) INTERNATIONAL TELECOMMUNICATION UNION

ITU-T Z.120

TELECOMMUNICATION Annex B

(S)'ll;AlltlrlaARDIZATION SECTOR (04/1 998)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) — Message
Sequence Chart (MSC)

Message Sequence Chart

Annex B: Formal semantics of Message
Sequence Charts

ITU-T Recommendation Z2.120 — Annex B

ITU-T Z-SERIES RECOMMENDATIONS

LANGUAGES AND GENERAL SOFTWARE ASPECTS FOR TELECOMMUNICATION SYSTEMS

FORMAL DESCRIPTION TECHNIQUES (FDT)
Specification and Description Language (SDL)
Application of formal description techniques
Message Sequence Chart (MSC)

Extended Object Definition Language (eODL)
Tree and Tabular Combined Notation (TTCN)
User Requirements Notation (URN)

PROGRAMMING LANGUAGES

CHILL: The ITU-T high level language

MAN-MACHINE LANGUAGE

General principles

Basic syntax and dialogue procedures

Extended MML for visual display terminals

Specification of the man-machine interface

Data-oriented human-machine interfaces

Human-computer interfaces for the management of telecommunications networks
QUALITY

Quality of telecommunication software

Quality aspects of protocol-related Recommendations

METHODS

Methods for validation and testing

MIDDLEWARE

Distributed processing environment

7.100-Z.109
Z.110-Z.119
7.120-7.129
7.130-Z.139
7.140-Z.149
Z.150-Z.159

72.200-Z.209

7.300-Z.309
Z7.310-Z2.319
7.320-2.329
7.330-Z.349
7.350-Z.359
7.360-Z.369

7.400-Z.409
72.450-Z.459

Z2.500-Z.519

7.600-Z.609

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation Z.120

Message Sequence Chart
Annex B
Formal Semantics of Message Sequence Charts

Summary
Scope / Objective

Message Sequence Chart is a graphical and textual language for the description and specification of the interactions
between system components. The purpose of the formal definition of the semantics is to provide for an unambiguous
interpretation of Message Sequence Charts.

Coverage

The document presents a formal definition of the semantics of Message Sequence Charts. Examples are added to explain
the formal definitions.

Application

The formalization of the semantics of Message Sequence Charts serves several purposes. For users it will help in order to
obtain a clear understanding of Message Sequence Charts and in order to further a harmonization of the use. Tool
builders can use the semantics for derivation of prototypes directly from the definitions provided or they can base their
computer applications on these definitions. Validation and comparison of tools may be based on the formal semantics.
Finally, the developers of the Message Sequence Chart language can benefit because the semantics may show overlap of
features and may guide in unification of features.

Status / Stability

The semantics described here is a formalization of the semantics informally explained in the main text of the
Recommendation. This interpretation of Message Sequence Charts is fairly stable. This annex describes the semantics of
a Message Sequence Chart, a High-level Message Sequence Chart and a Message Sequence Chart document.
Substructure references and substitution are not covered in this semantics.

Associated work

Recommendation Z.120: Message Sequence Charts (MSC).

Source

Annex B to ITU-T Recommendation Z.120 was prepared by ITU-T Study Group 10 (1997-2000) and approved under the
WTSC Resolution 1 procedure on 1 April 1998.

ITU-T Rec. Z.120/Annex B (04/1998) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSC Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementors are cautioned that this may not represent the latest information and are therefore strongly
urged to consult the TSB patent database.

© ITU 2002

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

ii ITU-T Rec. Z.120/Annex B (04/1998)

B.1

B.2

B3

B.4

Introduction

Message Sequence Charts.....................

B.2.1

B.2.2

B.2.2.1
B.2.2.2
B.2.2.3
B.2.3

B.2.3.1
B.23.2
B.23.3
B.23.4
B.24

B.2.4.1
B.242
B.2.5

B.2.5.1
B.252
B.2.53
B.254
B.2.5.5

Introductioncccceeuvennn.

CONTENTS

Basic Message Sequence CRAITScccecirieieiieieee ettt ee e seeens

Graphical representation

Intuitive semantics
Textual representation

Additional Basic Concepts

Process creation and process terMinationcceecee voveeerreerreeniueesieeseeesseeeseeesseesssnessseesns

Timer handling

Incomplete message events ...

Conditionsccccoeeevevevnennnn.

Ordering facilities
COoregionscceeeeeeeeeeneennn

General orderings

Combining MSCs with COMPOSItION CONSIIUCESccueruiririit cieieieieie et

Vertical, horizontal and alternative composition 0f MSCScccccvevveriieciieienieiieieeeens

MSC documents
Inline expressions

MSC reference expressions ...

High-level Message Sequence Chartscoccoeiee weieieieriesese sttt

B.3.1 GALES vttt ettt et eatee st e et et e et e e sa e e et e e e a bt e et e e bt e e h b e e bt e e e abe e bt e e bbeenateesabeenates
I 70 T8 B BV (o] 7 71 5 o) + O OO RSO ROUTRRPRUPPTOU
B.3.1.2 Graphical representation Of AtESccceevieriieres vreerieeieeiere ettt ste e e e sbeebeeseesseennees
B.3.1.3 Semantics OF SAtEScceeieiiiiieieeieiis ettt ettt ettt ettt et neeeneeeneas
B.3.1.4 Textual representation 0f GAteSc.cccivieriieiiesieieiiecee ettt sreebe b e esaesseenneas
B.3.2 MSC reference eXpressions and GAESc.ecveerueriieies cereerieeieerieseenreereseeseresseeeeseesseeseens
B.3.2.1 Graphical repreSentationcceuiiieriiiiecereeteeteeteeeteesteeteeeesaeesseeseessesssesseessesssesssesssesses
B.3.2.2 Semantics of MSC reference eXpreSSionsceeveververiereenieeeeseesseeseeseseesseessesssessesses
B.3.2.3 Textual representation of MSC reference expressions with gates ccccoceverereneneneneene
B.3.3 Inline eXpressions and GALESccveveeierieriieries ceerreeieeeestesteeseeaeeaesseesseesseessesssesseesseeseans
B.3.3.1 Graphical representation of inline expressions with gatescccecceererierieneenciieneeeee,
B.3.3.2 Semantics of inline expressions With Gatesccceceet vevevierieriieiecieeee e
B.3.3.3 Textual representation of inline expressions With atesc. coeveeeierierieneesiesee e,
Process theory for Message Sequence CRartsc.ccoiieiieiiiieiiere et
B4.1 INETOAUCTION ...t ettt et st sb ettt st et e b eneeenteens
B.4.2 Operational SEMANLICSceivieiierieieeierieeeeetieteeteeteseestteseesesaesseesseesesnsesssesseenseeseenseans
B.4.3 EqQUivalence Of PrOCESSEScuecviiiiiiieeieitietieies ettt ete st ste e eaeeaeesaeesbeesseeaaesaaesreeseenreens
B.4.4 Deadlock, empty process and atomic aCtIONSc.ccereeervees creerreeererreseenieeseseeseesseessesnenns
B4.5 DElayed ChOICEoeieiieiieie et ettt ettt ettt st e e e ens
B.4.6 Delayed parallel COMPOSITIONceervieriieiiiienis creeiestieieeiesreeseesesseesseesseessesseessesssesseesseens

ITU-T Rec. Z.120/Annex B (04/1998)

O© O O 0 9 AN O N B NN NN

—_— e e e e e
O 00 O W N N O

22
22
22
22
23
23
23
23
25
26
27
27
28
28

29
29
29
30
31
31
33

B.5

B.6

iv

B.4.7 Weak sequential COMPOSILIONcecueiuieiiiriiiieries sttt ettt e e e e
B.4.8 Generalization of the COMPOSIION OPETALOLSccvievieriieriers coreeieeieeeeseesreereseeseee e eaeesnenns
B.4.9 RENAMING OPETALOTeeviieeieiieiieiieieieeies cterttete et e ete st e et esteeseesseeseesseessessaesseeseensesnneenseans
B.4.10 Repetitive DENAVIOULc.eiuiiiiiiieitieteete ettt ettt sttt sttt ettt ettt ebe et se st e e et enee e eneeeens
B4 10,1 TEETALION ..eviiiiiiiiitiitcrieeteetertets ettt sttt ettt ettt et b e bt bt e bt bt et e e eabe st e sbesbesaeebeeneenneneens
B.4.10.2 Unbounded rePetitionccoecieeuieriieiies eieeieeiiesie ettt et et ete st et eeee s eesteenteeseesseeneesseenneas
B4 103 RECUISION w..iiiiiiieiietietteteet sttt ettt sttt b bt a ettt s b st e bt e aeebe et es s et et e besbeebeeneenneeens
Textual syntax of MSC fOr the SEMANTICSccceeruieiirieriieiieeiesiere ettt sieeae st seseesreesseenseeneeens
B.5.1 Changes to the teXtUal SYNEAXccceeriiiiiiiieies ettt ettt e e e neeeneeens
B.5.1.1 Parts of the language that are not treatedccoovverieierierieicieeeee e
B.5.1.2 Instance-oriented repreSeNtatiONccieieriet soueeieriie st et et etceseeete e et e st eteenteeneesneenneas
B.5.1.3 Instance deCOMPOSILIONccuieiiriieriiiiiiies ceteereetesee st esteete e eteesreebeesbeeesesesesreebeesseeseesseas
B.5. 14 SUDSHEULION ..ottt sttt ettt ettt bbbt sttt e e e
B.5.1.5 Incomplete message events and AtEScccecirieererieieiieieiee ettt
B.5.1.6 NAtUAl NAIMESeeuieiiiiiiiiitiiisteete st ettt st ettt ettt ettt s bt sbeebe et ennenaens
B.5.1.7 Trrelevant infOrmationcooceereiuieiiiit st ettt ettt be e e nneas
B.5.1.8 SROTTRANAS ... ettt bbbttt
B.5.1.9 EXEEIISIONS ..eviruiriiiiiiitintetetetet ettt sttt eb bttt st b e sttt et et be s ae bt et e b e
B.5.1.10 ASSUIMPLIONS .eeuvveiiieiieeiiieiieeiteeiies ceeertteesteeestaeesseessaeeseesseeasseesssesassessssessssessssessssesssseenssesnns
B.5.2 Textual syntax for semantics definitioncceceeeierieciiieiiiie e
B.5.2.1 MSC dOCUMENLScuviiiiiieiieiieieetieis eteetteie et te st et e et e ae e e sseesaeeteemeeeseeeneenseenseenseeneesneenneas
B.5.2.2 Message SeqUENCE CRATLScc.ecveriieieriiees ceerieetesteseesteeteetesseesseeseessesseesseessesssesssesseesses
BL5.2.3 EVEILS ..ottt ettt et a ettt et e n e e et et e e et e teeneeeneenneas
B.5.2.4 Causally ordered VENLScccciiiiiiiiiis ettt ettt ettt
2 TR TR T 1) (< 5 1o} 1 1RSSR
B.5.2.6 MSC DOGIES ...ttt ettt ettt ettt ettt b e e bt a e at et et e e be bt beeaeene et enneneen
B.5.2.7 MSC reference EXPIESSIONSccveeriervierierries erveereseesseesseessesseesseesseessesssesssessesssesssesssesseessees
B.5.2.8 INIINE EXPIESSIONS ...eeuviruieiieiietieiieetiens stteteenteestesteesseeneeeteeseesseesaeesseenseenseeneeeseenseenseeneesneenneas
B.5.2.9 High-level Message Sequence CRArtsccccevveer eeiieienieniieieeeeeeesieeseeseseeesreesseessesnnas
Semantics of Message SeqUENCE CRAITSccccocueiieriieriieierierie ettt steebeeseseeesreeseesaeesaeeens
B.6.1 INEEOAUCLION ...ttt ettt ettt ettt et et e st esae e s et enbe et e eneesneesseenseenteans
B.6.2 THE APPIOACK ...oevieieiiciieeeee et ettt ettt e et e et e et e s te e beesbeenbessaesseesseenseensaenseans
B.6.2.1 General INtrOQUCTIONc..eveiriiririintinient ettt sttt ettt ettt st bt ene e
B.6.2.2 MSC AOCUMENLScuitiiiieieieieieies et eteete et ettes et e e testesbe et e eseeseeaeententesbeebeebeeneeneeneensaeens
B.6.2.3 Message SeqUENCE ChATSccecieiiieieriieis eeieeiestestesteeteeteseeseeeseeneesseenseenseensessaenseensens
B.6.2.4 Message Sequence Chart DOAIEScooeeriiiieieeiiee ettt
BL0.2.5 EVENLS oottt ettt st sttt et st
B.6.2.6 Complex MSC fragmentscccceeiiririiert ceeeieeee ettt ettt ettt et e et et te e eneesneas
B.6.3 Semantics of an MSC dOCUMENLcoeuiiiiiriiriiie ettt
B.6.4 SemMANTICS OF EVENLScueiuiriiriiriiriiriiieriets ettt ettt sttt ettt s ennes
B.60.4.1 L0CAL ACHIOMS ...ueiouiiiieiieiieieeee ettt ettt sa et ettt e bt ettt ee e e e e b e nbean
B.0.4.2 MESSAZE EVENLS ..ecuviiruiieiieiieiieeriieet teriteestteestteestteetaeesseessbeeasseesabeessseessseesnseesnseessseensseensseees
B.6.4.3 INCOMPIELE MESSAZE CVENLSeeuvieieuiieiieiiaies ceteeteetiesetesteenteeeeeneesseesteenseeneeeseesseenseeseensenneas
B.6.4.4 Instance create and iNStANCE STOP EVENLScceervieieriieeriieiieieeeesieeteeeeseesreebeeeeesreesseessesnnas
B.6.4.5 TIMEI @VENLS ..eouviuiiiiiiiiiiitiitiite sttt ettt st et ebe bt eet et et sbe st e e bt ebeeat et et e te st e s besaeebeeneenneeens

