

Report ITU-R BS.2388-0
(07/2015)

Usage Guidelines for the Audio Definition
Model and Multichannel Audio Files

BS Series

Broadcasting service (sound)

ii Rep. ITU-R BS.2388-0

Foreword

The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-

frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit

of frequency range on the basis of which Recommendations are adopted.

The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional

Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups.

Policy on Intellectual Property Right (IPR)

ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of

Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders

are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common

Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found.

Series of ITU-R Reports

(Also available online at http://www.itu.int/publ/R-REP/en)

Series Title

BO Satellite delivery

BR Recording for production, archival and play-out; film for television

BS Broadcasting service (sound)

BT Broadcasting service (television)

F Fixed service

M Mobile, radiodetermination, amateur and related satellite services

P Radiowave propagation

RA Radio astronomy

RS Remote sensing systems

S Fixed-satellite service

SA Space applications and meteorology

SF Frequency sharing and coordination between fixed-satellite and fixed service systems

SM Spectrum management

Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in

Resolution ITU-R 1.

Electronic Publication

Geneva, 2017

 ITU 2017

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU.

http://www.itu.int/ITU-R/go/patents/en
http://www.itu.int/publ/R-REP/en

 Rep. ITU-R BS.2388-0 1

REPORT ITU-R BS.2388-0*

Usage Guidelines for the Audio Definition Model and Multichannel Audio Files

(2015)

1 Introduction

Recommendation ITU-R BS.2076 – The Audio Definition Model (ADM), is an open common

metadata model for describing the technical format and content of audio files and streams. It primarily

uses XML as its format language, and has been designed for incorporation into RIFF based audio

files including those according to Recommendation ITU-R BS.2088 – Long-form file format for the

international exchange of audio programme materials with metadata on information technology

media (BW64). The model can be converted to other languages, such as JSON, should the need arise;

and also be used in conjunction with other file or stream formats.

This document describes a set of typical use cases for the ADM and WAV-based files as well as

recommended practices and commonly-used channel-based configurations. As the ADM is very

flexible in how it can be used, it is possible to generate metadata that may prove difficult to interpret,

therefore following the guidelines in this document will encourage consistent use by all.

As use of the ADM and BW64 increases more use cases and practices will appear, so this report

should be kept up to date with any new requirements. The potential areas that may need guidelines

are interoperation with streaming formats and renderers.

2 Use Cases

Recommendation ITU-R BS.2076 – The Audio Definition Model, lists a set of use cases that provides

a general guide for the use of the model:

The use of the ADM is recommended especially for the following use-cases:

– For applications requiring a generic metadata language for custom/proprietary formats

(including codecs), or in the case where no metadata exists to describe what is needed.

– For generating and parsing audio metadata with existing general-purpose tools.

– Where experimental metadata can easily be added for an organisation’s internal

developments and where a human-readable and hand-editable file for describing audio

configurations (such as describing a mixing studio channel configuration) in a consistent and

translatable format is needed.

– In WAV-based environments and workflows, where WAV-based broadcast applications

wish to upgrade to be able to handle immersive content, while maintaining forward

compatibility and handle legacy content.

– For archiving of WAV-based content that also may include an extensive immersive metadata

set.

As these use cases are quite general, a more specific and detailed set is required to enable a set of

useful guidelines. The following sub-sections describe a set of typical practical use cases.

* Radiocommunication Study Group 6 made editorial amendments to this Recommendation in October 2016

in accordance with Resolution ITU-R 1.

2 Rep. ITU-R BS.2388-0

2.1 Generating BWF Audio Files from Scratch

Possibly the simplest use case is generating BW64 files with ADM metadata from scratch.

This assumes we know what the audio is that we are trying to write to the file so we are generating

metadata with known information. This can be broken down into different use cases for different

types of audio.

2.1.1 UC1.1: Common single group channel-based files

This is an audio file that consists of a common channel-based configuration, such as mono, stereo

or 5.1. We know what each channel is (e.g. Front Left, Front Right), and we know about what audio

it contains. It only contains a single group of channels. This probably covers the vast majority of

audio files that exist already.

2.1.2 UC1.2: Common multiple group channel-based files

The same as UC1.1, but the file will contain multiple groups of channels. For example it may contain

4 stereo pairs, or a 5.1 group and a stereo version. We know what each channel is and what it contains.

2.1.3 UC1.3: Non-common channel-based files

This file contains channel-based audio, but the channels are not common definitions in common use.

For example they might be part of an experimental set of channel locations. We do know what each

channel is.

2.1.4 UC1.4: Transformation/scene-based files

This file contains HOA (Higher Order Ambisonics) audio where all the components/channels are

known.

2.1.5 UC1.5: Object-based files

This file contains object-based audio that can be either static or dynamic (i.e. changing its properties

with time). The object properties are all known.

2.1.6 UC1.6: Mixed files

This file contains any combination of the channel, scene and object-based audio. A potentially

popular combination would be a channel-based bed (typically stereo or 5.1) with object-based

foreground objects overlaid.

2.2 Reading BWF Audio Files

The next obvious set of use cases is reading BWF files. We will assume the file to be read contains

correct ADM metadata, possibly generated from ones of the UC1.x use cases.

2.2.1 UC2.1: Common single-group channel-based files

Reading a channel-based file containing a single group of common channels such as stereo or 5.1 as

described in UC1.1. The ADM metadata will be known and readable. The information from the ADM

that could be of use will be the channel descriptions (such as intended speakers) and some content

information such as loudness.

2.2.2 UC2.2: Common multiple group channel-based files

The same as UC2.1, but reading multiple groups as described in UC1.2. It will be important to ensure

the groups of channels are treated correctly.

 Rep. ITU-R BS.2388-0 3

2.2.3 UC2.3: Non-common channel-based files

Reading non-common channel-based files such of those described in UC1.3. The useful information

to read and interpret will be the channel positions, which could be unconventional.

2.2.4 UC2.4: Transformation/scene-based files

Reading scene-based (HOA) files as described in UC1.4. Interpreting each channel description as the

correct HOA component to allow correct HOA decoding is important here.

2.2.5 UC2.5: Object-based files

Reading object-based files as described in UC1.5. Extracting the correct static and dynamic metadata

and interpreting the timing is important here.

2.2.6 UC2.6: Mixed files

Reading mixed channel-based, scene-based, and object-based files as described in UC1.6. Ensuring

all the audio is correctly extracted and matched with the correct metadata is one important factor.

2.3 Reading Non-ADM WAV Files

The majority of WAV files in existence do not contain any useful metadata to describe the format or

content of the audio. If we need to read these files for conversion into BWF files with ADM metadata,

then we have to decide how to handle the lack of information. Following is a set of use cases covering

this scenario.

