

Бюро радиосвязи (БР)

Административный циркуляр **CACE/1151**

8 августа 2025 года

Администрациям Государств — Членов МСЭ, Членам Сектора радиосвязи, Ассоциированным членам МСЭ-R и Академическим организациям — Членам МСЭ

Предмет: Предложение администрациям рекомендовать экспертам и ученым из

академических организаций и НИИ принять участие в работе

3-й Исследовательской комиссии МСЭ-R и внести в нее свой вклад

1 Введение

На собрании Консультативной группы по радиосвязи, состоявшемся 14—17 апреля 2025 года, Группа просила Директора Бюро радиосвязи рассмотреть возможность выпуска циркулярного письма с предложением администрациям рекомендовать экспертам и ученым из академических организаций и научно-исследовательских институтов принять участие в работе 3-й Исследовательской комиссии МСЭ-R и внести в нее вклад (см. краткий обзор выводов 32-го собрания Консультативной группы по радиосвязи в Административном циркуляре СА/277). На этом собрании была отмечена важность деятельности рабочих групп 3-й Исследовательской комиссии МСЭ-R для проектирования систем радиосвязи и оценки помех между такими системами, и эта важность подтверждается статистикой загрузок Рекомендаций МСЭ-R, среди которых серия P на протяжении более чем 15 лет неизменно остается наиболее загружаемой.

2 Цель Циркулярного письма

Цель настоящего Циркулярного письма состоит в том, чтобы предложить всем администрациям Государств-Членов и Членам Сектора радиосвязи поощрять участие научно-исследовательских институтов и академических организаций, расположенных в их странах, в деятельности рабочих групп 3-й Исследовательской комиссии МСЭ-R и оказывать им содействие.

Следующие собрания Рабочих групп 3J, 3K, 3L и 3M МСЭ-R планируются к проведению в Женеве 15–25 июня 2026 года, а 26 июня 2026 года должно состояться собрание 3-й Исследовательской комиссии МСЭ-R. Участвовать в этих собраниях возможно как в очном, так и дистанционном формате. Вклады к этим собраниям следует представить в секретариат МСЭ-R не позднее 16 час. 00 мин. UTC 3 июня 2026 года по электронной почте: brsgd@itu.int.

3 Деятельность 3-й Исследовательской комиссии МСЭ-R

На своем собрании 6 июня 2025 года 3-я Исследовательская комиссия МСЭ-R приняла решение сохранить в своем составе четыре рабочие группы, пересмотрела их круг ведения и избрала их председателей и заместителей председателей (см. Приложение 1). Прогресс в работе рабочих групп 3-й Исследовательской комиссии МСЭ-R по-прежнему в значительной степени зависит от достижений научно-исследовательских институтов и академических организаций, а также от вклада членов,

которые активно работают в области моделирования прогнозирования распространения радиоволн. Каждая рабочая группа ведет работу в рамках своей программы по темам, для которых такой вклад особенно актуален (см. Приложение 2). В период между ежегодными собраниями рабочих групп продолжается работа по конкретным вопросам в специально созданных группах, работающих по переписке. Списки работающих по переписке групп в составе каждой рабочей группы приведены в Приложении 3.

3-я Исследовательская комиссия МСЭ-R ведет банк данных по измерениям различных явлений, имеющих отношение к моделированию распространения радиоволн. Такие измерения крайне важны для разработки моделей и подтверждения их точности. Кроме того, такие измерения должны быть репрезентативными для возможно большего числа географических регионов и радиоклиматических зон. По этой причине измерения в полосах частот и в географических регионах, которые не представлены в банках данных 3-й Исследовательской комиссии МСЭ-R, прежде всего в развивающихся странах, особенно странах, находящихся в тропических и сходных с ними зонах, отвечают пункту а) раздела сознавая Резолюции 5 (Пересм. ВКР-23) "Техническое сотрудничество с развивающимися странами в вопросах исследования распространения радиоволн в тропических и сходных с ними зонах" и имели бы огромную ценность. В связи с этим администрациям, территории которых расположены в таких зонах, настоятельно рекомендуется передавать результаты измерений в рабочие группы 3-й Исследовательской комиссии МСЭ-R и поддерживать участие экспертов в области распространения радиоволн в деятельности этих рабочих групп.