ITU-T Rec. Z.120/Annex B (04/1998)

44
44
44
44
44
45
45
45
45
46
47
47
48
48
48
48
49
49
49
49
50
50

51
51
51
51
51
51
51
53
53
54
55
55
56
57
57
57

LS I 3 T 1) T 15 10 4 TSSO
B.6.5 Semantics of causally 0rdered EVENLSccveviecieries cereierieeeie et
B.6.6 Vertical and horizontal composition of MSC fragmentscccce ceveerieeienierieeieneeeieneens
B.6.7 SeMANtICS OF COTEZIOMNS ...eeuviuieniiitietieiiesit et ettt ettt ettt e st e b et et setesbeenbeenteeaeesaee
B.6.8 Semantics 0f MISC DOMIESc..ccueveieiriiriiiiriiieteteeee ettt st
B.6.9 Semantics of MSC 1eference eXpPreSSIONScecuerierereeeieriertieieeieeeeseeesteeee e sneeseeeneeenes

B.6.10 Semantics of inline expressions

B.6.11 Semantics of High-level Message Sequence Chartsocceeeeiierieeiienienieneee e
BAbHHOGIAPRY ..ottt ettt ettt h bttt e teen e e eaeeeae e st et enteeneeeneenean
List of Figures
B.1 Example Basic Message Sequence Chartsccoceoiiiiiis vieiiiieieieetee et
B.2 Instance symbols: line-form and colUMN-fOrmccooievieiiiiiiiieniee e
B3 Placement of local actions on line-form and column-form insStancescocceeeereerereenieneeseeeene
B.4 Basic Message Sequence Chart with OVertakingccccceeees vveriieiiieiienieie e
B.5 Two diagrams that violate the static rEqUITEMENLtScceciet coiriieiiee e
B.6 Process creation and terMINALIONccceieirietieirt coteterte ettt ete et ee e e e testestesteseeebesaeeneeseeneenseneens
B.7 Event-oriented teXtUAl SYNEAXccvirieriieieriieies cteeiieie e seeste et te s ee st e seeste e e sseeseenseenteenaeenaenneas
B.8 Timer events in stand-alone MOAEcceeiriiiiiis et
B.9 Combinations of tIMEr VENTS (1)ccvieieiiieieiieieris ettt re e st e e e sae e s e ereessaenseenseens
B.10 Combinations of timer €Vents (I1)ccceeciiiiiiiiiiens ciierie ettt sve e et e b e e seaeesabeesaaeeseaeeneneenes
B.11 An MSC with lost and found MESSAZESc.cecuerrerreriieerieriieieete sttt et e sreere e ereesseesseessesssessaessees
B.12 EVENt-0OTiented SYNMEAXccccveeieriieierieiienieees steeteetesseeteessessaessaesseesesssesseesseesseansesssesseenseensesssesssessaessees
B.13 Graphical representation 0f CONITIONSc.ecvieruieviiieiiieiiiieteeeeee et st eee e ebeeesesreeseessesenesenas
B.14 Graphical representations Of COTEZIONSecerierierieies cetiertieteetereterte et e eteseeeteeneeesaesseeseenseeseessnessees
B.15 Placement Of €VENtS ON COTEZIONSc.eeruiruierieriieiieiis eeteeteettesteenteeeeeteseeesseeseeeneeeneeeseesseeseenseeseesnaenneas
B.16 Message Sequence Chart With @ COTEZIONc.cccveriirieis ceeriieieiie et et et e e ere e e eseesseeseessesseessaesseas
B.17 TeXUAL SYINEAX .eeuteeuietieiieitieieeteeie st etes oteeteenteeete st ee et e e emeeeseesbe e st entesaeesaeesseenseeneeeneenseenseenseenseeneesneenneas
B.18 Example of @ general Orderingcccoioieiiiii ittt ettt et
B.19 Example of a general ordering within an inStancec.cceecveeureriieienieniieieeeee e eeees
B.20 General ordering Within an INSTANCEcceieuiieierien ettt ettt ettt te e sbe e et ebeeseenseeeeas
B.21 Event-oriented teXtUAl SYNEAXc.ccieiieriieieriieies cteeiieieeieete sttt et e saesseesseeaesneesseeseenseenseenseesaesnaesneas
B.22 General ordering within an iNSTANCEccieieriieiert ettt e e eeeeseaeeeeas
B.23 General ordering within an iNSTANCEccievieriiiiiens ceiesieeieeee ettt et et esreeteesseesaesse e saesseessessnesseas
B.24 Vertical composition with diSjOint INSLANCESeerveeriiriert ettt seeeseees
B.25 Vertical composition with @ COMMON INSLANCEccveeruieeeiirieiieieciere ettt et ere s e e s eesbeesseseaeseeas
B.26 VertiCal COMPOSILIONevueeiieieeiieiieieetieits ertteteetesseesteeeesetesseesesseesseensesseesseensesssasseenseenseensesssessnesnnes
B.27 Horizontal composition with shared iNStANCEc.ccvieieriiiiiiiiieiieieeeecre e
BL28 IMISCS ittt et bbbttt h e bt bt bbbt e e et bbbt e neen s et enten
B.29 Examples of iNline EXPIrESSIONScccueeuieiiirieiiiriies certeeieeieerte et etesteesteeeeeseesseenteeneeeneesseenseenseeseessaesneas
B.30 MSC equivalent t0 MISC Bo.oiiiiiiiiciiiieeesee ettt ettt et s sae e aeenaeeraeeaeeesbeesbennaenneas
B.31 Examples of iNling EXPIESSIONSccueeeerierierieeies erteeteseterseessesresstesseeseassesseesseensesssesssessesssesssessnessees
B.32 Examples of iNliNE EXPIESSIONSccvierieruieieiieies cerveereesteesseesseessesseesseesseessesseesseesesssesssessessesssesssessees
L 30 1 TN s W 2 Vi 110 (TP SRR
B.34 An example of an High-level Message Sequence Chartcccoeeeiieieniienieieeieeeeeeeee e

ITU-T Rec. Z.120/Annex B (04/1998)

O O 0 0 00 N NN NN N0 D kR W W

[I e e e e T e T e T e S e e S e e S T e e
S O 0 NN N N R R DR WD NN R =, O O O

v

Page

B.35 Anexample HMSC With @ CYCLEeoiiiiiieiiieieie ettt 21
B.36 An MSC that cannot be deCOmMPOSEA.cceecvervirieriies ceerieeie ettt ettt sre e e e sreesseesseesaessaessaesseas 22
B.37 MSC to illustrate message and OTder GALES.cceevereeriurenieieeienieieete st eteeaesseeseeeeesseenseesaessaesnees 23
B.38 TerminolOZY ON GALES.ceuiitieiiitieiertietietees ettt ettt ettt e bt e bt ettt e sbee s bt e bt eatesaeeebeebeenteenteeseesaaenaees 24
B.39 Gates on MSC reference EXPIrESSIONS.ccuerieriereerieres ceerieerseetestesseesseeseesesseesseasesssesseessesssesssesaessees 24
B.40 Connecting gates from the same MSC reference eXpression.coeceres veeereierieeiienieneeeeeie e seeeee e 25
B4l CONNECHNG @ GALE. ..eveivieiieiieiieieitieiieeteess creeteeteesteeteesseesseessesssessaeseessesssesssesseesseasseaseesseessesssenssesssessees 25
B.42 Propagation of a gate to the ENVIIONMENL.ccerieiiiiien ettt seaeeeees 26
B.43 CONNECHING @ ZALE. ..otiiuieiiiiieiieiteteette sttt ettt ettt b ettt st e s bt et e et e s et e s bt e bt enteeaeeebee bt en bt enteeseesnaenaees 26
S 3 R € 1 Vo Lo B (0T o R PT PSP 26
B.45 MSC where MSC reference identifications are needed in the textual descriptionccccceeevveveennnnen. 27
B.46 Terminology of gates on inling EXPIESSIONS.ceevuerverruerries sovertreeeetesseesseeseesaesseenseesesssesseessessessaesses 28
B.47 AN eXamPLe IMSC ...t ettt ettt et a ettt et e et ente e st e enaeeneas 52
B.48 Attributed eXampPle MSCc.ooiiiieiieieie ettt et ae et et et e re e b e esbeessenaaenreas 52
B.49 Decomposed eXample MSCooiiiiiiiiiieieiiet ettt sttt ettt ettt e neeenaeeneas 53
B.50 MSC with @ ZENeral OTAETINGcc.eeuiiuiriiiieieiieis cettettet et eie et e et e ettt et eat et enteste e e stesbeebeebeeneenneneeneas 64
B.51 Three different SITUATIONScoerertirterienietete ettt ettt ettt ettt et et esb et st sbe bbb eseeaneeennes 66
B.52 HMSC WIth @ 100D ..iouiiiiiiiiiiiicieeieeee ettt ettt sttt e b s aae s ae e beesaeessesseesseesseenseesseessessnesenas 72
B.53 HMSC with a parallel framecccoccveriieieiiieiieiecieseee ettt be e esbeessessaesneas 72
List of Tables

B.1 Deduction rules for CoOnStants: @ b € Ac..cciiiiiiiiiiiinie e 31
B.2 Deduction rules for delayed ChOICecouiiiiieiieiet e 32
B.3 Deduction rules for delayed parallel COMPOSILIONccvievieruies ceeriieiieiesiieie e eeesre e eeee e esreeaeseneseees 33
B.4 Deduction rules for the permission relationcceccereies coierieiie et 35
B.5 Deduction rules for weak sequential COMPOSILIONc..ccvivuieieiieiieienieete ettt ereere b eeesaeeseees 35
B.6 Deduction rules for generalized parallel COMPOSILIONc.eecvereiees veeiieieriieieeie et 37
B.7 Deduction rules for generalized weak sequential COMPOSITIONcceies weveeirieieieieieiee e 37
B.8 Deduction rules fOr TENAMINGcecvierierieciieis creerieeie e see st e e e sbeeaeste st esseesseessesssesseessesssesssesssenses 38
B.9 Deduction rules fOr IHEIatIONccieierieiere e ettt ettt ettt et e eneeeneas 38
B.10 Deduction rules for unbounded repetitionc.ccciecveries ceeriieieeiereereeeeeste e eee e ebeese e eseessessaeseeas 40
B.11 Auxiliary predicates and relations for recursion (a € A, X =sX €E) ..ccceceviiniriiiiininiiniienceceee, 41
B.12 Structured operational semantics for recursion (a € A, X =SX €E) ..cccccoe riiiiiiiiieeeeeee e, 42
B.13 ClaSSE5 OF EVENLSeeuiiuiiiiiiiitiitietieie ettt ettt ettt eb et at et et et st e b s bt sb e e bt ebe e bt et et et sbeeb e e bt ent et entes 55

vi ITU-T Rec. Z.120/Annex B (04/1998)

Annex B to Recommendation Z.120

Formal Semantics of M essage Sequence Charts

(Thisannex forms an integral part of the Recommendation.)

B.1 I ntroduction

Message Sequence Chart is a graphical and textual language for the description and specification of thein-
teractions between system components. The main area of application for Message Sequence Chartsis as
an overview specification of the communication behaviour of real-time systems, in particular telecommu-
nication switching systems. Message Sequence Charts may be used for requirement specification, interface
specification, simulation and validation, test-case specification and documentation of real-time systems.

This document contains a formal semantics of the Message Sequence Chart language based on the infor-
mal explanation of the semantics in the main text of the Recommendation. The formal semanticsis based
on [MR97, MR98]. The primary reason for formalizing the semantics is to provide for an unambiguous
interpretation of Message Sequence Charts. A formal semantics may be useful for users, tool builders and
developers of the Message Sequence Chart language.

The semanticsisdefined in acompositional way. The semantics of acomposite MSC isformulated interms
of the composites and the means of composing.

This document is structured in the following way. Section B.2 contains an overview of the Message Se-

guence Chart language and informally lists all static requirements which are relevant for the definition of

the semantics. This section is subdivided into four parts. Inthefirst part the core language (Basic Message
Sequence Charts) isintroduced. Inthe second part other basic concepts are added one by one. Thethird part
extends the language with ordering facilities such as coregions and general orderings. The last part intro-

duces the means offered by MSC to compose MSCs. These means are inline expressions, MSC reference
expressions and High-level Message Sequence Charts.

Section B.3 contains an informal introduction on the extension of the Message Sequence Chart language
with gates.

In Section B.4 the formal framework for the definition of the semanticsis defined. Thisframework consists
of process expressions that are built from a number of constants and operators. These constants and oper-
ators are defined by means of term deduction rules. These describe the actions that can be performed by a
process.

In order to facilitate the definition of aformal semantics the textual syntax of M SCs has been transformed.
These transformations as well as the textual syntax actually used for the definition of the formal semantics
are givenin Section B.5.

The semantic functionsare defined in Section B.6. The main function maps every Message Sequence Chart
into an expression over the operators introduced in the Section B.4. The philosophy that has led to these
definitionsis explained first.

ITU-T Rec. Z.120/Annex B (04/1998) 1

B.2 Message Sequence Charts

B.2.1 I ntroduction

In this section the language MSC isintroduced. The languageis best illustrated by the graphical represen-
tation, but where the definition of aformal semantics is concerned, the textual representation is preferred.
The order in which the features of MSC are introduced differs from the order in which they are defined in
the main text of the Recommendation. The order used in this annex is based on the way the features are
treated in the formal semantics.