2.3.1 UC3.1: One-, two-, five- and six-channel files

The vast majority of WAV files contain 1, 2, 5 or 6 channels that usually correspond to mono, stereo,

5.0 or 5.1 configurations. We know the number of channels in the file we are reading, and that they

are likely to be channel-based, but have no other information about the format or content.

2.3.2 UC3.2: Other numbers of channels

If we are presented with a 12-channel file there are a number of ways the configuration could be

interpreted, such as 2x 5.1, or 6x stereo. We may be provided with some information about the file to

give us clues, or may resort to examining the audio signals to guide us. So this use case covers

channel-based audio files with numbers of channels that do not provide an easy identification.

2.3.3 UC3.3: Multiple mono files

Sometimes multi-channel audio is stored as a collection of mono WAV files, with each file

representing a particular channel. Without metadata in each file, the clues to determining the channel

for each file could lie in the filename.

2.4 Generating BWF Files without information

Unlike use cases UC1.x where we have plenty of information about the format and content of the

audio we are generating files for, this set of use cases covers the time when we lack information and

have to make assumptions. This ties in closely with the uses cases UC3.x where we have to work out

what is contained in the files we read.

2.4.1 UC4.1: Generating one-, two-, five- and six-channel files

Generating conventional channel-based configurations, possibly as read in the manner of UC3.1 or

UC3.3. How to output enough useful ADM metadata to generate a useable BW64 file.

4 Rep. ITU-R BS.2388-0

2.4.2 UC4.2: Generating other number of channels

Generating channel-based configurations, possibly read in the manner of UC3.2 or UC3.3. This will

include determining whether multiple groups of audio may exist. There could be information about

the format from configurations defined in documents such as Recommendation ITU-R BS.1738 or

EBU R123.

3 Recommended Practices

3.1 Using Common Definitions

Use cases: UC1.1, UC1.2, UC1.6, UC2.1, UC2.2, UC2.6, UC3.1, UC3.2, UC3.3, UC4.1, UC4.2.

To ensure consistent use of ADM definitions, and to save space and effort in defining them, a set of

common ADM definitions covering a set of commonly used channel and pack definitions have been

developed.

The Common Definitions are represented in an XML file that must be accessed in some way by any

software that reads or writes BW64 files. These ADM definitions do not need to be carried in the

audio file itself.

The elements covered in the Common Definitions are audioTrackFormat, audioStreamFormat,

audioChannelFormat, and audioPackFormat. Currently they only cover commonly-used

channel-based definitions (though this may be extended to some matrix-based and scene-based

definitions in the future).

3.1.1 Using the Common Definitions when Reading an Audio File

The steps when reading an audio file are:

1 Read in the Common Definitions XML file.

2 Read <chna> chunk from the audio file:

a) Inspect each row for the audioTrackFormatID reference.

i) If IDs occur in the Common Definitions, then use those channel definitions.

ii) If IDs do not occur in the Common Definitions, then refer to the <axml> chunk.

b) Inspect each row for the audioPackFormatID reference.

iii) If IDs occur in the Common Definitions, then use those pack definitions.

iv) If IDs do not occur in the Common Definitions, then refer to the <axml> chunk.

3 Read <axml> chunk for other ADM definitions:

a) Check for any references in the <axml> chunk to IDs in the Common Definitions.

3.1.2 Using the Common Definitions when Writing an Audio File

The steps when writing an audio file are:

1 Read in the Common Definitions XML file.

2 Search the Common Definitions for the appropriate channel definitions:

a) If one exists, then use the ID and store for use in the <chna> chunk.

b) If it does not exist, then generate a custom channel description and add it to the <axml>

chunk metadata, with the new ID ready for the <chna> chunk.

3 Search the Common Definitions for the appropriate pack definitions:

a) If it exists, then use the ID and store for the <chna> chunk.

 Rep. ITU-R BS.2388-0 5

b) If it does not exist, then generate a custom pack description and add it to the <axml>

chunk metadata, with the new ID ready for the <chna> chunk.

4 Generate any other ADM metadata ready for the <axml> chunk.

a) Combine the chunks and audio for the output file.

3.2 Element IDs

Use cases: all

Each element in the ADM has its own identification attribute, such as audioChannelFormatID for

audioChannelFormat. The use of these IDs is important as they are used for the elements to be able

to reference each other, they are used by the <chna> chunk in the BW64 file, and are used to determine

whether elements are common definitions or customs ones. The IDs uniquely identify each element,

so care must be taken with their use.

3.2.1 ID Prefixes

The IDs always have a prefix that corresponds to the element to which they belong. The prefix is

followed by an underscore, then some hexadecimal digits. The table below shows the prefixes that

should be used for each element.

Element Prefix

audioProgramme APR

audioContent ACO

audioObject AO

audioPackFormat AP

audioChannelFormat AC

audioBlockFormat AB

audioStreamFormat AS

audioTrackFormat AT

audioTrackUID ATU

3.2.2 Hexadecimal Codes

The format of the ID is a prefix followed by a number of hexadecimal digits. The number and meaning

of the digits depends upon the element used. Here are the recommended formats for each element:

3.2.2.1 audioProgramme

Format: APR_xxxx

Hex digits xxxx: Any value from 0001 to FFFF. This is used to identify the programme

description.

3.2.2.2 audioContent

Format: ACO_xxxx

Hex digits xxxx: Any value from 0001 to FFFF.

Each audioContent ID within a file must be unique.

6 Rep. ITU-R BS.2388-0

3.2.2.3 audioObject

Format: AO_xxxx

Hex digits xxxx: A value from 1001 to FFFF for custom objects, which be any user defined

objects; or a value from 0001 to 0FFF for common objects, which reside in an external Common

Definitions file/resource (though no common objects yet exist, but may in the future).

Each audioObject ID within a file must be unique.

3.2.2.4 audioPackFormat

Format: AP_yyyyxxxx

Hex digits xxxx: A value from 1001 to FFFF for custom packs; or a value from 0001 to 0FFF

for common packs, which reside in an external Common Definitions file/resource.

Hex digits yyyy: This value represents the type of audio contained in the pack, see Table 1 for

common type values.

3.2.2.5 audioChannelFormat

Format: AC_yyyyxxxx

Hex digits xxxx: A value from 1001 to FFFF for custom channels; or a value from 0001 to 0FFF

for common channels, which reside in an external Common Definitions file/resource.

This value should match the audioStreamFormat xxxx digits that refer to it.

Hex digits yyyy: This value represents the type of audio contained in the channel; see Table 1 for

common type values.

3.2.2.6 audioBlockFormat

Format: AB_yyyyxxxx_nnnnnnnn

Hex digits yyyyxxxx: These must match the parent audioChannelFormat values.

