Overview of IETF QoS

Allison Mankin
mankin@psg.com
Transport Area Director
1 May 2005
Scope

Adapting some thoughtful words from RFC 3086:

> From the end user’s point of view, QoS should be supported end to end between any pair of hosts…many untaken steps remain on the road to achieving this. One essential step, the evolution of business models for interdomain QoS, will necessarily develop outside of the IETF. A goal…is to provide a firm technical foundation that allows these business models to develop.
RSVP - Flow Reservations

Receiver orientation for multicast
Diffserv

PHB (EF, AH, BE…)

RFC 3608 PDBs. ALSO THE BASIC SERVICE CLASSES (in Last Call in MAY 2005)

AC required
Internet QoS Structure (RSVP - Intserv)

Aggregated in core

Map to Diffserv at edge

Set up link only (3G usage)
RSVP-TE

MPLS tunnel establishment, routing and traffic engineering

TE is not QoS, but they are relatives, and...
Diffserv Mapping onto MPLS (RFC 3270)

Packets’ diffserv markings carried thru LSP. EXP bits used with TE
MPLS-DSTE

- DSTE stands for Diffserv-aware TE
- Misnomer, more like a QoS protocol within in MPLS
- Resembles Basic Service Classes
- Class Types (4 Voice, 4 Data), characterized
- Classification advice
- Management advice and protocol usage with RSVP-TE extensions (references at end)
Next Steps in (IP) Signaling

• Other IETF speaker in this session
 – A few points here

• IETF has turned RSVP extension largely (though not entirely) to RSVP-TE

• Some NSIS goals (besides QoS goals to be discussed shortly)
 – Mobility-ready (identifiers, compressibility, etc)
 – Link-localization ready
 – Slide five structures present. More structures required?
 – NSIS Quality of Service Application: NSQ
Calling for QoS (SIP)

SIP (conceptual session request)

SDP
audio: ilbc: 30kbps
video: h264: 128kbps

Session in Progress:
Await Preconditions on QoS
(more on this in Session 6)

NSQ requests for 32 and 128 via an AAA authorization or provision for another QoS structure
Conclusion - IETF QoS Architecture

- Multiple structures supported by IP and MPLS protocol design.
- Designs with strong input from experience of large network operations and packet multimedia pioneers.
- Current IETF emphasis is *completion* of the protocol development.
- Deploy, operate, understand interactions and issues, report back, refine.
References (drafts easy to find at tracker.ietf.org)

- RFC 3608
- Basic Service Classes - draft-ietf-tsvwg-diffserv-service-classes
- Core - RFC 3175
- Intserv to Diffserv - RFC 2996
- Local RSVP - draft-ietf-tsvwg-lrsvp
- RSVP extensions - RFC 3936
- Diffserv to MPLS - RFC 3270
- MPLS QoS (DSTE) - draft-ietf-tewg-diff-te-proto (awaiting publication)
- NSIS documents (next talk)
- SIP preconditions - RFC 3312 and draft-ietf-sip-rfc3312bis (awaiting publication)