First the core language of Message Sequence Chartsisintroduced. This core languageiscalled Basic Mes-
sage Sequence Chart. A Basic Message Sequence Chart concentrates on communications and local actions
only. These arethefeatures encountered in most languages comparabl e to M essage Sequence Chartssuch as
Extended Sequence Charts, Arrow Diagrams, | nfor mation Flow Diagrams, Sequence Charts, Message Flow
Diagrams, Semens-SCs, and I nterworkings. The static requirements imposed on Basic Message Sequence
Charts, as far as they are of importance to the definition of the formal semanticsin Section B.6, are given.
The static requirements are not formalized. After the introduction of Basic Message Sequence Charts the
other primitivesincorporated in the language of M essage Sequence Chartsare introduced. These primitives
are process creation and process termination, timer handling, incomplete message events, and conditions.

Then the ordering facilities are introduced. These are coregions and causal orderings. Finaly, the more
intricate possibilities of describing complex systems are considered. These are inline expressions, MSC
reference expressions and High-level Message Sequence Charts.

B.2.2 Basic Message Sequence Charts

The body of a Basic Message Sequence Chart is formed by afinite collection of instances. Aninstanceis
an abstract entity on which message outputs, message inputs and local actions may be specified. A first
example of a Basic Message Sequence Chart is givenin Figure B.1.

Next the graphical representation of Basic Message Sequence Chartsis explained. Then their meaning is
described, and finally the textual representation is introduced.

B.22.1 Graphical representation

Graphically an MSC is given by a frame containing the instances. The name of the MSC following the
keyword msc is placed inside thisframe, usually above the instances. For an example see Figure B.1.

msc examplel msc examplel
\Il\\lz\\ls\\m\ ‘il“iz“l3“|4‘
mO mO
ml ml
m2 m2
m3
K (2]
m4 mé4
m3
I I I .
I I N .

Figure B.1: Example Basic Message Sequence Charts

In the graphical representation there are two waysto draw aninstance. These are givenin Figure B.2 below.
The first isa single vertical axis (line-form) and the second is the so-called column-form. The description

2 ITU-T Rec. Z.120/Annex B (04/1998)

of the instance starts with the instance head symbol and ends with the instance end symbol. These do not
describe creation and termination of theinstance, but the start and end of the description. The representation
of theinstance and the instance head and instance end symbol s should be aligned asindicated in Figure B.2.
Within one Basic Message Sequence Chart both representations of instances, line-form and column-form,
may appear.

Figure B.2: Instance symbols: line-form and column-form

With every instance an instance name is associated. The instance name may be placed above or inside the
instance head symbol. Instances are referred to by means of the instance name. Therefore, the instance
name must be unique within an MSC.

A local action is denoted by an action symbol on an instance with the action character stringplaced init. A
local action describes internal activity of an instance. The action character stringis aninformal description
for thisinternal activity. When an action symbol is placed on an instance in line-form the instance axisis
“removed”. If the column-form isused, the width of the action symbol must coincide with the width of the
column-form of the instance. Multiple occurrences of an action symbol on an instance must not overlap.
See Figure B.3 for examples.

I e

Figure B.3: Placement of local actions on line-form and column-form instances

A message between two instances is represented by an arrow which starts at the sending instance and ends
at the receiving instance. An arrow representing a message may be horizontal or with downward slope.
A message sent by an instance to the environment is represented by an arrow from the sending instance
to the exterior of the Message Sequence Chart, i.e., the surrounding frame. A message received from the
environment is represented by an arrow from the exterior of the Message Sequence Chart to the receiving
instance. With every message a message name is associated. The message name should be placed close to
the message arrow.

In principleit is not allowed to have two or more events attached to one point of the instance axisin line-

form and column-form or at the same height of theinstance axes in the column-form. However, thereisone
exception to thisrule. Anincoming event and an outgoing event may be attached to the same point or at the
same height. Thisisinterpreted asif theincoming event is drawn above the outgoing event. Message output
events, lost message events, process creation events and timer set and reset events are outgoing events and
message input events, found message events and timeout events are incoming events.

ITU-T Rec. Z.120/Annex B (04/1998) 3

B.2.2.2 I ntuitive semantics

An MSC isintended to describe a number of executions of the events contained. These events can be local
actions, message outputsand message inputs. An M SC does not only describe the events to be executed, it
also contains information on the order in which they can be executed. One of the basic assumptionsis that
all events are executed instantaneoudly, i.e., it is assumed that the execution of an event consumes no time.
Another important assumption is that no two events can be executed at the same time.

Asexplained before, an M SC consists of anumber of instances on which events are specified. The meaning
of such aninstance isthat it executes the events specified in the same order as they are given on the vertical
axis from top to bottom. Thus one can say that the time along each instance axis is running from top to
bottom. Therefore, the events specified on an instance are totally ordered in time. Consider, for example,
instancei2 from the M SC given in Figure B.1, then thismeans that instance i 2 executes the events “input of
m1 frominstance j”, “output of m2 to instancei3”, “actiona”, and “output of m4 to instancei1”, and also
that these events are executed in this order. Although an instance describes the execution of events while
time progresses, theinstance does not specify the el apse of timein between two consecutive events. 1t might
be the case that the first event is executed at 5 minutes and that the second event is executed at 25 minutes.

The instances of an MSC in principle operate independently of each other. No global notion of timeisas
sumed. The only dependencies between thetiming of the instances come from the restriction that a message
must be sent before it isreceived. In Figure B.1 thisimpliesthat message m3 isreceived by i4 only after it
has been sent by i3, and, consequently, after the consumption of m2 by i 3. Thus the events concerning m1
and m3 are ordered in time, while for the events of m4 and m3 no order is specified apart from the require-
ment that the output of a message occurs before itsinput. Because of the asynchronous communication, it
would even be possibleto first send m3, then send and receive m4, and finally receive m3. The execution
of aloca action is only restricted by the ordering of events on the instance it is defined on. The second
Basic Message Sequence Chart in Figure B.1 defines the same execution sequences (from a semantic point
of view), but in an aternative drawing.

Another consequence of thismode of communicationisthat overtaking of messagesisallowed, asexpressed
in Figure B 4.

msc overtaking
il i2
ml
m2

Figure B.4: Basic Message Sequence Chart with overtaking

Itisnot allowed that a message output is causally depending on its corresponding message input, directly or
viaother messages [I T96b, IT96a, Ren95]. Thisisthe case if the temporal ordering of the events imposed
by the Basic Message Sequence Chart specifies that a message input is executed before its corresponding
message output. Such M SCs are often called inconsistent.

Consider thefirst diagramin Figure B.5. Sincethe eventswhich are specified on oneinstanceare temporally
ordered from top to bottom, the message input is executed before the corresponding message output. The
diagram therefore violates the static requirements. In this example the message output is depending on its
corresponding message input in a direct way.

Asan example of theindirect causal dependency between a message output and a message input the second
diagramin Figure B.5 is considered. Amongst others, there are the following temporal orderings:

4 ITU-T Rec. Z.120/Annex B (04/1998)

msc depl msc dep2

Figure B.5: Two diagrams that violate the static requirements

1) theinput of message m precedes the output of message n,
2) the output of message n precedes the input of message n, and
3) theinput of message n precedes the output of message m.

Therefore, the diagram specifies that the input of message m precedes the output of message m. So the
diagram violates the static requirements, and is therefore not a Basic Message Sequence Chart.

B.2.2.3 Textual representation

Although the application of Message Sequence Chartsis mainly focussed on the graphical representation,
they have a concrete textual syntax. This representation was originally intended for exchanging Message
Sequence Charts between computer toolsonly, but inthisannex it is used for the definition of the semantics.

With respect tothetextual description thelanguage M SC offerstwo principal meansto describe M SCs. First
of al an MSC can be described by giving the behaviour of all itsinstancesinisolation. Thisway of describ-

ingan MSCiscalled instance-oriented and has been incorporated in the language from the beginning. With
the appearance of the main text of this Recommendation also another way of representing M SCs has been
incorporated: the so-called event-oriented description. With the event-oriented descriptions just a list of

eventsisgiven, for example as they are expected to occur in atrace of the system or asthey are encountered
while scanning the M SC from top-to-bottom. Besidesthese two ways of describing an MSC thereisalso the
possihility to describe an MSC by mixing these two descriptions. In this annex the event-oriented textual

syntax is used for the definition of aformal semantics.

Thetextual representation of an M SC consists of the keywordsmsc and endmsc and in between those an msc
name and an msc body. The MSC body is defined differently for the three previously mentioned description
styles.

In the event-oriented syntax an MSC body consists of a list of event definitions. An event definitionis an
instance name followed by an instance event. Instance events are message events and local actions.

Textually amessage event is described by amessage output event and amessage input event. If misames-
sage that is sent from instance i to instance j, textually the corresponding message output event is denoted
by “i : out mto j” and the message input event by “j : in mfrom i”. In the graphical representation the
correspondence between message outputs and message inputsis given by the arrow construction. In the
textua representation a message output event and a message input event are corresponding iff

1) the events have the same message name;

2) the instance on which the message output event is specified is the same as the instance indicated by
the output address of the message input event;

3) theinstance on which the message input event is specified isthe same as the instance indicated by the
input address of the message output event.

ITU-T Rec. Z.120/Annex B (04/1998) 5

A natural requirement on thetextual representation of M SCsisthat for every message output event thereisat
most one corresponding message input event, and vice versa, for every message input event thereisat most
one message output event. As no dangling message output arrows and message input arrows are allowed,
another natural requirement isthat for every message output (input) thereis at least one corresponding mes-
sage input (output). Note that for messages that are sent to the environment or that are received from the
environment this requirement does not have to be satisfied.

A local action is denoted by the keyword action followed by an action character string.
The MSC from Figure B.1 can textually be represented by

msc examplel;

il : out mOtoenv;
il : outmltoi2;

i2 rinmlfromil;
i2 : outm2toi3;

i3 :inm2fromi2;
i3 : out m3toi4;

i4 inm3fromi3;
i2 : action g

i2 :outmétoil;

il :inm4fromi2;
endmsc;

The textual syntax of MSC is presented in Recommendation Z.120. For the definition of the semantics a
simplified version of the textual syntax isused. Thissimplified textual syntax as well as the explanation of
the simplifications can be found in Table B.5.

B.2.3 Additional Basic Concepts

In this section Basic Message Sequence Charts are extended with other basic concepts. These are process
creation and termination, timer handling, incomplete messages and conditions.

B.2.3.1 Process creation and process termination

In the language M essage Sequence Chart a primitiveisincorporated for the dynamic creation of aninstance
by another instance. Such a creation is denoted by a dashed arrow, the createline symbol, from the cre-
ating instance to the instance head symbol of the created instance, usualy as indicated in the MSC from
Figure B.6. Aninstance can be created only once. A create event may be labeled with a parameter list, i.e.,
anon-empty list of parameter names separated by commas. In case of a process create event the parameter
listis placed close to the createline symbol.

An instance can terminate by executing a process stop event. Execution of a process stop is allowed only
as the last event in the description of an instance. A process stop is denoted by replacing the instance end
symbol by across, the stop symbol.

InFigure B.6 aMessage Sequence Chart withthreeinstancesisgiven. Instancei createsinstance j, instance
k sends a message mto instance j, and instance j receives the message m from instance k after it is created
and then terminates.

In thetextua representation the creation of an instance with name j isdenoted by “create j” and the termi-
nation of an instance by “stop”. The event-oriented textual representation of the Message Sequence Chart
in FigureB.6 isgivenin Figure B.7.

6 ITU-T Rec. Z.120/Annex B (04/1998)

msc creation
[Kk
; [— _
J msc creation;
”””] m i createj;
k : out mtoj;
[j :inmfromk;
i stop;
endmsc;
Figure B.6: Process creation and termination Figure B.7: Event-oriented textual syntax

B.23.2 Timer handling

In aMessage Sequence Chart several timer events can be described. These are the setting of atimer, atimer
reset and the expiration of atimer.

In the graphical syntax the timer events can be used stand-alone but also in combinations. First the stand-
alone occurrences of timer events are discussed. A timer set event is denoted by an hourglass symbol at-
tached to the instance axis by means of a horizontal or bent line. A timer reset event is denoted by a cross
which is attached to the instance axis by means of a horizontal or bent line. A timeout isrepresented by an
hourglass symbol which is attached to the instance axis by means of an horizontal or bent arrow from the
hourglass symbol totheinstance axis. Examples of the stand-al one occurrences of thetimer events aregiven
in Figure B.8. A timer event is labeled by an identifier, the timer name. that is placed aside the hourglass
symbol or cross. A timer set event may be labeled with an identifier for the duration, the duration name.
The duration name is placed between brackets after the timer name.

SICI S

s i

Figure B.8: Timer events in stand-alone mode

Thegraphical syntax of M SC also leaves room for combiningtimer events. Thelanguage offersthe possibil-
ity to describe a timer set and a subsequent reset or timeout. Graphically these combinations are indicated
by connecting the involved symbols as shown in Figure B.9. Note that for these combinations the timer
name may be omitted from the reset and timeout events. A timer event islocal to theinstanceit is specified
on. Itis not alowed to specify atimer set and a subsequent timeout or timer reset on different instances.

T(d) T

Figure B.9: Combinations of timer events (1)

Besides the combinations of the timer events given above also the following combinations are possible: a
timer set symbol connected to a set-reset symbol, atimer set symbol connected to a set-reset symbol con-
nected to a reset symbol, and a timer set symbol connected to a set-reset symbol connected to a timeout
symbol. These combinations are given in Figure B.10.