Hex digits nnnnnnnn: This is a counter for the blocks in sequence within a channel The first block

must be 00000001, the second 00000002, and so on (counting in hexadecimal).

3.2.2.7 audioStreamFormat

Format: AS_yyyyxxxx

Hex digits xxxx: A value from 1001 to FFFF for custom streams; or a value from 0001 to 0FFF

for common streams, which reside in an external Common Definitions file/resource.

This value should match the audioChannelFormat xxxx digits to which the audioStreamFormat

refers.

Hex digits yyyy: This value represents the type of audio contained in the stream; see Table 1 for

common type values.

3.2.2.8 audioTrackFormat

Format: AT_yyyyxxxx_nn

Hex digits xxxx: A value from 1001 to FFFF for custom tracks; or a value from 0001 to 0FFF

for common tracks, which reside in an external Common Definitions file/resource.

Hex digits yy: This value represents the type of audio contained in the track, see Table 1 for common

type values.

 Rep. ITU-R BS.2388-0 7

Hex digits nn: This value represents the track number within a stream. This should start at 01 for the

first tracks and increment for subsequent tracks.

The yyyyxxxx digits should match the audioStreamFormat yyyyxxxx digits to which the

audioTrackFormat refers.

3.2.2.9 audioTrackUID

Format: ATU_nnnnnnnn

Hex digits nnnnnnnn: This is value from 00000001 to FFFFFFFF to uniquely identify an audio

track within in file. The value 00000000 must not be used for identifying this element as it is used

to represent a silent track.

3.2.3 Recommended ID Numbering for Related Elements

For the audioTrackFormat, audioStreamFormat, audioChannelFormat and audioBlockFormat

elements there is a very close relationship between them. Therefore, it is good practice to keep the

IDs in connected elements well matched.

For PCM audio (and any format where one audio signal is stored in a single track) the connection

between audioTrackFormat and audioStreamFormat is a one-to-one relationship, as is the relationship

between audioStreamFormat and audioChannelFormat. Therefore, the recommended rules for the IDs

are:

– audioStreamFormatID:AS_YYYYXXXX connects with audioChannelFormatID

AC_yyyyxxxx:

• YYYY = yyyy

• XXXX = xxxx

– audioTrackFormatID: AT_yyyyxxxx_nn connects with

audioStreamFormatID:AS_YYYYXXXX:

• yyyy = YYYY

• xxxx = XXXX

• nn = 01

For coded audio the connection between audioTrackFormat and audioStreamFormat is an N-to-one

relationship, and the other relationship is between audioStreamFormat and audioPackFormat (not

audioChannelFormat as there are multiple channels in the stream). Therefore, the recommended rules

for the IDs are:

– audioStreamFormatID:AS_YYYYXXXX connects with audioPackFormatID

AC_yyyyxxxx:

• yyyy = YYYY

• XXXX = 1??? (any value above 1000).

– audioTrackFormatID: AT_yyyyxxxx_nn connects with

audioStreamFormatID:AS_YYYYXXXX:

• yyyy = YYYY

• xxxx = XXXX

• nn = 01, 02, …

The audioBlockFormat element is the child of the audioChannelFormat element, so its ID follows

this rule:

8 Rep. ITU-R BS.2388-0

– audioBlockFormatID: AB_YYYYXXXX_NNNNNNNN with the parent

audioChannelFormatID: AC_yyyyxxxx:

• YYYY = yyyy

• XXXX = xxxx

• NNNNNNNN = 00000001, 00000002, … (i.e. an incrementing counter for successive

blocks within the channel).

3.3 Audio Types

Use cases: all

The ADM is designed to cover any type of audio that needs describing. Currently, there are five

categories:

1 Direct Speakers – commonly referred to as channel-based, such as stereo and 5.1.

2 Matrix – channels which don’t feed directly to speakers, but which need combining via

matrix operations such as Mid-Side and Lt/Rt.

3 Objects – object-based audio where channels of the audio include positional and other

properties.

4 HOA – scene/transformation-based audio such as Ambisonics where channels represent

spatial harmonic components.

5 Binaural – where the two channels are for the left and right ear.

There is nothing to stop more categories being used if required, but it is recommended that one of the

five categories be used if at all possible.

The method of specifying which category is being used is done in three ways. The first is using the

typeDefinition attribute, which uses a string identifier; the second is using the typeLabel attribute,

which uses a numerical identifier; and the third is using the digits in the ID of the element. Either or

both of typeDefinition and typeLabel must be used. The numerical part of the element’s ID attribute

(the yyyy digits) must match the type used.

Table 1 shows the strings and values used for each of the categories.

TABLE 1

Type definitions

Category typeDefinition typeLabel ID hex digits (yyyy)

Direct Speakers “DirectSpeakers” “0001” 0001

Matrix “Matrix” “0002” 0002

Objects “Objects” “0003” 0003

HOA “HOA” “0004” 0004

Binaural “Binaural” “0005” 0005

3.3.1 Format Types

The audio can be stored in various ways in the file. The most common method in a WAV file is PCM;

however, it is also possible to store audio in the tracks in other ways. To ensure the storage format is

known, both audioStreamFormat and audioTrackFormat have format types associated with them to

allow this format to be specified.

 Rep. ITU-R BS.2388-0 9

The method of specifying which category is being used is done in three ways. The first is using the

formatDefinition attribute, which uses a string identifier; the second is using the formatLabel

attribute, which uses a numerical identifier; and the third is using the digits in the ID of the element.

Either or both of formatDefinition and formatLabel must be used.

Table 2 shows the strings and values used for each of the categories.

TABLE 2

Format definitions

Format formatDefinition formatLabel

PCM “PCM” “0001”

MPEG-1 “MPEG1” “0002”

Dolby E “DolbyE” “0003”

DTS “DTS” “0004”

PCM has been allocated the value of zero to allow it to be the default format, so unknown data is

assumed to be PCM unless otherwise specified.

Both Dolby E and DTS require two tracks to be used together to form one stream. Track 1 would be

the ‘left’ track of the pair, and track 2 the ‘right’ track. The audioChannelFormat and

audioPackFormats referred by the Dolby E and DTS audioStreamFormats are what the decoded audio

would be (so typically 5.1).

3.4 <chna> chunk and IDs

Use cases: all

The <chna> chunk is the connection between the tracks in the WAV file and the ADM descriptions.

Each line in the <chna> chunk corresponds to a track or part of a track. The ADM IDs that are

contained in the chunk are audioTrackFormatID, audioPackFormatID and audioTrackUID.

As audioTrackFormat always refers to an audioStreamFormat, which then refers to either an

audioChannelFormat or an audioPackFormat; the IDs are enough to locate all the Format elements

that describe the track.

