

International Telecommunication Union

Advanced Grid Applications

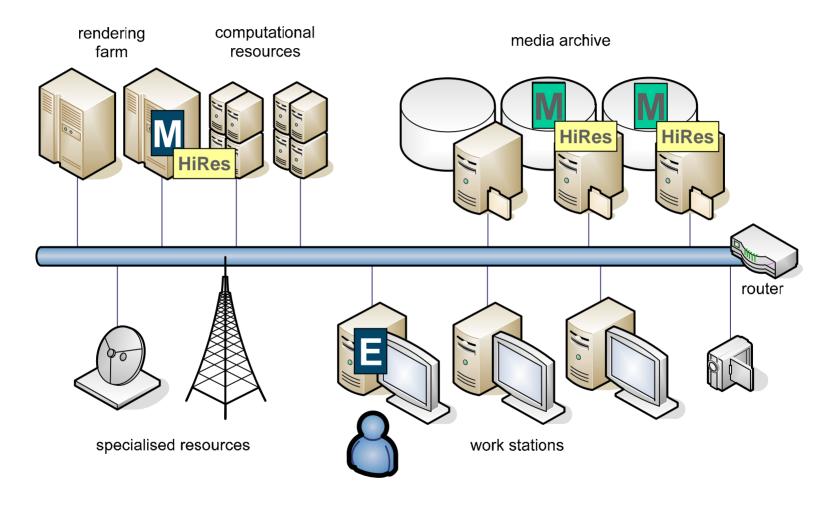
ITU-T/OGF Workshop on Next Generation Networks and Grids Geneva, 23-24 October 2006

Piet Demeester, IBBT-UGent piet.demeester@intec.ugent.be www.ibbt.be; www.intec.ugent.be

Outline

- o Media Grid
- o Consumer Grid
- o Thin Client

- -Why?
- -What?
- -Requirements?


WHY Grid for media production?

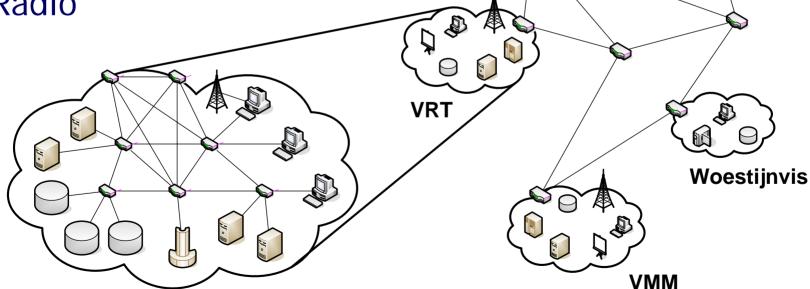
- Broadcasters, Content Producers, Film Studio's, Cinema... move from tape based to file based environments
 - Fast ingest and flexible processing
 - Hierarchical storage (online, near-line, offline)
 - Easy management, search and retrieval of media assets (based on meta-data)
 - Easy distribution and sharing of video material (towards other professional players but also towards public market)

WHAT? Typical MediaGrid site

WHAT? Media Grid cooperation

BBC Ireland

BBC Wales


ITU-T

TV production & distribution

o Program suppliers

o Cinema

o Radio

BBC Scotland

BBC

REQUIREMENTS

- Processing power (video editing, rendering, transcoding, ...)
- Storage capacity (low resolution, high resolution, hierarchical)
- Network connectivity for distributed access and collaborative working

REQUIREMENTS: Media company profiles

ITU-1

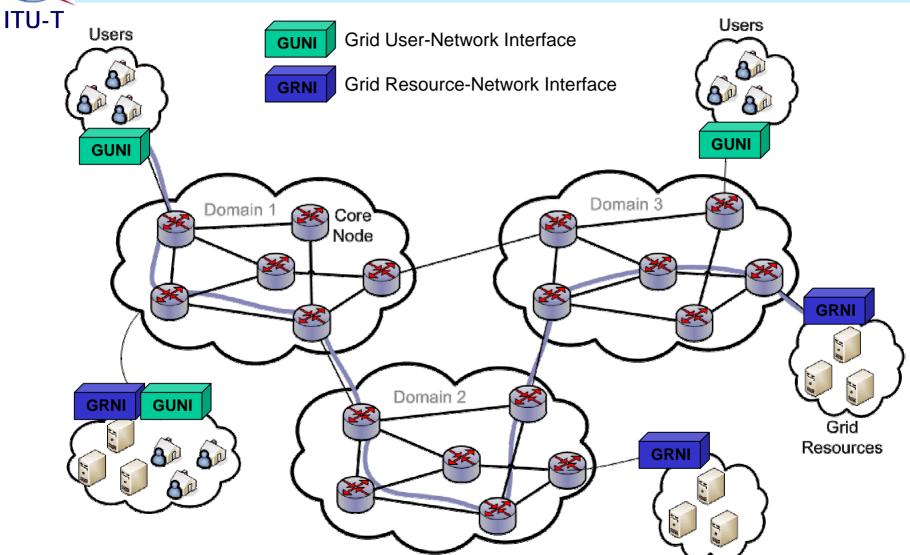
	Bandwidth	CPU	Storage	QoS	nr
Ingest	Lo- or HiRes A/V	Low	0,65-25,7 GB/h	High	1
Quality check, HiRes browse	HiRes A/V	Low	25,7GB/h	Low	2
LoRes browse	LoRes A/V	Medium	0,65GB/h	Low	3
LoRes rough EDL	LoRes V; Lo- & HiRes A	High	0,5GB/h;0,15-0,7GB/h	Medium	4
Send/Restore archive	Lo- or HiRes A/V	Low	0,65-25,7GB/h	Medium	5
Craft editing	5-10 HiRes A/V		5-10 25,7GB/h	High	6
Rendering, conforming, transcoding	š Š		25,7GB/h	Low	7
Playout	1-40 HiRes A/V	Low	1-40 25,7GB/h	High	8
Audio editing	Lo- or HiRes A/V		0,65-25,7GB/h	Medium	9
Graphic creation	aphic creation HiRes V		25GB/h	Low	10