ITU-T Rec. Z.120/Annex B (04/1998) 7

]

Figure B.10: Combinations of timer events (1)

Thelanguage M SC inits current form does not support the specification of a quantitative notion of time, the
interpretation of thetimer eventsis only symbolic. This means that set, reset and timeout are interpreted as
events. Also, as no formal datalanguage is available at the moment, the duration names that can be associ-
ated to atimer set event are symbolic. Any identifier can be written there.

Inthe textua representation the setting of atimer with name T isdenoted by “set T” and the corresponding
reset by “reset T” and timeout by “timeout T”. A duration name can be added between brackets asfollows:
“set T (d)".

B.2.3.3 Incomplete message events

Besides the specification of successful transmission of messages also a lost message and a spontaneously
found message can be described. A lost message is a message which is sent but will never be received by
the other party in the communication. Symmetrically, a found message is a message which is received but
has never been sent. A message name is associated to the lost and found messages.

Graphically alost message is indicated by alost message symbol, i.e., an arrow from an instance axisto a
black dot (“black hole”). To the black dot an input address may be associated. This input address, which
is either an instance name or the environment, represents the original destination of the message. A found
message is indicated by a found message symbal, i.e., an arrow from an open dot (“white hol€”) to an in-
stance axis. An output address may be associated to the open dot. This output address, which is either an
instance name or the environment, is the original source of the message.

An example of the graphical representation of lost and found messages is givenin Figure B.11.

msc examplelost_found
— m—
m
9]
msc examplelost_found;
n i :outmtolostj;

PO j :innfrom foundi;

endmsc;

Figure B.11: An MSC with lost and found messages ~ Figure B.12: Event-oriented syntax

Semantically these events are treated just as atomic events. It is not the case that a dynamic semantics is
associated to messages such that they can result in lost and/or found messages. Thus these events are intro-
duced to describe the situation where it is known that a message is lost or found.

Consider the MSC from Figure B.11. Oninstancei the sending of a message m with destination j is de-
scribed. However the corresponding receive event on instance j is missing. Similarly, instance j receives
amessage n which should have been sent by instance i, but on instance i the corresponding send event is
missing.

The textua representation of the incomplete messages is very similar to the textual representation of mes-
sages. The event-oriented textual representation of the MSC of Figure B.11 isgiven in Figure B.12.

8 ITU-T Rec. Z.120/Annex B (04/1998)

B.2.3.4 Conditions

Graphically a condition is represented by a condition symbol overlapping a number of instances (at least
one) and containing a list of condition names separated by commas. If an instance is not involved in a con-
ditionitisdrawn through. In Figure B.13 an example of an M SC with a condition is given. This condition
is associated to the instances i and k, but not to j. If a condition contains a list of condition names with
more than one entry thisis a convenient shorthand for an M SC with a condition symbol for each of these
conditions. This shorthand can only be used if al conditions refer to the same set of instances and for all
instances involved in the conditionsthere are no events specified in between the conditions.

msc example

i i K
\ \ \ \ \ \

C

— = —

Figure B.13: Graphical representation of conditions

A conditionis afirst example of an event that can be associated with more than one instance. This type of
eventsiscalled multi instance events. To facilitatethe description of multi instance events without repesting
them for every instance, the textual syntax is extended with the possibility to describe such an event for all
instances involved. For example the condition from Figure B.13 can be described by “i,k : condition C".

B.24 Orderingfacilities
B.24.1 Coregions

So far the events specified on an instance were totally ordered in time. To enable the specification of un-

ordered events on an instance the coregion isintroduced. A coregionisapart of the instance axisfor which

the events specified within that part are assumed to be unordered in time. Within a coregion only order-

able events may be specified such as message events, local actions, timer events, and process creates. An
example of an event that may not be used in a coregion is the stop event.

Graphically, for aninstancein line-form acoregionisindicated by dashing apart of theinstance axisand for
instances in column-form by dashing the same parts of the two vertical lines of the instance. There is also
the possibility to use a column-form coregion with aline-forminstance. The other combination, aline-form
coregion with a column-form instance, is not alowed. In Figure B.14, examples of these three forms are
given. Examples of the placement of all orderable events on a coregion are given in Figure B.15.

Figure B.14: Graphical representations of coregions

ITU-T Rec. Z.120/Annex B (04/1998) 9

Figure B.15: Placement of events on coregions

In Figure B.16 an instance with a coregion is specified which containsan input of message m and an output
of amessage n. These two events are not ordered in time, but they are executed after the output of message
k and before the input of message |. On instance j the events are totally ordered in time.

MSC coregion MSC coregion;
i i | :outktoj;
1] i @ concurrent;
k in mfrom j;
out ntoj;
H m endconcurrent;
n i :inlfromj;
j rinkfromi;
T i :outmtoi;
j rinnfromi;
I j :outltoi;
endmsc;
Figure B.16: Message Sequence Chart with a coregion Figure B.17: Textual syntax

In the textual notation a coregion is denoted by alist of the orderable events specified within the coregion
started with the reserved keyword concurrent and ended by the reserved keyword endconcurrent. An ex-
ample of the event-oriented textual syntax of coregionsis givenin Figure B.17.

B.24.2 General orderings

General orderingsare introduced to facilitatethe description of orderings between eventswhen thisordering
cannot be derived from the ordering of the events on an instance and the ordering by means of communica-
tion. For example if alocal action a oninstancei has to occur before atimeout event on instance j. Then
the features of the language discussed so far are not sufficient. The only way to describe thiswith the M SC-
language introduced until now is by defining a communicationfromi to j where the output occurs after the
local action and the input occurs before the timeout event. As M SCsare mostly used for High-level require-
ments specifications thisis undesirable. Also, if many such orderings need to be specified, the additionally
introduced communication overhead is disturbing.

Graphically ageneral ordering of two eventsis represented by a solid linewith an arrowhead in the middle,
the general order symbol (see Figure B.18). Thisdistinguishesit from normal messages where the arrow-

10 ITU-T Rec. Z.120/Annex B (04/1998)

head is placed on one end of theline. The linemay have any orientation and may also be bent. The general
order symbol should be attached to the events that need to be ordered. Only orderable events can be used
in general orderings.

Figure B.18: Example of ageneral ordering

In case of aloca action the general order symbol can start or end at any point of the action symbol. In case
of another orderable event the start or end of a causal order symbol coincides with the point of the instance
where the event symbol is attached.

The way to describe general orderings as discussed above can also be used to describe the general ordering
of orderable events from the same instance. In cases where one of the eventsto be ordered isnot inside a
coregion, thiseither resultsin an inconsistent MSC or it resultsin an M SC for which the additional genera
orderingis superfluous. Exampleswhere twolocal actionson oneinstance are causally ordered are givenin
Figure B.19. Inthefirst MSC the general ordering is superfluous as the local actions are already ordered by
thetotal ordering of events on theinstance. The fact that thisgeneral orderingis superfluous does not mean
that it is not allowed. The second MSC is inconsistent as the local actions are ordered in two conflicting
ways.

msc superfluous msc inconsi stent
a a
b b
I I

Figure B.19: Example of ageneral ordering within an instance

A general ordering between two events in the same coregion does give additional information. See Fig-
ure B.20 for an example. The input of message m, the output of message n, and the output of message o
are specified in a coregion and therefore unordered. But the causal ordering between the input of m and the
output of o defines that the first precedes the latter. Note that although the output of n and the output of o
are specified under each other on the same line they are not ordered.

As an aternative the language M SC offers the possibility to leave the head of the arrow out. Thereby the
order symbol isreduced to asingleline. These lines are always interpreted from top to bottom. Also cross-
ings of these lines have meaning. Event a isordered causally before event b iff thereisaline going from a
to b that never goes up. The coregion from Figure B.22 can then a so be depicted as shown in Figure B.23.

In the textual syntax general orderings are represented by using the keyword before followed by a list of
event names. An event name refers to an event specified somewhere in the MSC. Thusit can be an event
from the same instance or an event from another instance. An event name can be associated to an event in

ITU-T Rec. Z.120/Annex B (04/1998) 11

msc causal
|
m _n msc causal;
i : concurrent;
: —9 in m from env beforel2;
! ! out ntoenv;
s 12 out oto env;
endconcurrent;
endmsc;
Figure B.20: Genera ordering within an in-
stance Figure B.21: Event-oriented textual syntax
i1 ol i1, ol
i2 o2 i2 02
Figure B.22: Genera ordering within an in- Figure B.23: General ordering within an in-
stance stance

the textual syntax by placing the event name just before the event. See Figure B.21 for an example of the
event-oriented textual representation of the MSC shown in Figure B.20.

An event name can be associated with only one event, i.e., there cannot be two or more eventsin the same
M SC document with the same event name. Itisnot allowed that an event is ordered beforeitself. Textually
thismeans that in an event definition an event name associated with an event cannot occur in the event name
list following the keyword before.

B.25 Combining M SCswith composition constructs

M SC based specifications often consist of many different MSCs, instead of one single MSC. MSC offers
ways to group single M SCs into MSC documents. An MSC document is a collection of MSCs.

MSCs can be put in awider context by means of composition operators. The three primitive operators are
seq, par and alt. Inthe MSC language these concepts of composing M SCs are manifest in different ways:
in inline expressions, MSC reference expressions and High-level Message Sequence Charts. MSCs can
also be composed using operators to express loops, exceptiona behaviour and optional behaviour. For the
semantics of these composition operatorsthe notionsof vertical, horizontal and alternative composition are
used. These notionsrefer to the semantics of MSC and their intuitionis sketched to strenghten the intuition
about the primitive composition operators mentioned before.

First the intuitive semantics of the operations vertical, horizontal and alternative composition are given.

Then M SC documents are treated, followed by inline expressions and M SC references. Thelast part of this
section describes the use of the composition mechanism in High-level MSC. Wherever possible the graphi-
cal syntax for each of these language constructsis treated first, then the (event-oriented) textual syntax, then
the requirements and finally the intuitive semantics, if necessary.

B.25.1 Vertical, horizontal and alternative composition of MSCs
In thissection the intuitivesemantics of vertical, horizontal and alternative compositionis explained, mainly

by providing examples. These examples do not form a complete and precise definition of the semantics. For
aformal definition of the semantical equivalent of these operations see Section B.4.

12 ITU-T Rec. Z.120/Annex B (04/1998)

Vertical composition

The vertical composition of two M SCsrefers to the operation of placing one MSC at the bottom of another
one and then linking the instances they have in common thus obtaining a new MSC.

If the MSCs have ho instances in common the meaning of the vertical composition is the same as an MSC
with the instances of these M SCs placed next to each other. See Figure B.24 for an example. MSC first has
instances named i and j and MSC second has instances named k and |. The MSCs have no instances in
common, so there are no linksto be made. Thus vertical composition of M SCs does not necessarily mean
that all eventsfrom the first MSC (in the example M SC first) have to be executed before any event from the
second M SC (M SC second) can be executed. In the example this means that the sending of n might as well
occur before the sending of m.

msc first msc together
i j i j k I
— ﬁj \ \ \ J \ \ \ —
m m n
| | I I [[
msc second
k I
— —
n
I I

Figure B.24: Vertical composition with digoint instances

Another case occurs if the MSCs have all instances in common. Then all events from an instance of the
second M SC have to occur after the events from the same instance of thefirst M SC. For an example see Fig-
ure B.25. The MSCsfirst and second have the instancesi, j, and k in common. The reception of message
m by instance j necessarily has to precede the reception of message n by instance j in the resulting MSC
together. In thisexample it is still possible that the sending of message n by instance i which is an event
described in MSC second is executed before the reception of message m by instance j in MSC first.

Alsothe situationin which the M SCs have instancesin common and al so have different instancesis allowed.
For example the MSCs A and B from Figure B.26 have the instance j in common, but instance i is only
described for MSC A and instance k is only described for MSC B. The result of the vertical composition
of the MSCs A and B isgiven as MSC AB inthe same figure.

Horizontal composition

The horizontal composition of two M SCs refers to the operation of placing them next to each other. If the
MSCs have some or all instancesin common, it isassumed that the behaviour of the common instance(s) is
the interleaving of the behaviours of these instance(s) in the separate MSCs.

In the case that the M SCs have no instancesin common, the horizontal compositionissimilar to the vertical
composition (see Figure B.24). For an example of the case where the MSCs have at least one instance in
common, we refer to Figure B.27.

In thisexample the MSCsfirst and second have theinstance j in common. As stated before, the behaviour
of the shared instance is obtained by interleaving the events of the separate instance descriptions. This can
be expressed in a coregion with general orderings as shown in MSC together.

ITU-T Rec. Z.120/Annex B (04/1998) 13

14

Figure B.25: Vertical composition with acommon instance

msc first msc together
[j k [j
— \ \ \ \ \ \ | \
m m
n
I I
I I
msc second
[j k
— \ \ | \
n
0
I I I

msc A msc B msc AB
i i j Kk i
\) \ \ \) \ \ I \ \
m
m n
I I [[I I
Figure B.26: Vertical composition
msc first msc second msc together
i j j k i j
\ \ \ \ \) \) — j 1
m 0 m ‘
: P no
I I I I I —

Figure B.27: Horizontal composition with shared instance

ITU-T Rec. Z.120/Annex B (04/1998)

Alternative composition

Usually asystem isnot described by means of onesingle M SC, instead anumber of M SCsisused to describe
severa aternative scenarios. With the features of MSC introduced so far, alternative scenarios can only be
described for one MSC. So each trace contains precisely the same events. For example, it isimpossibleto
describe that either an event a or an event b is executed. A reasonable means to describe alternatives is by
givingone M SC for each of the alternatives. Thuslarge pilesof scenarios come into existence, for example
when describing system requirements or when describing a system by giving different Use Cases.

