• Handbook – Satellite Time and Frequency Dissemination – 2010
    • PREFACE
    • TABLE OF CONTENTS
    • FOREWORD
    • ACKNOWLEDGEMENTS
    • INTRODUCTION
    • CHAPTER 1 – SATELLITES AND TIME AND FREQUENCY TRANSFER AND DISSEMINATION
      • 1.1 Introduction
      • 1.2 Space radiocommunication services and satellite systems employed for frequency and time transfer and disseminat...
        • 1.2.1 Standard frequency and time signal service
        • 1.2.2 Global navigation satellite systems
      • References
    • CHAPTER 2 – GLOBAL POSITIONING SYSTEM
      • 2.1 General description and principles of operation
      • 2.2 GPS basics
        • 2.2.1 PRN codes for CDMA and ranging
        • 2.2.2 GPS spectrum
        • 2.2.3 Navigation message
      • 2.3 GPS segments
        • 2.3.1 Space segment
        • 2.3.2 Control segment
        • 2.3.3 User segment
      • 2.4 Role of timing and synchronization in operations
        • 2.4.1 Ranging measurements and performance factors
        • 2.4.2 Satellite clock stability and prediction
      • 2.5 Assessment of GPS satellite clock performance
        • 2.5.1 Satellite path delays
        • 2.5.2 Relativity
      • 2.6 Receiver clock contributions
        • 2.6.1 Navigation receiver clock
        • 2.6.2 Timing receiver clock
      • 2.7 Determination and maintenance of timing
        • 2.7.1 Control segment operations
        • 2.7.2 GPS time steering
      • References
    • CHAPTER 3 –SATELLITE BASED AUGMENTATION SYSTEM TO GPS
      • 3.1 Introduction
      • 3.2 Description of an SBAS
      • 3.3 WAAS description (United States of America)
      • 3.4 MSAS description (Japan)
        • 3.4.1 Overview
        • 3.4.2 Dual pseudo-random noise function
        • 3.4.3 Uplink power control
      • 3.5 EGNOS description (Europe)
        • 3.5.1 EGNOS ground segment overview
        • 3.5.2 EGNOS system overview related to time
        • 3.5.3 RIMS clock synchronization and generation of ENT
        • 3.5.4 Steering of ENT to GPS time
        • 3.5.5 Satellite clock corrections
        • 3.5.6 Broadcast ENT through geostationary Earth orbit (GEO) satellites
        • 3.5.7 Estimation of the difference between ENT and UTC time-scales
        • 3.5.8 SBAS and time
        • 3.5.9 Time and the GEO
        • 3.5.10 SBAS and time transfer
        • 3.5.11 Time transfer between 2 laboratories
        • 3.5.12 Time transfer between 2 SBAS
      • References
      • APPENDIX A –Brief description of SBAS message content
    • CHAPTER 4 –GPS SYSTEM TIME
      • 4.1 Introduction
      • 4.2 Tracking clock measurements and ephemeris determination
      • 4.3 GPS time
        • 4.3.1 Composite clock implementation
        • 4.3.2 Covariance reduction
        • 4.3.3 Partition reconciliation
      • 4.4 UTC (USNO) from GPS
    • CHAPTER 5 –GLONASS NAVIGATION SATELLITE SYSTEM
      • 5.1 Introduction
      • 5.2 General description and principles of operation
      • 5.3 GLONASS architecture and development
        • 5.3.1 Space segment
        • 5.3.2 Control segment
        • 5.3.3 User segment
      • 5.4 GLONASS time
      • 5.5 Orbit determination and time synchronization (OD & TS) of GLONASS system
      • 5.6 GLONASS signals and radio-frequency spectrum
        • 5.6.1 Frequency requirements
        • 5.6.2 Signal power and spectra
      • 5.7 GLONASS and GPS combined use features
      • 5.8 Conclusion
      • References
    • CHAPTER 6 –COMMUNICATION SATELLITE SYSTEMS
      • 6.1 Introduction
      • 6.2 The communication payload
        • 6.2.1 Analog bent-pipe architecture
        • 6.2.2 Regenerative architecture
        • 6.2.3 Digital implementation
        • 6.2.4 The tracking, telemetry and command system
      • 6.3 Timing and synchronization for satellite operation
      • 6.4 Impact of link noise and satellite imperfections in bent-pipe payloads
        • 6.4.1 White noise contribution
      • 6.5 Satellite phase noise and systematic errors
      • 6.6 Conclusion
      • References
    • CHAPTER 7 –TIME SCALES
      • 7.1 Introduction
      • 7.2 Universal time
      • 7.3 Ephemeris time
      • 7.4 Atomic time
      • 7.5 Relativistic time scales
        • 7.5.1 Terrestrial time
        • 7.5.2 Geocentric coordinate time
        • 7.5.3 Barycentric coordinate time
        • 7.5.4 Barycentric dynamical time
      • 7.6 International time scales
        • 7.6.1 International atomic time
        • 7.6.2 Coordinated universal time
      • References
    • CHAPTER 8 –NATIONAL TIMING CENTRES
      • 8.1 Introduction
      • 8.2 Timing laboratory layout
      • 8.3 Local measurement system
      • 8.4 International traceability
      • 8.5 Time dissemination services
      • References
    • CHAPTER 9 –RELATIVISTIC EFFECTS IN SATELLITE TIME AND FREQUENCY TRANSFER AND DISSEMINATION
      • 9.1 The space-time interval
      • 9.2 The principle of relativity
        • 9.2.1 The metric tensor
        • 9.2.2 The gravitational potential of the Earth