Многие Рекомендации серии Р включают в себя сложные алгоритмы, и в последние годы предпринимаются значительные усилия по разработке программных реализаций этих комплексных методов, которые находятся в свободном доступе на веб-странице программного обеспечения 3-й Исследовательской комиссии (https://www.itu.int/en/ITU-R/study-groups/rsg3/Pages/iono-tropo-spheric.aspx). Программная реализация Рекомендаций серии Р также приветствуется.

Марио Маневич Директор

Приложения:

ПРИЛОЖЕНИЕ 1

Организация работы 3-й Исследовательской комиссии МСЭ-R

После консультаций в соответствии с разделами A1.3.1.4, A1.3.1.4*bis* и A1.3.1.4*ter* Резолюции <u>МСЭ-R 1-9</u> 3-я Исследовательская комиссия МСЭ-R на собрании 6 июня 2025 года приняла решение сохранить в своем составе четыре рабочие группы (РГ), обязанности которых, а также председатели и заместители председателей указаны ниже.

1 <u>Рабочая группа 3J</u> — Основные принципы распространения радиоволн в неионизированной среде

Рабочая группа 3J отвечает за предоставление информации и разработку моделей, описывающих основные принципы и механизмы распространения радиоволн в неионизированной среде. Другие рабочие группы 3-й Исследовательской комиссии используют эти результаты в качестве основы для разработки методов прогнозирования распространения радиоволн.

Председатель: д-р Лоран КАСТАНЭ (Dr Laurent CASTANET) (F)

Заместитель председателя: г-н Эрик ХИЛЛ (Mr Eric HILL) (USA)

2 <u>Рабочая группа ЗК</u> — Прогнозирование распространения радиоволн для трасс распространения из пункта в зону

Рабочая группа ЗК отвечает за разработку методов прогнозирования распространения радиоволн для трасс связи пункта с зоной, связанных с наземными и воздушными станциями, в неионизированной среде для полос частот выше 30 МГц.

Председатель: д-р Хадзимэ СУЗУКИ (Dr Hajime SUZUKI) (AUS)

Заместитель председателя: д-р Ватару ЯМАДА (Dr Wataru YAMADA) (J)

3 <u>Рабочая группа 3L</u> — Прогнозирование ионосферного распространения и распространения земной волны и радиошум

Рабочая группа 3L отвечает за предоставление информации и разработку моделей, описывающих основные принципы и механизмы распространения радиоволн в ионизированной среде и через нее, а также за разработку методов прогнозирования распространения земной волны между наземными станциями на частотах ниже 30 МГц и трассами, затронутыми ионосферой. Она также занимается тематикой, связанной с радиошумом, возникающим от природных и техногенных источников, и количественным определением уровня такого шума.

Председатель: д-р Анжело КАНАВИТСАС (Dr Angelo CANAVITSAS) (B)

Заместители председателя: г-н Адам ХИКС (Mr Adam HICKS) (USA), г-н Сок-Хи ПЭ (Mr Seok-Hee BAE) (KOR)

4 <u>Рабочая группа 3М</u> — Прогнозирование распространения радиоволн для трасс связи пункта с пунктом и трасс между Землей и космосом

Рабочая группа 3M отвечает за разработку методов прогнозирования распространения радиоволн и оптического сигнала для трасс связи пункта с пунктом, относящихся к наземным, воздушным, морским и космическим станциям на частотах выше 30 МГц, а также для трасс Земля-космос, космос-Земля и космос-космос.

Председатель: д-р Ричард РАДД (Dr Richard RUDD) (G)

Заместители председателя: д-р Лэкэ ЛИНЬ (Dr Leke LIN) (CHN), д-р Реза АРЕФИ (Dr Reza AREFI) (USA) и д-р Ольга ЯСТРЕБЦОВА (RUS)

ПРИЛОЖЕНИЕ 2

Направления продолжающейся работы в рамках программ рабочих групп 3-й Исследовательской комиссии МСЭ-R

1 Рабочая группа 3J — Основные принципы распространения радиоволн в неионизированной среде