In complex systems there are many points of deviating behaviour. Therefore, it isimportant to be able to
indicate at what point alternatives occur. For that reason the language M SC offers an operator to describe
alternativesin an MSC. An important aspect of the meaning of the alternative composition mechanism in
MSC is that the moment of choice between the different scenarios is postponed until that choice can no
longer be avoided.

Consider the MSCs A and B as given in Figure B.28. Each of these M SCs has one initia event, the sending
of m and the sending of n respectively. The alternative composition of these MSCs now has two initial
events. the sending of message m and the sending of message n. If the sending of message m is executed
achoice is made for the execution of MSC A. On the other hand, if the sending of message n is executed,
achoiceismade infavour of MSC B. Thus, with the execution of an event which can be executed by only
one of the alternatives, all alternatives that cannot execute this event are discarded.

msc A msc B msc C
i i i i i j
]] L] L]]
m n
m
]]]] I

Figure B.28: MSCs

Now consider the MSCs A and C from Figure B.28. If thelocal action oninstance j of MSC C is executed
necessarily a choice is made in favour of MSC C. But, if the sending of message m occurs, this event can
originate from either MSC A or C, though it is not clear from which of the two MSCsiit originates at the
moment of execution of thisevent. Alternativecompositionin M SCsisdefined in such away that no choice
is made until this cannot be avoided. One could say that after the execution of the sending of message m
there still are two aternatives: the parts of the MSCs A and C that remain to be executed. In this specific
example now a choice has to be made as the MSCs have no initial eventsin common anymore.

B.2.5.2 M SC documents

In the following sections the means offered by MSC to compose MSCs are considered. As a consequence
it must be possible to describe more than one MSC. For this purpose Message Segquence Chart documents
are used.

Graphically an MSC document is given as a frame symbol with a document head init.

Textually, an MSC document consists of an MSC document head and an MSC document body. The MSC
document head consists of the keyword mscdocument followed by an MSC document name. The MSC
document body consists of a number of Message Sequence Charts.

For M SC documentsthe following static requirementsare formulated. Withinan M SC document there must
not be two or more M SCs with the same name. Within the MSCs of an MSC document only references to
M SCs specified withinthat M SC document may be used. An MSC may not be depending onitself, directly

ITU-T Rec. Z.120/Annex B (04/1998) 15

or through a number of references.

B.25.3 Inlineexpressions

Inline expressions provide a means to formulate the composition of M SCs within the MSC language. The
operators that can be used are the ones discussed before except for vertical composition.

Graphically an inline expression consists of an inline expression symbol that is attached to a number of
instances (at least one). This inline expression symbol contains in the left-upper corner one of the key-
words alt, par or loop. These keywords indicate the composition operation that is described by the inline
expression. The keyword alt refers to an alternative composition, the keyword par refers to a horizontal
composition. The keyword loop indicates iteration of the events within the inline expression.

Both alternative and horizontal composition can have any finite, positivenumber of operands. These operands
are al drawn inside the inline expression symbol and they are separated by a dashed vertical line, the sep-
arator symbol.

msc A msc B
i . | .
I I ﬂj
alt / m par)
n
R B
n
I .
I I I I

Figure B.29: Examples of inline expressions

Some examples of inlineexpressionsare givenin Figure B.29. InMSC A aninlineexpression isattached to
theinstancesi and j. Thisinline expression has the keyword alt in its upper left corner in order to indicate
that the parts of the M SCsthat are separated by means of the separator symbol are considered alter natives.
Inthisparticular example there are two operands. The first describesthe sending of amessage m by instance
i and its subsequent reception by instance j. The second operand describes the sending of a message n by
instancei and its subsequent reception by instance j. The meaning of this MSC in terms of sequences of
events that can be performed is that either the sending and reception of m or the sending and reception of
n takes place but not both. As soon as the sending of one of the messages takes place it is known which
operand is executed.

In MSC B the horizontal composition of two “MSCs’ is indicated by means of the keyword par. In this
case all events are executed in such away that the orderings described by thefirst operand are respected and
at the same time the orderings described by the second operand are respected. MSC B' from Figure B.30
has the same behaviour as MSC B.

Aninline loop expression has exactly one operand. This operand is described by means of the part of the
MSC that is drawn inside the inline expression symbol. An example is given in Figure B.31. The inline
loop expression in MSC B describes that the sending and receiving of message m occurs zero, one or two
times, followed by the sending and receiving of message p. Intuitively the behaviour of MSC B isthesame
as the behaviour of MSC D from the same figure.

The keyword loop is followed by a loop boundary. This loop boundary refers to the number of repeated
vertical compositions. The loop boundary, if present, indicates the minimal and maximal number of verti-

16 ITU-T Rec. Z.120/Annex B (04/1998)

msc B’

i j
— —
e)
o
S T R
— —

Figure B.30: MSC equivalentto MSC B

msc D
I j
\ \ \ \
msc B
| j alt / P
\ \ \ I N N] A
m
Ioop;/b,Z p
m
IR IR
m
p p
] I | |

Figure B.31: Examples of inline expressions

ITU-T Rec. Z.120/Annex B (04/1998)

17

cal compositions of the operand. Such a number can either be the keyword inf, representing infinity, or a
seguence of natural names. A natural name can be any label. For the semanticsit isimportant to be ableto
interpret the sequences of natural names as natural numbers. For the semantics definition, it isassumed that
anatural name can only be the keyword inf or a sequence of digits. An interpretation of loop boundariesin
IN U {oo} isassumed.

The loop boundary is be of the form <n,m> where n and m are natural numbers or inf. The combination
loop <n,m> means that the operand of the operator is executed at least n and at most m times. If thein-
terpretation of natural number n is greater than the interpretation of natural number m (with the standard
interpretation) then this means that the operand is executed zero times.

If an instance is not involved in the operands of an inline expression, then it is possible to hide the part of
theinstance axis of such an instance behind the inline expression. See Figure B.32.

msc A
i i K
\) \ \ I
n
alt / m
R e RREnE EERERE
0

Figure B.32: Examples of inline expressions

B.254 MSC reference expressions

An M SC reference expression can be used to refer to other MSCsin an MSC document by means of their
MSC name. Graphically an MSC reference expression is represented by a textual formulain a rounded
frame, the msc reference symbol, which is placed on top of a number of instances. Thistextual formulais
an expression containing references to other M SCsintheM SC document viatheir M SC name. Operatorsfor
composing MSCs are: alt, seq, par, empty, loop operators and parentheses for grouping subexpressions.
An MSC reference expression isindicated in the textual syntax by the keyword reference followed by the
textual formula.

The event-oriented textual syntax of MSC D of Figure B.33 is given by:

msc D;
i,j,k referenceA;
i,j,k referenceB;
endmsc;

The binding power of the operatorsis in descending order as follows: loop, opt, exc, seq, par, alt. The
binding powers can be superseded by using parentheses. Examples of M SC reference expressions are;

A (AatB)seqC loop < 5,16 > (A par B) Aseq loop < 3,inf > B

There are two regquirements that must be satisfied with respect to the instances that are overlapped:

18 ITU-T Rec. Z.120/Annex B (04/1998)

1) If aninstance that is present in the enclosing MSC diagram is also present in the MSC reference ex-
pression, then the MSC reference symbol must overlap this instance. An instance is present in an
MSC reference expression if at least one of the MSCs that are referenced in the expression has an
instance with that name.

2) If two MSC reference expressions in the same enclosing MSC diagram share an instance then this
instance must be drawn in the enclosing MSC diagram.

Note that these requirements do not say that every instance that is present in the M SC reference expression
must be visiblein the enclosing MSC. The requirements also do not say that an M SC reference expression
may not overlap an instance that is not present in the M SC reference expression.

The reason for these requirements is that otherwise it is possible to draw an MSC with an MSC reference
expression such that it is not clear how the events on an instance are ordered. MSCs D and E from Fig-
ure B.33 show two correct ways of combining MSCs A and B with MSC reference expressions. Because
of the requirementsit is obligatory that both M SC reference symbols overlap instance j .

msc A msc B
i i i k
1 — — —
m n
I I I I

e N
vs)
I =

Figure B.33: Anexample

B.255 High-level M essage Sequence Charts
High-level Message Sequence Charts (HM SC) providean attractive graphical way to combine Message Se-
guence Chartsusing the operatorsfrom the former sections. An HMSC isa directed graph, where the nodes

are formed by other (H)M SCs and the vertices (arrows) imply an order on the nodes. There are also other
elements that make up an HMSC:

1) start node: \

2) end node: /\

3) msc reference node: C]
4) condition node: >

5) connection node: Q

6) paralel frame: []

ITU-T Rec. Z.120/Annex B (04/1998) 19

These elements are al used in MSC HMSC_Example, in Figure B.34. This MSC depicts the horizontal
composition of MSC3with theleft part of theparallel frame. Theleft part of the parallel frameisthe vertical
composition of MSC1 with the alternative composition of MSCs MSC2A and MSC2B.

MSC HMSC_Example v
'
\Y4
\
5 MSCSj
A
AN
A

Figure B.34: An example of an High-level Message Sequence Chart

AnHMSC isdescribed textually by associating alabel to every node of the HM SC except the start symbol.
The start symbol isimplicitly named since there isonly one start symbol for every HM SC. The connections
between the start symbol and the other nodes are described first. For example if the start symbol has suc-
cessor nodes labeled withly, . . ., 14, thisisdescribed by “expr |1 alt 1, alt 13 altl4 ;”. It indicates that there
isan arrow from the start symbol to the nodeslabeled withl, ..., In. Then for every node of the HMSC in
isolation its type/contentsis described possibly followed by alist of its successor nodesin a “node expres-
sion”. For example if the HM SC contains a node labeled | with successor nodes labeled I’ and |7 and this
node labeled | isareference to an MSC named A, then thisis described asfollows: “l : Aseq (1" alt1”)

-
y -

There are a number of requirements on HMSCs. First of all, every HMSC must have one start node. Every
node must be reachable from this start node. An arrow head is always connected to the upper segment of a
node symbol, and the open end of an arrow is always connected to the lower segment. Each node, except
the end node, has a successor, i.e. has an outgoing arrow to another (possibly the same) node.

The semantics of an HM SC isrelatively easy to explain at this point, since no new operators are introduced.
The semantics of MSC reference nodes in HMSC is the same as that for MSC reference nodes for MSC
treated in Section B.2.5.4. If two M SC reference nodes are connected viaexactly one arrow, they are verti-
cally composed. If an M SC reference node has more than one outgoing arrow, then all the successors of that
node are alternativesfor the vertical composition with that M SC reference node. Horizontal composition of
M SC reference nodes can be achieved with aparallel frame, i.e. abounding box withinthe boundingbox of
theMSCin question. A parallel frame can contain more than one start node. Each start nodeindicatesa sub
MSC, i.e. an operand for the horizontal composition operator. Within a parallel frame all nodes but the end
node must have a successor as well. The meaning of condition nodesis not defined in this semantics. The
meaning of connector nodes is void, they disambiguate crossing linesin aHM SC document from splitting
lines.

The arrows in an HM SC can form cycles. Thisindicates repetition. Figure B.35 shows such a HM SC that
containsacycle. ThisMSC is equivalent to MSC Loop shown in the same figure. In general, it is not pos-

20 ITU-T Rec. Z.120/Annex B (04/1998)

sible to trandate a cycle in an MSC with the loop(inf) operator. If e.g. the HM SC would have an endnode
connected to the M SC reference node, the cycle would have to be interpreted with the operator loop(1,inf),
The precise explanation of the semantics of cyclesin HMSCsis given in Section B.4.10.3.

MSC Cycle MSC Cycle
]

loop<inf,inf>)

e S

Figure B.35: An example HMSC with a cycle

ITU-T Rec. Z.120/Annex B (04/1998) 21

B.3 Message Sequence Chartswith Gates

B.3.1 Gates
B.3.1.1 M otivation

When describing industrial systems with the use of Message Sequence Charts as presented so far one of the
biggest problemsisthe number of instances and the number of events on these instances. The diagrams eas-
ily get to big to handle, print, read, etc. In order to solve this problem complex M SCs must be decomposed
into smaller MSCs. In generd it isimpossible to do this by means of horizontal or vertical composition
without ever having to cut a message or causal ordering in two parts, where one part is located in the one
component and another part is located in another component. An example of such an MSCisgivenin Fig-
ure B.36. To facilitate this gates are introduced.

msc hondecomposable

il i2 i3 i4
\ | \ | \ | \ |

m?2
m3
m4
ml

]]]]

Figure B.36: An MSC that cannot be decomposed.

Gates are implicitly or explicitly named parts of the environment. As such they can be used to describe
the interface between an MSC and its environment. Any message arrow or causal order arrow attached to
the frame surrounding an MSC defines a gate. In the recommendation there are two types of gates: mes-
sage gates and order gates. Message gates are used for message events and order gates are used for causal
orderings.

B.3.1.2 Graphical representation of gates

Graphically an explicitly named gate isindicated by associating agate name with the place where a message
arrow or causal order arrow is attached to the frame of the MSC, i.e,, the environment. A message gate
always has a name, either explicitly given or implicitly defined. By associating a name with the gate on
the frame of the MSC the gate name is explicitly defined. In this annex it is assumed that al gates have
explicitly given names. Examples of explicitly named message gates are the message gates g1 and g2 in
Figure B.37. Graphically it is only possible to distinguish the two types of gates, message gates and order
gates, by means of the type of arrow associated to it. If thisis a message arrow the gate is a message gate;
if itisacausal order arrow, the gate is an order gate.

In principle order gates are treated similarly as message gates. Order gates aways have to be named explic-
itly. See Figure B.37 for an example of an MSC with two order gates g3 and g4. The gate indicated by the
name gliscalled an order in gate and the gate with gate name g2 isan order out gate.

