations. It is known what each

channel is.

2.1.4 UC1.4: Transformation/scene-based files

This file contains HOA (Higher Order Ambisonics) audio where all the components/channels are

known.

2.1.5 UC1.5: Object-based files

This file contains object-based audio that can be either static or dynamic (i.e. changing its properties

with time). The object properties are all known.

2.1.6 UC1.6: Mixed files

This file contains any combination of the channel, scene and object-based audio. A potentially

popular combination would be a channel-based bed (typically stereo or 5.1) with object-based

foreground objects overlaid.

2.2 Reading BWF audio files

The next obvious set of use cases is reading BWF files. It will be assumed that the file to be read

contains correct ADM metadata, possibly generated from one of the UC1.x use cases.

2.2.1 UC2.1: Common single-group channel-based files

Reading a channel-based file containing a single group of common channels, such as stereo or 5.1 as

described in UC1.1. The ADM metadata will be known and readable. The information from the ADM

that could be of use will be the channel descriptions (such as intended speakers) and some content

information such as loudness.

2.2.2 UC2.2: Common multiple group channel-based files

The same as UC2.1, but reading multiple groups as described in UC1.2. It will be important to ensure

the groups of channels are treated correctly.

2.2.3 UC2.3: Non-common channel-based files

Reading non-common channel-based files such of those described in UC1.3. The useful information

to read and interpret will be the channel positions, which could be unconventional.

2.2.4 UC2.4: Transformation/scene-based files

Reading scene-based (HOA) files as described in UC1.4. Interpreting each channel description as the

correct HOA component to allow correct HOA decoding is important here.

4 Rep. ITU-R BS.2388-5

2.2.5 UC2.5: Object-based files

Reading object-based files as described in UC1.5. Extracting the correct static and dynamic metadata

and interpreting the timing is important here.

2.2.6 UC2.6: Mixed files

Reading mixed channel-based, scene-based, and object-based files as described in UC1.6. Ensuring

all the audio is correctly extracted and matched with the correct metadata is one important factor.

2.3 Reading non-ADM WAV files

The majority of WAV files in existence do not contain any useful metadata to describe the format or

content of the audio. If there is a need to read these files for conversion into BWF files with ADM

metadata, then a decision needs to be made as to how to handle the lack of information. Following is

a set of use cases covering this scenario.

2.3.1 UC3.1: One-, two-, five- and six-channel files

The vast majority of WAV files contain 1, 2, 5 or 6 channels that usually correspond to mono, stereo,

5.0 or 5.1 configurations. The number of channels in the file being read is known and they are likely

to be channel-based, but there is no other information about the format or content.

2.3.2 UC3.2: Other numbers of channels

If presented with a 12-channel file there are a number of ways the configuration could be interpreted,

such as 2x 5.1, or 6x stereo. There may be some information about the file to give clues, or it might

be necessary to resort to examining the audio signals for guidance. This use case covers channel-

based audio files with numbers of channels that do not provide an easy identification.

2.3.3 UC3.3: Multiple mono files

Sometimes multi-channel audio is stored as a collection of mono WAV files, with each file

representing a particular channel. Without metadata in each file, the clues to determining the channel

for each file could lie in the filename.

2.4 Generating BWF Files without information

Unlike use cases UC1.x where there is plenty of information about the format and content of the

audio for the files being generated, this set of use cases covers the time when there is a lack of

information and assumptions need to be made. This ties in closely with the use cases UC3.x where it

is necessary to work out what is contained in the files being read.

2.4.1 UC4.1: Generating one-, two-, five- and six-channel files

Generating conventional channel-based configurations, possibly as read in the manner of UC3.1 or

UC3.3. How to output enough useful ADM metadata to generate a useable BW64 file.

2.4.2 UC4.2: Generating other number of channels

Generating channel-based configurations, possibly read in the manner of UC3.2 or UC3.3. This will

include determining whether multiple groups of audio may exist. There could be information about

the format from configurations defined in documents such as Recommendation ITU-R BS.1738 or

EBU R123.

https://www.itu.int/rec/R-REC-BS.1738/en

 Rep. ITU-R BS.2388-5 5

3 Recommended practices

3.1 Using Common Definitions

Use cases: UC1.1, UC1.2, UC1.6, UC2.1, UC2.2, UC2.6, UC3.1, UC3.2, UC3.3, UC4.1, UC4.2.

To ensure consistent use of ADM definitions, and to save space and effort in defining them, a set of

common ADM definitions covering a set of commonly used channel and pack definitions have been

developed (Recommendation ITU-R BS.2094).

The Common Definitions are represented in an XML file that must be accessed in some way by any

software that reads or writes BW64 files. These ADM definitions do not need to be carried in the

audio file itself.

The elements covered in the Common Definitions are audioTrackFormat, audioStreamFormat,

audioChannelFormat, and audioPackFormat. Currently they only cover commonly-used

channel-based and scene-based definitions (though this may be extended to some matrix-based

definitions in the future).

3.1.1 Using the Common Definitions when reading an audio file with an <axml> chunk

The steps when reading are:

1 Read in the Common Definitions XML file.

2 Read <chna> chunk from the audio file:

a) Inspect each row for the audioChannelFormatID or audioTrackFormatID reference.

i) If IDs occur in the Common Definitions, then use those channel definitions.

ii) If IDs do not occur in the Common Definitions, then refer to the <axml> chunk.

b) Inspect each row for the audioPackFormatID reference.

iii) If IDs occur in the Common Definitions, then use those pack definitions.

iv) If IDs do not occur in the Common Definitions, then refer to the <axml> chunk.

3 Read <axml> chunk for other ADM definitions:

a) Check for any references in the <axml> chunk to IDs in the Common Definitions.

3.1.2 Using the Common Definitions when writing an audio file with an <axml> chunk

The steps when writing are:

1 Read in the Common Definitions XML file.

2 Search the Common Definitions for the appropriate channel definitions:

a) If one exists, then use the ID and store for use in the <chna> chunk.

b) If it does not exist, then generate a custom channel description and add it to the <axml>

chunk metadata, with the new ID ready for the <chna> chunk.

3 Search the Common Definitions for the appropriate pack definitions:

a) If it exists, then use the ID and store for the <chna> chunk.

b) If it does not exist, then generate a custom pack description and add it to the <axml>

chunk metadata, with the new ID ready for the <chna> chunk.

4 Generate any other ADM metadata ready for the <axml> chunk.

a) Combine the chunks and audio for the output file.

https://www.itu.int/rec/R-REC-BS.2094/en

6 Rep. ITU-R BS.2388-5

3.2 Element IDs

Use cases: all

Each element in the ADM has its own identification attribute, such as audioChannelFormatID for

audioChannelFormat. The use of these IDs is important as they are used for the elements to be able

to reference each other, they are used by the <chna> chunk in the BW64 file, and are used to determine

whether elements are common definitions or customs ones. The IDs uniquely identify each element,

so care must be taken with their use.

3.2.1 ID prefixes

The IDs always have a prefix that corresponds to the element to which they belong. The prefix is

followed by an underscore, then some hexadecimal digits. The table below shows the prefixes that

should be used for each element.

Element Prefix

audioProgramme APR

audioContent ACO

audioObject AO

alternativeValueSet AVS

audioPackFormat AP

audioChannelFormat AC

audioBlockFormat AB

audioStreamFormat AS

audioTrackFormat AT

audioTrackUID ATU

3.2.2 Hexadecimal codes

The format of the ID is a prefix followed by a number of hexadecimal digits. The hexadecimal letters

(a to f) can be either upper or lower case, so any reading software must be case insensitive

(so AC_0001001a is the same as AC_0001001A). The number and meaning of the digits depend upon

the element used (see § 6 of Recommendation ITU-R BS.2076). Here are the recommended formats

for each element:

3.2.2.1 audioProgramme

Format: APR_wwww

Hex digits wwww: Any value from 0001 to FFFF. This is used to identify the programme

description. Values 0001 to 0FFF are reserved for Common Definitions, while values 1000 to

FFFF can be used for user defined or custom programmes.

A value of 1001 is often used for the first custom definitions in the XML, such as specified in

Recommendation ITU-R BS.2168. The range of values for custom definitions may be further

constrained if the composition is compliant with one or more ADM profile specifications.

Each audioProgrammeID within a file must be unique.

3.2.2.2 audioContent

Format: ACO_wwww

https://www.itu.int/rec/R-REC-BS.2076/en

 Rep. ITU-R BS.2388-5 7

Hex digits wwww: Any value from 0001 to FFFF. Values 0001 to 0FFF are reserved for Common

Definitions, while values 1000 to FFFF can be used for user defined or custom contents.

A value of 1001 is often used for the first custom definitions in the XML, such as specified in

Recommendation ITU-R BS.2168. The range of values for custom definitions may be further

constrained if the composition is compliant with one or more ADM profile specifications.

Each audioContentID within a file must be unique.

3.2.2.3 audioObject

Format: AO_wwww

Hex digits wwww: Any value from 0001 to FFFF. A value from 1000 to FFFF for custom objects,

which be any user defined objects; or a value from 0001 to 0FFF are reserved for Common objects,

which reside in an external Common Definitions file/resource (though no common objects currently

exist but may in the future).

A value of 1001 is often used for the first custom definitions in the XML, such as specified in

Recommendation ITU-R BS.2168. The range of values for custom definitions may be further

constrained if the composition is compliant with one or more ADM profile specifications.

Each audioObjectID within a file must be unique.

3.2.2.4 alternativeValueSet

Format: AVS_wwww_zzzz

Hex digits wwww: These must match the digits of the audioObjectID of the parent audioObject

element.

Hex digits zzzz: Any value from 0001 to FFFF. These often commence from “0001” for the first

alternativeValueSet element within the parent audioObject and increase by 1 for each subsequent

alternativeValueSet element within the parent audioObject in order of appearance in the XML, such

as specified in § 2.2.1 of Recommendation ITU-R BS.2168.

Each alternativeValueSetID within a file must be unique.

