Challenges and Opportunities in Deploying IPv6 Applications

Marc Blanchet
CTO, Hexago

(Director, North American IPv6 Task Force
Member of the Board and Technical Directorate, IPv6Forum)

{mailto I sip}: Marc.Blanchet@hexago.com
Plan

- IPv6 ROI
- End to end
- IPng Recommendation
- Incremental Deployment
- Network Toolkit
- TSP tunnel Broker
- Case Studies
- Conclusion
IPv6 Return on Investment

• Many features of IPv6, taken separately, do not provide, at this time, sufficient ROI to justify a full upgrade, end-to-end, of the network, the operating systems and the applications.
 – Each feature has an equivalent <ugly> fix in IPv4.
 – Large legacy installed base (IPv4-only)
• The combination of IPv6 features help provide a better ROI, but still usually not sufficient.
• Choices:
 – Upgrade the whole network, OS, apps.
 • Provides all the good features of IPv6
 • If you can afford the upgrade, great.
 – Incremental deployment
 • Get the good features of IPv6
 • Lower cost for deployment
 • Risk is manageable. Outcome is positive.
 – Wait until the very last minute
 • Do not benefit IPv6 features
 • Behind. Difficult to catch up market. Loose market share.
End to End

- **Applications:**
 - Need to be converted to IPv6. Change of network API.

- **Operating system:**
 - Need to be IPv6 enabled

- **Network:**
 - Lan, enterprise, edge, access, distribution, core, exchange, Internet, exchange, core, distribution, access, edge, enterprise, lan
 - Routers, firewalls, DNS, vpn servers, network management, ...
 - Servers

- It is only when all pieces are IPv6 enabled that an IPv6 application works
IPng Recommendation

- IETF IPng Recommendation [RFC1752: Jan 1995]:
 - The IPv6 transition plan is aimed at meeting four basic requirements:
 - Incremental upgrade.
 - Incremental deployment.
 - Easy Addressing.
 - Low start-up costs.

How to deploy

A) Upgrade everything

B) Deploy incrementally:
 - Per host/per application:
 • One host-application at a time, as needed.
 - Have some IPv6 native backbone to aggregate traffic, deploy addressing, etc..
 - IPv6 access over the IPv4 network
 - Use transition technique to give IPv6 connectivity to the « far » hosts
 - In an efficient network-wise way
 - Low upfront costs while providing early service
Write Your Requirements

• Possible Requirements:
 – NAT traversal: is there an IPv4 NAT in the network?
 – Networks: do you support only nodes or networks?
 – Mobility?
 – Is dependency on IPv4 address an issue?
 – AAA:
 • Authentication of the service
 • Accounting
 – DNS registration?
Network Toolkit

- **6PE:**
 - IPv6 in MPLS.
 - Where MPLS is deployed
- **ISATAP:**
 - IPv6 in IPv4 tunnels.
 - End nodes only
 - Does not traverse NAT.
- **Teredo:**
 - End nodes only
 - Traverse NAT
- **6to4:**
 - End nodes and networks
 - Does not traverse NAT
- **TSP tunnel broker**
 - End nodes and networks
 - Traverse NAT
 - Stable IPv6 Address (no dependency on IPv4 address)
 - AAA
TSP Tunnel Broker has:
- Tunnel Setup Protocol: signaling protocol for establishing the tunnel
- TSP client on host or home gateway or router
- TSP tunnel broker:
 - establish the tunnel end point
 - NAT traversal
 - Prefix delegation
 - AAA
TSP Tunnel Broker

- **TSP**: Tunnel Setup Protocol
- **Control channel**
 - To negotiate and establish the tunnel
- **between**
 - a TSP client
 - who needs IPv6 connectivity when only IPv4 is available
 - And a TSP tunnel broker,
 - behaving as an IPv6 network access server
 - offering IPv6 in IPv4 tunnels
 - detecting NATs and providing tunnels over NAT
 - offering network prefixes to networks (such as home, personal, org)
 - authenticating, authorizing and accounting users and traffic
- **TSP client:**
 - Lightweight (small footprint for embedded such as mobile phone, PDA, sensors, home gateways)
 - On a user PC, acts as a driver: i.e. Automatic, no user intervention.
TSP Capabilities