So far we have only considered gates astheinput address of message output events and as the output address
of message input events. The recommendation also allows a gate to be used as the input address of a lost
message output event or as the output address of a found message input event.

22 ITU-T Rec. Z.120/Annex B (04/1998)

msc example

i j k
\ | \ | \ |
1 - ni 3
g no g
g2 - m g4

Figure B.37: MSC toillustrate message and order gates.

The intended use of gatesis, as already explained in the motivation, for composing and decomposing large
specifications and descriptionsinto more tractable pieces. This will become more apparent in the sections
on M SC reference expressions and gates and inline expressions and gates. For now we will only discussthe
aspects related to gates on the M SC-level without these composition mechanisms.

B.3.1.3 Semanticsof gates

For the semantics of gateswe refer to the upcoming two sections where gates are connected on M SC refer-
ence expressions and inline expressions.

B.3.1.4 Textual representation of gates

Textually, the name of a message gate can be used as an output or input destination for message output
and message input events. An explicitly named gate is textually represented by the keywords env and via
followed by a gate name. For example, the sending of message n2 from instance j to the gate g2 is denoted
by “j : out n2toenv viag2’. Textually the MSC from Figure B.37 can be represented by

msc example;

i :1linmfrom | after envviagl;
j :l12outmtoi beforeenvviag2;
k :innlfromenvviag3;

k :outn2toenvviags;

endmsc;

Textually, a causal order arrow from an event on an instance i to agate g isdescribed by “i : e before env
viag”. Thus, the keywords env and via followed by a gate name can be used to describe the destination of
the causal order arrow. However, a causal order arrow from a gate g on the frame of an MSC to an event e
on aninstancei cannot be described in asimilar way. For this purpose the M SC gate interface necessarily
contains a defining occurrence of a gate and an ordering. There isa simple, elegant solution however. |f
the textual syntax of MSC is extended with a keyword after which can be used on all places where before
is allowed, then the gate g1 can be described in the MSC body by “i : in m from j after env viagl”. In
Section B.5 the extension of the textual syntax with a keyword after is discussed.

For lost message output events and found input events the input address and output address respectively can
also be an explicitly named gate. The textual syntax for these output and input addresses isidentical to the
syntax for message output and input events.

B.3.2 MSC reference expressions and gates
B.3.21 Graphical representation

In the previous section we have seen how gate definitions can be described both graphically and textually.
In this section we will extend the syntax for M SC reference expressions with gates. An MSC reference ex-

ITU-T Rec. Z.120/Annex B (04/1998) 23

pressionisindicated graphically by atextual formulainan M SC reference symbol. Asthe M SCsreferenced
inthetextual formulacan have gates, it should be possible to connect gates from referenced MSCs. For this
purpose actual gatesare used. Anactua gate is defined by connecting a message arrow with the M Sc refer-
ence expression symbol. By placing agate name close to the point of connection an explicitly named actua
gateis defined. If the gate name is omitted an implicitly named actual gate is defined. In Figure B.38 the
different occurrences of gates are named.

msc example msc A
[[
L]
m
g
n
h
\
actual input gate actual output gate input gate definition OUtput gate definition

Figure B.38: Terminology on gates.

The actual gates of an M SC reference expression may connect to corresponding constructsin the enclosing
MSC. An actual message gate (on an M SC reference symbol) may connect to another actual message gate,
an instance, or a message gate definition (implicitly or explicitly named) of the enclosing MSC by means
of amessage arrow. Similarly, an actual order gate may connect to another actual order gate, an orderable
event, or an order gate definition of the enclosing M SC by means of a causal order arrow.

A message arrow can only be connected to an MSC reference symbol if at least one of the MSCs that are
referenced has a corresponding gate. If a message mis sent to an actual input gate g of an MSC reference
expression, then the M SC reference expression must contain areference to an M SC with aninput gate defini-
tion of gate g for amessage m. If amessage misreceived from an actual output gate g of an M SC reference
expression, then the M SC reference expression must contain areference to an M SC with an output gate def-
inition of gate g for a message m. Examples of the graphical appearance of such connections are givenin
Figure B.39.

Figure B.39: Gates on M SC reference expressions.

It isimportant to define what the gates are of an MSC reference expression as the above explanation refers
tothisnotion. The set of gates of an M SC reference expression isthe union of the sets of gates of the MSCs
referenced by that expression.

It isallowed to connect two message gates from the same M SC reference expression in an enclosing M SC.
An example of this situation is the MSC given in Figure B.40. It is also possible to connect gates from
different MSCsthat are referenced in the same M SC reference expression.

24 ITU-T Rec. Z.120/Annex B (04/1998)

msc B
i
]
m
g
m
h
]

Figure B.40: Connecting gates from the same M SC reference expression.

B.3.22 Semanticsof M SC reference expressions

M SC reference expressions with gates that are connected on the outside of the M SC reference symbol de-
scribe how a message or causal order arrow is continued outside the MSC reference symbol. For the MSC
in Figure B.41 amessage arrow isdrawn from instancei to the M SC reference expression. This means that
amessage mis sent by instancei to the receiver of the corresponding message input event in MSC A. In
thiscase thisisinstance j.

msc example msc A

i i k i k
—— [\ [\ — —

e n

Figure B.41: Connecting a gate.

It isalso possible to connect the gates of two M SC reference expressions by means of a message arrow (see
Figure B.39). If agate of an MSC reference A is connected to a gate of an MSC reference expression B by
means of a message arrow with message identifier m this means that the output of message m inside MSC
A isconnected to the input of message m inside MSC B. Note that by the requirements these have to exist
and have to be unique.

A third possibilityisto connect agate from an M SC reference expression withagate of theM SC. Thismeans
that the message output or input event is sent to or received from the environment of the enclosing MSC.
Also, if a gate of an MSC reference expression is not connected thisimplicitly means that it is connected
to the environment of the enclosing MSC. Examples of both situations are given in Figure B.42. From a
semantics point of view the two MSCs A are equivalent.

So far we have only indicated what the meaning is of connecting gates in the case that the MSC reference
expression is only areference to an MSC by means of its name. However, M SC reference expressions can
easily become more complex.

For example the MSC reference expression can be the alternative composition of two MSC reference ex-
pressions by means of the keyword alt. It can be the case that the one M SC reference expression has a gate
g and the other has no such gate. An example of this situationis given in Figure B.43.

In case that the MSC A is selected for execution, the MSC can only perform the sending of message m and
its subsequent reception. On the other hand, if MSC B is selected, we expect the execution of local action
a and the output of message min an arbitrary order. Notethat in thiscase, the input of message m does not
take place.

ITU-T Rec. Z.120/Annex B (04/1998) 25

msc A msc A msc B
i i i
L] L]
I

Figure B.42: Propagation of a gate to the environment.

msc example msc A msc B
i i i i
\ | \ |
m
m g
B
g
]]

Figure B.43: Connecting a gate.

Thus it is possible that a message is sent by an instance to an instance while the receiver instance never
receives the message. For message inputs however it isimpossible that this situation arises.

In Figure B.44 an MSC example is given that refersto an MSC A by means of the MSC reference expres-
sionloop A. Instance j receives a message from the gate g. In MSC A amessage is sent to a gate g. As
a consequence M SC example expresses that message m is sent an arbitrary number of times, but at least
once, toinstance j and that instance j receives message m exactly once. The MSC does not specify which
occurrence of the sending of message m is received. The other occurrences of the sending of message m
are never received.

msc example msc A

Figure B.44: Gates and loops.

B.3.23 Textual representation of M SC reference expressions with gates

It extends the description of M SC reference expressions without gates with an MSC reference identification
and with a reference gate interface. The MSC reference identification is used to unambiguously identify
an MSC reference expression. If a gate on an MSC reference symbol acts as output or input address of
amessage arrow or as the destination of an causal order arrow, this is described textually by the keyword

26 ITU-T Rec. Z.120/Annex B (04/1998)

reference followed by an MSC reference identification and by the keyword via and the gate name. The
defining occurrence of the M SC reference identification therefore has to be unique.

msc example
il i2 j k

Figure B.45: MSC where M SC reference identifications are needed in the textual description.

Consider for example the MSC from Figure B.45. Graphically it isimmediately clear that the output of m
by instancei 1 isto thefirst occurrence of the expression A par B and the output of m by instancei2 istothe
second occurrence of theexpression A par B. Textually weneed ameansto distinguishthese two references
which have the same appearance. Thereto the MSC reference identification is used. In this example we
use parallell and parallel2 as MSC reference identifications for the first and second occurrence of the
expression A par B respectively. Textually thisMSC is described as follows:

mscC;

il : out mtoreferenceparadlellviag;
i2 : out mtoreferenceparadle2viag;
j .k referenceparalell: A par B;

j .k referenceparalel2: A par B;
endmsc;

With every M SC reference expression areference gate interface can be associated. Thisinterface describes
how the gates of the MSCs that are referenced in the MSC reference expression are connected in the en-

closing diagram. If agate of the M SC reference expression is not connected in the enclosing M SC no entry

inthe reference gate interface isrequired. Syntactically the entriesin thisinterface are described similar to

the descriptions of the gates in the MSC gate interface.

B.3.3 Inlineexpressions and gates
B.3.3.1 Graphical representation of inline expressions with gates

Graphically an inline expression is indicated by an inline expression symbol or an exc inline expression
symbol. Inside the inline expression symbol the operands are described in the form of an anonymous MSC
(i.e., an MSC without an M SC name) without instance head and end symbols. A message arrow or causal
order arrow that is attached to the inline expression symbol constitutes a gate definition. At the sametimea
continuation of thisarrow in the enclosing M SC describes a connection of thisgate. Thus, for inlineexpres-
sions the definition of a gate (of the anonymous M SC) coincides with the use of the gate (the actual gate).
Aswasthe case for gates on M SC reference symbols the actual gates can be explicitly or implicitly named.
Again, itisassumed inthisannex that all gates are explicitly named. In Figure B.46 the gate definitions and
actual gates are indicated.

A message gate on the inline expression symbol can be connected by means of a message arrow. Similarly,
an order gate on an inline expression symbol can be connected by means of a causal order symbol.

ITU-T Rec. Z.120/Annex B (04/1998) 27

msc example

i j k

L1 L1 L1
actual output gate
at
actual input gate m m
af e
n h n
N
]] \]
input gate definition output gate definition

Figure B.46: Terminology of gates on inline expressions.

B.3.3.2 Semanticsof inline expressions with gates

If a message arrow or causal order arrow is connected to the inline expression symbol internally, but not
externally thisindicates that the gate propagates to the frame of the enclosing MSC. The gate name remains
the same.

For al occurrences of a gate on an inline expression the internal address of the different occurrences of this
gate must be identical. The reason for this requirement is that in the textual syntax there is no means to
distinguish the different occurrences of the gate.

B.3.3.3 Textual representation of inline expressions with gates

Theintroductionof aninlineexpression identificationin thetextual representation of inlineexpressionswith
gatesis motivated similarly as the introduction of the M SC reference identification in the previous section.

If agate of aninlineexpressionisthe output or input address of a message arrow thisis described by means
of thekeyword inlinefollowed by theinlineexpression identifier and by thekeyword via and the gate name.

For each operand of the inline expression an inline gate interface can be described. Such an inline gate
interface describes both the internal and external connections of the gates on the inline expression symbol.

28 ITU-T Rec. Z.120/Annex B (04/1998)

B.4 Processtheory for M essage Sequence Charts

B.4.1 I ntroduction

In this section a number of constructs are defined operationally by means of deduction rules. These con-
structs are

e gpecia constants § and ¢;

e atomic actionsa € A;

o delayed choice operator F;

e delayed parallel composition || ;

e weak sequential composition o;

e bounded repetition *;

e unbounded repetition *°;

e generalized parallel composition || S and generalized weak sequential composition oS;
e renaming operator p;;

e recursion variables.

Together these constants and operators form the signature X. The deduction rules defining the operational
behaviour of these operatorsis explained and illustrated by means of examples. With these constants and
operators expressions can be built. The operators have the following binding powersin decreasing order:

1) theunary operators*, *° and p+;
2) thebinary operators ||, || S, o and oS;

3) the binary operator F.

For operators with equal binding power brackets are associated from the left. As a consequence of these
binding rules the expression a o b F ¢ should be read as (a o b) = ¢c. Another example is the expression
aobl cwhichshouldberead as(aob) | c.

B.42 Operational semantics

In this section terminology is introduced with respect to the mathematical framework that is used to define
an operational semantics. Bothterminology and notationare taken from [BV95]. Thegoal of an operational
semanticsis, given an expression denoting a processin acertain state, to describe all possible activitiesthat
can be performed by the process in that state and to describe the state of the process after such an activity.
This expression representstheinitial state of the M SC. The activitiesthat are considered for the operational
semantics of MSC are the execution of an event and the termination of the MSC. Also the states resulting
after such activities are described by means of expressions. If from a state s an event a can be performed
and theresulting state is represented by the expression s/, then thisisusually denoted by theternary relation
s 5 <. Ifin a given state s the process is capable of terminating immediately and successfully, thisis
indicated by means of s| .

The predicate — | C P is called the termination predicate as it indicates that a process has the possibility
to terminate immediately and successfully. The set P denotes all expressions that can be built from the

ITU-T Rec. Z.120/Annex B (04/1998) 29

constants and operators in the signature. It is assumed that all events are represented by atomic actions
from the set A. Then theternary relation — — — € P x A x P iscalled thetransitionrelation.

