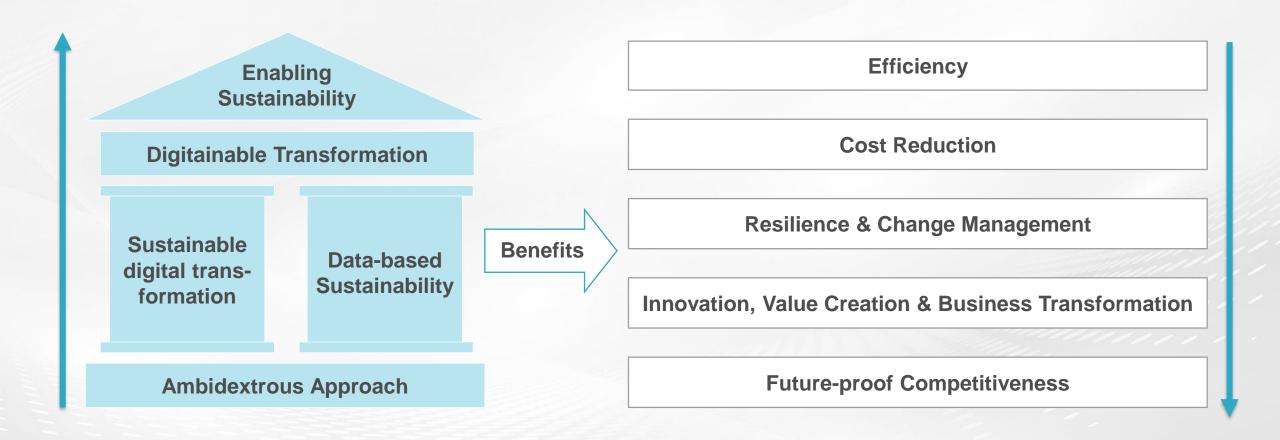


Christian Maasem, Detecon International GmbH STI Forum, 2nd May 2023

In the sustainability revolution, ICT's transformation pivots its role to an enabler for society.

Positive environmental and social Impact

DigiTainability is an ambidextrous approach to foster enablement potential and leveraging ability to execute.



... is the ability to utilize digitalization to foster sustainability.

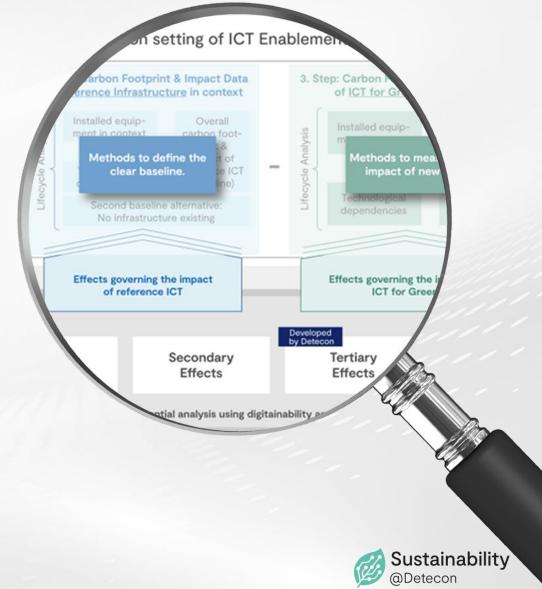
Improving resource efficiency and reducing negative environmental, economic and social impacts by encouraging mindful application of digital technologies.

DigiTainability is yielding various benefits; from efficiency to data lead value creation

Hands-on solution: Carbon Enablement Calculator For industries and their ecosystem

Challenge

ICT solutions without overview of the real impacts regarding their direct and indirect effects (Scope 1-3)


Solution

Data-based evaluation framework of carbon impact in ICT-landscape/eco-system, measuring its direct, indirect and consequential effects.

Stakeholders empowered to make transparent and informed decisions with holistic view on Scope 1-3 and enabling factors for sustainable ICT and climate action.

We developed and analyzed the practical application of calculator based on assumptions for a use case of implementing a 5G connectivity in a warehouse.