        • 9.2.3 Time dilation
        • 9.2.4 Gravitational redshift
        • 9.2.5 Time transfer by clock transport
        • 9.2.6 Earth-Centered Inertial coordinate system
        • 9.2.7 Earth-Centered Earth-Fixed coordinate system
      • 9.3 Clock onboard a satellite
      • 9.4 Time transfer by an electromagnetic signal
        • 9.4.1 Earth Centered Inertial coordinate system
        • 9.4.2 Earth-Centered Earth-Fixed coordinate system
        • 9.4.3 Inter-satellite link
        • 9.4.4 Relativistic Doppler effect
      • 9.5 Conclusion
      • References
    • CHAPTER 10 – EARTH ORIENTATION AND GEODETIC SYSTEM
      • 10.1 Introduction
      • 10.2 Earth orientation
        • 10.2.1 Precession/nutation
        • 10.2.2 Polar motion
      • 10.3 Universal Time (UT)
      • 10.4 Geodetic systems
      • 10.5 Reference surfaces
        • 10.5.1 Geoid
        • 10.5.2 Ellipsoid
        • 10.5.3 Types of coordinates
      • References
    • CHAPTER 11 –PROPAGATION AND ENVIRONMENTAL FACTORS
      • 11.1 Introduction
      • 11.2 Comparative range delay of the Earth's troposphere and the ionosphere
      • 11.3 Modeling the range delay of the Earth's troposphere
        • 11.3.1 Variability of the ionospheric and the tropospheric range delay
      • 11.4 The time delay of the ionosphere, its worldwide behavior, day-to-day variability and solar cycle variability
        • 11.4.1 Methods of correcting for ionospheric time delay, monthly mean models, updated models, use of SBAS/WAAS/IGS ...
        • 11.4.2 Higher order ionospheric effects on time delay
        • 11.4.3 Scintillation effects
      • 11.5 Conclusion
      • References
    • CHAPTER 12 – GLOBAL NAVIGATIONAL SATELLITE SYSTEMS – AS A PRIMARY TOOL FOR TIME TRANSFER
      • 12.1 Introduction
      • 12.2 GPS and time
        • 12.2.1 How does GPS distribute time?
        • 12.2.2 How does GPS synchronize clocks over large distances?
      • 12.3 Applications of GPS time transfer
        • 12.3.1 GPS C/A-code single-channel common-view time transfer
        • 12.3.2 One-site comparisons (zero baseline)
        • 12.3.3 GPS differential calibration
        • 12.3.4 Closure around the world
      • 12.4 Comparison of GPS with other time transfer techniques
        • 12.4.1 Comparison with two-way satellite time and frequency transfer
        • 12.4.2 Comparison with laser time transfer
      • 12.5 Recent developments in GPS time transfer
        • 12.5.1 Multi-channel common-view GPS time transfer
        • 12.5.2 Temperature stabilized antennas
        • 12.5.3 Use of GPS carrier phase
      • 12.6 Use of GLONASS
      • 12.7 Conclusion
      • References
    • CHAPTER 13 –GEODETIC TECHNIQUES USING GPS PHASE AND CODE MEASUREMENTS
      • 13.1 Introduction
      • 13.2 Instrumental and hardware considerations
        • 13.2.1 GPS satellite components
        • 13.2.2 GPS tracking antenna installations
        • 13.2.3 Antenna cables and connections
        • 13.2.4 GPS receivers
        • 13.2.5 Evaluating multipath effects and system testing
        • 13.2.6 Calibration of tracking station delays
      • 13.3 Data analysis strategies
        • 13.3.1 GPS observation equation
        • 13.3.2 Methods for global solutions
        • 13.3.3 Reference frames and models for correction terms
        • 13.3.4 Precise point positioning
        • 13.3.5 Effects of errors on clock solutions
      • 13.4 IGS clock products and timescales
        • 13.4.1 Available product sets
        • 13.4.2 IGS timescales
      • 13.5 Evaluation of performance by day-boundary discontinuity analysis
      • 13.6 Comparisons with independent two-way time transfer results
      • 13.7 Assessment of time transfer performance
      • 13.8 Future trends
      • References
    • CHAPTER 14 –TWO WAY SATELLITE TIME AND FREQUENCY TRANSFER (TWSTFT)
      • 14.1 Introduction
      • 14.2 Description of TWSTFT technique
      • 14.3 Measurements of TWSTFT
      • 14.4 Station laboratory equipment
        • 14.4.1 Spread spectrum modem
        • 14.4.2 Time interval counter
      • 14.5 Link dependent measurements (path and equipment)
        • 14.5.1 The Sagnac effect
        • 14.5.2 Second-order relativistic correction to the Sagnac effect
        • 14.5.3 Difference in up-link and down-link frequencies
      • 14.6 Calibration methods
        • 14.6.1 Station calibration using a satellite simulator
        • 14.6.2 Station calibration using a transportable Earth station
        • 14.6.3 Calibration campaigns of 1993 and 1998
        • 14.6.4 X-band calibration campaign
      • 14.7 Problems arising when using different satellite transponders
      • 14.8 Problems arising when using different satellite transponders
      • 14.9 Long term stability of TWSTFT
        • 14.9.1 Long term comparisons between GPS and TWSTFT
      • 14.10 Conclusion
      • References
    • CHAPTER 15 –SUMMARY TIME AND FREQUENCY DISSEMINATION