The audioTrackUIDs are used to uniquely identify the track, or segment of track, that has a description

attached to it. These IDs are referred to from the audioObject element, which itself is referred from

audioContent and audioProgramme, thus completing all the elements in the ADM.

3.4.1 Simple PCM Channel-based Files

For WAV files containing PCM channel-based audio (and scene-based too), the <chna> chunk is

straightforward to use. Each line will correspond to each track in order and audioPackFormatIDs will

usually be specified. Here is an example:

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_00010001_01 AP_00010003

2 ATU_00000002 AT_00010002_01 AP_00010003

3 ATU_00000003 AT_00010003_01 AP_00010003

4 ATU_00000004 AT_00010004_01 AP_00010003

5 ATU_00000005 AT_00010005_01 AP_00010003

6 ATU_00000006 AT_00010006_01 AP_00010003

10 Rep. ITU-R BS.2388-0

This example shows the chunk for a 5.1 file. Each track in the file contains a single audioTrackUID

as each track only contains a single description (i.e. the channels exist for the complete duration of

the file). The audioTrackFormatIDs refer to the definitions for PCM FrontLeft, FrontRight, etc.; and

the audioPackFormatIDs all refer to the definition of the 5.1 pack.

Another thing to note with this example is all the Format IDs are using common definitions, i.e. their

last four digits are 0FFF or less. As it only uses common definitions this means the WAV file’s

<axml> chunk does not need to carry any ADM metadata for these format definitions. The only

elements the <axml> chunk may need is audioObject, audioContent, audioProgramme

and audioTrackUID.

3.4.2 PCM Object-based Files

For WAV files containing PCM object-based audio, the <chna> chunk can be used to identify

multiple objects in the same track if they don’t overlap in time. An example <chna> is shown here:

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_00031001_01 AP_00031001

2 ATU_00000002 AT_00031002_01 AP_00031002

2 ATU_00000003 AT_00031003_01 AP_00031003

2 ATU_00000004 AT_00031004_01 AP_00031004

3 ATU_00000005 AT_00031005_01 AP_00031005

In this example there are 5 audio objects, but as three of them don’t overlap in time with each other

they can share a single track (track 2 in this case) in the file. The excerpt of XML code below shows

how the five audioObject elements are defined, with Obj2, Obj3 and Obj4 having non-overlapping

time properties.

<audioObject audioObjectID="AO_1001" audioObjectName="Obj1" start=”00:00:00.00000”

duration=”00:10:00.00000”>

 <audioPackFormatIDRef>AP_00031001</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="Obj2" start=”00:02:00.00000”

duration=”00:01:00.00000”>

 <audioPackFormatIDRef>AP_00031002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1003" audioObjectName="Obj3" start=”00:04:00.00000”

duration=”00:02:00.00000”>

 <audioPackFormatIDRef>AP_00031003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1004" audioObjectName="Obj4" start=”00:07:00.00000”

duration=”00:02:00.00000”>

 <audioPackFormatIDRef>AP_00031004</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1005" audioObjectName="Obj5" start=”00:00:00.00000”

duration=”00:10:00.00000”>

 <audioPackFormatIDRef>AP_00031005</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

</audioObject>

 Rep. ITU-R BS.2388-0 11

3.4.3 Coded Audio Files

While the majority of audio stored in the files will be PCM, there could be situations where coding

audio could be stored. Coded audio could be stored across multiple tracks that need to be combined

to produce a decodable bitstream. The ADM handles this using the audioStreamFormat with multiple

audioTrackFormats connected to it. Often, coded audio contains multichannel audio in a single multi-

track stream. An example of this is Dolby E carrying 5.1 channels in a 2-track stream. Where an

audioStreamFormat element is describing multichannel stream it would refer to an audioPackFormat

element as opposed to an audioChannelFormat element.

Therefore, the in <chna> chunk the audioPackFormatID reference does not need defining because it

is already defined from audioTrackFormatID reference (via audioStreamFormat). A simple example

of a <chna> chunk is shown below:

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_02011001_01 *

2 ATU_00000002 AT_02011001_02 *

* Fill with 11 zero value bytes.

Note that the two audioTrackFormatIDs are identical apart from the two digit suffix. Therefore,

the audioStreamFormatID that these would refer to would be AS_02011001. The excerpt of XML

below shows how these elements are defined to refer to the audioPackFormatID for a 5.1 pack.

<audioStreamFormat audioStreamFormatID="AS_02011001"

audioStreamFormatName="DolbyE_5.1" formatLabel="DolbyE" formatDefinition="DolbyE">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackFormatIDRef>AT_02011001_01</audioTrackFormatIDRef>

 <audioTrackFormatIDRef>AT_02011001_02</audioTrackFormatIDRef>

</audioStreamFormat>

<audioTrackFormat audioTrackFormatID="AT_02011001_01" audioTrackFormatName="DolbyE1"

formatLabel="02" formatDefinition="DolbyE1">

 <audioStreamFormatIDRef>AS_02011001</audioStreamFormatIDRef>

</audioTrackFormat>

<audioTrackFormat audioTrackFormatID="AT_02011001_02" audioTrackFormatName="DolbyE2"

formatLabel="02" formatDefinition="DolbyE2">

 <audioStreamFormatIDRef>AS_02011001</audioStreamFormatIDRef>

</audioTrackFormat>

3.5 Defaults for Unknown Audio Inputs

Use cases: UC3.1, UC3.2, UC3.3

When reading traditional WAV files, with the intention of converting them into BW64 files, it is

possible that no explicit information about the tracks will exist. Therefore, assumptions about the

tracks and their order must be made. Clearly it makes sense to gather as much information about the

input file as possible, to help identify the tracks; for example, if you received a 6-track file called

“Effects_5.1.wav” then it is highly likely to be a 5.1 surround sound file.

Assuming no other knowledge about a file, apart from the number of tracks it contains, and that it

contains a single programme or mix, then there are two approaches to take. The first approach to try

uses the set of Common Definitions to match with the number of tracks in the file. The second

approach to try is based on the Wave Format Extensible channel ordering. The two approaches are

described in more detail in the following sub-sections.

12 Rep. ITU-R BS.2388-0

3.5.1 Common Definition Approach

The set of Common Definitions contains both channel definitions and pack definitions. The pack

definitions cover a range of commonly used channel-based configurations, and the number of

channels in each of these packs can be used to match up with the number of tracks in the input WAV

file. The method is simply this:

1 Read the number of tracks in the input file.

2 Find a pack in the Common Definitions with the same number of channel.

3 Generate a list of channel ID references from the chosen pack in the order given in the pack.

4 Match the stream ID references from the channel IDs and generate a <chna> chunk with the

stream IDs and pack ID.