Влияние чистой атмосферы

- Для прогнозирования распространения под малым углом необходима улучшенная параметризация входных радиометеорологических переменных, что обеспечивает более точную оценку искажений, в частности влияния многолучевого распространения при распространении над поверхностью моря и в высоких широтах. Необходимо усовершенствовать моделирование замираний из-за рефракции на трассах с малыми углами, а также упростить методы оценки ослабления в атмосферных газах на трассах с углами менее 5°.
- Необходимо рассмотреть и проверить точность оценки индекса рефракции в атмосфере и тропосферного увеличения длины трассы (изменчивость) с использованием новых экспериментальных таблиц климатологических параметров, для которых требуются новые данные для оценки погрешности прогнозирования. Необходимо продолжить разработку моделей, учитывающих индекс рефракции радиоволн в атмосфере и его влияние на распространение радиоволн.
- Необходимо внести обновления в модели увеличения длины трассы, чтобы отразить использование новых радиометеорологических данных, которые можно применить при расчете параметров модели (таких как средняя температура столба водяного пара и др.) в разбивке по месяцам/суткам.
- Для совершенствования Рекомендации <u>МСЭ-R P.676</u> необходим обзор измерений линий поглощения в атмосферных газах для всего диапазона атмосферных параметров в разных атмосферных условиях (тропосфера и стратосфера).
- Для пересмотра Рекомендации MC3-R P.1621 следует усовершенствовать моделирование ослабления вследствие поглощения в атмосферных газах и связанных с этим эффектов для проектирования систем связи Земля-космос, работающих в диапазоне частот от 20 ТГц до 375 ТГц.

Влияние облаков и осадков

- Для совершенствования Рекомендации <u>МСЭ-R P.837</u> необходимо расширение статистического моделирования пространственной и временной изменчивости осадков. Необходимо повысить точность логарифмически нормальной модели, основываясь на экспериментальных наблюдениях в конкретных климатических условиях. Исследования по этим темам способны повысить точность модели осадков из Рекомендации МСЭ-R P.837.
- Совершенствование модели высоты слоя дождя на основе новых объединенных данных для изучения взаимосвязи высоты изотермы 0° с облаками и осадками.
- Для оценки моделей ослабления из-за облачности применительно к диапазону частот от 20 ТГц до 375 ТГц необходимы данные наземных микроволновых радиометров. Требуется исследовать взаимосвязь между появлением облаков и осадками с целью получения в долгосрочной перспективе статистических данных о содержании жидкости в облаках при наличии осадков и в условиях ясного неба.

- Для анализа надежности систем (например, систем радиосвязи, обеспечивающих безопасность человеческой жизни и являющихся критически важными) необходимы оценка и определение характеристик периода повторения случаев экстремальных осадков.
- В рамках изучения деполяризации и ослабления в атмосфере необходимо разработать модели общего содержания льда в облаках, а также микрофизических свойств частиц облаков и осадков.
- Необходимо обработать данные о микрофизических свойствах частиц осадков (например, данные дисдрометров), которые следует расширить, включив в них данные дополнительных приборов и новые результаты экспериментов.
- Требуется усовершенствовать определение параметров погонного ослабления в дожде, в том числе влияния многократного рассеяния электромагнитных волн в осадках, в диапазоне частот 100–200 ГГц с возможным расширением до 1000 ГГц, с использованием статистических свойств характеристик распределения капель по размерам, полученных на основе данных длительных экспериментов.

Глобальное отображение и статистические аспекты

- Были составлены карты параметров атмосферы, полученные с использованием новейших цифровых устройств с высоким разрешением. Необходимо согласовать для карт параметры, которые еще не были разработаны (высота слоя дождя, показатель рефракции, содержание льда и т. д.).
- Должны быть исследованы межмесячные и межсезонные колебания (тот или иной месяц либо сезон одного года в сравнении с тем же месяцем либо сезоном другого года) ослабления в дожде и интенсивности дождевых осадков, а также межгодовая изменчивость ослабления в водяном паре и облаках.
- Требуют дальнейшего развития методы синтеза временных рядов, особенно для систем НГСО.

Влияние препятствий и растительности

- В связи с большим разнообразием растительности и сложностью ее классификации требуются результаты экспериментов и практические методы расчета для оценки потерь, связанных с растительностью.
- Необходимо усовершенствовать модель распространения радиоволн над местностью при уделении особого внимания трассам, не проходящим по дуге большого круга, с учетом отражения и рассеяния, в том числе моделирование влияния изменения высоты рельефа перпендикулярно направлению распространения. Кроме того, возрастает потребность в оценке статистических данных о потерях при моделировании городской среды и рельефа местности, что требует применения методов трехмерного моделирования и определения того, какой тип информации наилучшим образом характеризует соответствующую среду.
- Необходимы данные измерений, таких как измерения зоны покрытия радиовещания, для того чтобы определить, как учитывать потери, вызванные отражением от препятствий, на наземных трассах распространения сигнала от высокой точки к низкой.
- Существует необходимость в подробной информации о характеристиках диффузного рассеяния от поверхностей зданий.
- Необходимы данные измерений для разработки моделей коэффициента отражения различных типов поверхности Земли для диапазона частот, используемых датчиками спутниковой службы исследования Земли (пассивной и активной).