		ingest	video journ.	audio ed.	video ed.	prod./direct or	playout	archivis t
	Regional TV prod.	2	30-50	2-3			2	2
	National TV prod.	3	300-500	20-30			3	4
	TV post prod.	1	10-50	1-3	5-20	10	1	1
	TV broadcast	1	5-10	1-5			1	1
	TV program supplier			25		25		
	Video on demand	2		5			2	1
Γ	Radio prod./broadcast			30		20	50	

Outline

- o Media Grid
- o Consumer Grid
- o Thin Client

- -What?
- -Why?
- —Requirements?
- -Solutions?


WHY grid for consumers?

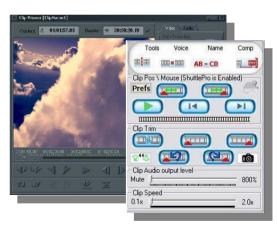
- Storage capacity and computing power: managed utilities (water, electricity, ...)
- Storage and retrieval of personal multimedia assets (audio, video, photo, ...)
- Processing of multimedia information (personal content creator, 3D rendering, gaming, virtual reality, ...)
- OPEX (frequent hardware upgrades) and CAPEX (management, security, data protection, ...)
 reduction

WHAT are Consumer Grids?

WHAT are Consumer Grids?

- o GUNI = Grid User Network Interface
 - Interoperable procedures between user and Grid
 - Submits jobs (with requirements, e.g. data/CPU, time constraints, ...)
 - Directly via control plane, or middleware
- O GRNI = Grid Resource Network Interface
 - Resources can dynamically enter/leave network
 - Announces processing and/or storage resources
 - Signaling & control interface between NE and network

REQUIREMENTS


 Eg. video editing: 2Mpx/frame for HDTV, suppose effect requires 10 flops/px/frame, then evaluating 10 options for 10s clip is <u>50 Gflops</u> (today's high performance PC: <5 Gflops/s)

Online gaming: e.g. Final Fantasy XI: 1.500.000 gamers

<u>Virtual reality</u>: rendering of 3*10⁸ polygons/s → 10⁴ GFlops

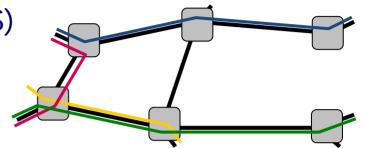
Multimedia editing

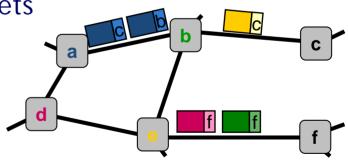
REQUIREMENTS

- Invisible and transparent for the user
- Capable of processing a very large amount of small jobs from a large amount of users and processes
- Capable of managing large amounts of very heterogeneous media assets
- o Cost efficient

Application	CPU	Data	Network	Robust	#users	Secure	RealTime
Online Gaming	++	++	++	+	+++	+	+++
Virtual Reality Coll.Working	+++	++	++	++	++	++++	+++
Multimedia edit	+++	+++	+++	++	+	+	+
Data Mining	+++	+++	+++	++	++	+++	+

Conventional requirements


Next Generation Grids



SOLUTION: Optical Networks

- Optical Circuit Switching (OCS)
 - continuous bit-stream
 - pre-established light-paths
 - should be dynamic

- Optical Burst/Packet Switching (OBS/OPS)
 - chunks of bits, in bursts/packets
 - forwarding based on header
 - e.g. label switching, GMPLS
- o Hybrids

Optical Circuit Switching

o Pro:

- ✓ Guaranteed service quality once set-up (cf. reserved lambda), thus fixed latency, no jitter, etc.
- ✓ Fixed signaling overhead, independent of (large) job size

o Con:

