Quality of Service for Next Generation Networks

Hui-Lan Lu, Ph.D.
Rapporteur, ITU-T Q4/13
Bell Labs, Lucent Technologies
Outline

- Complexity of NGN QoS
- Key QoS topics under study in ITU-T
- Active NGN QoS work items in Q4/13
- Resource and admission control
- Inter-domain performance measurement and management
- Summary
Complexity of NGN QoS

- User-perceived QoS is end-to-end (cf. E.800)
- NGN QoS is complex because
 - NGN applications have *diverse* performance needs
 - IP is *not* designed for consistent application performance
 - Various mechanisms have been introduced with specific applicability
 - *Diversity* in an end-to-end path is common owing to
 - Different levels of QoS support in *endpoints*
 - Varying types of QoS support in the *transport*
 - Multiple *provider domains*

Effective management of resource contention is an important aspect of NGN QoS support
Key QoS Topics under Study in ITU

- Performance objectives, including
 - Network performance classes
 - Network performance allocation
- Dynamic QoS controls, including
 - Signaling of performance requirements
 - Resource and admission control
 - Interworking of QoS mechanisms
 - Inter-domain considerations
 - Frameworks and guidelines
- Performance measurement and management
- Performance assessment

A major goal is to develop an end-to-end QoS solution that allows incremental deployment
Active NGN QoS Work Items in Q.4/13

- Requirements and architecture for resource and admission control in NGN (Y.racf)
- A QoS control architecture for Ethernet-based IP access networks (Y.123.qos)
- A QoS architecture for Ethernet networks (Y.enet)
- Performance measurement and management for NGN (Y.pmm)
- Requirements and framework for end-to-end QoS support in NGN (Y.e2eqos.1)
- Priority classification for IP networks and services
- Requirements for flow-aware transport in NGN

Notes:
1. Q.4/13 has inherited most of the FGNGN QoS work as highlighted.
2. Y.pmm is worked jointly with Q17/12, which also is the home of Y.1541 and the FGNGN follow-up work on network performance (including Y.NGN.NHNperf and G.fepo).
3. SG 11 has approved the FGNGN output on IP QoS signalling requirements as Q-Series Supplement 51.
Resource and Admission Control Functions (RACF)
- Preserve the separation of services and transport
- Bridge services and transport to enable dynamic application-driven support for performance assurance and network border control
ITU-T RACF Architecture

- **Policy Decision Function**
 - service facing, transport independent

- **Transport Resource Control Function**
 - service independent, transport dependent, possibly network-segment specific

- **Policy Enforcement Function**
 - typically part of border transport elements

- RACF augments native transport QoS support
 - Preempting transport congestion at the service control layer
 - All applications (VoIP, IPTV, etc.) involving network-based control can make use of RACF via Rs
Roles of RACF and Related Entities

Policy Decision Function
- Makes the overall admission decision based on policy and resource availability
- Applies resource controls to the transport for bandwidth reservation, packet marking, gating, NAPT, etc.

Transport Resource Control Function
- Tracks transport resource usage and network topology
- Checks resource availability
- Applies L2 resource controls to the transport

Policy Enforcement Function
- Enforces controls applied by PDF
- Provides resource information to TRCF

Overall, RACF supports
- Relative and absolute QoS, including priority
- Endpoints of varied QoS control capabilities
- Push and pull models for policy installation
- Multiple transaction models for resource requests
- Various resource management methods based on accounting, measurement and reservation
- Existing and emerging transport QoS mechanisms
A Configuration Example

The Policy Enforcement Function can reside in the
- Gateway GPRS Support Node (GGSN)
- Packet Data Serving Node (PDSN)
- Session Border Controller (S/BC)
- Broadband Remote Access Server (BRAS)
- Cable Modem Termination System (CMTS)
- Border gateway

Y.123.qos and Y.enet under way apply RACF to Ethernet-based IP access networks and Ethernet-based NGN, respectively
Inter-Domain Performance Measurement and Management (Y.pmm)

- Definitions of attributes to be measured
 - Mean delay, delay variation, packet loss, path unavailability (cf. Y.1541)
- How attributes are measured, e.g.,
 - Active or passive measurement (cf. Y.1711 and Y.1731)
 - Active probes tailored to Y.1541 QoS classes
 - Clock synchronization to Coordinated Universal Time through GPS or the like
- Management requirements for discovery, inter-PRS communication, etc.
Summary

- NGN QoS has been an active area under study in ITU with active ATIS’s involvement
 - A key goal is to develop an end-to-end QoS solution that allows incremental deployment
- Q.4/13 has several related work items ongoing (in collaboration with SGs 4, 11 and 12 as appropriate), including
 - Y.racf (targeted for consent in July), which outlines an approach to dynamic application-driven resource and admission control to support performance assurance and network border control
 - Related protocols are under development in Q5/11
 - Draft Recommendations Y.123.qos and Y.enet apply RACF to specific environments
 - Y.pmm, which outlines a basic framework for inter-domain performance measurement and management
 - QoS and priority, which has been recently initiated to further support emergency telecommunications services
- Cooperation among related standards efforts across SDOs is critical to the development of consistent and interoperable mechanisms, which are essential for effecting QoS end-to-end