Network

Germany (North Rhine-Westphalia) 100,000 sqm size of the warehouse

German energy mix, CO₂ emission per kWh: 420g

- An integrated solution between Edge Computing and private 5G network at a logistics warehouse in Germany
- Replacing the existing old ICT infrastructure with 5G to achieve:
 - Optimized routes for the electrical vehicles with reduced electricity consumption and better equipment efficiency
 - Improving inventory management services with handhelds
 - High-resolution video monitoring to foster fast documentation, improved security and optimized maintenance

Vehicle (AGV) & Computer Vision

In a following step the analysis of the context's carbon footprint and impact will lead to the identification of the primary effects which influence the enablement.

Essential ICT Hardware

Essential ICT Software

Supportive Products

GHG Emissions

During the embedded ICT infrastructure's lifecycle different GHG emissions, particularly CO₂, will be emitted which impact the quantification accordingly.

Waste Management

Especially for the hardware the way of treatment of any disposed components will have an effect on the enablement effect of the ICT for Green.

Resource Consumption

The selected raw materials influence the primary effects and hence have an impact on the enablement effect, depending on their scarcity, durability, disposability and origin.

Energy Consumption

An important factor regarding any ICT infrastructure is its total energy consumption which will have influence on the emissions as well as resource consumption.

Once the primary effects are identified, the secondary and tertiary effects have to be identified that is enabled by connectivity through 5G.

Secondary Effects

- Improved processes due to handheld devices operation
- Improving comfort by not lifting heavy and wrong objects
- Remove processes for lean approach
- Reduction of errors in packing and compensation claims
- Optimal positioning and mapping of goods in the warehouse for quick access, saving time and money

Tertiary Effects

- Improved safety and more ethical advantages
- Change in land use patterns
- Optimized business services and delivery
- More job creation
- Preserving privacy
- Saved time

Use case: Warehouse Retrospective calculation of former ICT to 5G advancement

The impact of the transversal systems (digitalization, energy or transport) are governed by the higher order effects and not only direct effects.

Primary Effect of 5G:

Savings of more than 60 t of CO₂ Around 12% (compared to former ICT)

Secondary & Tertiary Effects of 5G:

Savings of ca. 15 t of CO₂ Around 1-2% (compared to former ICT)

Rebound Effects of 5G:

Transparent consideration of usually left out rebound effects with ~+3 t of CO₂

Total enablement of ca. 15%, or 72 t of CO₂!

Measures (SIM)

The independently developed methodology represents a comprehensive approach on how to calculate an enablement factor for ICT for Green.

Core Enablement Quantification Calculation Version 1.0 **Context (Application setting of ICT Enablement Calculation)** 1. Step: Definition of ICT* in context 2. Step: Carbon Footprint & Impact Data of 3. Step: Carbon Footprint & Impact Data Reference Infrastructure in context of ICT for Green in context Components Identification Installed equip-Overall carbon Installed equipment in context Lifecycle Analysis Lifecycle Analysis Technological footprint & ment in context **Dependencies** Overall carbon impact of Final ICT Avoided footprint & reference ICT selection **Technological** impact data of **Emissions** (Baseline) dependencies Boundaries ICT for Green Technological Second baseline alternative: dependencies No infrastructure existing **Excluded Components** unregarded in context * Hardware, Software, Infrastructure **Effects governing** Effects governing the impact of Detailed Calculation Influence Factors the impact of ICT for Green reference ICT **Primary** Secondary Tertiary **Rebound Effects Effects Effects Effects Sustainability Impact**

Consequential analysis is to be used to identify all the possible effects

Pave the way for a greener world!

Step 1: Measure

Collect and **analyze** data to understand your impact and to define sustainability performance improvement measures.

Step 2: Transform

Strategize and integrate leveraging innovative measures, data excellence and technologies to transform your operations.

Step 3: Enable

Empower your stakeholders to drive positive impact and enable coherent actions towards a more sustainable future.

Embrace digiTainability for fostering your role in the sustainability revolution for a greener world.

Let's start the Digitainability Journey!

Think big, start small.

Get connected.

Scale fast.

Christian Maasem
Detecon International GmbH
Bayenwerft 12-14
50678 Cologne (Germany)

Mobile: +49 151 6346 5412

Email: Christian.Maasem@detecon.com

