• HANDBOOK ON RADIOMETEOROLOGY – 1996
    • PREFACE
    • CONTENTS
    • CHAPTER 1 –PREFACE
      • 1.1 Purpose of the Handbook on Radiometeorology
      • 1.2 Applicable texts
      • 1.3 Cross-reference table
    • CHAPTER 2 –Physical characteristics of the atmosphere
      • 2.1 Variability of water vapour and oxygen density at ground level
      • 2.2 Variability of the height profile of water vapour
      • 2.3 Precipitation characteristics
        • 2.3.1 Drop size distribution
        • 2.3.2 Hydrometeor shape and orientation
        • 2.3.3 Terminal velocity
        • 2.3.4 Drop temperature
      • 2.4 Statistical characteristics of rainfall intensity at a point
        • 2.4.1 Cumulative distribution of rainfall intensity
        • 2.4.2 Conversion of rainfall rate distributions to equivalent one-minute statistics
        • 2.4.3 Models for the rainfall rate distribution
        • 2.4.4 Statistics of rainfall event duration
      • 2.5 Horizontal structure of rainfall
        • 2.5.1 Application to scattering by rain
        • 2.5.2 Application to attenuation by rain
      • 2.6 Vertical structure of precipitation
        • 2.6.1 Vertical variation of reflectivity
        • 2.6.2 Vertical variation of specific attenuation
        • 2.6.3 The 0 C isotherm height and the rain height
      • 2.7 Characteristics of fog and clouds
      • 2.8 Sand and dust storms
      • ANNEX 1 –Types of precipitation
      • ANNEX 2 –Rain climatology models
      • REFERENCES
    • CHAPTER 3– Atmospheric refraction
      • 3.1 General
        • 3.1.1 Influence of the atmosphere on radiowave propagation
        • 3.1.2 Refractive index and refractivity
        • 3.1.3 Models of the atmospheric refractive index
        • 3.1.4 Departures from the models
      • 3.2 Refractivity at ground level
        • 3.2.1 Introduction
        • 3.2.2 Monthly averages of ground refractivity
      • 3.3 Refractivity gradients
        • 3.3.1 Generalities
        • 3.3.2 Models for refractivity gradient distribution
        • 3.3.3 Statistical information on refractivity gradients
        • 3.3.4 Correlation between ground refractivity and refractivity gradient
        • 3.3.5 Equivalent refractivity gradient along a path
      • 3.4 Refractive structures at mid and large scales
        • 3.4.1 Ducting layers - definition and experimental observations
        • 3.4.2 Duct modelling
        • 3.4.3 Ducts statistics
        • 3.4.4 Sub-refractive conditions
        • 3.4.5 Statistics of sub-refractive conditions
        • 3.4.6 Horizontal refractivity gradients
      • 3.5 Techniques of refractive index measurements
        • 3.5.1 General
        • 3.5.2 Direct measurements - microwave refractometers
        • 3.5.3 Indirect measurements
        • 3.5.4 Humidity measurements
        • 3.5.5 Measurement of vertical profiles
        • 3.5.6 Measurements of vertical and horizontal structures
      • REFERENCES
    • CHAPTER 4 –INFLUENCE OF REFRACTION ON PROPAGATION
      • 4 Influence of refraction on propagation
        • 4.1 General
          • 4.1.1 Introduction
          • 4.1.2 Ray approximation
          • 4.1.3 Modified refractive index and effective Earth radius
        • 4.2 Refractive effects in normal conditions
          • 4.2.1 Sub-refraction and super-refraction
          • 4.2.2 Apparent elevation angle
          • 4.2.3 Radioelectric path length
          • 4.2.4 Beam spreading on slant paths
          • 4.2.5 Range rate error
        • 4.3 Propagation during sub-refractive conditions
          • 4.3.1 Effective Earth radius factor for the path, ke
          • 4.3.2 Prediction of the minimum value of ke
        • 4.4 Propagation with super-refractive layers
          • 4.4.1 General
          • 4.4.2 Qualitative description by ray tracing
          • 4.4.3 Ducting effects
          • 4.4.4 Multipath propagation
