ETH zürich

"Hidden" energy-related water footprint of data usage

Alena Lohrmann, Postdoctoral researcher @ ETH Zürich

Water-energy-data nexus (I)

Scope of the study: OECD Europe, from 2016 to 2030

ETHzürich

ifluence of electricity

mpetition for wat

Key insights and fir remarks

Water-energy-data nexus (II)

On the data user level

- The estimated energy consumption of a Google search query is 0.3 Wh^[1]
- A single search using Chat GPT "consumes" three times more energy than a typical Google search ^[1]
- In 2020, OECD EU average monthly data usage was 10 GB per subscription^[2]

On the data center level

 About 0.3 kWh of electricity is used per GB of processed data (estimation for 2018)^[3]

On the energy system level

- On average, 3.74 m³ of water is used per MWh of generated electricity global power system^[4]
- 3.9 m³ of water/MWh Europe's power system (average)^[4]

iuence of electricit ix on water deman

Influence of electricity mix on water demand for data usage

ETH zürich

Influence of electricity mix on water demand

mpetition for wate

Key insights and fin remarks

Competition for water resources

- By making our world more digitalised, we use more energy and, consequently, consume more water
 - Thus, creating even a higher competition for local water resources
- Climate change is water change, water resources are becoming more unreliable globally

Water stress score in 2020^[6]

Does that actually mean that we should stop using all energy-intensive technologies (including data services)?

ETH zürich

Vater-energy-dat nexus Influence of electricity mix on water demand Competition for water resources

ey insights and fina remarks

Key insights and final remarks

- Depending on the country's electricity generation mix, the share of the energy-related water footprint can reach as high as 90% of the total water footprint of data usage
- The total water footprint can be considerably reduced as a result of the transition of the country's energy system to low-water-demanding technologies
- One possible solution: on-site generation from low-waterdemanding renewables → solar PV and wind

Wrong strategy	Stop using all energy- intensive technologies (including data services)
Better strategy	Reshape the energy system

ETH zürich

ompetition for wate

References

[1] de Vries, A. (2023). The growing energy footprint of artificial intelligence, *Joule*, 7, Issue 10, pp. 2191-2194, doi.org/10.1016/j.joule.2023.09.004.

[2] Farfan, J., Lohrmann, A. (2023). Gone with the clouds: Estimating the electricity and water footprint of digital data services in Europe. Energy, 290, p. 117225, doi.org/10.1016/j.enconman.2023.117225.

[3] Pihkola H., Hongisto M., Apilo O., Lasanen M. (2018). Evaluating the Energy Consumption of Mobile Data Transfer – From Technology Development to Consumer Behaviour and Life Cycle Thinking, *Sustainability* 10, 2494. doi.org/10.3390/su1007249.

[4] Lohrmann A., Farfan J., Lohrmann C., Kölbel J., and Pettersson F. (2023). Troubled waters: Estimating the role of the power sector in future water scarcity crises. *Energy*, 282, p. 128820. doi.org/10.1016/j.energy.2023.128820.

[5] International Energy Agency (IEA) (2024). Countries and Regions. Energy mix. Domestic energy production. Available at: https://www.iea.org/countries (Accessed: March 14, 2024).

[6] Water Resources Institute (WRI) (2024) AQUEDUCT Water Risk Atlas. Washington DC. Available at: https://www.wri.org/applications/aqueduct/water-risk-atlas (Accessed: March 14, 2024).