- Tunnel types:
 - IPv6 in IPv4
 - IPv6 in UDP-IPv4 (a NAT is in the path)
 - IPv4 in IPv6
- Permanent or temporary IPv6 address
- Prefix delegation
- IPv4 Mobility/change of address detection
- Mobile networks
- DNS automated registration
 - tunnel end-point name (AAAA record)
 - Inverse tree delegation for assigned prefix (NS record)
- Keepalive/Heartbeat
TSP moving node

- When changing IPv4 address, TSP re-establish automatically the IPv6 tunnel
Connecting IPv6 over NAT

- Migration Broker connects:
 - IPv6 nodes and networks
 - located behind a NAT
 - enabling applications to be deployed, otherwise impossible with NAT
TSP: Ubiquitous IP

- Also enables IPv4 in IPv6 tunnels
- Mobile node/network with:
 - IPv4 with reachable address
 - IPv4 behind a NAT
 - IPv6 network
- TSP tunnel broker provides both IP protocols in all cases.
Case Studies

• Examples of customers:
 – Wireless provider
 • Mix of IPv4, IPv4 with private address space (NAT) and IPv6 networks
 • Need a transition tool handling all cases: Ubiquitous IP.
 • Example of application: mobile videoconferencing
 – Broadband provider
 • IPv6 E2E applications deployment to the home
 • Network management and support of home premises
 – Enterprise remote access
Wireless Provider

- **Need:**
 - Mobility application.
 - Using MobileIPv6
 - Connecting networks for the mobile node are:
 - IPv4-only with global address
 - IPv4-only with private address
 - IPv6
 - Goal: Ubiquitous IP

- **Solution:**
 - IPv6 in IPv4 tunnels with NAT traversal, with AAA.
 - Hexago Migration Broker
 - TSP client in mobile node.
Wireless Provider Network

- Provides ubiquitous IP for the application.
- Mobile videoconferencing kept running even after multiple handovers with different kinds of IP access.
Broadband Provider

• Need:
 – IPv6 application to deploy to home networks.
 – Support issues and reachability to end nodes are very important.
 – IPv4 networks
 – Traceability/Anti-spoofing (legal considerations)

• Solution:
 – IPv6 in IPv4 tunnels with NAT traversal
 – AAA with permanent addressing for users.
 – Prefix delegation
 – Hexago Migration Broker
 – TSP client in either home gateway or in end node.
Broadband with TSP Tunnel Broker

- Cases shown
 - Host tunnel
 - Host tunnel behind GWR (NATv4)
 - GWR tunnel
 - GWR-BB tunnel

IPv6 Prefix
Enterprise Remote Access

- Enterprise has:
 - An IPv6 network
 - Employees: travelling, remote offices, soho, mobile.
- Needs a way for employees to access the enterprise IPv6 network (VPN-like scenario)
 - NAT are used in all access networks (wifi hotspots, hotel networks, etc...)
- TSP tunnel broker:
 - NAT traversal
 - AAA for user authentication
 - Prefix delegation if mobile/home network
 - Mobility
Enterprise Remote Access Scenario

- Cases shown
 - Isolated node
 - Hotel network
 - WIFI hotspot
 - SOHO
Conclusion

- IPv6 ROI needs incremental deployment for most cases
- Incremental deployment enables low upfront cost and early service availability.
- TSP Tunnel Broker is a technology for incremental deployment and ubiquitous IP.
- Customer case studies
Hexago

- Founded after 6 years of R&D in IPv6, spinoff of Viagénie.
- IPv6 deployment solutions company
- Flagship product: Migration Broker
 - Responding to customer needs
 - Implements the TSP tunnel broker
 - Manage thousands of IPv6 in IPv4 tunnels
 - NAT-Traversal with automatic discovery
 - AAA
 - Secure and managed IPv6 deployment
 - Industry standard CLI. Easy to configure.
 - Low-cost and fast deployment of IPv6
 - IPv4 in IPv6 tunnelling for IPv6-only backbones
- Involved in IETF, IPv6Forum, North American V6 Task force
- Customers: Providers, Enterprise, Military, R&E. Worldwide.