• Требуется дальнейшее усовершенствование моделирования распространения радиоволн в лунной среде.

2 Рабочая группа **3К** – Прогнозирование распространения радиоволн для трасс распространения из пункта в зону

- Необходимо продолжить разработку моделей распространения, которые могли бы обеспечить надежное прогнозирование основных потерь передачи как для наземных трасс, так и для трасс воздух-земля, которые включают плотную городскую, городскую, пригородную и сельскую среду, с учетом неоднородности рельефа на трассе, поведения "установившегося поля", характерного для распространения над крышами за счет дифракции в более плотно застроенной квазигладкой среде, а также наличия препятствий на местности и влияния кривизны Земли в менее плотно застроенной или богатой растительностью среде, а также на более протяженных трассах.
 - Эти модели должны также учитывать изменчивость во времени и местоположении напряженности поля/основных потерь передачи на трассе таким образом, чтобы это соответствовало высоте терминалов, окружающей их среде и длине трассы, а также механизмы распространения, такие как аномальное распространение, волноводное распространение и тропосферное рассеяние.
 - Трехмерная информация о расположении зданий и растительности, зонах охвата и высотах должна быть доступна во всех цифровых базах данных в форматах, подходящих для извлечения данных для применений в области распространения радиоволн в целях использования в таких моделях.
 - Разработка метода(ов) извлечения профилей рельефа и препятствий из цифровых моделей рельефа и поверхности вдоль геодезической линии между терминалами, включая программное обеспечение и данные проверки для этого типа анализа.
- Требуется расширить применимые диапазоны частот в моделях, чтобы учесть растущее значение процессов многократного отражения и рассеяния, включая рассеяние гидрометеорами, а также поглощения в газах на частотах выше примерно 20 ГГц.
- Для моделей распространения, используемых при планировании систем и в исследованиях межсистемной электромагнитной совместимости, требуются усовершенствованные модели потерь на входе в здание, в частности способы сочетания потерь на входе в здание и потерь из-за отражения от препятствий.
- Требуются дополнительные данные измерений и результаты моделирования для продолжения разработки методов, используемых для планирования систем радиосвязи внутри помещения и систем радиосвязи вне помещения малого радиуса действия, локальных радиосетей и наземных широкополосных систем радиодоступа.
- При разработке моделей распространения радиоволн необходимо учитывать полные интегральные функции распределения, т. е. повышение (усиление) и понижение (замирание) уровня сигнала во времени относительно медианного значения.
- Требуются методы моделирования совокупных источников помех с корреляцией и без корреляции.
- Требуется дальнейшая разработка методов прогнозирования профиля задержки для широкополосных сухопутных подвижных служб, использующих диапазоны УВЧ и СВЧ, с расширением области применения до больших расстояний.
- Требуется дальнейшее улучшение методов прогнозирования распространения радиоволн для оценки влияния сверхширокополосных устройств.

• В сценариях малой дальности следует учитывать методы разнесения (в пространстве, по поляризации, секторам антенны и частоте). Методы разнесения и информацию об угле прихода сигнала полезно использовать при разработке таких систем, как система с многоканальным входом и многоканальным выходом (МІМО).

3 Рабочая группа 3L — Прогнозирование ионосферного распространения и распространения земной волны и радиошум

- Необходимо улучшить модель прогнозирования напряженности поля на частотах ниже приблизительно 150 кГц.
- Требуются дополнительные измерения для проверки и повышения эффективности метода прогнозирования рабочих характеристик ВЧ-линий.
- Для получения параметров ионосферы необходимо дальнейшее развитие радионавигационных методов.
- Необходимы данные для дальнейшей разработки и проверки моделей, описывающих мерцания, вызванные характеристиками ионосферы.
- Необходима совместная работа для разработки недорогой системы измерения для улавливания радиошума в глобальном масштабе, а также для совместного использования и согласования методов снижения уровня радиошума.