3.2.2.5 audioPackFormat

Format: AP_yyyyxxxx

Hex digits xxxx: A value from 1000 to FFFF for custom packs; or a value from 0001 to 0FFF

for common packs, which reside in an external Common Definitions file/resource.

A value of 1001 is often used for the first custom definitions in the XML, such as specified in

Recommendation ITU-R BS.2168. The range of values for custom definitions may be further

constrained if the composition is compliant with one or more ADM profile specifications.

Hex digits yyyy: This value represents the type of audio contained in the pack, see Table 1 for

common type values.

Each audioPackFormatID within a file must be unique.

3.2.2.6 audioChannelFormat

Format: AC_yyyyxxxx

Hex digits xxxx: A value from 1000 to FFFF for custom channels; or a value from 0001 to 0FFF

for common channels, which reside in an external Common Definitions file/resource.

8 Rep. ITU-R BS.2388-5

A value of 1001 is often used for the first custom definitions in the XML, such as specified in

Recommendation ITU-R BS.2168. The range of values for custom definitions may be further

constrained if the composition is compliant with one or more ADM profile specifications.

This value should match the audioStreamFormat xxxx digits that references it.

Hex digits yyyy: This value represents the type of audio contained in the channel; see Table 1 for

common type values.

Each audioChannelFormatID within a file must be unique.

3.2.2.7 audioBlockFormat

Format: AB_yyyyxxxx_zzzzzzzz

Hex digits yyyyxxxx: These must match the parent audioChannelFormat values.

Hex digits zzzzzzzz: This is a counter for the blocks in sequence within a channel The first block

must be 00000001, the second 00000002, and so on (counting in hexadecimal).

3.2.2.8 audioStreamFormat

Format: AS_yyyyxxxx

Hex digits xxxx: A value from 1000 to FFFF for custom streams; or a value from 0001 to 0FFF

for common streams, which reside in an external Common Definitions file/resource. This value

should match the audioChannelFormat xxxx digits to which the audioStreamFormat refers.

A value of 1001 is often used for the first custom definitions in the XML. The range of values for

custom definitions may be further constrained if the composition is compliant with one or more ADM

profile specifications.

Hex digits yyyy: This value represents the type of audio contained in the stream; see Table 1 for

common type values.

Each audioStreamFormatID within a file must be unique.

For PCM audio, the audioStreamFormat and the audioTrackFormat should be omitted (see § 5.1 of

Recommendation ITU-R BS.2076 for further details).

3.2.2.9 audioTrackFormat

Format: AT_yyyyxxxx_zz

Hex digits xxxx: A value from 1000 to FFFF for custom tracks; or a value from 0001 to 0FFF

for common tracks, which reside in an external Common Definitions file/resource.

A value of 1001 is often used for the first custom definitions in the XML. The range of values for

custom definitions may be further constrained if the composition is compliant with one or more ADM

profile specifications.

Hex digits yyyy: This value represents the type of audio contained in the track, see Table 1 for

common type values.

Hex digits zz: This value represents the track number within a stream. This should start at 01 for the

first track and increment for subsequent tracks.

The yyyyxxxx digits should match the audioStreamFormat yyyyxxxx digits to which the

audioTrackFormat refers.

Each audioTrackFormatID within a file must be unique.

https://www.itu.int/rec/R-REC-BS.2076/en

 Rep. ITU-R BS.2388-5 9

For PCM audio, the audioStreamFormat and the audioTrackFormat should be omitted (see § 5.1 of

Recommendation ITU-R BS.2076 for further details).

3.2.2.10 audioTrackUID

Format: ATU_vvvvvvvv

Hex digits vvvvvvvv: A value from 00000001 to FFFFFFFF to uniquely identify an audio track

(or part of one) within a file, such as specified in Recommendation ITU-R BS.2088, or when

transported, such as specified in Recommendation ITU-R BS.2143. The value 00000000 must not

be used for identifying this element as it is used to represent a silent track.

3.2.3 Recommended ID Numbering for Related Elements

For the audioTrackFormat, audioStreamFormat, audioChannelFormat and audioBlockFormat

elements there is a very close relationship between them. Therefore, it is good practice to keep the

IDs in connected elements well matched.

For PCM audio there is a one-to-one relationship between the essence and the resultant

audioChannelFormat. Given this relationship, audioTrackFormat and audioStreamFormat are not

required and are therefore not present in the ADM composition. Therefore, the recommended rules

for the IDs are:

– audioChannelFormatID: AC_YYYYXXXX connects with audioPackFormatID

AP_yyyyxxxx:

• YYYY = yyyy

• XXXX = 1??? (any value above 1000).

For coded audio the connection between audioTrackFormat and audioStreamFormat is an N-to-one

relationship, and the other relationship is between audioStreamFormat and audioPackFormat

(not audioChannelFormat as there are multiple channels in the stream). Therefore, the recommended

rules for the IDs are:

– audioStreamFormatID: AS_YYYYXXXX connects with audioPackFormatID

AP_yyyyxxxx:

• YYYY = yyyy

• XXXX = 1??? (any value above 1000).

– audioTrackFormatID: AT_yyyyxxxx_nn connects with audioStreamFormatID:

AS_YYYYXXXX:

• yyyy = YYYY

• xxxx = XXXX

• nn = 01, 02, …

The audioBlockFormat element is the child of the audioChannelFormat element, so its ID follows

this rule:

– audioBlockFormatID: AB_YYYYXXXX_NNNNNNNN with the parent

audioChannelFormatID: AC_yyyyxxxx:

• YYYY = yyyy

• XXXX = xxxx

• NNNNNNNN = 00000001, 00000002, … (i.e. an incrementing counter for successive

blocks within the channel).

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2143/en

10 Rep. ITU-R BS.2388-5

3.3 Audio types

Use cases: all

The ADM is designed to cover any type of audio that needs describing. Currently, there are five

categories:

1 Direct Speakers – commonly referred to as channel-based, such as stereo and 5.1.

2 Matrix – channels which don’t feed directly to speakers, but which need combining via

matrix operations such as Mid-Side and Lt/Rt.

3 Objects – object-based audio where channels of the audio include positional and other

properties.

4 HOA – scene/transformation-based audio such as Ambisonics where channels represent

spatial harmonic components.

5 Binaural – where the two channels are for the left and right ear.

There is nothing to stop more categories being used if required, but it is recommended that one of the

five categories be used if at all possible.

The method of specifying which category is being used is done in three ways. The first is using the

typeDefinition attribute, which uses a string identifier; the second is using the typeLabel attribute,

which uses a numerical identifier; and the third is using the digits in the ID of the element. Either or

both of typeDefinition and typeLabel must be used. The numerical part of the element’s ID attribute

(the yyyy digits) must match the type used.

Table 1 shows the strings and values used for each of the categories.

TABLE 1

Type definitions

Category typeDefinition typeLabel ID hex digits (yyyy)

Direct Speakers “DirectSpeakers” “0001” 0001

Matrix “Matrix” “0002” 0002

Objects “Objects” “0003” 0003

HOA “HOA” “0004” 0004

Binaural “Binaural” “0005” 0005

User Custom “User Custom” “1000” to “FFFF” 1000 to FFFF

3.3.1 Format types

The audio can be stored in various ways in the file. The most common method in a WAV file is PCM;

however, it is also possible to store audio in the tracks in other ways. To ensure the storage format is

known, both audioStreamFormat and audioTrackFormat have format types associated with them to

allow this format to be specified.

The method of specifying which category is being used is done in three ways. The first is using the

formatDefinition attribute, which uses a string identifier; the second is using the formatLabel

attribute, which uses a numerical identifier; and the third is using the digits in the ID of the element.

Either or both of formatDefinition and formatLabel must be used. When the formatLabel is only used,

the common definitions of the format types must be used. A value from 0001 to 0FFF is used for the

common format types and a value from 1000 to FFFF is used for the custom format types.

Table 2 shows an example of the strings and values used for each of the categories.

 Rep. ITU-R BS.2388-5 11

TABLE 2

Example of format definitions

Format formatDefinition formatLabel

PCM “PCM” “0001”

MPEG-1* “MPEG1” “1002”

Dolby E* “DolbyE” “1003”

DTS* “DTS” “1004”

* MPEG-1, Dolby E and DTS are assumed as data_types of 4, 28 and 17 specified

in SMPTE ST 338, respectively. The formatLabels for the custom format types

are informative.

Missing both formatDefinition and formatLabel indicates PCM as the default format, so unknown

data is assumed to be PCM unless otherwise specified.

Both Dolby E and DTS require two tracks to be used together to form one stream. Track 1 would be

the ‘left’ track of the pair, and track 2 the ‘right’ track. The audioChannelFormat and

audioPackFormats referred by the Dolby E and DTS audioStreamFormats are what the decoded audio

would be (so typically 5.1).

3.4 <chna> chunk and IDs

Use cases: all

The <chna> chunk is the connection between the tracks in the WAV file and the ADM descriptions.

Each line in the <chna> chunk corresponds to a track or part of a track. The ADM IDs that are

contained in the chunk are audioTrackFormatID, audioPackFormatID and audioTrackUID. As

audioTrackFormat always refers to an audioStreamFormat, which then refers to either an

audioChannelFormat or an audioPackFormat; the IDs are enough to locate all the Format elements

that describe the track. Recommendation ITU-R BS.2076-2 or later allows for audioTrackFormat and

audioStreamFormat to be omitted in PCM only applications. When using this option,

audioTrackFormat and audioStreamFormat elements are not present in the composition and the chna

chunk contains references to the audioChannelformatID using the format AC_yyyyxxxx_00. The

“00” suffix pads out the string to match the required number of bytes in the audioTrackFormatID

field.

The audioTrackUIDs are used to uniquely identify the track, or segment of track, that has a description

attached to it. These IDs are referred to from the audioObject element, which itself is referred from

audioContent and audioProgramme, thus completing all the elements in the ADM.