If stage 2 fails (i.e. there is no Common Definition pack of the correct size), then try the second

approach below.

3.5.2 Wave Format Extensible Approach

In some multichannel WAV files the method to handle the channel identification was to use the Wave

Format Extensible extension, which provided a set of channel labels in a particular order.

The set of channels in the Common Definitions have been given IDs in an order that matches the first

18 channel labels in Wave Format Extensible. The table below shows how the dwChannelMasks in

Wave Format Extensible match the audioChannelFormat definitions in the Common Definitions.

Some of the names differ slightly, and as Wave Format Extensible does not provide clear definitions

of each of the channels, these were decided to be the closest matches.

Wave Format Extensible dwChannelMask audioChannelFormat

Speaker position Flag bit ID Name

SPEAKER_FRONT_LEFT 0×1 AC_00010001 FrontLeft

SPEAKER_FRONT_RIGHT 0×2 AC_00010002 FrontRight

SPEAKER_FRONT_CENTER 0×4 AC_00010003 FrontCentre

SPEAKER_LOW_FREQUENCY 0×8 AC_00010004 LowFrequencyEffects

SPEAKER_BACK_LEFT 0×10 AC_00010005 SurroundLeft

SPEAKER_BACK_RIGHT 0×20 AC_00010006 SurroundRight

SPEAKER_FRONT_LEFT_OF_CENTER 0×40 AC_00010007 FrontLeftOfCentre

SPEAKER_FRONT_RIGHT_OF_CENTER 0×80 AC_00010008 FrontRightOfCentre

SPEAKER_BACK_CENTER 0×100 AC_00010009 BackCentre

SPEAKER_SIDE_LEFT 0×200 AC_0001000a SideLeft

SPEAKER_SIDE_RIGHT 0×400 AC_0001000b SideRight

SPEAKER_TOP_CENTER 0×800 AC_0001000c TopCentre

SPEAKER_TOP_FRONT_LEFT 0×1000 AC_0001000d TopFrontLeft

SPEAKER_TOP_FRONT_CENTER 0×2000 AC_0001000e TopFrontCentre

SPEAKER_TOP_FRONT_RIGHT 0×4000 AC_0001000f TopFrontRight

SPEAKER_TOP_BACK_LEFT 0×8000 AC_00010010 TopSurroundLeft

SPEAKER_TOP_BACK_CENTER 0×10000 AC_00010011 TopBackCentre

SPEAKER_TOP_BACK_RIGHT 0×20000 AC_00010012 TopSurroundRight

 Rep. ITU-R BS.2388-0 13

As the audioStreamFormatIDs map easily from the audioChannelFormatIDs in the Common

Definitions (only the two-letter prefix changes), it is straightforward to derive the correct

audioStreamFormatIDs and audioTrackFormatIDs. Therefore, this allows the approach for allocating

IDs in the <chna> as simply placing them in numerical order as shown below:

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_00010001_01 AP_00010001*

2 ATU_00000002 AT_00010002_01 AP_00010001*

3 ATU_00000003 AT_00010003_01 AP_00010001*

4 ATU_00000004 AT_00010004_01 AP_00010001*

NN ATU_000000NN AT_000100NN_01 AP_00010001*

* Depends on number of tracks.

The choice of audioPackFormatID is open to different options. One approach would be to generate a

single custom pack containing the channels used, which will tie together the channels into a single

pack. The other approach is to make each channel a mono pack (so use the ID AP_00010001), so

each channel is treated independently. This second approach would be easier, and the recommended

option to take and does not require any new definitions to be generated.

3.5.3 Generating Other Metadata for Unknown Audio Inputs

The two approaches above make use of the Common Definitions to provide descriptions of the tracks

for the audio file. There is therefore no need to generate definitions for the audioTrackFormat,

audioStreamFormat, audioChannelFormat, and audioPackFormat elements (the format elements in

other words). It would be acceptable to leave the <axml> chunk empty and just rely on the <chna>

chunk, looking up the Common Definitions, which are external to the audio file. However, it is useful

to consider generating at least an audioObject element that ties together the tracks in the file with

their format definitions more explicitly. This is particularly important if the audio file contains more

than one mix of audio (for example, a 5.1 mix plus a stereo mix), as the different mixes need to be

clearly identified.

Generation of the audioObjects is best explained with an example. Taking an 8-track audio file, where

it has been identified that it contains a 5.1 (6 tracks) mix and a stereo (2 tracks) mix. Using the

Common Definitions to determine the format elements, the <chna> chunk is as follows:

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_00010001_01 AP_00010003

2 ATU_00000002 AT_00010002_01 AP_00010003

3 ATU_00000003 AT_00010003_01 AP_00010003

4 ATU_00000004 AT_00010004_01 AP_00010003

5 ATU_00000005 AT_00010005_01 AP_00010003

6 ATU_00000006 AT_00010006_01 AP_00010003

7 ATU_00000007 AT_00010001_01 AP_00010002

8 ATU_00000008 AT_00010002_01 AP_00010002

14 Rep. ITU-R BS.2388-0

As there are two mixes here then it is a good idea to generate two audioObjects to clearly identify

them, rather than leaving it to assumptions about the nature of the packs. The following XML code

(for inclusion in the <axml> chunk) shows how these objects could be generated:

<audioObject audioObjectID="AO_1001" audioObjectName="5.1_mix">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000006</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="stereo_mix”>

 <audioPackFormatIDRef>AP_00010002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000007</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000008</audioTrackUIDRef>

</audioObject>

Generating audioObjects is particularly important for files containing multiple mixes of the same

pack type as it can become easy to misidentify how tracks are allocated.

3.6 Times and Durations

Use cases: UC1.5, UC2.5.

3.6.1 Timing Attributes

The ADM has time and duration attributes in various elements, and their correct use is important to

ensure things work correctly. The elements that contain time related parameters are:

Element Attribute Meaning

audioProgramme start Timecode for the start of the programme

audioProgramme end Timecode for the end of the programme

audioObject start Start time of an object in seconds relative to the start of the

programme.

audioObject duration Duration in seconds of an object.

audioBlockFormat rtime Start time in seconds of a block relative to the start of the

object.

audioBlockFormat duration Duration in seconds of a block.

To help explain how these elements relate to each the other, the diagram in Fig. 1 shows the

relationships.

The start of audioProgramme can be given a timecode (this is not essential, but recommended if it

known), but this has no influence on the audio contents of the file; the audioProgramme is describing

the whole file, so it starts at the first sample and ends at the last. In the example in Fig. 1, the timecode

starts at 15:00:00:00 and ends at 15:30:00:00. It is important to ensure that end – start = the actual

duration of the file. All the other timing takes the start of the audio file as time zero.