4 Рабочая группа 3M — Прогнозирование распространения радиоволн для трасс связи пункта с пунктом и трасс между Землей и космосом

Наземные трассы связи пункта с пунктом

- Необходимо разработать и испытать модели прогнозирования ослабления в дожде на коротких трассах для транзитных и периферийных линий связи базовых станций на частотах миллиметрового диапазона.
- Необходимо провести измерения ослабления в дожде на очень коротких наземных трассах прямой видимости. В таких измерениях для измерения совпадающего ослабления и интенсивности дождя следует использовать время интегрирования в одну минуту с проведением корректировки для исключения влияния мокрой антенны.
- Для разработки моделей прогнозирования для линий МІМО прямой видимости требуются данные долговременных измерений.
- Для разработки методов прогнозирования для коротких трасс на линии прямой видимости и вне ее для систем, работающих на частотах миллиметрового диапазона и обеспечивающих гигабитную пропускную способность для базовых станций в городах, необходимы измерения ослабления из-за зеркального отражения и дифракции.
- Требуются долговременные измерения для сравнения со статистическими данными за прошлые периоды, с тем чтобы можно было оценить потенциальное воздействие системного изменения климата на точность современных методов прогнозирования.
- Требуется провести измерения и разработать метод прогнозирования интенсивности отказов, вызванных замираниями в условиях осадков и в условиях ясного неба, которые вызывают неготовность наземных линий и влияют на их показатели качества по ошибкам.
- Необходимы измерения мерцаний на наземных трассах, которые должны использоваться для разделения эффектов мерцаний в условиях ясного неба и мерцаний, связанных с дождем.

- Необходимо проведение измерений и их анализ для разработки глобальных физических моделей прогнозирования динамики замираний, в том числе их продолжительности и суточных изменений, кратковременных замираний, вызванных многолучевостью, и ослабления в дожде. Динамические характеристики включают количество замираний в условиях осадков и многолучевости, а также продолжительность периодов замирания и между замираниями и предполагают последующее рассмотрение суточных изменений из-за многолучевости на протяжении периодов продолжительностью в нескольких дней.
- Для совершенствования моделей прогнозирования для проектирования линий в диапазоне 275—1000 ГГц и линий оптической связи в свободном пространстве требуются подробные данные измерений параметров видимости и мерцания, а также типов осадков в разбивке на дождь, мокрый снег и сухой снег.
- Требуются данные измерений для систем с двойной поляризацией в целях моделирования прогнозирования отказов систем, использующих защиту с пространственным и частотным разнесением, а также в целях исследования отказов и уточнения метода прогнозирования с учетом защиты с помощью разнесения.
- Для моделирования тропосферного рассеяния в загоризонтных радиорелейных системах необходимо разработать метод преобразования статистических характеристик наихудшего месяца в эквивалентные годовые значения.

Трассы Земля-космос

- Необходимы дальнейшие исследования и экспериментальные данные, чтобы предложить процедуру расчета функции плотности вероятности значений ослабления в дожде и общего ослабления для трасс Земля-космос, а также расширить и испытать модели ухудшений характеристик распространения радиоволн на частотах по крайней мере до 100 ГГц при более высоком проценте времени в результате многочисленных одновременных ухудшений характеристик распространения, таких как ослабление в дожде, ослабление в облаках, поглощение в газах, ослабление в слое таяния и тропосферное мерцание. Необходимо пересмотреть методы масштабирования частоты, угла места и поляризации, в частности методы затухания в дожде и методы, относящиеся к явлениям кроссполяризации, а также провести оценку методов прогнозирования общего ухудшения для составления месячных прогнозов, особенно для низких и высоких широт.
- Необходимо усовершенствовать методы прогнозирования ухудшения характеристик распространения вследствие тропосферных явлений (замирания, вызванного мерцанием и многолучевостью, дождя, облаков, водяного пара и т. д.) на трассах Земля-космос при малых углах места (<5°) применительно к системам спутниковой связи в высоких широтах и системам НГСО, таким как системы с линиями вниз для передачи данных наблюдения Земли, системы, обеспечивающие взаимодействие с воздушными судами, и мегагруппировки.
- Необходимы данные измерений для поддержки разработки и тестирования методов прогнозирования с временным разнесением. Требуется дальнейшее совершенствование моделирования зависимости динамики замираний от климата и угла места для прогнозирования крутизны замирания. Моделирование длительности периодов между замираниями также нуждается в совершенствовании ввиду его важности не только для систем ГСО, но и для систем НГСО фиксированной спутниковой службы (ФСС), где движение спутника влияет на динамические характеристики.
- Метод прогнозирования пространственного разнесения нуждается в доработке в целях прогнозирования статистических данных об общем ослаблении на разных площадках в широком диапазоне расстояний. Модель прогнозирования дифференциального ослабления в дожде также нуждается в совершенствовании, и требуется новый метод прогнозирования