3.4.1 Simple PCM channel-based files

For WAV files containing PCM channel-based audio (and scene-based too), the <chna> chunk is

straightforward to use. Each line corresponds to each track in order along with its associated

audioChannelFormatID and audioPackFormatID:

12 Rep. ITU-R BS.2388-5

Track Number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00010001_00 AP_00010003

2 ATU_00000002 AC_00010002_00 AP_00010003

3 ATU_00000003 AC_00010003_00 AP_00010003

4 ATU_00000004 AC_00010004_00 AP_00010003

5 ATU_00000005 AC_00010005_00 AP_00010003

6 ATU_00000006 AC_00010006_00 AP_00010003

This example shows the chunk for a 5.1 file. Each track in the file contains a single audioTrackUID

as each track only contains a single description (i.e. the channels exist for the complete duration of

the file). The audioChannelFormatIDs refer to the definitions for PCM FrontLeft, FrontRight, etc.;

and the audioPackFormatIDs all refer to the definition of the 5.1 pack.

Another thing to note with this example is all the Format IDs are using common definitions, i.e. their

last four digits are 0FFF or less. As it only uses common definitions this means the WAV file’s

<axml> chunk does not need to carry any ADM metadata for these format definitions. The only

elements the <axml> chunk may need is audioObject, audioContent, audioProgramme

and audioTrackUID.

3.4.2 Simple matrix files

For WAV files containing both “DirectSpeakers” and “Matrix” audio, the <chna> chunk can be used

to identify multiple audioTrackUIDs for one audio track. The audioPackFormatID field of particular

track number and audioTrackUID in the <chna> chunk can reference an audioPackFormatID of the

“Matrix” type. This “Matrix” type audioPackFormatID corresponds to an audioInputPackFormat.

Track Number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00010001_00 AP_00010003

2 ATU_00000002 AC_00010002_00 AP_00010003

3 ATU_00000003 AC_00010003_00 AP_00010003

4 ATU_00000004 AC_00010004_00 AP_00010003

5 ATU_00000005 AC_00010005_00 AP_00010003

6 ATU_00000006 AC_00010006_00 AP_00010003

1 ATU_00000011 AC_00020001_00 AP_00021003

2 ATU_00000012 AC_00020002_00 AP_00021003

3 ATU_00000013 AC_00020003_00 AP_00021003

4 ATU_00000014 AC_00020004_00 AP_00021003

5 ATU_00000015 AC_00020005_00 AP_00021003

6 ATU_00000016 AC_00020006_00 AP_00021003

 Rep. ITU-R BS.2388-5 13

The corresponding ADM XML is below:

<audioObject audioObjectID="AO_1001" audioObjectName="5.1" start="00:00:00.00000"

duration="00:10:00.00000">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000006</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="5.1to2" start="00:00:00.00000"

duration="00:10:00.00000">

 <audioPackFormatIDRef>AP_00021003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000011</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000012</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000013</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000014</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000015</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000016</audioTrackUIDRef>

</audioObject>

<audioPackFormat audioPackFormatID="AP_00021003" typeDefinition=”Matrix”>

 <inputPackFormatIDRef>AP_00010003</inputPackFormatIDRef>

 <outputPackFormatIDRef>AP_00010002</outputPackFormatIDRef>

 <audioChannelFormatIDRef>AC_00021001</audioChannelFormatIDRef>

 <audioChannelFormatIDRef>AC_00021002</audioChannelFormatIDRef>

</audioPackFormat>

<audioChannelFormat audioChannelFormatID="AC_00021001" typeDefinition=”Matrix”>

<audioBlockFormat audioBlockFormatID="AB_00021001_0000001">

 <outputChannelIDRef>AC_00010001</outputChannelIDRef>

 <matrix>

 <coefficient gain="1.0">AC_00010001</coefficient>

 <coefficient gain="0.7">AC_00010003</coefficient>

 <coefficient gain="1.0">AC_00010005</coefficient>

 </matrix>

</audioBloackFormat>

</audioChannelFormat>

<audioChannelFormat audioChannelFormatID="AC_00021002" typeDefinition=”Matrix”>

<audioBlockFormat audioBlockFormatID="AB_00021002_0000001">

 <outputChannelIDRef>AC_00010002</outputChannelIDRef>

 <matrix>

 <coefficient gain="1.0">AC_00010002</coefficient>

 <coefficient gain="0.7">AC_00010003</coefficient>

 <coefficient gain="1.0">AC_00010006</coefficient>

 </matrix>

</audioBloackFormat>

</audioChannelFormat>

3.4.3 PCM object-based files

For WAV files containing PCM object-based audio, the <chna> chunk can be used to identify

multiple objects in the same track if they don’t overlap in time. An example <chna> chunk is shown

here:

Track number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00031001_00 AP_00031001

2 ATU_00000002 AC_00031002_00 AP_00031002

2 ATU_00000003 AC_00031003_00 AP_00031003

2 ATU_00000004 AC_00031004_00 AP_00031004

3 ATU_00000005 AC_00031005_00 AP_00031005

14 Rep. ITU-R BS.2388-5

In this example there are five audio objects, but as three of them do not overlap in time with each

other they can share a single track (track 2 in this case) in the file. The excerpt of XML code below

shows how the five audioObject elements are defined, with Obj2, Obj3 and Obj4 having non-

overlapping time properties.

<audioObject audioObjectID="AO_1001" audioObjectName="Obj1" start=”00:00:00.00000”

duration=”00:10:00.00000”>

 <audioPackFormatIDRef>AP_00031001</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="Obj2" start=”00:02:00.00000”

duration=”00:01:00.00000”>

 <audioPackFormatIDRef>AP_00031002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1003" audioObjectName="Obj3" start=”00:04:00.00000”

duration=”00:02:00.00000”>

 <audioPackFormatIDRef>AP_00031003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1004" audioObjectName="Obj4" start=”00:07:00.00000”

duration=”00:02:00.00000”>

 <audioPackFormatIDRef>AP_00031004</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1005" audioObjectName="Obj5" start=”00:00:00.00000”

duration=”00:10:00.00000”>

 <audioPackFormatIDRef>AP_00031005</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

</audioObject>

3.4.4 Coded audio files

While the majority of audio stored in the files will be PCM, there could be situations where coding

audio could be stored. Coded audio could be stored across multiple tracks that need to be combined

to produce a decodable bitstream. The ADM handles this using the audioStreamFormat with multiple

audioTrackFormats connected to it. Often, coded audio contains multichannel audio in a single multi-

track stream. An example of this is Dolby E carrying 5.1 channels in a 2-track stream. Where an

audioStreamFormat element is describing multichannel stream it would refer to an audioPackFormat

element as opposed to an audioChannelFormat element.

Therefore, the in <chna> chunk the audioPackFormatID reference does not need defining because it

is already defined from audioTrackFormatID reference (via audioStreamFormat). A simple example

of a <chna> chunk is shown below:

Track number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_02011001_01 *

2 ATU_00000002 AT_02011001_02 *

* Fill with 11 zero value bytes.

Note that the two audioTrackFormatIDs are identical apart from the two-digit suffix. Therefore, the

audioStreamFormatID that these would refer to would be AS_02011001. The excerpt of XML below

shows how these elements are defined to refer to the audioPackFormatID for a 5.1 pack.

<audioStreamFormat audioStreamFormatID="AS_02011001"

audioStreamFormatName="DolbyE_5.1" formatLabel="1003" formatDefinition="DolbyE">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackFormatIDRef>AT_02011001_01</audioTrackFormatIDRef>

 <audioTrackFormatIDRef>AT_02011001_02</audioTrackFormatIDRef>

 Rep. ITU-R BS.2388-5 15

</audioStreamFormat>

<audioTrackFormat audioTrackFormatID="AT_02011001_01" audioTrackFormatName="DolbyE1"

formatLabel="1003" formatDefinition="DolbyE">

 <audioStreamFormatIDRef>AS_02011001</audioStreamFormatIDRef>

</audioTrackFormat>

<audioTrackFormat audioTrackFormatID="AT_02011001_02" audioTrackFormatName="DolbyE2"

formatLabel="1003" formatDefinition="DolbyE">

 <audioStreamFormatIDRef>AS_02011001</audioStreamFormatIDRef>

</audioTrackFormat>

3.5 Defaults for unknown audio inputs

Use cases: UC3.1, UC3.2, UC3.3

When reading traditional WAV files, with the intention of converting them into BW64 files, it is

possible that no explicit information about the tracks will exist. Therefore, assumptions about the

tracks and their order must be made. Clearly it makes sense to gather as much information about the

input file as possible, to help identify the tracks; for example, if you received a 6-track file called

“Effects_5.1.wav” then it is highly likely to be a 5.1 surround sound file.

Assuming no other knowledge about a file, apart from the number of tracks it contains, and that it

contains a single programme or mix, then there are two approaches to take. The first approach to try

uses the set of Common Definitions to match with the number of tracks in the file. The second

approach to try is based on the Wave Format Extensible channel ordering. The two approaches are

described in more detail in the following sub-sections.

3.5.1 Common Definitions approach

The set of Common Definitions contains both channel definitions and pack definitions. The pack

definitions cover a range of commonly used channel-based configurations, and the number of

channels in each of these packs can be used to match up with the number of tracks in the input WAV

file. The method is simply this:

1 Read the number of tracks in the input file.

2 Find a pack in the Common Definitions with the same number of channels.

3 Generate a list of channel ID references from the chosen pack in the order given in the pack.

4 Match the stream ID references from the channel IDs and generate a <chna> chunk with the

stream IDs and pack ID.

If stage 2 fails (i.e. there is no Common Definition pack of the correct size), then try the second

approach below.

3.5.2 Wave Format Extensible approach

In some multichannel WAV files the method to handle the channel identification was to use the Wave

Format Extensible extension, which provided a set of channel labels in a particular order. The set of

channels in the Common Definitions have been given IDs in an order that matches the first 18 channel

labels in Wave Format Extensible. The table below shows how the dwChannelMasks in Wave Format

Extensible match the audioChannelFormat definitions in the Common Definitions. Some of the

names differ slightly, and as Wave Format Extensible does not provide clear definitions of each of

the channels, these were decided to be the closest matches.

