International Telecommunication Union

The next generation network: Framework and its potential

Naotaka MORITA Vice-Chair ITU-T SG 13; NTT/Japan

Contents

- 1. Introduction to Focus group on NGN
- 2. Current results of FGNGN
- 3. QoS and performance aspects
- 4. Future plan

Focus group on NGN

- ITU-T Director launched NGN Focus Group in June 2004
- Almost every two month meeting: 6, 7, 9, 11/2004 and 3, 4, 7, 8, 11/2005

WG	Area	Deliverables		
WG 1	Service requirements	NGN Release 1 scope, services, and requirements		
WG 2	Functional architecture and Mobility	Functional requirements and architecture, IMS for NGN, Mobility Management Capability Requirements for NGN, and Framework for Customer Manageable IP Network		
WG 3	QoS	TR-123.qos, TR-msnniqos, TR-NGN.qos, TR-NGN.NHNperf, TR-e2eqos.1, TR-enet, TR-atmipa, TR-racs, TR-ipaqos		
WG 4	Control and signalling	TRQ.IP QoS.SIG.CS1		
WG 5	Security capability	NGN Security Framework		
WG 6	Evolution	Evolution of networks to NGN, PSTN evolution to NGN		
WG 7	Future packet-based bearer network	Future Packet Network requirements, architecture, and solutions		

Definition of NGN

Definition
of NGN
(Rec.
Y.2001)

A NGN is a packet-based network able to provide Telecommunication services and able to make use of multiple broadband,

QoS-enabled transport technologies and in which service-related functions are independent from underlying transport-related technologies.

It enables unfettered access for users to networks and to competing service providers and/or services of their choice.

It supports generalized mobility which will allow consistent and ubiquitous provision of services to users.

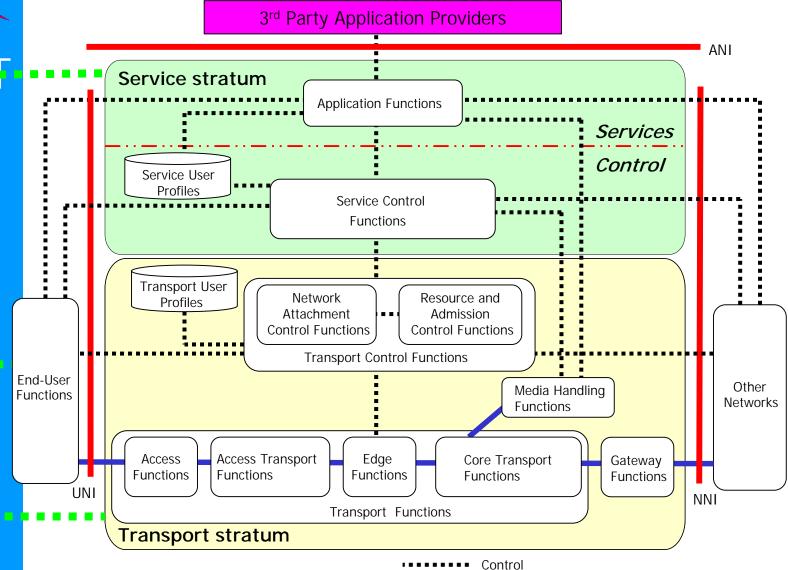
Generalized Mobility Convergence btw. Fixed & Mobile Unfettered Access Open Access I/F Separation Services with Transport Architecture and Open API QoS-enabled Transport Manageable Broadband Multiple-Broadband

Services and Capabilities

ITL

Service Types

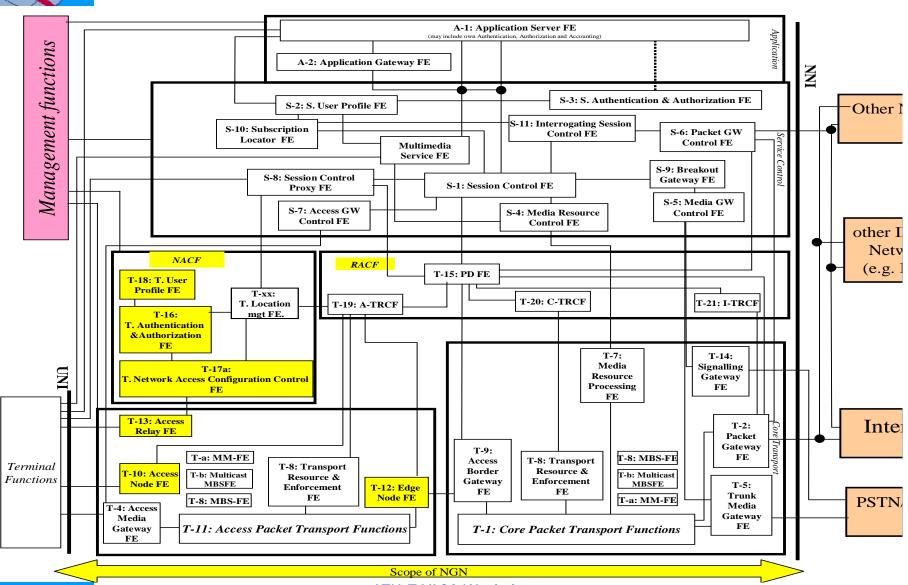
- Multimedia services
- PSTN/ISDN Emulation services
- PSTN/ISDN Simulation services
- Internet access
- Other services (data services etc.)
- Public service aspects (LI, ETS/TDR, etc.)