The audioObject start attribute corresponds to the start time of the object relative to the start of the

file. The duration attribute corresponds to how long this object lasts. If this parameter is omitted the

object lasts for the whole duration of the file. The audio samples in the file will correspond to the start

and duration of the object as shown in the diagram (in the example this will be from 00:08:00.00 to

00:23:00.00).

 Rep. ITU-R BS.2388-0 15

The audioObject refers to an audioPackFormat (not shown for clarity) and an audioChannelFormat,

which do not possess timing properties. The audioChannelFormat contains one or more

audioBlockFormat that contain the finest level of timing information. The start (rtime) of the

audioBlockFormat is relative to the start of the audioObject. So the positions of the audio samples in

the file corresponding to a particular audioBlockFormat is found by adding its rtime to the start of

the audioObject to get the first sample, and adding its duration to find the last sample.

FIGURE 1

Timing diagram

Is it possible to give timing values that are invalid or problematic, such as values that run off the end

of the audio file or cause overlapping blocks. There are some rules that should be followed to ensure

a correctly functioning file:

1 All the time and duration values must be non-negative.

2 The time attributes should be in the correct format:

a) HH:MM:SS:FF (where FF is the frame number) for the timecode attributes in

audioProgramme.

b) HH:MM:SS.sssss (where sssss is 5 d.p. of the seconds) for the attributes in all elements

other than audioProgramme;

3 The difference between the audioProgramme start and end time should match the duration

of the audio file – within the precision of the timecode representation. Omit the end attribute

if it uncertain what the length it.

4 The start + duration time of audioObjects should not be more than the duration of the file.

16 Rep. ITU-R BS.2388-0

5 The rtime + duration time of audioBlockFormats should not be more than the start + duration

of the referring audioObject if possible.

6 If the audioBlockFormats overrun the end of an audioObject, then it will be assumed the

audio samples will only be read for the duration of the audioObject.

7 The order of audioBlockFormats within an audioChannelFormat should be chronological in

the XML code.

8 Successive audioBlockFormats should be contiguous. Therefore the rtime of a block should

equal the rtime + duration of the previous block.

9 It is recommended to have the first audioBlockFormat in an audioChannelFormat starting at

00:00:00.00000. Use the start time of the audioObject to set the starting time of a sequence

of blocks.

3.6.2 Block Sizes for Dynamic Objects

The audioBlockFormat element carries the parameters required for object-based audio with the time

attributes to enable dynamic use. The audioChannelFormat can contain up to 4294967295

audioBlockFormat blocks, and the duration of an audioBlockFormat can be 10μs (i.e. less than a

sample in length at a 48 kHz sample rate). It is therefore possible to use very fine temporal resolution,

and thereby produce very large. Such large files would be unwieldy, and there is unlikely to be the

need for such short blocks. The following should be considered when deciding upon the sizes of the

blocks:

1 If successive blocks carry identical parameter values, then combine them into one single

block. In other words, new a block should only be generated when a change in parameter

values is required.

2 Positions will be interpolated (unless chosen not to be), so smoothness of movement can be

achieved without very fine blocks.

3 The speed and trajectory of the movement of objects. Slower objects could be represented

with longer and fewer blocks.

4 Is there enough movement in an object to require multiple blocks? An object might not be

moving by a noticeable amount, so one fixed position could suffice.

5 The larger the file, the more processing power and memory it will require. Too many small

blocks will produce large files that will be slow to process and memory-hungry for digital

audio workstations (DAWs).

The decisions depend upon the judgement of the sound engineer or software designer weighing up

perceptual quality of the result and file size requirements. At this stage no recommended values are

given, but some may be given in the future after more research.

3.7 File Management

While the BW64 format can handle files over 4GB in size, both for the audio samples and XML

metadata, care must be taken when generating such large files. Section 3.6.2 describes how the block

sizes with audioBlockFormat should be considered which have a large influence on the size of the

<axml> chunk. When generating large files, it is worth bearing in mind the following:

1 The audio data (in the <data> chunk) may be directly read from file, rather the stored in

memory in its entirety.

2 The XML metadata in the <axml> chunk is likely to be required to be read into memory in

its entirety, even if it is later stored in a more compact form. Therefore having an <axml>

chunk that is several gigabytes in size could cause memory problems.

 Rep. ITU-R BS.2388-0 17

3 As well as memory limitations, large files can also be slower to read and process.

4 The XML metadata also needs interpreting which could take a long time.

To overcome these issues there are some measures that can be taken:

1 Consider increasing audioBlockFormat blocks sizes based on the considerations described in

§ 3.6.2.

2 Avoid duplicating metadata. The “format” ADM elements are not directly tied to audio data,

so make use of the Common Definitions if possible and identify any audioChannelFormat

elements that are identical which can be reused.

3 Take advantage of non-overlapping objects. These can share audio tracks to reduce the

number of tracks used in the file.

The advice given in this section is not an exhaustive list and should be added to or refined in the

future if required.

3.8 <fmt> Chunk Handling

The <fmt> chunk in WAV files is a mandatory that specifies the format of the data within the file.

The <fmt> chunk is defined as follows:

<fmt> ->fmt(<common-fields>

 <format-specific-fields>)

<common-fields> ->

 Struct {

 WORD wFormatTag; // Format category

 WORD nChannels; // Number of channels

 DWORD nSamplesPerSec; // Sampling rate

 DWORD nAvgBytesPerSec; // For buffer estimation

 WORD nBlockAlign; // Data block size

 }

<format-specific-fields>) ->

 Struct {

 WORD WBitsPerSample; // Bits per sample

 WORD cbSize; // Size of the extension (0 or 22)

 WORD wValidBitsPerSample; // Number of valid bits

 DWORD dwChannelMask; // Speaker position mask

 CHAR[16] SubFormat; // GUID, including the data format code

 }

The <format-specific-fields> are optional and are used in the Wave Format Extensible mode. The

format code in wFormatTag specifies the type of data used, and a small selection of these types are

shown below:

wFormatTag Symbol Format

0×0000 WAVE_FORMAT_UNKNOWN Unknown

0×0001 WAVE_FORMAT_PCM PCM

0×0003 WAVE_FORMAT_IEEE_FLOAT IEEE float

0×FFFE WAVE_FORMAT_EXTENSIBLE Determined by SubFormat

If the format is set to WAVE_FORMAT_EXTENSIBLE then the file uses the <format-specific-

fields> with the dwChannelMask to specify the channels.

18 Rep. ITU-R BS.2388-0

When reading a WAV file the <format-specific-fields> may or may not be specified, but if they do

exist they should be read to try and determine as much about the channels and format as possible.