16 Rep. ITU-R BS.2388-5

Wave Format Extensible dwChannelMask audioChannelFormat

Speaker position Flag bit ID Name

SPEAKER_FRONT_LEFT 0×1 AC_00010001 FrontLeft

SPEAKER_FRONT_RIGHT 0×2 AC_00010002 FrontRight

SPEAKER_FRONT_CENTER 0×4 AC_00010003 FrontCentre

SPEAKER_LOW_FREQUENCY 0×8 AC_00010004 LowFrequencyEffects

SPEAKER_BACK_LEFT 0×10 AC_00010005 SurroundLeft

SPEAKER_BACK_RIGHT 0×20 AC_00010006 SurroundRight

SPEAKER_FRONT_LEFT_OF_CENTER 0×40 AC_00010007 FrontLeftOfCentre

SPEAKER_FRONT_RIGHT_OF_CENTER 0×80 AC_00010008 FrontRightOfCentre

SPEAKER_BACK_CENTER 0×100 AC_00010009 BackCentre

SPEAKER_SIDE_LEFT 0×200 AC_0001000a SideLeft

SPEAKER_SIDE_RIGHT 0×400 AC_0001000b SideRight

SPEAKER_TOP_CENTER 0×800 AC_0001000c TopCentre

SPEAKER_TOP_FRONT_LEFT 0×1000 AC_0001000d TopFrontLeft

SPEAKER_TOP_FRONT_CENTER 0×2000 AC_0001000e TopFrontCentre

SPEAKER_TOP_FRONT_RIGHT 0×4000 AC_0001000f TopFrontRight

SPEAKER_TOP_BACK_LEFT 0×8000 AC_00010010 TopSurroundLeft

SPEAKER_TOP_BACK_CENTER 0×10000 AC_00010011 TopBackCentre

SPEAKER_TOP_BACK_RIGHT 0×20000 AC_00010012 TopSurroundRight

Therefore, this allows the approach for allocating IDs in the <chna> as simply placing them in

numerical order as shown below:

Track Number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00010001_00 AP_00010001*

2 ATU_00000002 AC_00010002_00 AP_00010001*

3 ATU_00000003 AC_00010003_00 AP_00010001*

4 ATU_00000004 AC_00010004_00 AP_00010001*

NN ATU_000000NN AC_000100NN_00 AP_00010001*

* Depends on number of tracks.

The choice of audioPackFormatID is open to different options. One approach would be to generate a

single custom pack containing the channels used, which will tie together the channels into a single

pack. The other approach is to make each channel a mono pack (so use the ID AP_00010001), so

each channel is treated independently. This second approach would be easier, and the recommended

option to take and does not require any new definitions to be generated.

3.5.3 Generating other metadata for unknown audio inputs

The two approaches above make use of the Common Definitions to provide descriptions of the tracks

for the audio file. There is therefore no need to generate definitions for the audioTrackFormat,

audioStreamFormat, audioChannelFormat, and audioPackFormat elements (the format elements in

other words). It would be acceptable to leave the <axml> chunk empty and just rely on the <chna>

chunk, looking up the Common Definitions, which are external to the audio file. However, it is useful

to consider generating at least an audioObject element that ties together the tracks in the file with

 Rep. ITU-R BS.2388-5 17

their format definitions more explicitly. This is particularly important if the audio file contains more

than one mix of audio (for example, a 5.1 mix plus a stereo mix), as the different mixes need to be

clearly identified.

Generation of the audioObjects is best explained with an example. Taking an 8-track audio file, where

it has been identified that it contains a 5.1 (6 tracks) mix and a stereo (2 tracks) mix. Using the

Common Definitions to determine the format elements, the <chna> chunk is as follows:

Track number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00010001_00 AP_00010003

2 ATU_00000002 AC_00010002_00 AP_00010003

3 ATU_00000003 AC_00010003_00 AP_00010003

4 ATU_00000004 AC_00010004_00 AP_00010003

5 ATU_00000005 AC_00010005_00 AP_00010003

6 ATU_00000006 AC_00010006_00 AP_00010003

7 ATU_00000007 AC_00010001_00 AP_00010002

8 ATU_00000008 AC_00010002_00 AP_00010002

As there are two mixes here then it is a good idea to generate two audioObjects to clearly identify

them, rather than leaving it to assumptions about the nature of the packs. The following XML code

(for inclusion in the <axml> chunk) shows how these objects could be generated:

<audioObject audioObjectID="AO_1001" audioObjectName="5.1_mix">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000006</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="stereo_mix”>

 <audioPackFormatIDRef>AP_00010002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000007</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000008</audioTrackUIDRef>

</audioObject>

Generating audioObjects is particularly important for files containing multiple mixes of the same

pack type as it can become easy to misidentify how tracks are allocated.

3.5.4 Naming audio channels and loudspeaker labels for Cartesian coordinates

The audioChannelFormat has a name and loudspeaker label. Loudspeaker labels of playback sound

systems for polar coordinates are specified in Recommendation ITU-R BS.2051. Loudspeaker labels

can be expressed such as “M+030,” “B-030” and “U+180,” and consist of E+AAA or E-AAA. Here,

E indicates layer names, they are “B” (Bottom layer, elevation angle -30 degrees), “M” (Middle layer,

elevation angle 0 degree), “U” (Upper layer, elevation angle 30 degrees), “UH” (Upper height layer,

elevation angle 45 degrees) and “T” (Top layer, elevation angle 90 degrees). AAA indicates azimuth

angle, they are “+000” (azimuth angle 0 degree), “+030” (azimuth angle +30 degrees) and so on.

Although loudspeaker labels for Cartesian coordinates are not specified in any ITU-R Texts, they can

be used following the naming rule of loudspeaker labels for polar coordinates. It should also be noted

that the Cartesian audioPackFormats defined in Recommendation ITU-R BS.2094 are intended to be

played back through the loudspeakers defined by polar coordinates as specified Recommendation

ITU-R BS.2051.

https://www.itu.int/rec/R-REC-BS.2051/en
https://www.itu.int/rec/R-REC-BS.2094/en
https://www.itu.int/rec/R-REC-BS.2051/en

18 Rep. ITU-R BS.2388-5

Z-axis values of “−1.00,” “0.00” and “1.00” specify layers of “B” (Bottom layer), “M” (Middle layer),

“U” (Upper layer), respectively. If a layer between the Bottom and Middle or Upper and Middle

layers is required, then composite labels “BMz” or “UMz” are used (where z is replaced by a 2-digit

position value representing the Z-axis). For example, “BM50” can be used when Z = −0.5 or “UM50”

when Z = 0.5.

Y-axis values of “−1.00,” “0.00” and “1.00” specify positions of “B” (Back), “Side” (Side) and “F”

(Front), respectively. X-axis values of “−1.00,” “0.00” and “1.00” specify positions of “L” (Left),

“C” (Centre) and “R” (Right), respectively. The position of X = −1.00 and Y = 1.00 can be expressed

by “FL” (Front Left).

If a position between Front Left and Front Centre with Y = 1.00 is required, then composite label

“FLx” is used (where x is replaced by a 2-digit position value representing the X-axis). For example,

“FL50” can be used when X = −0.50.

If a position between Front Left and Side Left with X = −1.00 is required, then composite label

“FSLy” is used (where y is replaced by a 2-digit position value representing the Y-axis). For example,

“FSL50” can be used when Y = 0.50.

On the upper layer, “FLxy” (where x and y are replaced by 2-digit position values of X- and Y-axis)

can be used for the Front Left area. If X = −0.333, Y = 0.667 and Z = 1.00, then composite label

“U_FL3367” (Upper Front Left at x = −0.333 and y = 0.667) can be used. Following this naming

rule, typical loudspeaker labels can be described as shown in Fig. 1.

FIGURE 1

Loudspeaker labels for Cartesian coordinates

a) Middle layer

 Rep. ITU-R BS.2388-5 19

b) Upper layer

c) Bottom (lower) layer

U_FL
(Front Left)

U_SL
(Side Left)

U_BL
(Back Left)

U_FC
(Front

Centre)

U_BC
(Back

Centre)

U_FR
(Front Right)

U_SR
(Side Right)

U_BR
(Back Right)

U_TC
(Top Centre)

U_BC67
(Back Centre

far)

20 Rep. ITU-R BS.2388-5

d) Typical loudspeaker labels for general layers

e) Naming rules for Cartesian coordinated loudspeakers

FL FL67 FL50 FL33 FR33 FR50 FR67 FRFC

BL BL67 BL50 BL33 BR33 BR50 BR67 BRBC

SL SL67 SL50 SL33 SR33 SR50 SR67 SRTC / C

FSL67

FSL50

FSL33

BSL33

BSL50

BSL67

FSR67

FSR50

FSR33

BSR33

BSR50

BSR67

FC67

FC50

FC33

BC67

BC50

BC33

FL6767 FL5067 FL3367

FL6750 FL5050 FL3350

FL6733 FL5033 FL3333

BL6733 BL5033 BL3333

BL6750 BL5050 BL3350

BL6767 BL5067 BL3367

FR3367

FL3350

FL3333

BR3333

BR3350

BR3367

FR5067

FR5050

FR5033

BR5033

BR5050

BR5067

FR6767

FR6750

FR6733

BR6733

BR6750

BR6767

FL
(Front Left)

SL
(Side Left)

BL
(Back Left)

FC
(Front Centre)

BC
(Back Centre)

FR
(Front Right)

SR
(Side Right)

BR
(Back Right)

TC / C
(Top Centre /

Centre)

FSLy
(Front Side Left y)

BSLy
(Back Side Left y)

FSRy
(Front Side Right y)

BSRy
(Back Side Right y)

FLx
(Front Left x)

FRx
(Front Right x)

BLx
(Back Left x)

BRx
(Back Right x)

SLx
(Side Left x)

SRx
(Side Right x)

FCy
(Front Centre y)

BCy
(Back Centre y)

FLxy
(Front Left xy)

FRxy
(Front Right xy)

BLxy
(Back Left xy)

BRxy
(Back Right xy)

 Rep. ITU-R BS.2388-5 21

3.6 Times and durations

Use cases: UC1.5, UC2.5.