This predicate and these relations are defined by means of deduction rules (operational rules). A deduction
ruleisof theform % where H isa set of premises and C isthe conclusion. Each individual premise and the

conclusion are of theforms > ' or s] for arbitrary s,s' € P anda € A. Such a deduction rule should
be interpreted as follows: If al premises are true, the conclusion, by definition, also holds. A special kind
of deduction rule appears if the set of premisesisempty (H = &). Such a deduction rule is aso called
a deduction axiom and usually simply denoted by the conclusion C. An example of a deduction axiom is
deduction axiom (At 1) givenin Table B.1:

—a -
a— &

This deduction axiom expresses that a process that isin a state represented by the atomic action a can per-
form event a and thereby evolves into a state represented by the expression ¢. This expression ¢ indicates
the state in which no events can be performed but in which it is possible to terminate successfully and im-
mediately. Thisis expressed by the deduction axiom (E 1) also from Table B.1:

el

These are the only rules for expressionsa € A and ¢. The expression ¢ is used to denote an M SC without
events.

Clearly the process a cannot terminate and the process ¢ cannot perform events. Note that these negative
results are not explicitly defined. The following convention applies: If it isimpossibleto derive s|, then by
definition not s}, whichisdenoted by s /. Similarly, if it isimpossibleto derive s 3 ¢, then by definition
nots > .. Thisis usualy denoted as s 71 s'. Such negative results can also be used in the set of premises,

and then these are called negative premises. The notation's - expresses that a process represented by the
expression s can perform action a. This does not say anything about the resulting state after the execution

of a. Formally, s > means that there exists a state S’ such that s = s'. Then's -5 should be read as there
does not exists astate s’ such that s > ', or for all states s/, itisthe case that s 5 s'. These abbreviations

extend to therelation — ---— — to be introduced in Section B.4.7.

B.43 Equivalenceof processes

Through the relations 2 and -~ and the predicate |, the behaviour of a process is defined. Using this
behaviour it is possible to formally define when two processes should be considered equal. Many differ-
ent notions of equivalence have been studied in literature. For MSC the prefered notion of equivalence is
bisimulation [Par81].

Definition B.4.3.1 (Bisimulation relation) A binary relation B € P x P iscaled abismulationrelation
if foralla e Aands,t € P with sBt the following conditions hold:

Veep (s > 8 = Jpep(t > t' ASBt)),
Veep (S 8 = Jpep(t - — t' A SBt)),
Voep(t 3t = Jeep (S = S A SB)),

Voep(t - t' = Jgep (S - — S A SBt)),

30 ITU-T Rec. Z.120/Annex B (04/1998)

and
s|=ty,

ty=s].

Two closed terms p, g € P are bisimilar, notation p < q, if there exists a bisimulation relation B such
that pBg.

Intuitively, two bisimilar processes can execute the same actions, and if they do so, will result in bisimilar
processes again. For a concise treatment of bisimulation refer to [BW9Q].

B.4.4 Deadlock, empty process and atomic actions

In this section the smallest building blocks of the signature are introduced. These are divided into the spe-

cia constants and the atomic actions. There are two specia constants: § and . The deadlock constant &
represents a process that cannot execute an event and cannot terminate. The empty process ¢ represents a
process that cannot execute an event, but contrary to deadlock it terminates successfully.

The set of atomic actionsisaparameter of the term algebra. 1nthe context of Message Sequence Chartsitis
chosen to represent the events of the M SC language such as output and input of a message, timer statements,
and local actions. Asis the case with MSC, each smallest event is defined on an instance. To mimic this
in the term algebra the existence of atotal mapping ¢ : A — 1d is assumed which associates to an atomic
action an identifier representing an instance name.

The operational semantics contains two relations and one predicate on processes. The transition relation

X > X' means that process x can perform event a and thereby evolves into process X. Stated differently:
inastate x event a can be performed and state X’ will then be entered. The termination predicate x| means

that the process x can terminate immediately and successfully. The permission relation x = X! will be
explained later when relevant.

Table B.1: Deduction rulesfor constants; a, b € A

A I EY

As indicated before, the empty process ¢ is capable of terminating immediately and successfully. Thisis
expressed by the deduction rule ¢ |, (in the form of a deduction axiom). An atomic action a can execute

event a and thereby it evolves into the empty process: a —> ¢.

The deduction rules for the permission relation will be discussed when the time isright. For now they will
only play aminor role.

B.45 Delayed choice

The structured operational semantics associated to delayed choice by means of the deduction rules presented
in Table B.2 eminently illustrates the purposes of this operator. The deduction rules for > clearly express
that x y can perform an a-transition thereby resolving the choice if exactly one of its operands can, and
in the case that both operands can perform an a-transition the choice is not yet resolved.

The deduction rules for the termination predicate | and the transition relation 5 from Table B.2 are taken
from [BM 94] where the delayed choice operator wasintroduced in the setting of bisimulationsemantics asa

ITU-T Rec. Z.120/Annex B (04/1998) 31

Table B.2: Deduction rules for delayed choice

L(DCl) L(DCZ)
XF Yyl XF Yyl
a a a a
X3KYP g M(DC y X=XV ey
XFYy—>x XFYy—>y XFYy—>XFy

means of composing MSCs. The deductionrules(DC 1) and (DC 2) express that the alternative composition
of two processes has the option to terminate if and only if at least one of the aternatives has this option.

ExampleB.4.5.1 The process action(i, @) F ¢ has an option to terminate as the second alternative has this
option. On the contrary the process action(i, a) F action(j, b) does not have an option to terminate as none
of its alternatives can terminate.

The deduction rules (DC 3) and (DC 4) express that, in the situation that exactly one of the alternatives can
execute an action a, the alternative composition can execute this event as well and that the execution of this
event resolves the choice.

ExampleB.4.5.2 The process action(i, &) F action(j, b) can execute the action action(i, a) and the action
action(j, b). In both cases the action can be executed by only one of the alternatives. Thusin both cases
making a choice between the alternatives cannot be avoided. Operationally thisis seen as follows:

action(i, a) T action(j, by *'%"?

and

action(i, a) action(j, b) aa'ﬂ”) e.

Deduction rule (DC 5) deals with the situation that both alternatives can execute an action a. It states that,
in that case, the alternative composition can execute a and, moreover, that there remain two alternatives.

ExampleB.4.5.3 The process action(i, @) F action(i, a) has two alternatives both of which can execute
action action(i, a). The choice between the alternatives is not resolved. Operationally this can be seen as

follows:

action(i, a) = action(i, a) action(.® eFe.

The delayed choiceis commutative and associative and deadlock isa unit for delayed choice. These proper-
tiesare exactly what was required for the delayed choice. These properties enable the definition of a multi-
nary delayed choice operator as in the following definition.

Definition B.4.5.4 (Multinary delayed choice) Let | beafiniteset. Let R beaprocessterminwhichonly
the variablei occurs freely. Then the multinary delayed choice operator is defined by

) ifl =g,
i:!,:P'z P,»:F(' .P.) ifjel.
iel\(j}

32 ITU-T Rec. Z.120/Annex B (04/1998)

B.4.6 Delayed parallel composition

The delayed parallel composition of two processesistheinterleaved execution of the events of the processes
while maintaining the ordering of events as specified by the processes in isolation. This operator is a de-
layed version of the interleaving operators normally used. If both processes that are composed by means
of delayed paralel composition can perform the same event, it is not visible which of the two is actually
executed. In other word, a delayed choice is made between the two occurrences. In this aspect the delayed
parallel composition operator used for the semantics of M SC differsfrom theinterleaving operators of ACP-
style process algebras [BW90]. The deduction rulesfor the delayed parallel composition operator are given
in Table B.3.

Table B.3: Deduction rules for delayed parallel composition

W oy
x Il yd
a a a a
X3XYE oo X DX YDV ppy M(DP‘D
X[ly—= x|y Xly=xX1yFx|y X[y —= x|y

Deduction rule (DP 1) expresses that the delayed parallel composition of two processes has an option to
terminate if and only if both processes have this option.

ExampleB.4.6.1 The process (a F ¢) || (b F &) has an option to terminate as both a = ¢ and b ¢ have
this option. Operationally thisis seen asfollows: a ¢ and b ¥ ¢| and therefore by deduction rule (DP
Daso@Fe) | (bFe)l.

The process a || ¢ does not have an option to terminate as the left-hand side a of the delayed parallel com-
position does not have this option (a J/) and therefore deduction rule (DP 1) is not applicable.

The deduction rules (DP 2) and (DP 4) expressthat if exactly one of the operands of a delayed parallel com-
position can execute an action a, then the delayed parallel composition can and it is known which operand
has actually executed a.

ExampleB.4.6.2 Theprocessa || biscapableof performingaction a and thereby it evolvesinto the process
¢ || b. Butitisaso possible for this process to perform action b and then the process a || ¢ remains.

The deduction rule (DP 3) expresses that, in a situation that both operands can execute an action a, the
delayed parallel composition can execute an a and moreover that it isnot known which operand executed a.
Thisisseeninthedeductionruleby theterm x’ || yx || Y. Thefirst alternative resultsfrom the execution of
a by process x and the second from the execution of a by process y. The fact that the process x || y evolves
intothe process X’ || y X || Y indicatesthat it is not known which a has been executed.

ExampleB.4.6.3 Anexampleillustratingthe delayed nature of the delayed parallel compositionisthe pro-
cess a || a. It can perform the following sequence of transitions:

a a
ala—ellaFalle >celleFelel.

The delayed parallel compositioniscommutative and associative and the empty processisaunit for delayed
parallel composition. These properties enable the definition of a multinary delayed parallel composition
operator as in the following definition.

ITU-T Rec. Z.120/Annex B (04/1998) 33

Definition B.4.6.4 (Multinary delayed parallel composition) Let | be afinite set. Let B be a process
term in which only the variable i occurs freely. Then the multinary delayed parallel composition operator
is defined by

£ if |l =,
i|€|lpu= P,»||([P.) ifjel.
i)

B.47 Weak sequential composition

In order to explain the weak sequential composition operator it is necessary to consider the purpose of this
operator inthe semantics of MSC. The weak sequential composition operator isintroduced to represent the
vertical composition of MSCs. It has a similar behaviour as the delayed parallel composition operator, but
additionally it maintains the ordering of events from instances that the MSCs have in common. Thus an
event on instance i in the second MSC can only take place in situations where all events on instance i (if
any) inthefirst MSC have already taken place.

However, thereisacomplicationwith respect to alternatives. Supposethat an MSC A isgiven that describes
two aternatives. Thefirst alternative only describesalocal actiona oninstancei and the second alternative
only containsalocal action b oninstance j. Suppose that thisM SC is composed vertically withan MSC B
that only contains alocal action c oninstancei. The vertical composition of thefirst alternative of MSC A
with MSC B should not allow the execution of local action ¢ as it must be preceded by local action a. The
vertical composition of the second alternative of MSC A with MSC B can execute local action c as there
are no events in the second aternative of MSC A that must precede the execution of local action ¢. Thus,
one alternative of MSC A does not allow the execution of local action ¢ and one aternative does allow the
execution of local actionc. The expected resultisthat the execution of local action ¢ isallowed and moreover
that if local action c¢ is executed the first alternative disappears.

In order to deal withthisaspect of the weak sequential composition operator the permission relation - s
used. Thepropositionx -- s X statesthat process x alowsthe execution of an actiona and thereby evolves
into the process x” due to the resolving of choices. On the other hand, the propositionx -4 " indicates that
x does not allow the execution of action a from a process with which x is composed vertically.

In an MSC every event is associated with an instance on which it is defined. In the operational semantics
thisisincorporated by assuming a mapping £ : A — |, where | represents the set of al instance names,
which associates with an atomic action a € A the name of theinstance it is defined on £(a).

The deduction rules for the permission relation are given in Table B.4 and the deduction rules for weak
seguential composition are given in Table B.5.

Deduction rule (WS 1) expresses that the weak sequential composition of two processes has an option to
terminate if and only if both processes have this option.

ExampleB.4.7.1 Theprocesse o (a F¢) hasthe option to terminate as both operands have thisoption: |,
andaFel.

The deduction rules (WS 2), (WS 3) and (WS 4) deal with the transitionsof the vertical composition of two
processes. In the case that x can execute a and either y cannot execute a or X does not allow the execution
of a by y, only the execution of a by x can take place. Thisis expressed by deduction rule (WS 2).

ExampleB.4.7.2 Supposethat ¢(a) # ¢(b). The process a o b can execute action a and evolves into the
process ¢ o bsincea > e and b 5.

In the case that both x and y can execute action a and x allows the execution of a by vy, there are two pos-

sibilitiesfor executing action a. A delayed choice of the individual occurrences of action a results. Thisis
expressed by deduction rule (WS 3).

34 ITU-T Rec. Z.120/Annex B (04/1998)

Table B.4: Deduction rules for the permission relation

L(@) # L(b)
£ g b. b
X a—) X/ a_) / x...a_> X/ .//.a_) X./.a_) y...a_> y
~2 Y (pce) Y7~ (pe) RAk
XFYy —-—>XFY XFYy:-—>X XFY:-—>Y
X - —>xy ny P5) X - —>xy y’WSS)
Xy - —>x||y Xoy-- —>x oy

(DC8)

Table B.5: Deduction rules for weak sequential composition

eV s gy
Xoy
x—a>x’,x~/~a—>vy72> X S X, X X y—>y
4 (WS 2) (WS 3)
Xoy—> X oy xOy—>xOy:Fx”oy

X A, X - X LYy (WS 4)
Xoy—>xX oy

ITU-T Rec. Z.120/Annex B (04/1998)

35

ExampleB.4.7.3 Supposethat £(a) # ¢(b). The process (a F b) o a can execute action a and thereby
evolvesintothe process e o a Fbo e. Thefirst aternative of the resulting process describes the result of the
execution of a by a + b and the second alternative describes the result of the execution of a by the process
a. Notethat due to the execution of the second a, the alternative a from a & b is not present anymore since

axh--sb.