пространственной корреляции при разнесении спутников, в частности для линий связи Землякосмос с несколькими спутниками. Для проверки и совершенствования этих моделей необходимы кампании по исследованию характеристик распространения с использованием спутников НГСО. Проверка также требует расчета функции глобальной пространственной корреляции и возможного изменения функции региональной или локальной пространственной корреляции в малых, средних и крупных масштабах.

- Необходимы экспериментальные данные для пересмотра методов прогнозирования для оптических систем связи Земля-космос в свободном пространстве, а также необходимо разработать модель для прогнозирования ослабления в распыленных веществах. Требуются дальнейшие исследования для прогнозирования ослабления в дожде, поскольку вероятно, что на частотах выше 300 ГГц, особенно в оптическом спектре, будет учитываться влияние многократного рассеяния.
- Необходимо расширить применимость существующих моделей прогнозирования характеристик распространения для систем подвижной спутниковой службы (ПСС) и ФСС, в частности для моделирования разнесения спутников, и статистической модели для смешанных условий распространения, а также с учетом требований глобальных навигационных спутниковых систем (ГНСС).
- Необходимы измерения распространения радиоволн для совершенствования методов прогнозирования ослабления из-за облаков и тропосферного мерцания на трассах между воздушной платформой и поверхностью Земли или космосом.

Трассы помех

- Для расширения модели расчета помех на наземных трассах с целью охвата диапазона частот до 105 ГГц необходимы измерения распространения радиоволн в течение длительного периода.
- Необходимо исследовать чувствительность результатов прогнозирования к разрешению шага профиля трассы (разрешающей способности предсказания) в целях разработки предложений по более совместимым характеристикам для всех значений разрешающей способности предсказания.
- Требуется разработать более качественную классификацию препятствий, и сохраняется необходимость оценки возможной выгоды от непосредственного использования данных о высоте поверхности в рамках существующих моделей распространения. Необходимо изучить оптимальные методы выбора профилей рельефа местности и препятствий для заданных баз данных высоты местности и препятствий (включая методы интерполяции/комбинирования профилей рельефа и препятствий).
- Необходимо усовершенствовать и протестировать метод прогнозирования основных потерь передачи в условиях тропосферного рассеяния, чтобы охватить весь спектр параметров, все сценарии, а также весь диапазон применимости методов прогнозирования распространения для случаев его использования.
- Требуется разработать и протестировать метод для учета частичной корреляции ослабления, вызванного поглощением в газах и тропосферным мерцанием, для основных потерь передачи, не превышаемых в течение небольшого процента времени менее 20%, а обычно 1% и менее.
- Для проверки моделей трасс распространения наземных помех необходимы данные долговременных измерений, относящиеся к рассеянию в дожде при работе в бистатическом режиме на частотах до 105 ГГц.

Применение машинного обучения

- При применении машинного обучения для прогнозирования распространения радиоволн необходимо учитывать следующие аспекты:
 - понимание того, каким образом методы/инструменты машинного обучения могут быть использованы для разработки методов прогнозирования распространения радиоволн;
 - установление процедур для обеспечения того, чтобы модель распространения, разработанная с использованием алгоритмов машинного обучения, могла быть обобщена и была репрезентативной для всех возможных условий, прежде всего тех, которые не были учтены в наборе данных, использованном для разработки этой модели;
 - использование машинного обучения в сочетании с физическими и статистическими моделями распространения для тестирования и подтверждения репрезентативности моделей машинного обучения в границах имеющихся знаний в области физики.
- Необходимо пересмотреть и разработать алгоритмы и принципы машинного обучения, чтобы его можно было использовать в следующих целях:
 - разработка и совершенствование моделей распространения радиоволн для сложных сценариев и сред;
 - анализ и обработка данных о распространении радиоволн для получения аналитической информации и вводных данных для проводимых исследований;
 - анализ эмпирических данных с целью улучшения параметров в существующих моделях распространения.