3.6.1 Timing attributes

The ADM has time and duration attributes in various elements, and their correct use is important to

ensure things work correctly. The elements that contain time related parameters are:

Element Attribute Meaning

audioProgramme start Time for the start of the programme

end Time for the end of the programme

audioObject start Start time of an object in seconds relative to the start of the programme.

duration Duration in seconds of an object.

audioBlockFormat rtime Start time in seconds of a block relative to the start of the object.

duration Duration in seconds of a block.

To help explain how these elements relate to each the other, the diagram in Fig. 2 shows the

relationships.

The start of audioProgramme can be given a time (this is not essential, but recommended if it known),

but this has no influence on the audio contents of the file; the audioProgramme is describing the whole

file, so it starts at the first sample and ends at the last. In the example in Fig. 2, the time starts at

15:00:00:00 and ends at 15:30:00:00. It is important to ensure that end – start = the actual duration

of the file. All the other timing takes the start of the audio file as time zero.

The audioObject start attribute corresponds to the start time of the object relative to the start of the

file. The duration attribute corresponds to how long this object lasts. If this parameter is omitted the

object lasts for the whole duration of the file. The audio samples in the file will correspond to the start

and duration of the object as shown in the diagram (in the example this will be from 00:08:00.00 to

00:23:00.00).

The audioObject refers to an audioPackFormat (not shown for clarity) and an audioChannelFormat,

which do not possess timing properties. The audioChannelFormat contains one or more

audioBlockFormat that contain the finest level of timing information. The start (rtime) of the

audioBlockFormat is relative to the start of the audioObject. So the positions of the audio samples in

the file corresponding to a particular audioBlockFormat is found by adding its rtime to the start of

the audioObject to get the first sample, and adding its duration to find the last sample.

22 Rep. ITU-R BS.2388-5

FIGURE 2

Timing diagram

Is it possible to give timing values that are invalid or problematic, such as values that run off the end

of the audio file or cause overlapping blocks. There are some rules that should be followed to ensure

a correctly functioning file:

1 All the time and duration values must be non-negative.

2 The time attributes should be in the correct format:

a) HH:MM:SS:FF (where FF is the frame number) for the timecode attributes in

audioProgramme. If there is any doubt about what the frame rate is then it is best to avoid

using frame numbers and to use pure time as described in b) below.

b) HH:MM:SS.sssss (where sssss is at least 5 d.p. of the seconds) for the attributes in all

elements other than audioProgramme. More than 5 d.p can be used, and is recommended

for sampling rates greater than 48 kHz. For nanosecond precision 9 d.p. should be used.

3 The difference between the audioProgramme start and end time should match the duration

of the audio file – within the precision of the timecode representation. Omit the end attribute

if it uncertain what the length it.

4 The start + duration time of audioObjects should not be more than the duration of the file.

5 The rtime + duration time of audioBlockFormats should not be more than the start + duration

of the referring audioObject if possible.

6 If the audioBlockFormats overrun the end of an audioObject, then it will be assumed the

audio samples will only be read for the duration of the audioObject.

 Rep. ITU-R BS.2388-5 23

7 The order of audioBlockFormats within an audioChannelFormat should be chronological in

the XML code.

8 Successive audioBlockFormats should be contiguous. Therefore the rtime of a block should

equal the rtime + duration of the previous block.

9 It is recommended to have the first audioBlockFormat in an audioChannelFormat starting at

00:00:00.00000. Use the start time of the audioObject to set the starting time of a sequence

of blocks.

3.6.2 Timing for Nested audioObjects

For many applications is it useful to use nested audioObjects. However, care must be taken to ensure

that the timing of nested audioObjects don’t cause them to become disconnected from each other.

Figure 3 shows eight examples of how two connected audioObjects (AO_1001 refers to AO_1002)

with different timing values can either work or fail.

It is also worth remembering that an audioObject’s start time is relative to the start of the

audioProgramme, not the start of the audioObject that refers to it.

24 Rep. ITU-R BS.2388-5

FIGURE 3

Nested audioObjects timing examples

3.6.3 Block sizes for dynamic objects

The audioBlockFormat element carries the parameters required for object-based audio with the time

attributes to enable dynamic use. The audioChannelFormat can contain up to 4 294 967 295

audioBlockFormat blocks, and the duration of an audioBlockFormat can be 10 μs (i.e. less than a

sample in length at a 48 kHz sample rate). It is therefore possible to use very fine temporal resolution,

and thereby produce very large files. Such large files would be unwieldy, and there is unlikely to be

the need for such short blocks, except when generating step changes in positional metadata. Specific

ADM/S-ADM profiles may constrain block sizes, for example Recommendation ITU-R BS.2168.

Otherwise, the following should be considered when deciding upon the sizes of the blocks:

 Rep. ITU-R BS.2388-5 25

1 If successive blocks carry identical parameter values, then combine them into one single

block. In other words, new a block should only be generated when a change in parameter

values is required.

2 Positions will be interpolated (unless chosen not to be), so smoothness of movement can be

achieved without very fine blocks.

3 The speed and trajectory of the movement of objects. Slower objects could be represented

with longer and fewer blocks.

4 Is there enough movement in an object to require multiple blocks? An object might not be

moving by a noticeable amount, so one fixed position could suffice.

5 The larger the file, the more processing power and memory it will require. Too many small

blocks will produce large files that will be slow to process and memory-hungry for digital

audio workstations (DAWs).

6 Consider what will happen to the positional values if the coordinate system needs to be

remapped. Will the interpolation between successive positions have a noticeably different

trajectory when performed in another coordinate system? Keep the positional changes small

enough to make such difference imperceptible.

The decisions depend upon the judgement of the sound engineer or software designer weighing up

perceptual quality of the result and file size requirements. At this stage no recommended values are

given, but some may be given in the future after more research.

3.6.4 Dealing with preambles

When programmes were exchanged using tapes rather than using files, it would be common practice

for preambles and postambles to appear before and after the actual programme content. These would

often include a video test card and line up tones, as well as a countdown timer, which are very useful

when playing back from tape. While the need for these preambles are largely removed in a file-based

world, there will still be programmes that have been transferred from tape to file that will contain

them. Therefore, it makes sense to use the ADM timing metadata in a manner to ensure the file can

be played out correctly.

Many broadcasters use an agreed start timecode for all their programmes, such as 10:00:00.00000.

So anything that appears before this time is considered as a preamble and is not broadcast on playout.

An object-based approach can be used to separate the preamble from the main programme by making

them as separate objects. The preamble object can then start before the programme start time (so,

before 10:00:00.000), with the main programme as a following object starting at 10:00:00.000. The

upper diagram in Fig. 4 illustrates how this can be done. This method ensures the audioObjects all

have non-negative start times. The lower diagram shows the wrong way to approach this, by starting

the file at 10:00:00.000 and using a negative start time for the preamble audioObject.

26 Rep. ITU-R BS.2388-5

FIGURE 4

Adding a preamble to a file

3.7 File management

While the BW64 format can handle files over 4GB in size, both for the audio samples and XML

metadata, care must be taken when generating such large files. Section 3.6.3 describes how the block

sizes with audioBlockFormat should be considered which have a large influence on the size of the

<axml> chunk. When generating large files, it is worth bearing in mind the following:

1 The audio data (in the <data> chunk) may be directly read from file, rather the stored in

memory in its entirety.

2 The XML metadata in the <axml> chunk is likely to be required to be read into memory in

its entirety, even if it is later stored in a more compact form. Therefore having an <axml>

chunk that is several gigabytes in size could cause memory problems.

3 As well as memory limitations, large files can also be slower to read and process.

4 The XML metadata also needs interpreting which could take a long time.

To overcome these issues there are some measures that can be taken:

1 Consider increasing audioBlockFormat blocks sizes based on the considerations described in

§ 3.6.3.

2 Avoid duplicating metadata. The “format” ADM elements are not directly tied to audio data,

so make use of the Common Definitions if possible and identify any audioChannelFormat

elements that are identical which can be reused.

 Rep. ITU-R BS.2388-5 27

3 Take advantage of non-overlapping objects. These can share audio tracks to reduce the

number of tracks used in the file.

The advice given in this section is not an exhaustive list and should be added to or refined in the

future if required.

3.8 <fmt> Chunk handling

The <fmt> chunk in WAV files is a mandatory that specifies the format of the data within the file.

The <fmt> chunk is defined as follows:

<fmt> ->fmt(<common-fields>

 <format-specific-fields>)

<common-fields> ->

 Struct {

 WORD wFormatTag; // Format category

 WORD nChannels; // Number of channels

 DWORD nSamplesPerSec; // Sampling rate

 DWORD nAvgBytesPerSec; // For buffer estimation

 WORD nBlockAlign; // Data block size

 }

<format-specific-fields>) ->

 Struct {

 WORD WBitsPerSample; // Bits per sample

 WORD cbSize; // Size of the extension (0 or 22)

 WORD wValidBitsPerSample; // Number of valid bits

 DWORD dwChannelMask; // Speaker position mask

 CHAR[16] SubFormat; // GUID, including the data format code

 }

The <format-specific-fields> are optional and are used in the Wave Format Extensible mode. The

format code in wFormatTag specifies the type of data used, and a small selection of these types are

shown below:

wFormatTag Symbol Format

0×0000 WAVE_FORMAT_UNKNOWN Unknown

0×0001 WAVE_FORMAT_PCM PCM

0×0003 WAVE_FORMAT_IEEE_FLOAT IEEE float

0×FFFE WAVE_FORMAT_EXTENSIBLE Determined by SubFormat

If the format is set to WAVE_FORMAT_EXTENSIBLE then the file uses the <format-specific-

fields> with the dwChannelMask to specify the channels.

