8th World Telecommunication/ICT Indicators Meeting (WTIM-10)

Geneva, Switzerland, 24 - 26 November 2010

Contribution to WTIM-10 session 2

Document C/16-E 25 November 2010 English

SOURCE: London School of Economics

TITLE: Measuring the Impact of Broadband: employment effects

Measuring the Impact of Broadband: employment effects

Jonathan Liebenau London School of Economics

Underlying research with
P. Karrberg (LSE) &
R. Atkinson, D. Castro & S. Ezell (IT & Innovation Fdn)

Agenda

- The Case for Digital Investment
- Other Nations' Experience
- Methodology
- Digital Infrastructures and Jobs
 - Broadband
 - ITS
 - Smart grid
- Policy implications & proposed indicators

example calculation Estimates of UK Jobs

£5 bn each area over 1 yr

Jobs Created
280,500
188,500
231,000
700,000

The Case for Investing in Digital Infrastructures

- Jobs, including network multipliers
- Productivity
- Quality of Life
- Energy Savings

Employment Multipliers

- 1. Direct jobs created
- 2. Indirect jobs created
- 3. Induced jobs created
- 4. Network effect jobs created

The Network Effect Multiplier

- Arises from new consumer & business behaviours, functionalities, & downstream industries enabled by digital infrastructure
- Broadband is a platform supporting innovative tech.
 & services
- Effect is greater in networks that are not yet mature

Examples of Network Effects

Broadband

New computers, peripherals, social networking, e-commerce

ITS

Vehicle navigation, registration recognition, freight telematics

Smart Grid

Appliances, electric vehicles, energy storage & flexibility

Methodology for Measuring Employment Impact

- 1. Bottom-up analysis
 - Jobs created in direct service, software & hardware (manufacturing) for each industry using industry-specific employee compensation data
 - Estimate mix of technologies (e.g. DSL & fibre optic)
 - Assess labor component of equipment/hardware needed
 - Apply a leakage factor to account for loss of some mfg. jobs due to imports
- 2. Calculate indirect & induced jobs w/ industry-specific employment multipliers
- 3. Apply a network effect multiplier

Methodological options

- Choosing salary levels
- Aggregating industry categories
- Costing estimates
- Scale effects
 - What happens if larger allocations?
 - Do we lose much with smaller actions?

Broadband Of which in Total created/ **Job Type** small bus. retained Direct 76,500 22,500 Indirect + 134,500 37,000 induced 69,500 Network 34,500 effect 280,500 **Total**

ntelligent Transport Syste			
Job Type	Total created/ retained	Of which in small bus.	
Direct	62,500	44,000	
Indirect + induced	79,000	53,700	
Network effect	47,000	23,000	
Total	188,500		

Smart Grid		
Job Type	Total created/ retained	Of which in small bus.
Direct	43,000	26,500
Indirect + induced	130,500	91,000
Network effect	57,500	28,500
Total	231,000	

Policy implications

- Mix of:
 - Tax credits
 - Grants; as done for home water meters; home insulation
 - Procurement esp. acceleratified transport systems spending
 - Lead by govt. properties, vehicles, etc.
- Regulatory reform
 - Speed-for-spectrum swap

available indicators

- Salary levels (but no consensus on "total employment costs")
- Job descriptions from industry associations (but know-how necessary for interpretation)
- Trade & geographical dispersion data generally good
- UK Off. Nat. Stats. restricted lab data excellent for firm-level, inc. post code

indicators needed

- Comparable, sector specific multipliers
 - these exist for some, e.g. U.S., Scotland (but not England)
- Job mix per sub-sector (estimates require considerable detailed knowledge)

How the UK differs

- Smaller network effects than USA
- Choices of network areas
- Stimulus mechanisms

Conclusions

- Spurring additional investment of £15 billion in Britain's digital infrastructure in 2010 will create about 700,000 U.K. jobs for 1 year.
- ICT infrastructure investments are ready. These projects—and the jobs they create—can **get started now**.
- While most infrastructure investments only create jobs in the year the investment occurs, many jobs created through network effects enabled by digital infrastructure persist once the infrastructure is built out.
- Immediate short-term measures can drive networks for broadband, intelligent transport systems, and the smart grid to the tipping point, after which much investment can be sustained by the private sector.
- Beyond immediate jobs creation, ICT infrastructure investments drive productivity growth and deliver personal and societal benefits.