ПРИЛОЖЕНИЕ 3

Активные работающие по переписке группы в составе рабочих групп 3-й Исследовательской комиссии МСЭ-R

Группы, работающие по переписке, в Рабочей группе 3J			
Группа	Название Затухание в атмосферных газах в Рекомендации МСЭ-R Р.676	Председатель/сопредседатели	
ГП 3Ј-1		Эрик Хилл (USA)	Антонио Мартеллуччи (ЕКА)
ГП 3Ј-2	Моделирование пространственной и временной изменчивости осадков	Арсим Кельменди (F)	Антонио Мартеллуччи (EKA)
ГП 3Ј-3	Генераторы временных рядов	Лоран Кастанэ (F)	Карло Рива (I)
ГП 3Ј-4	Статистические вопросы для тестирования и определение показателей тестирования	Лоран Кастанэ (F)	Антонио Мартеллуччи (EKA)
ГП 3Ј-3М-5	Влияние облаков и осадков на ослабление и деполяризацию на наклонных трассах	Антонио Мартеллуччи (EKA)	Лэкэ Линь (CHN))
ГП 3Ј-3К-3М-8	Потери на входе в здание	Ричард Радд (G)	_
ГП 3Ј-10	Координация деятельности Рабочей группы ЗЈ	Карло Рива (I)	_
ГП 3Ј-11	Эталонные стандартные атмосферы в Рекомендации <u>МСЭ-R P.835</u>	Эрик Хилл (USA)	_
ГП 3Ј-3М-13	Примеры проверки	Луи Эмилиани (LUX)	_
ГП 3Ј-3К-3М-14	Вопросы исследования, относящиеся к модели распространения для HAPS	Хадзиме Сузуки (AUS)	_
ГП 3Ј-3К-3М-16	Индекс рефракции радиоволн в атмосфере и его влияние на распространение радиоволн	Антонио Мартеллуччи (ЕКА)	Лэкэ Линь (CHN)
ГП 3Ј-17	Моделирование двухпозиционного рассеяния на поверхности Земли или других планет	Паоло де Маттеис (IEEE)	Райан Макдоно (USA)
ГП 3Ј-23	Общее моделирование дифракции на рельефе местности для наклонной трассы	Болунь Го (CHN)	-
ГП 3Ј-26	Моделирование распространения радиоволн на Луне	Эрик Хилл (USA)	_
ГП 3Ј-3К-3L-3М-27	Машинное обучение для исследований распространения радиоволн	Зубейр Бокус (G)	_

Группы, работающие по переписке, в Рабочей группе ЗК			
Группа	Название	Председатель/сопредседатели	
ГП 3К-1	Проверка Рекомендации МСЭ-R P.1812	Алакананда Поль (USA)	-
ГП 3К-2	Банк данных ИКЗ МСЭ-R по измерениям для Таблицы VI-1 (Данные для наземных служб "из пункта в зону")	Ричард Радд (G)	-
ГП 3К-4	Вопросы, относящиеся к Рекомендации MCЭ-R P.1546	Ричард Радд (G)	_
ГП 3К-5	Вопросы, относящиеся к Рекомендации MCЭ-R P.1411	Сана Салус (G)	-
ГП 3К-6	Модели и характеристики распространения для более высоких частот	Джуюль Ли (KOR)	-
ГП 3Ј-3К-3М-8	Потери на входе в здание	Ричард Радд (G)	_
ГП 3К-3М-9	Распространение радиоволн вдоль воздушных трасс	Уильям Козма (USA)	_
ГП 3К-3М-12	Прогнозирование потерь, вызываемых отражением от препятствий, на частотах до 105 ГГц	Клэр Аллен (G)	Реза Арефи (Apple)
ГП 3Ј-3К-3М-14	Вопросы исследования, относящиеся к модели распространения для HAPS	Хадзимэ Сузуки (AUS)	-
ГП 3Ј-3К-3М-16	Индекс рефракции радиоволн в атмосфере и его влияние на распространение радиоволн	Антонио Мартеллуччи (EKA)	Лэкэ Линь (CHN))
ГП 3К-3М-18	Изучение некоторых общих вопросов Рекомендаций <u>МСЭ-R P.452</u> , <u>МСЭ-R P.1812</u> и <u>МСЭ-R P.2001</u>	Ивица Стеванович (SUI)	-
ГП 3К-21	Модель прогнозирования влияния затенения людьми	Сана Салус (G)	-
ГП 3К-24	Модель оценки вероятности прямой видимости	Елена Сенич (USA)	_
ГП 3J-3K-3L-3M-27	Машинное обучение для исследований распространения радиоволн	Зубейр Бокус (G)	-