When reading a WAV file the <format-specific-fields> may or may not be specified, but if they do

exist they should be read to try and determine as much about the channels and format as possible.

When generating a BW64 file, it is recommended to avoid using the Wave Format Extensible mode

as there is the risk of generating information that contradicts the <chna> and <axml> chunk

information. The recommended approach is to only use one of two wFormatTag values according to

these rules:

– If all the audio track in the file are PCM then set wFormatTag to 0x0001 (PCM)

– If any of the audio tracks are non-PCM then set wFormatTag to 0x0000 (unknown).

28 Rep. ITU-R BS.2388-5

3.9 Ensuring streaming compatibility

The way in which the ADM is used, and the way in which multichannel audio files are created, will

have an impact on the efficiency with which the audio data can later be streamed. The use cases in

this area are still being developed.

3.10 Interactivity and ensembles of audioObjects

AudioObjects may have an “interact” attribute, and audioObjectInteraction sub-elements. These

signal that the user may interact with the audioObject, changing position or gain, or turning off an

object. In addition, audioObjectInteraction sub-elements can be used to signal limits on the size of

changes to position or gain.

Note that positions and gains are sub-elements not in audioObjects, but of audioBlockFormats. An

audioBlockFormat represents a single sequence of audioChannelFormat samples within a specified

time interval. An audioChannelFormat represents a single sequence of audio samples on which some

action may be performed in a rendered scene. An audioChannelFormat is sub-divided in the time

domain into one or more audioBlockFormats.

Because audioObjects may refer to other audioObjects, it is possible to interact with a referent object

in order to change the referenced objects. It may also possible to interact with a referenced

audioObject, without changing the referent object.

An example scenario in which this might be desired, and the expected behaviour, are described in

§§ 3.10.1 and 3.10.2.

3.10.1 Example of interaction with an ensemble of audioObjects

A broadcast that includes a performance by a string trio uses multiple objects to create the sound of

the orchestra. A different audioObject is used for the sound of each instrument. An audioObject

named “ensemble” refers to audioObjects named “violin”, “viola”, and “cello”.

The “violin”, “viola”, and “cello” audioObjects each refer to their own audioPackFormat,

audioChannelFormat, and audioBlockFormat. Each audioBlockFormat includes a position from

which the renderer should, by default, render the sound of the respective instrument. The positions

signalled in the metadata correspond to a reasonable spacing and order of the instruments:

 violin --- viola --- cello

By default, the three instruments are spaced 30 degrees apart, symmetrically either side of 0 degrees.

The broadcaster allows the listener to change the azimuth of the ensemble by ±90 degrees. It does

this by enabling interaction on the “ensemble” audioObject, and setting the positionInteractionRange

minimum and maximum attributes accordingly.

The broadcaster further allows the listener to move the instruments within the ensemble to a limited

extent. It does this by enabling interaction on the “violin” and “cello” audioObjects. The

positionInteractionRange limits on the “violin” and “cello” are set such that the overall width of the

ensemble may be reduced to 30 degrees.

The desired behaviour is that an interaction with a referent object is applied to all referenced objects.

Interaction with a referenced object is not applied to the referent object.

Interaction with the “ensemble” audioObject, applying a change of azimuth of 45 degrees, causes a

change in azimuth of each of the “violin”, “viola”, and “cello” audioBlockFormats.

 Rep. ITU-R BS.2388-5 29

A subsequent interaction with the “violin” and “cello” audioObjects that applies a change of azimuth

of ‒10 and 10 degrees respectively is still considered to be within the interactionRange limit for those

objects, because the earlier interaction with the referent “ensemble” object should not be taken into

account.

In this way, the listener may change both the width and the position of the ensemble, with a tighter

constraint on the change of width than on the change of position.

The control used by the listener to effect the interaction might be presented in a way that facilitates

either rotation or translation. The signalling of interactionRange limits would logically be done using

a coordinate system that is consistent with the control. For example, if a control were provided to

change the azimuth of a sound source, it would be logical to signal the interactionRange in polar

coordinates. Conversely, if a control were provided to move a sound source in a straight line from

side to side, it would be logical to signal the range in Cartesian coordinates.

The value of attributes in the position or gain sub-elements of an audioBlockformat can change over

time. The existing offsets caused by earlier interactions should persist after a change to the attributes.

There are several combinations of interaction being enabled or not in an ensemble of audioObjects.

The following diagram in Fig.5 illustrates the possibilities and the interactions that are allowed as a

result, using position as the example.

30 Rep. ITU-R BS.2388-5

FIGURE 5

Possible combinations of positional interactivity in an ensemble of audioObjects, and the changes enabled

3.10.2 Behaviour of interaction with ensembles of audioObjects

If an audioObject allows interaction, the change to an attribute that can be set by the user should be

within the limits of the interaction range of that audioObject. In this context, a “change” is the

difference between a condition before and after the interaction.

The resultant position and gain of a sound source is the combination of the attributes of the position

and gain sub-elements of the audioBlockFormat and all the changes caused by interaction in the

hierarchy of audioObjects that refer to the audioBlockFormat.

 Rep. ITU-R BS.2388-5 31

3.11 Multiple audioProgrammes

It is possible to define more than one audioProgramme within a BW64 file, and there could be several

different reasons for doing so. These include:

– Different language versions of the same programme;

– Different length versions of the same programme;

– Versions of the programme that have been mixed on different reproduction systems

(e.g. a stereo version and a object-based version);

– Adjustments in content to cater for age ratings or music rights.

There could also be the need for carrying multiple unrelated programmes in a single file, but it is

more likely that a file will contain versions of the same programme.

3.11.1 Using multiple audioProgrammes versus audioContents and audioObjects

Taking the example of a programme with two different language versions, this can be approached in

two different ways. The first approach consists in two different audioProgrammes to be used, one for

each language. The second approach is a single audioProgramme with interactive audioObjects that

are complementary. Figure 6 shows the two audioProgramme approach with an English and German

version, and both audioProgrammes share the same music and effects audioContent. Figure 7 shows

the single audioProgramme version where either the English or German audioObject can be selected.

FIGURE 6

Two audioProgramme approach

32 Rep. ITU-R BS.2388-5

FIGURE 7

Single audioProgramme approach

Which approach should be used when?

The multiple audioProgramme approach should be used when interactivity is not expected to be used.

In the example given, the playout system is expected to be fixed to either English or German and to

select the appropriate programme to use. The user is not expected to switch between languages while

watching.

The single audioProgramme approach should be used when interactivity is expected to be used. In

the example, some language selectors are expected to be available. The user can therefore switch

between languages while watching.

3.11.2 Default audioProgramme

When a file contains more than one audioProgramme, and only one audioProgramme can be handled

by the receiver of the file, then a choice has to be made to select one. In the example of a

multilanguage programme, the target language may be known. By inspecting the language parameters

in audioProgramme (or the related audioContents) should be determined which audioProgramme to

use.

However, there might be situations where no other information is known about which

audioPrograame should be selected, yet one needs to be chosen to play or process. When there is no

other information to help select an audioProgramme, then a default one must be chosen. The simplest

rule for determining which is the default audioProgramme to use it to select the one with the lowest

audioProgrammeID value. In the example shown in Fig. 6, the default audioProgramme would be

APR_1001.

3.12 Using the ‘importance’ parameters

The ‘importance’ parameter appears in the following elements: audioObject, audioPackFormat and

audioBlockFormat. The integer value of the parameter ranges from 0 (least important) to 10 (most

important). The main use for the importance parameter is when compromises have to made to the

quantity of audio objects in the file. For example, a renderer on a device can only handle 64 objects

at once, but the ADM file it receives contains 90 objects, so some sort of reduction has to be made.

A pre-processer can make this reduction from 90 to 64, but by having some sort of guide to which

objects are more important than others it can make this reduction in a manner that retains the content

creator’s intent more closely.

The behaviour for the importance parameter differs between each of the elements it is used in.

 Rep. ITU-R BS.2388-5 33

3.12.1 The audioBlockFormat importance parameter

While the importance parameter is in the audioBlockFormat, it does not mean it should be treated as

a dynamic parameter, as stated in Recommendation ITU-R BS.2076-1 § 9.2. Therefore, it should be

considered to be a fixed value for that particular audioChannelFormat. While Recommendation

ITU‑R BS.2076 suggests that audioBlockFormats below a certain value are discarded, it is not

recommended to take this action. The importance parameter in audioPackFormat should take

precedent for this action, and the audioBlockFormat importance parameter should only be used for

informative uses.

3.12.2 The audioPackFormat importance parameter

The importance parameter in audioPackFormat can be used to make compromises in the spatial

quality of an audio object. As an audioPackFormat is intended to group together channels that belong

together, they can be considered to be equally important. However, audioPackFormats can be nested,

so less important packs can be referred to from a parent pack. Figure 8 shows a simple use of nested

audioPackFormats, where a parent pack (‘Speech’) contains two child packs (‘SpeechDirect’) and

(‘SpeechEarly’). The ‘SpeechDirect’ pack contains a single channel and has an importance of 10, so

should never get discarded. The ‘SpeechEarly’ pack contains two channels and has an importance of

5, so may get discarded. In this example, the ‘SpeechDirect’ could contain the direct signal of some

dialogue, so it critical to the sound; but the ‘SpeechEarly’ could contain some reverb sounds of the

dialogue, so discarding them will only adjust the feel of the sound slightly.

FIGURE 8

Nesting audioPackFormats for importance parameter use

So, a pre-processor that aims to reduce the number of objects or tracks in a file, could discard or

ignore the audioPackFormats below a certain importance value. The quality might be compromised,

but the actual object will still exist. So in the example given, the ‘Speech’ pack will either contain

one or three channels depending on the importance level chosen.