♦ Service Capabilities

- Basic network capabilities
- Service support capabilities
 - Open Service Environment
 - Service Enablers
 - PSTN/ISDN Emulation support
- Public service support capabilities

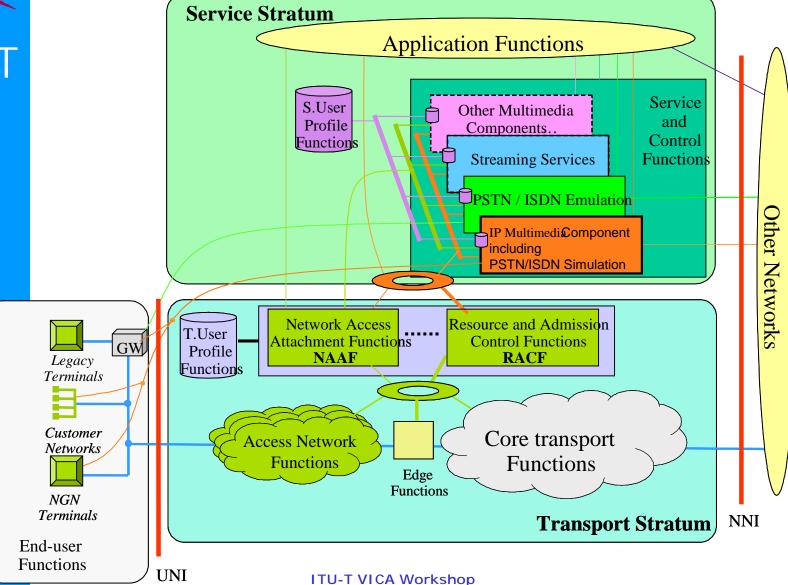
Management Functions

Overall NGN Architecture



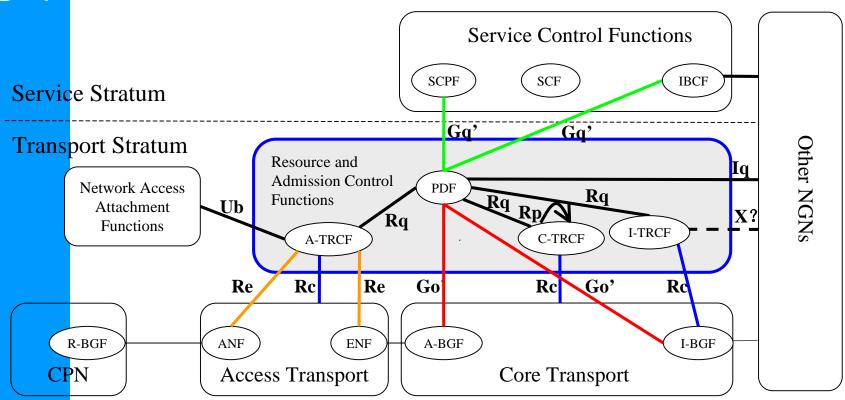
ITU-T VICA Workshop 22-23 July 2005, ITU Headquatter Menagement

Media



Functional Architecture Model

Grouping of NGN Functional Entities


TR-RACS - Functional Requirements and Architecture for Resource and Admission Control in Next Generation Networks

- Covers procedures for the control of QoS (including resource reservation, admission control and gate control), control of NAPT and Firewall traversal.
- Admission control involves checking authorisation based on user profiles, SLAs, operator specific policy rules, and resource availability within access and core transport.
- Within the NGN architecture, the RACF acts as the arbitrator for resource negotiation and allocation between Application Functions and Transport Functions.
- Similar to ETSI but wider scope than TISPAN Release 1 (e.g. including core network control and inter-domain PDF-PDF communication).

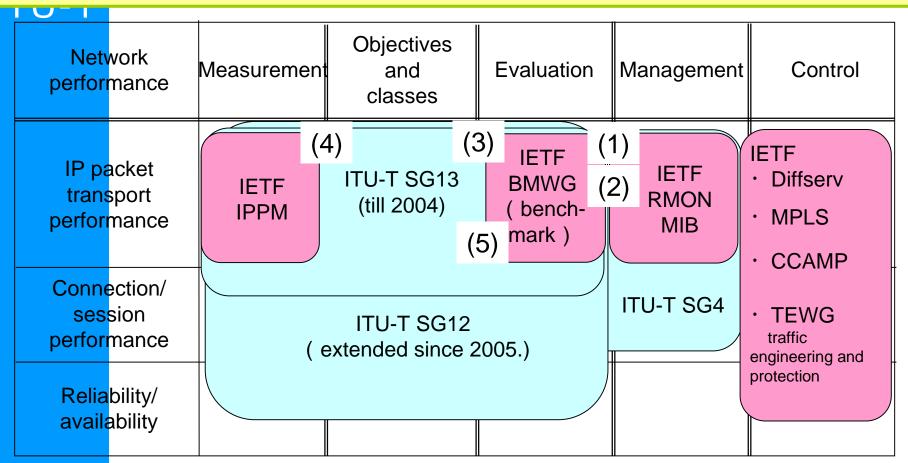
Generic Resource and Admission Control functional architecture