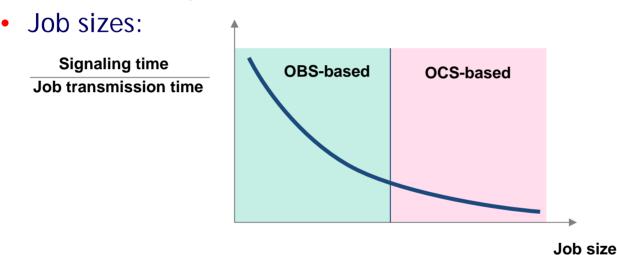
- Signaling overhead[†] not acceptable for relatively small jobs
 - Requires (complex) grooming if frequent set-up and tear-downs are to be avoided (i.e. if too slow)
- Less flexible, dynamic than OBS/OPS, cf. light-path set-up and tear-down

Optical Burst/Packet Switching

o Pro:

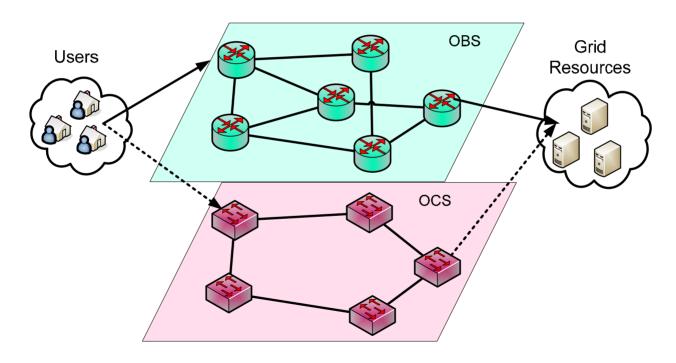
- Extremely flexible, dynamic
- ✓ Inherent statistical multiplexing of available bandwidth (over multiple lambdas)

o Con:

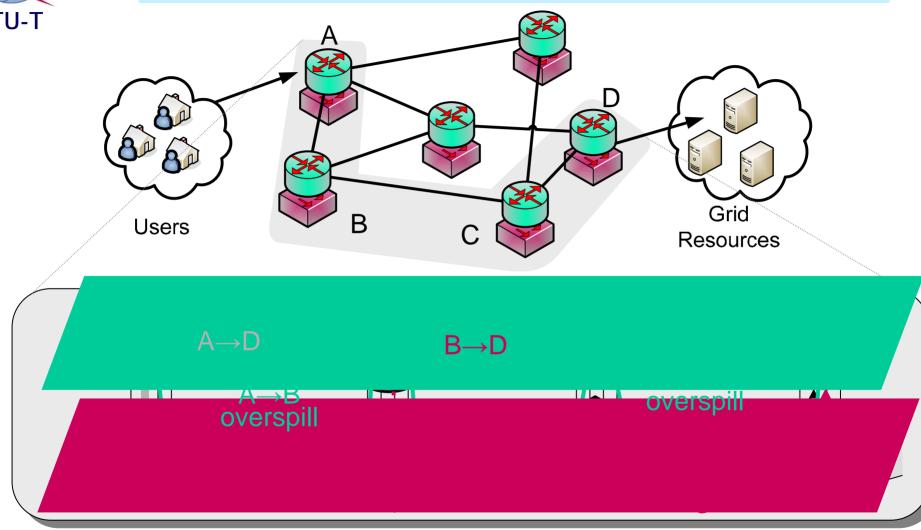

- Packet/Burst header processing overhead
 - Requires job aggregation if job size too small compared to header overhead
- Difficult to deliver strict QoS guarantees without 2-way reservation
- Technology not that mature

Hybrid OCS/OBS

- o Choosing between OCS and OBS depends on...
 - Optical technology (OBS requires faster switches, burst mode Rx/Tx and regenerators, ...)


Hybrid architectures can offer a compromise

Hybrid OBS/OCS


- Parallel: choice to either set-up OCS circuit between source & destination, or use OBS
 - Note: can be overlay, where OBS makes use of OCS connections between OBS nodes

Hybrid OBS/OCS: overspill routing

Outline

- o Media Grid
- o Consumer Grid
- o Thin Client

- -What?
- -Why?
- -Requirements?

WHY grid for mobile terminals?

- Rapid improvements in network bandwidth, cost, and ubiquity combined with the security hazards and high total cost of ownership of personal computers have created a growing market for thin-client computing
- Currently the concept is mainly applied to wired thin-client computing → extend towards wireless thin-client computing

WHAT are W-Thin Clients?

- The user ends up with wearable interfaces (input and output)
- o Interfaces get more lightweight
- o All other functions are provide by "the wireless networked grid"

REQUIREMENTS

- o Network: always on
- Terminal: lightweight, low power and flexible, I/O as basic functionality
- o Data: accessible everywhere
- o Processing power: accessible everywhere
- Applications: thin client enabled in a mobile environment (e.g. power optimized, close to the user, ...)

Conclusions

- Multimedia processing is a major driver for new grid applications
- Evolution from the professional market (Media Grid) towards the home/office (Consumer Grid) and mobile market (W-Thin Client Grid)