Группы, работающие по переписке, в Рабочей группе 3L			
Группа	Название	Председатель/сопредседатели	
ГП 3L-2	Справочник 32 "Ионосфера и ее воздействие на распространение радиоволн"	Адам Хикс (USA)	-
ГП 3L-5	Радионавигационные методы для получения параметров ионосферы	Рауль Орус-Перес (EKA)	Мамору Исии (J)
ГП 3L-6	Модель ионосферных мерцаний	Рауль Орус-Перес (EKA)	-
ГП 3L-7	Радиошум	Эрик Хилл (USA)	_

Группы, работающие по переписке, в Рабочей группе 3L			
Группа	Название	Председатель/сопредседатели	
ГП 3L-20	Рекомендация <u>МСЭ-R P.684-8</u> "Прогнозирование напряженности поля на частотах ниже приблизительно 150 кГц"	Адам Хикс (USA)	-
ГП 3Ј-3К-3L-3М-27	Машинное обучение для исследований распространения радиоволн	Зубейр Бокус (G)	_

Группы, работающие по переписке, в Рабочей группе 3М			
Группа	Название	Председатель/сопредседатели	
ГП 3М-2	Состояние банков данных DBSG3	Антонио Мартеллуччи (ЕКА)	-
ГП 3М-4	Деятельность, связанная с программными продуктами, цифровыми картами и справочными численными данными	Томас Прехтль (Австрия)	Рауль Оруз-Перес (ЕКА)
ГП 3Ј-3М-5	Влияние облаков и осадков на ослабление и деполяризацию на наклонных трассах	Антонио Мартеллуччи (EKA)	Лэкэ Линь (CHN)
ГП 3М-8	Справочник по связи на трассе Земля- космос	Луи Эмилиани (LUX)	Ричард Радд (G)
ГП 3Ј-3К-3М-8	Потери на входе в здание	Ричард Радд (G)	_
ГП 3К-3М-9	Распространение радиоволн вдоль воздушных трасс	Уильям Козма (USA)	_
ГП 3М-10	Разработка модели рассеяния гидрометеорами в Рекомендации <u>МСЭ-R</u> <u>P.452</u>	Райан Макдоно (USA)	_
ГП 3К-3М-12	Прогнозирование потерь, вызываемых отражением от препятствий, на частотах до 105 ГГц	Клэр Аллен (G)	Реза Арефи (Apple)
ГП 3Ј-3М-13	Примеры проверки	Луи Эмилиани (LUX)	_
ГП 3Ј-3К-3М-14	Вопросы исследования, относящиеся к модели распространения для HAPS	Хадзимэ Сузуки (AUS)	_
ГП 3М-15	Улучшение моделей ослабления в дожде и общего ослабления в Рекомендации МСЭ-R P.618	Лоран Кастанэ (F)	-
G 3J-3K-3M-16	Индекс рефракции радиоволн в атмосфере и его влияние на распространение радиоволн	Антонио Мартеллуччи (EKA)	Лэкэ Линь (CHN)
ГП 3К-3М-18	Изучение некоторых общих вопросов Рекомендаций МСЭ-R P.452, МСЭ-R P.1812 и МСЭ-R P.2001	Ивица Стеванович (SUI)	-
ГП 3М-22	Исследование результатов измерений ослабления в дожде со значением коэффициента уменьшения трассы,	Лоренцо Луини (И)	-

Группы, работающие по переписке, в Рабочей группе 3М			
Группа	Название превышающим единицу на коротких трассах	Председатель/сопредседатели	
ГП 3М-25	Обновленная редакция Справочника 58 "Методы МСЭ-R по прогнозированию распространения радиоволн для исследования помех и совместного использования частот"	Райан Макдоно (USA)	-
ГП 3J-3K-3L-3M-27	Машинное обучение для исследований распространения радиоволн	Зубейр Бокус (G)	_