ITU-T

FGNGN deliverables on NGN performance

- Deliverables on NGN performance aspects are based on Recommendations Y.1540 and Y.1541.
- New aspects for NGN are (1) detailed description, (2) inter-operator aspects, and
 (3) extension of specified sections into a customer network.

List of FGNGN deliverables on NGN performance


Deliverable	Status	Target	Title
TR-msnniqos	Draft	2005/09	Multi Service Provider NNI for IP QoS
	(Stable)		
TR-pmm	Draft	2005/11	Performance measurement and management for NGN
	(Stable)		
TR-apo	Draft	2006/04	Algorithms for Achieving End to End Performance Objectives
TR-ngn-qos	Draft	2005/09	General aspects of QoS and network performance in NGN
TR-nhn-perf	Draft	2005/09	Network performance of non-homogeneous networks in NGN

Position of FGNGN deliverables on NGN performance

FGNGN deliverables;

(1) TR-msnniqos, (2) TR-pmm, (3) TR-apo, (4) TR-NGN-QoS, (5) TR-nhn-perf

QoS classes and performance objectives (Y.1541)

Table 1/Y.1541 Provisional IP network QoS class definitions and network performance objectives							
Network	Nature of network performance objective	QoS Classes					
performance parameter		Class 0	Class 1	Class 2	Class 3	Class 4	Class 5 Unspecified
IPTD	Upper bound on the mean IPTD (Note 1)	100 ms	400 ms	100 ms	400 ms	1 s	U
IPDV	Upper bound on the 1 – 10^{-3} quantile of IPTD minus the minimum IPTD (Note 2)	50 ms (Note 3)	50 ms (Note 3)	U	U	U	U
IPLR	Upper bound on the packet loss probability	1 × 10 ⁻³ (Note 4)	1 × 10 ⁻³ (Note 4)	1 × 10 ⁻³	1 × 10 ⁻³	1 × 10 ⁻³	U
IPER	Upper bound	1 × 10 ⁻⁴ (Note 5)			U		

Table 2/Y.1541 – Guidance for IP QoS classes

QoS class	Applications (examples)	Node mechanisms	Network techniques	
0	Real-time, jitter sensitive, high interaction (VoIP, VTC)	Separate queue with	Constrained routing and distance	
1	Real-time, jitter sensitive, interactive (VoIP, VTC).	preferential servicing, traffic grooming	Less constrained routing and distances	
2	Transaction data, highly interactive (Signalling)	S	Constrained routing and distance	
3	Transaction data, interactive	Separate queue, drop priority	Less constrained routing and distances	
4	Low loss only (short transactions, bulk data, video streaming)	Long queue, drop priority	Any route/path	
5	Traditional applications of default IP networks	Separate queue (lowest priority)	Any route/path	

13

Future Issues

- 1) Architecture Point of view
 - Incorporation of fixed network requirements into IMS based architecture
 - Combination with Optic based Architecture
 - Develop Fixed-Mobile convergence model
- 2) Control and Protocol aspects
 - Identify and develop of protocols to meet NGN control mechanism
 - NGN signalling for NGN services or use/updates of SIP
 - Control capabilities to support billing and charging
- 3) QoS aspects
 - Interconnection requirements for supporting End-End QoS services
 - QoS parameter mappings among different standards
 - Extension of Session Control Protocols
- 4) Evolution and Interworking aspects
 - Evolution scenarios from PSTN/ISDN to NGN
 - Interworking requirements and specification for IWF
 - Identify protocols for interworking
- 5) Security aspects
 - SIP hop-by-hop (vs. end-to-end) security
 - Firewall traversal
 - Security management and controls

Meeting plan in 2005

- 5th FG NGN: 14 ~ 22 March, Jeju-island Korea
 - NGN Technical Workshop: 12 ~ 13 Korea
- o 6th FG NGN: 26 April ~ 30 April, Geneva Swiss
 - ITU-T and IETF Joint NGN Workshop 1 ~ 2 May, Geneva, Swiss
- 7th FG NGN: 27 June ~ 1 July, Beijing, China
- 8th FG NGN: 24 August ~ 2 September, Geneva Swiss
- 9th FG NGN: 14 November ~ 18 November, London UK

Transfer all tasks to SGs (SG11, 12, 13, 19)

Thank you for your attention !!!