When generating a BW64 file, it is recommended to avoid using the Wave Format Extensible mode

as there is the risk of generating information that contradicts the <chna> and <axml> chunk

information. The recommended approach is to only use one of two wFormatTag values according to

these rules:

– If all the audio track in the file are PCM then set wFormatTag to 0x0001 (PCM)

– If any of the audio tracks are non-PCM then set wFormatTag to 0x0000 (unknown).

3.9 Ensuring Streaming Compatibility

The way in which the ADM is used, and the way in which multichannel audio files are created, will

have an impact on the efficiency with which the audio data can later be streamed. The use cases in

this area are still being developed.

4 Worked Examples

4.1 5.1 and Stereo Combination

A common delivery configuration is to carry a 5.1 surround main mix alongside a stereo version to

cater for non-5.1 compatible systems. In Recommendation ITU-R BS.1738, Production Scenario 5

describes such a configuration, as shown the table below:

Channel number 5.1 Surround sound audio signal

1 Left channel, complete mix

2 Right channel, complete mix

3 Centre channel, complete mix

4 Low frequency effects

5 Left surround channel

6 Right surround channel

7 Optional left channel international sound

8 Optional right channel international sound

This is straightforward to deal with by using the Common Definitions to describe the channels, and

audioObjects to classify the two mixes. The <axml> can be generated like this:

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_00010001_01 AP_00010003

2 ATU_00000002 AT_00010002_01 AP_00010003

3 ATU_00000003 AT_00010003_01 AP_00010003

4 ATU_00000004 AT_00010004_01 AP_00010003

5 ATU_00000005 AT_00010005_01 AP_00010003

6 ATU_00000006 AT_00010006_01 AP_00010003

7 ATU_00000007 AT_00010001_01 AP_00010002

8 ATU_00000008 AT_00010002_01 AP_00010002

 Rep. ITU-R BS.2388-0 19

The tracks can now be connected to audioObjects so these need to be defined. The XML code for

these two audioObjects is below:

<audioObject audioObjectID="AO_1001" audioObjectName="5.1_mix">

 <audioPackFormatIDRef>AP_00010003</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000004</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000005</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000006</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="stereo_mix”>

 <audioPackFormatIDRef>AP_00010002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000007</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000008</audioTrackUIDRef>

</audioObject>

More information can be added, as the two mixes may have some additional information. This

information can be placed in the audioContent and audioProgramme elements:

<audioProgramme audioProgrammeID=”APR_1001” audioProgrammeName=”Complete+International”>

 <audioContentIDRef>ACO_1001</audioContentIDRef>

 <audioContentIDRef>ACO_1002</audioContentIDRef>

</audioProgramme>

<audioContent audioContentID="ACO_1001" audioContentName="CompleteMix">

 <audioObjectIDRef>AO_1001</audioObjectIDRef>

</audioContent>

<audioContent audioContentID="ACO_1002" audioContentName="InternationalMix">

 <audioObjectIDRef>AO_1002</audioObjectIDRef>

</audioContent>

This is all the XML code that is required for the <axml> chunk: all the track, stream and channel

information resides in the Common Definitions resource.

4.2 Object-Based with a Channel-Based Bed

This example shows how a pair of audio objects can be combined with a stereo channel-based bed.

The diagram below shows how the channels and objects are arranged (the timings are HH:MM).

20 Rep. ITU-R BS.2388-0

The background music part is a stereo channel-based bed that lasts the duration of the file. The first

object is narration that lasts from 01:00 to 06:00. The second object is effects and lasts from 08:00 to

17:00, and this object is also dynamic as its position changes over time.

The channel-based channels can be described using common definitions, so those IDs need to be

selected from the Common Definitions set of channels. The two objects will be custom definitions,

so will need to be explicitly defined and included in the <axml> chunk.

The first stage is to define the channels for the two objects. The XML generated for the

audioChannelFormat and audioBlockFormat elements is here:

<audioChannelFormat audioChannelFormatID="AC_00031001" audioChannelFormatName="Object1"

typeDefinition="Objects">

 <audioBlockFormat audioBlockFormatID="AB_00031001_00000001" rtime="00:00:00.00000"

duration="00:05:00.00000">

 <position coordinate="azimuth">0.0</position>

 <position coordinate="elevation">-10.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

</audioChannelFormat>

<audioChannelFormat audioChannelFormatID="AC_00031002" audioChannelFormatName="Object2"

typeDefinition="Objects">

 <audioBlockFormat audioBlockFormatID="AB_00031002_00000001" rtime="00:00:00.00000"

duration="00:03:00.00000">

 <position coordinate="azimuth">-22.5</position>

 <position coordinate="elevation">5.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

 <audioBlockFormat audioBlockFormatID="AB_00031002_00000002" rtime="00:03:00.00000"

duration="00:03:00.00000">

 <position coordinate="azimuth">0.0</position>

 <position coordinate="elevation">5.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

 <audioBlockFormat audioBlockFormatID="AB_00031002_00000003" rtime="00:06:00.00000"

duration="00:03:00.00000">

 <position coordinate="azimuth">22.5</position>

 <position coordinate="elevation">5.0</position>

 <position coordinate="distance">1.0</position>

 </audioBlockFormat>

</audioChannelFormat>

It now becomes trivial to generate audioStreamFormat and audioTrackFormat definitions:

<audioStreamFormat audioStreamFormatID="AS_00031001" audioStreamFormatName="PCM_Object1"

formatDefinition="PCM">

 <audioChannelFormatIDRef>AC_00031001</audioChannelFormatIDRef>

 <audioTrackFormatIDRef>AT_00031001_01</audioTrackFormatIDRef>

</audioStreamFormat>

<audioStreamFormat audioStreamFormatID="AS_00031002" audioStreamFormatName="PCM_Object2"

formatDefinition="PCM">

 <audioChannelFormatIDRef>AC_00031002</audioChannelFormatIDRef>

 <audioTrackFormatIDRef>AT_00031002_01</audioTrackFormatIDRef>

</audioStreamFormat>

<audioTrackFormat audioTrackFormatID="AT_00031001_01" audioTrackFormatName="PCM_Object1"

formatDefinition="PCM">

 <audioStreamFormatIDRef>AS_00031001</audioStreamFormatIDRef>

</audioTrackFormat>

<audioTrackFormat audioTrackFormatID="AT_00031002_01" audioTrackFormatName="PCM_Object2"

formatDefinition="PCM">

 <audioStreamFormatIDRef>AS_00031002</audioStreamFormatIDRef>

</audioTrackFormat>

 Rep. ITU-R BS.2388-0 21

The two objects also need audioPackFormat definitions. As both objects are single channels, these

packs are just single channel ones:

<audioPackFormat audioPackFormatID="AP_00031001" audioPackFormatName="Object1" typeLabel="0003"

typeDefinition="Objects">

 <audioChannelFormatIDRef>AC_00031001</audioChannelFormatIDRef>

</audioPackFormat>

<audioPackFormat audioPackFormatID="AP_00031002" audioPackFormatName="Object2" typeLabel="0003"

typeDefinition="Objects">

 <audioChannelFormatIDRef>AC_00031002</audioChannelFormatIDRef>

</audioPackFormat>

The next stage is to prepare the <chna> chunk. As the two audio objects do not overlap in time it is

possible for them to share the same track in the file.