          • 4.4.5 Angle-of-arrival variations
        • 4.5 Representation of the propagation channel during super-refractive conditions
          • 4.5.1 General
          • 4.5.2 Multi-ray model
          • 4.5.3 Theoretical considerations on single-frequency statistics
          • 4.5.4 Models for the multipath transfer function
          • 4.5.5 Simplified representations of the propagation channel
        • 4.6 Signal scintillations due to atmospheric turbulence
          • 4.6.1 Amplitude scintillation
          • 4.6.2 Angle-of-arrival scintillations
        • 4.7 Tropospheric scatter propagation
          • 4.7.1 General
          • 4.7.2 Modelling of long-term variations of field strength
          • 4.7.3 Troposcatter transfer function
        • REFERENCES
    • CHAPTER 5 – Single-particle scattering
      • 5.1 General considerations
        • 5.1.1 Integral representation of the field
        • 5.1.2 Scattering of a plane wave in the far field. The optical theorem
      • 5.2 Solution methods
        • 5.2.1 Analytical methods
        • 5.2.2 Approximate numerical methods
      • 5.3 Numerical implementation
      • REFERENCES
    • CHAPTER 6 –Attenuation and dispersion by atmospheric gases
      • 6.1 Introduction
      • 6.2 Calculation of specific attenuation using simple algorithms
      • 6.3 Calculation of attenuation along Earth-space paths
      • 6.4 Dispersion due to atmospheric gases
      • 6.5 Attenuation of infrared and visible radiation
    • CHAPTER 7 –Attenuation by atmospheric particles
      • 7.1 Attenuation due to hydrometeors
        • 7.1.1 Introduction
        • 7.1.2 Prediction of specific attenuation from rainfall intensity data
        • 7.1.3 Attenuation over propagation links of finite extent
        • 7.1.4 Prediction of attenuation from radio propagation data
        • 7.1.5 Variability of rain attenuation statistics
        • 7.1.6 Radiometer and radar measurements
      • 7.2 Propagation delay due to precipitation
      • 7.3 Attenuation by hydrometeors other than rain
        • 7.3.1 Aerosols, fog, clouds, hail and snow
      • 7.4 Attenuation by sand and dust storms
      • REFERENCES
    • CHAPTER 8 –Radio emissivity of atmosphere and ground
      • 8.1 Introduction
      • 8.2 Radiative transfer
        • 8.2.1 Fundamentals
        • 8.2.2 Radiative transfer equation
        • 8.2.3 Brightness temperature
      • 8.3 Atmospheric emissivity
      • 8.4 Ground emissivity
      • 8.5 Radiometric estimation of attenuation and path length
        • 8.5.1 General
        • 8.5.2 Radiometric estimation of attenuation
        • 8.5.3 Estimation of propagation path delay
      • 8.6 Passive remote sensing of atmospheric composition
      • 8.6.1 General
        • 8.6.2 Atmospheric water content
        • 8.6.3 Radiometric retrieval of atmospheric water content
        • 8.6.4 Retrieval and scaling coefficients
      • REFERENCES
    • CHAPTER 9 –Cross-polarization and anisotropy
      • 9.1 Introduction
      • 9.2 Mathematical background
        • 9.2.1 Polarization state of a wave
        • 9.2.2 Dual-polarization transfer channel
        • 9.2.3 Simplified medium models
    • CHAPTER 10 –Statistical aspects of modelling
      • 10.1 Variability of atmospheric processes
        • 10.1.1 Introduction
        • 10.1.2 Definitions
        • 10.1.3 Concepts and models
      • 10.2 Worst-month statistics
        • 10.2.1 The ITU-R definition
        • 10.2.2 Calculation method using Q
        • 10.2.3 Calculation method using C0
        • 10.2.4 Variability aspects
      • 10.3 Annual statistics
        • 10.3.1 Variability aspects
        • 10.3.2 Accuracy and model testing
      • 10.4 Risk and return period
      • 10.5 Conclusions
      • ANNEX 10.A.1 –Rank-order statistics
      • ANNEX 10.A.2 – Determination of C0 and C1 from measured data
      • ANNEX 10.A.3 – Risk assessment
      • REFERENCES