This is not restricted to the ‘Objects’ type either, and is just as useful for other types too. It is also

worth remembering that audioPackFormats can be reused for different content, so any importance

parameter will be reused for the different content in the same way. So the importance parameter here

is very much for compromising the quality of the format, not the content.

https://www.itu.int/rec/R-REC-BS.2076/en

34 Rep. ITU-R BS.2388-5

3.12.3 The audioObject importance parameter

The importance parameter in audioObject has a slightly different behaviour from the of the

audioPackFormat version. Whereas the audioPackFormat makes compromises on quality (primarily

the spatial quality), the audioObject version allows less important sounds to be potentially discarded

too. Unlike the audioPackFormat, this allows for content-dependant compromises to be made. For

example, minor atmospheric effects could be discarded to ensure the main effects are properly

reproduced.

Discarding is not the only option for handling audioObjects of low importance. A processor could

also combine audioObjects that share similar properties, such as close positional proximity.

As with audioPackFormats, nesting can be used to allow selection of the audioObjects that can either

be discarded or combined. The example shown in Fig. 9 shows and audioObject (AO_1001) that

contains two sub-audioObjects, Speech (AO_1002) and RoomReverb (AO_1003). The RoomReverb

audioObject has a lower importance, so it could be potentionally discarded, as it contains less

importance sounds. Alternatively, if the processor is so designed, it could examine the properties of

AO_1002 and AO_1003 and merge them together to make a single combined object (this will have

to include mixing of the audio samples too).

FIGURE 9

Nesting audioObjects for importance parameter use

However, it is recommended that any audioObject with an importance of 10 be left untouched if

possible.

3.12.4 Using an importance threshold

A processor that receives ADM files with the intention of reducing the number of tracks or objects

can use a thresholding technique to achieve this reduction. The steps taken would be:

1) Set threshold to 0.

2) Inspect audioPackFormats and audioObject importance parameters. If any are less than the

threshold then discard or ignore those elements.

3) Count the number of tracks and/or objects remaining.

4) If the number of tracks/objects is below the target then stop.

5) Else increase the threshold by 1 and repeat from step 2.

Other methods could be used for reducing ADM files, such as combining objects, intermediate

rendering or downmixing.

 Rep. ITU-R BS.2388-5 35

4 Location of ADM metadata

The parent or top level element of the ADM is audioFormatExtended. Recommendation ITU-R

BS.2076 does not specify the structure of other audio-relaed metadata with respect to

audioFormatExtended. The audioFormatExtended element can be located within the ebuCoreMain

element or within the other XML elements, as specified in Recommendations ITU-R BS.2088 and

ITU-R BS.2125. Figure 10 illustrates such examples, and the following sections provide details

pertaining to Recommendations ITU-R BS.2088 and ITU-R BS.2125.

FIGURE 10

Examples of location of the audioFormatExtended element

4.1 BW64 file specified in Recommendation ITU-R BS.2088

In BW64 files the ADM metadata is carried in the axml chunk, that may also contain other XML

code. The ebuCoreMain element and the coreMetadata sub-element of the ebuCoreMain are used to

describe information of the bext / ubxt chunk. In this case the audioFormatExtended element is

located within the format element of the coreMetadata element as shown in Fig. 11.

FIGURE 11

Location of the audioFormatExtended element specified in Recommendation ITU-R BS.2088

4.2 A serial representation of the ADM (S-ADM) specified in Recommendation ITU-R

BS.2125

The frame element is the top level element of the S-ADM. When only audio-related metdata is used,

the frame element directly includes the audioFormatExtended element, which includes the ADM

metadata (excluding the frameHeader element). Alternatively, the frame element includes the

coreMetadata element when broadcaster metadata and the other additional metadata are used.

https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2076/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2088/en
https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.2125/en

36 Rep. ITU-R BS.2388-5

Then, the format sub-element of the coreMetadata includes the audioFormatExtended element.

Figure 12 shows the two structures of how the audioFormatExtended elment is carried in S-ADM.

FIGURE 12

Location of the audioFormatExtended element specified in Recommendation ITU-R BS.2125

5 Worked examples

5.1 5.1 and Stereo combination

A common delivery configuration is to carry a 5.1 surround main mix alongside a stereo version to

cater for non-5.1 compatible systems. In Recommendation ITU-R BS.1738, Production Scenario 5

describes such a configuration, as shown the table below.

Channel number 5.1 Surround sound audio signal

1 Left channel, complete mix

2 Right channel, complete mix

3 Centre channel, complete mix

4 Low frequency effects

5 Left surround channel

6 Right surround channel

7 Optional left channel international sound

8 Optional right channel international sound

https://www.itu.int/rec/R-REC-BS.2125/en
https://www.itu.int/rec/R-REC-BS.1738/en

 Rep. ITU-R BS.2388-5 37

This is straightforward to deal with by using the Common Definitions to describe the channels, and

audioObjects to classify the two mixes. The <chna> can be generated like this:

Track number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00010001_00 AP_00010003

2 ATU_00000002 AC_00010002_00 AP_00010003

3 ATU_00000003 AC_00010003_00 AP_00010003

4 ATU_00000004 AC_00010004_00 AP_00010003

5 ATU_00000005 AC_00010005_00 AP_00010003

6 ATU_00000006 AC_00010006_00 AP_00010003

7 ATU_00000007 AC_00010001_00 AP_00010002

8 ATU_00000008 AC_00010002_00 AP_00010002

The tracks can now be connected to audioObjects so these need to be defined. The XML code for

these two audioObjects is below:

<audioObject audioObjectID="AO_1001" audioObjectName="5.1_mix">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000006</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="stereo_mix”>

 <audioPackFormatIDRef>AP_00010002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000007</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000008</audioTrackUIDRef>

</audioObject>

More information can be added, as the two mixes may have some additional information. This

information can be placed in the audioContent and audioProgramme elements:

<audioProgramme audioProgrammeID=”APR_1001” audioProgrammeName=”Complete+International”>

 <audioContentIDRef>ACO_1001</audioContentIDRef>

 <audioContentIDRef>ACO_1002</audioContentIDRef>

</audioProgramme>

<audioContent audioContentID="ACO_1001" audioContentName="CompleteMix">

 <audioObjectIDRef>AO_1001</audioObjectIDRef>

</audioContent>

<audioContent audioContentID="ACO_1002" audioContentName="InternationalMix">

 <audioObjectIDRef>AO_1002</audioObjectIDRef>

</audioContent>

This is all the XML code that is required for the <axml> chunk: all the track, stream and channel

information resides in the Common Definitions resource.

5.2 Object-based with a channel-based bed

This example shows how a pair of audio objects can be combined with a stereo channel-based bed.

Figure 13 shows how the channels and objects are arranged (the timings are HH:MM).

38 Rep. ITU-R BS.2388-5

FIGURE 13

Arrangement of channels and objects with corresponding timings

The background music part is a stereo channel-based bed that lasts the duration of the file. The first

object is narration that lasts from 01:00 to 06:00. The second object is effects and lasts from 08:00 to

17:00, and this object is also dynamic as its position changes over time.

The channel-based channels can be described using common definitions, so those IDs need to be

selected from the Common Definitions set of channels. The two objects will be custom definitions,

so will need to be explicitly defined and included in the <axml> chunk.

The first stage is to define the channels for the two objects. The XML generated for the

audioChannelFormat and audioBlockFormat elements is here:

<audioChannelFormat audioChannelFormatID="AC_00031001" audioChannelFormatName="Object1"

typeDefinition="Objects">

 <audioBlockFormat audioBlockFormatID="AB_00031001_00000001" rtime="00:00:00.00000"

duration="00:05:00.00000">

 <position coordinate="azimuth">0.0</position>

 <position coordinate="elevation">-10.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

</audioChannelFormat>

<audioChannelFormat audioChannelFormatID="AC_00031002" audioChannelFormatName="Object2"

typeDefinition="Objects">

 <audioBlockFormat audioBlockFormatID="AB_00031002_00000001" rtime="00:00:00.00000"

duration="00:03:00.00000">

 <position coordinate="azimuth">-22.5</position>

 <position coordinate="elevation">5.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

 <audioBlockFormat audioBlockFormatID="AB_00031002_00000002" rtime="00:03:00.00000"

duration="00:03:00.00000">

 <position coordinate="azimuth">0.0</position>

 <position coordinate="elevation">5.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

 <audioBlockFormat audioBlockFormatID="AB_00031002_00000003" rtime="00:06:00.00000"

duration="00:03:00.00000">

 <position coordinate="azimuth">22.5</position>

 <position coordinate="elevation">5.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

</audioChannelFormat>

 Rep. ITU-R BS.2388-5 39

The two objects also need audioPackFormat definitions. As both objects are single channels, these

packs are just single channel ones:

<audioPackFormat audioPackFormatID=”AP_00031001” audioPackFormatName=”Object1” typeLabel=”0003”

typeDefinition=”Objects”>

 <audioChannelFormatIDRef>AC_00031001</audioChannelFormatIDRef>

</audioPackFormat>

<audioPackFormat audioPackFormatID=”AP_00031002” audioPackFormatName=”Object2” typeLabel=”0003”

typeDefinition=”Objects”>

 <audioChannelFormatIDRef>AC_00031002</audioChannelFormatIDRef>

</audioPackFormat>

The next stage is to prepare the <chna> chunk. As the two audio objects do not overlap in time it is

possible for them to share the same track in the file. Here is an example <chna> chunk:

Track number audioTrackUID audioChannelFormatID audioPackFormatID

1 ATU_00000001 AC_00010001_00 AP_00010002

2 ATU_00000002 AC_00010002_00 AP_00010002

3 ATU_00000003 AC_00031001_00 AP_00031001

3 ATU_00000004 AC_00031002_00 AP_00031002

The tracks and the packs can now be connected using audioObject elements. There are three

audioObjects: one for the stereo channels, and one each for the two objects. The two objects will have

start and duration times applied to them. The XML is shown here:

<audioObject audioObjectID="AO_1001" audioObjectName="StereoBed">

 <audioPackFormatIDRef>AP_00010002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="ObjectNarration” start=”00:01:00.00000”

duration=”00:05:00.00000”>

 <audioPackFormatIDRef>AP_00031001</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1003" audioObjectName="ObjectEffects” start=”00:008:00.00000”

duration=”00:09:00.00000”>

 <audioPackFormatIDRef>AP_00031002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

</audioObject>

These audioObjects can be connected to audioContent elements. To add some extra information to

the audioContents elements, the dialogue and loudness sub-elements have been added.