Track Number audioTrackUID audioTrackFormatID audioPackFormatID

1 ATU_00000001 AT_00010001_01 AP_00010002

2 ATU_00000002 AT_00010002_01 AP_00010002

3 ATU_00000003 AT_00031001_01 AP_00031001

3 ATU_00000004 AT_00031002_01 AP_00031002

The tracks and the packs can now be connected using audioObject elements. There are three

audioObjects: one for the stereo channels, and one each for the two objects. The two objects will have

start and duration times applied to them. The XML is shown here:

<audioObject audioObjectID="AO_1001" audioObjectName="StereoBed">

 <audioPackFormatIDRef>AP_00010002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000001</audioTrackUIDRef>

 <audioTrackUIDRef>ATU_00000002</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1002" audioObjectName="ObjectNarration” start=”00:01:00.00000”

duration=”00:05:00.00000”>

 <audioPackFormatIDRef>AP_00031001</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

</audioObject>

<audioObject audioObjectID="AO_1003" audioObjectName="ObjectEffects” start=”00:008:00.00000”

duration=”00:09:00.00000”>

 <audioPackFormatIDRef>AP_00031002</audioPackFormatIDRef>

 <audioTrackUIDRef>ATU_00000003</audioTrackUIDRef>

</audioObject>

22 Rep. ITU-R BS.2388-0

These audioObjects can be connected to audioContent elements. To add some extra information to

the audioContents elements, the dialogue and loudness sub-elements have been added.

<audioContent audioContentID="ACO_1001" audioContentName="BackgroundMusic">

 <audioObjectIDRef>AO_1001</audioObjectIDRef>

 <dialogue dialogueContentKind=”1”>0</dialogue>

 <loudnessMetadata loudnessMethod=”BS.1770”>

 <integratedLoudness>-29</integratedLoudness>

 </loudnessMetadata>

</audioContent>

<audioContent audioContentID="ACO_1002" audioContentName="Narration">

 <audioObjectIDRef>AO_1002</audioObjectIDRef>

 <dialogue dialogueContentKind=”2”>1</dialogue>

 <loudnessMetadata loudnessMethod=”BS.1770”>

 <integratedLoudness>-21</integratedLoudness>

 </loudnessMetadata>

</audioContent>

<audioContent audioContentID="ACO_1003" audioContentName="Effects">

 <audioObjectIDRef>AO_1003</audioObjectIDRef>

 <dialogue dialogueContentKind=”2”>0</dialogue>

 <loudnessMetadata loudnessMethod=”BS.1770”>

 <integratedLoudness>-25</integratedLoudness>

 </loudnessMetadata>

</audioContent>

The three audioContent elements are connected together within the audioProgramme element at the

top level:

<audioProgramme audioProgrammeID=”APR_1001” audioProgrammeName=”InterestingProgramme”>

 <audioContentIDRef>ACO_1001</audioContentIDRef>

 <audioContentIDRef>ACO_1002</audioContentIDRef>

 <audioContentIDRef>ACO_1003</audioContentIDRef>

</audioProgramme>

The XML is now ready for the <axml> chunk, and so the audio file can be constructed with the

<axml> and <chunks> and 3 tracks of PCM audio.

	Report ITU-R BS.2388-0 (07/2015) Usage Guidelines for the Audio DefinitionModel and Multichannel Audio Files
	Foreword
	1 Introduction
	2 Use Cases
	2.1 Generating BWF Audio Files from Scratch
	2.1.1 UC1.1: Common single group channel-based files
	2.1.2 UC1.2: Common multiple group channel-based files
	2.1.3 UC1.3: Non-common channel-based files
	2.1.4 UC1.4: Transformation/scene-based files
	2.1.5 UC1.5: Object-based files
	2.1.6 UC1.6: Mixed files

	2.2 Reading BWF Audio Files
	2.2.1 UC2.1: Common single-group channel-based files
	2.2.2 UC2.2: Common multiple group channel-based files
	2.2.3 UC2.3: Non-common channel-based files
	2.2.4 UC2.4: Transformation/scene-based files
	2.2.5 UC2.5: Object-based files
	2.2.6 UC2.6: Mixed files

	2.3 Reading Non-ADM WAV Files
	2.3.1 UC3.1: One-, two-, five- and six-channel files
	2.3.2 UC3.2: Other numbers of channels
	2.3.3 UC3.3: Multiple mono files

	2.4 Generating BWF Files without information
	2.4.1 UC4.1: Generating one-, two-, five- and six-channel files
	2.4.2 UC4.2: Generating other number of channels

	3 Recommended Practices
	3.1 Using Common Definitions
	3.1.1 Using the Common Definitions when Reading an Audio File
	3.1.2 Using the Common Definitions when Writing an Audio File

	3.2 Element IDs
	3.2.1 ID Prefixes
	3.2.2 Hexadecimal Codes
	3.2.2.1 audioProgramme
	3.2.2.2 audioContent
	3.2.2.3 audioObject
	3.2.2.4 audioPackFormat
	3.2.2.5 audioChannelFormat
	3.2.2.6 audioBlockFormat
	3.2.2.7 audioStreamFormat
	3.2.2.8 audioTrackFormat
	3.2.2.9 audioTrackUID

	3.2.3 Recommended ID Numbering for Related Elements

	3.3 Audio Types
	3.3.1 Format Types

	3.4 <chna> chunk and IDs
	3.4.1 Simple PCM Channel-based Files
	3.4.2 PCM Object-based Files
	3.4.3 Coded Audio Files

	3.5 Defaults for Unknown Audio Inputs
	3.5.1 Common Definition Approach
	3.5.2 Wave Format Extensible Approach
	3.5.3 Generating Other Metadata for Unknown Audio Inputs

	3.6 Times and Durations
	3.6.1 Timing Attributes
	3.6.2 Block Sizes for Dynamic Objects
	3.7 File Management
	3.8 <fmt> Chunk Handling
	3.9 Ensuring Streaming Compatibility

	4 Worked Examples
	4.1 5.1 and Stereo Combination
	4.2 Object-Based with a Channel-Based Bed