<audioContent audioContentID="ACO_1001" audioContentName="BackgroundMusic">

 <audioObjectIDRef>AO_1001</audioObjectIDRef>

 <dialogue dialogueContentKind=”1”>0</dialogue>

 <loudnessMetadata loudnessMethod=”BS.1770”>

 <integratedLoudness>-29</integratedLoudness>

 </loudnessMetadata>

</audioContent>

<audioContent audioContentID="ACO_1002" audioContentName="Narration">

 <audioObjectIDRef>AO_1002</audioObjectIDRef>

 <dialogue dialogueContentKind=”2”>1</dialogue>

 <loudnessMetadata loudnessMethod=”BS.1770”>

 <integratedLoudness>-21</integratedLoudness>

 </loudnessMetadata>

</audioContent>

40 Rep. ITU-R BS.2388-5

<audioContent audioContentID="ACO_1003" audioContentName="Effects">

 <audioObjectIDRef>AO_1003</audioObjectIDRef>

 <dialogue dialogueContentKind=”2”>0</dialogue>

 <loudnessMetadata loudnessMethod=”BS.1770”>

 <integratedLoudness>-25</integratedLoudness>

 </loudnessMetadata>

</audioContent>

The three audioContent elements are connected together within the audioProgramme element at the

top level:

<audioProgramme audioProgrammeID=”APR_1001” audioProgrammeName=”InterestingProgramme”>

 <audioContentIDRef>ACO_1001</audioContentIDRef>

 <audioContentIDRef>ACO_1002</audioContentIDRef>

 <audioContentIDRef>ACO_1003</audioContentIDRef>

</audioProgramme>

The XML is now ready for the <axml> chunk, and so the audio file can be constructed with the

<axml> and <chunks> and three tracks of PCM audio.

5.3 Sharing tracks from audioObjects to achieve different mixes

The ADM allows multiple audioObjects to reference the same audioTrackUID, and therefore the

same audio track. This feature allows the different mixes to be made from the same audio tracks by

using audioObject’s gain parameter.

5.3.1 Basic example

To illustrate this approach the diagram in Fig. 14 shows how two mixes of a programme that share

the same audioTrackUIDs (and therefore the same audio tracks) can be achieved. Each

audioProgramme (“Default” and “Dia-boost”) has its own audioContent elements for “Effects” and

“Dialogue”; and each of these audioContent elements reference their own audioObject elements. For

the “Default” audioProgramme the two audioObjects (AO_1001 and AO_1002) have their gains set

to 1.0. For the “Dia-boost” audioProgramme the two audioObjects (AO_1001 and AO_1002) have

their gains set to 0.5 and 2.0 respectively.

The audioObjects AO_1001 and AO_1011 (each representing the “Effects”) both reference

audioPackFormat AP_00031001 as they have the same format (the audioChannelFormat references

have been omitted for clarity). They also both reference the same audioTrackUID ATU_00000001,

which in turn references the same audio track carrying the “Effects” audio.

Similarly, the audioObjects AO_1002 and AO_1012 (each representing the “Dialogue”) both

reference audioPackFormat AP_00031002. They also both reference the same audioTrackUID

ATU_00000002, which in turn references the same audio track carrying the “Dialogue” audio.

 Rep. ITU-R BS.2388-5 41

FIGURE 14

Two versions of a programme using the same tracks

This approach allows audio tracks to be re-used in different mixes with different gains.

5.3.2 Using time parameters in audioObjects for different mixes

Another further feature of this approach is when dealing with different mixes where the audio in

different tracks needs its gain adjusted differently over time depending on the levels in other objects.

For example, if you have two different language versions of a programme with a common effects

track, then the sound levels of the two dialogue tracks may differ. The difference in the dialogue

tracks levels may require different mixing over time with the effects track. Therefore, the effects track

may have to be referenced from two different audioObjects with different gains to handle these

differences. Not only that, but the gains may have to vary over time, so the audioObjects will have to

be divided into time-limited chunks.

Note, in this use-case, the gain transition between audioObjects is described as instantaneous.

However, instantaneous changes of level may cause audible artifacts, therefore, gain interpolation or

smoothing might need to be implemented (the behaviour is not specified here) in the renderer or

playback device.

The diagram in Fig. 15 shows the basic layout of the ADM for this (audioPackFormat and below are

omitted for clarity). Here the audioObjects AO_1001 and AO_1003 act as parents to time-limited

audioObjects which can contain different gains. In this case AO_1032 has a gain of 0.6, whereas its

corresponding audioObject, AO_1012, on the “English” side has a gain of 1.0.

42 Rep. ITU-R BS.2388-5

FIGURE 15

Using time-limited audioObjects to adjust gain over time

To get a better understanding of the time-related parameters are used, the diagram in Fig. 16 shows

how the audioObjects are arranged on a time-line. AO_1002 and AO_1004, which carry the two

dialogue objects, start at 0.0s and end at 100.0s. The green tracks show the envelopes of the signals

in those tracks. In AO_1002 (ATU_00000004, track 1) the audio ducks at 50.0s. In AO_1004

(ATU_00000005, track 2) the audio ducks later at 70.0s. The effects audio in track 3

(ATU_00000001/2/3) is at low level from 0.0s to 50.0s (to duck under the dialogue in AO_1002)

then rises from 50.0s to 100.0s. However, the raised level from 50.0s to 70.0s is too high for the

dialogue in AO_1004, so this needs to be ducked. Therefore, AO_1032, which covers this 50.0s to

70.0s period provides a gain of 0.6 to duck this part of the effects track (as shown by the shading).

 Rep. ITU-R BS.2388-5 43

FIGURE 16

Time-based view of audioObjects and gain values

This approach does require knowledge of the levels of the audio in the tracks and splitting the

audioObjects up accordingly.

	Report ITU-R BS.2388-5 (11/2024) - Usage guidelines for the Audio Definition Model and Multichannel Audio Files
	Foreword
	Policy on Intellectual Property Right (IPR)
	TABLE OF CONTENTS
	1 Introduction
	2 Use cases
	2.1 Generating BWF audio files from scratch
	2.1.1 UC1.1: Common single group channel-based files
	2.1.2 UC1.2: Common multiple group channel-based files
	2.1.3 UC1.3: Non-common channel-based files
	2.1.4 UC1.4: Transformation/scene-based files
	2.1.5 UC1.5: Object-based files
	2.1.6 UC1.6: Mixed files

	2.2 Reading BWF audio files
	2.2.1 UC2.1: Common single-group channel-based files
	2.2.2 UC2.2: Common multiple group channel-based files
	2.2.3 UC2.3: Non-common channel-based files
	2.2.4 UC2.4: Transformation/scene-based files
	2.2.5 UC2.5: Object-based files
	2.2.6 UC2.6: Mixed files

	2.3 Reading non-ADM WAV files
	2.3.1 UC3.1: One-, two-, five- and six-channel files
	2.3.2 UC3.2: Other numbers of channels
	2.3.3 UC3.3: Multiple mono files

	2.4 Generating BWF Files without information
	2.4.1 UC4.1: Generating one-, two-, five- and six-channel files
	2.4.2 UC4.2: Generating other number of channels

	3 Recommended practices
	3.1 Using Common Definitions
	3.1.1 Using the Common Definitions when reading an audio file with an <axml> chunk
	3.1.2 Using the Common Definitions when writing an audio file with an <axml> chunk

	3.2 Element IDs
	3.2.1 ID prefixes
	3.2.2 Hexadecimal codes
	3.2.2.1 audioProgramme
	3.2.2.2 audioContent
	3.2.2.3 audioObject
	3.2.2.4 alternativeValueSet
	3.2.2.5 audioPackFormat
	3.2.2.6 audioChannelFormat
	3.2.2.7 audioBlockFormat
	3.2.2.8 audioStreamFormat
	3.2.2.9 audioTrackFormat
	3.2.2.10 audioTrackUID

	3.2.3 Recommended ID Numbering for Related Elements

	3.3 Audio types
	3.3.1 Format types

	3.4 <chna> chunk and IDs
	3.4.1 Simple PCM channel-based files
	3.4.2 Simple matrix files
	3.4.3 PCM object-based files
	3.4.4 Coded audio files

	3.5 Defaults for unknown audio inputs
	3.5.1 Common Definitions approach
	3.5.2 Wave Format Extensible approach
	3.5.3 Generating other metadata for unknown audio inputs
	3.5.4 Naming audio channels and loudspeaker labels for Cartesian coordinates

	3.6 Times and durations
	3.6.1 Timing attributes
	3.6.2 Timing for Nested audioObjects
	3.6.3 Block sizes for dynamic objects
	3.6.4 Dealing with preambles

	3.7 File management
	3.8 <fmt> Chunk handling
	3.9 Ensuring streaming compatibility
	3.10 Interactivity and ensembles of audioObjects
	3.10.1 Example of interaction with an ensemble of audioObjects
	3.10.2 Behaviour of interaction with ensembles of audioObjects

	3.11 Multiple audioProgrammes
	3.11.1 Using multiple audioProgrammes versus audioContents and audioObjects
	3.11.2 Default audioProgramme

	3.12 Using the ‘importance’ parameters
	3.12.1 The audioBlockFormat importance parameter
	3.12.2 The audioPackFormat importance parameter
	3.12.3 The audioObject importance parameter
	3.12.4 Using an importance threshold

	4 Location of ADM metadata
	4.1 BW64 file specified in Recommendation ITU-R BS.2088
	4.2 A serial representation of the ADM (S-ADM) specified in Recommendation ITU-R BS.2125

	5 Worked examples
	5.1 5.1 and Stereo combination
	5.2 Object-based with a channel-based bed
	5.3 Sharing tracks from audioObjects to achieve different mixes
	5.3.1 Basic example
	5.3.2 Using time parameters in audioObjects for different mixes