In the case that x cannot execute an action a and y can and x permits the execution of a by vy, thereis one
possibility of executing a. Thisis expressed by deduction rule (WS 4).

ExampleB.4.7.4 Supposethat ¢(a) # £(b). The process a o b can execute an action b since the second

operand of the vertical composition can (b LY ¢) and thefirst operand allowsthis(a RN a). Theresulting
process after the execution of actionbisao e.

The n-times repeated application of weak sequential composition X" isintroduced as a shorthand. No op-
erational rules are given for this operator.

Definition B.4.7.5 Letn € IN. Then for x € P the process X" is defined inductively as follows:

n & if n=0,
X =
xox™1 ifn>o0.

Another convenient shorthand isthe expression x[™" where x € P and m, n € INU {oo}. Thisexpression
indicatesthat at least m and at most n copies of x are composed by means of weak sequential composition.
For example the expression x124 represents the expression X o X F X o (X o X) F X o (X o (X o X)). If the
minimal number of repetitions exceeds the maximal number of repetitionsit is assumed that x is executed
zero times.

Definition B.4.7.6 Letm, n € INU {oo}. Then for x € P the process xI™" is defined as follows:

£ ifm>n,
x' ifm<nandn # oo,
ximnl - — m<i<n
X ifm=n= o0,

XxTox* ifm<nandn=oc.

B.48 Generalization of the composition operators

In this section generalized versions of the delayed parallel composition operator and the weak sequential
composition operator are defined. These generalization are necessary to capture ordering requirements that
need to be satisfied that refer to events from the different processes that are composed horizontally or verti-
cally. The operatorsfor delayed parallel and weak sequential composition are generalized by labeling them
with a set of ordering requirements. An ordering requirement is a triple of the forma > b where a and b

are different atomic actionsand n isanatural number. Asanotational shorthanda +—0> biswrittenasa — b.
Often the curly brackets of the set of ordering requirements are simply omitted.

The deduction rulesfor the generalized parallel composition operator are given in Table B.6 and the deduc-
tion rules for the generalized weak sequential composition operator are given in Table B.7. The auxiliary
predicate enabled and the auxiliary mapping upd are explained and defined below.

Definition B.4.8.1 Fora € A and Saset of ordering requirements:

enabled@, S) <= Vpcecananbr>ceS = (c#avns> 0),

upd@a, S) = (b>c|b>ceSAb#ancal
U mS'ciblceSab=a)
U (S'cibBceSac=aan>0).

36 ITU-T Rec. Z.120/Annex B (04/1998)

One difference between the deduction rules for || S and oS and the deduction rulesfor || and o isthat the
execution of an event a isrestricted to the situations where enabled(a, S) holds. Before this predicate can
be explained first the interpretation of the ordering requirements must be explained.

The ordering requirement a > b expresses that every m + nt" execution of event b must be preceded by
at least m executions of event a. The natural number n basically describes the difference in the number of

executions of a and b. Thusif the set S contains the requirement a 3 b, it is not allowed to execute event
b. The predicate enabled(a, S) holdsif and only if there is no ordering requirement in the set S that does
not allow the execution of event a.

Table B.6: Deduction rules for generalized parallel composition

XY ey
x| Syl

X > x',y >y, enabled(a, S)

X || Sy = X || PA2y x || w42y

a
¢ |
x—>x,yf>,enabed(a, S) (HC2)
X || Sy = x' || @Sy

(HC?J)

a / a /
X=X,y o>y

a .
XAy >y endbled@ s o
X || Sy = x || P4y

\

Execution of an event a can lead to an update of the set of ordering requirements as follows. If event a
occurs as the righthand side of a requirement this means that the natural number must be decreased by one.
If event a occurs as the lefthand side of a requirement this means that the natural number must be increased
by one. The requirementsin which a does not occur, are not changed. For the purpose of updating the set
S due to the execution of event a the mapping upd(a, S) is used.

Table B.7: Deduction rules for generalized weak sequential composition

X > X, X ~/~a—> vy 2, enabled(a, S)
xSy S x owpdas y

Xy Y

(VC?2)

X3 X, X s X y 3 y', enabled(a, S)

(
X oS y Y X/ oupd@,S) y F X oupd@,S) y (VC3)

a ! a 4 ...a ! ...a 4
x72>,x~~—>x,y—>y,enabled(a,8) (VCa) XX,y o>y

(VC5)

a
X oSy 5 x/ oupd@s) v XoSy > X oSy

Note that for both operators the deduction rules are similar to the deduction rules for their non-generalized
counterparts. Infact || = || and 0o = o.

ExampleB.4.8.2 Consider the process 2m || '™~ ™Im. If the ordering requirement is not considered, i.e.,
the process ?m || !'m is considered, the actions !'m and ?m would be executed in any order. However, the
presence of the requirement !m +— ?m blocks the execution of ?m as long as !'m has not been executed.

ITU-T Rec. Z.120/Annex B (04/1998) 37

Thus the only possible execution for this processis

! L m
m | MMm D m e e g Mg

B.49 Renaming operator

A mapping f : A — Aliscaled aninjectiverenamingiff foral a,b € A, if f(a) = f(b) thena =b. The
renaming operator p; renames an atomic action a into f (a).

Table B.8: Deduction rules for renaming

-t fr
Xy X...fﬁ N X _ﬁa) X’
pr(x)} 01 (X) - pr(X) p1(X) > pr(X)

B.410 Repetitivebehaviour
B.4.10.1 Iteration

The process x* isthe process that is capable of executing x any humber of timesincluding zero times. The
choice of how many timesthe x isexecuted, however, isdelayed. The consecutive occurrences of the process
x are composed by means of weak sequential composition. Intuitively speaking the process x* represents
the process

FxX = FXFXOXF---.
i>0

Thedeductionrulesfor iteration are presented in Table B.9. The operation of theiteration operator isclosely
related to the operation of the weak sequential composition and the delayed choice as will be clear from the
explanation of the deduction rules.

Table B.9: Deduction rules for iteration

(IT2)
xX*)
x—a>x’x/a—> X 2 X, X s X
— (T2 Ea——— (T3
x* — X o x* xX* — X" o (X' o X*)
a a
X S — X o= X
X gty 222Xty
X* o> X* o= X

The process x* has the option to execute x zero times and thusit that has the option to terminate successfully
and immediately. Thisiswhat is expressed by deductionrule (IT 1).

The process x* can perform an event a if the process x can do so. To determine what the resulting process
will be itis of importance whether x aso permits the event a. Suppose that x 3 x.

38 ITU-T Rec. Z.120/Annex B (04/1998)

1) Inthecasethat x doesnot permitevent a, i.e., X ~/~a—>, the only possibility for the execution of event a
isthea fromthefirst x in each of thesequences x' (i > 1). If thealternativex' (i > 1)isconsideredin
isolationthenit can perform an a event and the resulting process will be x’ o x' ~. Sincethisexecution
of a by thefirst occurrence of x in each of the alternativesis delayed the resulting processis

:FX/ ° Xi_l,

i>1

which equals
X o Fx1,
i>1

or in the formulation chosen for deductionrule (IT 2)

!/ *

X oX".

2) Inthe casethat x does permit an a and thereby evolvesinto x”, i.e., X L5 X7, there are many more
possibilitiesfor the execution of the a. Again the choice is delayed. For each of the sequences x' an
a event can be executed by any of the occurrences of x. Thus, if the aternative X' is considered in
isolation, then it can perform an a event and it thereby evolvesinto

X//j—l

1<)=<i

o(X' o Xi_j).

Thus process x* can perform an a event and thereby evolves into the process

i1 .
X//J ° (X/oX' j)’
i>11<|<i

which isequal to
X" o (X' o X*).

Thisis expressed by deductionrule (IT 3).

ExampleB.4.10.1.1 Consider the processa*. Thisprocess describes an arbitrary number of executions of
action a. Only thefirst occurrence of a can be executed as all actions a necessarily are defined on the same

. a a
instanceand a -#- —. Thusa* = ¢ o a*.

ExampleB.4.10.1.2 Consider the process (a o b)* where £(a) # £(b). The first occurrence of b can be
executed asa alowsthis(a -- L, a). The other occurrences of b cannot be executed as the previous occur-
rences of b prohibitthisao b /b—> Thus, (a o b)* LY (@aog)o(aoh)’.

ExampleB.4.10.1.3 Consider the process (a b)* where £(a) # ¢(b). ThenaFxb 2 pband axb =y
Deduction rule (IT 3) then gives (a F b)* > b* o (¢ o (@ F b)*). Thisresult can be explained as follows.
Consider the adlternative (a = b)' for somei > 1. Clearly this alternative can execute action a. If (a = b)'
isrepresented by

(@Fb)o@Fhb)o---o(@ Fhi)
one can observe that each a; (1 < j < i) can be executed. The result of executing the j'" occurrence of a,
i.e., a; isthen given by the following scheme

(@Fby) o (@Fby) o---0o (@_1Fbj—1) o @ Fb) o @t1Fbj;1) o---0 (@ Fb)
LA LA LA A
b1 o by 00 bj-1 o e o (j+1Fbjy1) o---0 (& Fhy).

The delayed choice of all these possibilitiesgives (a b)* 2 bo(eo(a F b)*). The deduction rule ex-

presses that an arbitrary occurrence of a can be executed and that as a consequence all previousoccurrences
of a are removed.

ITU-T Rec. Z.120/Annex B (04/1998) 39

If process x does not permit the execution of action a, then x* permits the execution of actiona (IT 4). The
reason for thisisthat x* has the empty process ¢ as one of itsalternatives. If, onthe other hand, the process
x does permit the execution of a and thereby evolvesinto x’, then x* also permits the execution of a and it
evolvesinto X' (IT 5).

B.4.10.2 Unbounded repetition

The unbounded repetition of the process X, i.e., x>, corresponds to the notion where fresh copies of x are
composed by means of weak sequential composition ad infinitum. The fact that the operation of unbounded
repetitionis so closaly linked with the operation of weak sequential compositionis visiblein the deduction
rules presented in Table B.10.

Table B.10: Deduction rules for unbounded repetition

X3 x x~/~a—> X3 X, X s X!
— (URD Ea——— (UR2)
X*® — X o x™® X® — X" o (X' 0 X*)
X s X
———(URYJ)
XX o X'

Next consider the transition relation. There are only two relevant (digoint) cases. The first is where x can
execute an a event and x does not permit an a event, and the second iswhere x can execute an a event and
also permits an a event. The other case, i.e., where x cannot execute an a event, does not give rise to a
transition of x> as none of the copies of x can execute the a event.

1) Supposethat x can perform an a event and thereby evolvesinto x” and supposethat x does not permit
an a event. Then, following the deduction rulesfor weak sequential composition, the process x> can
only execute the a event from the first copy of x. Thus x> performs the a event as well and thereby
evolvesinto the process x’ o x*°. Thisisexpressed by deduction rule (UR 1).

2) Alternatively, if x permits and a event and thereby evolves into x”, there are in principle infinitely
many possibilities for the execution of the a event, due to the permission for a each of the copies
can perform the a event. Thus the deduction rule expresses that one of the copies of x will perform
thea event. All preceding copies thus evolve into X”. Thus the process x> evolves into the process
X" o (X' o x*°) after the execution of action a. Thisis expressed by deduction rule (UR 2).

The deduction rule for the permission relation (UR 3) is based directly on the deduction rule for weak se-
guential composition.
B.4.10.3 Recursion
The language HMSC can be used to describe infinitary behaviour. Therefore, the semantic domain is ex-
tended with recursive specifications. Let ~ be asignatureand let V be a set of recursion variables. A re-
cursive specification E(V) isaset of equations

{X=sx(V) | X eV},

where each s¢ (V) isaterm over the signature X and the set of variables V.

40 ITU-T Rec. Z.120/Annex B (04/1998)

Let E be a recursive specification in which X occurs as a recursion variable. Then (X | E) denotes the
solutionfor X with respect to the recursive specification E. For t aterm possibly containing recursion vari-

ables, theprocess (t | E) denotesthe processt with al occurrences of recursion variablesr replaced by their
solution {r | E).

An operationa semantics for recursion which generates exactly one solution for every recursive specifica

tion is given by the deduction rules in Table B.12. In order to define the structured operational semantics
for recursion it is necessary to determine whether the process represented by a recursion variable is capa-
ble of performing actions and of permitting actions. Therefore, auxiliary predicates r 57 and r~/~a—>1 are
introduced which are defined by the deduction rulesin Table B.11.

Table B.11: Auxiliary predicates and relationsfor recursion (a € A, X = sx € E)

2(a) = ¢(b) IRV
(SI’./.a_)“I bl’.//.a_)“l X T yl’./.a_)“l
)(".//.a_>—l y".//.a_>—l)(".//.a_>—l y".//.a_>—l
XSy AT xSy x| SyTAST XSy
XI’.//.a_)‘I xr &7 yl’_a)‘l
Xoor./.a_)j al’_a)‘l X F yl’_a)‘l X F yl’_a)‘l
x5, enabled(a, S) y™37, enabled(a, S) x5, enabled(a, S)
X || Syl’_a)‘l X || Syl’_a)‘l X oS yl’_a)‘l
era_)—l’ yl’_a)‘l’ enabled(a, S) Xl’_a)‘l Xl’_a)‘l
X oS yl’_a)‘l &0 xoor 8 1
x5 Xy (B3 (s E)T T
IS pr O™/ (X| E)r 57 (X E)

The proposition x™ 57 indicates that the process X can execute action a. The process (X | E) can execute

a if sx can. Thisisexpressed by the deductionrulesin Table B.11. The proposition xr~/~a—>1 indicates that
the process x cannot permit the execution of a. The process (X | E) cannot permit the execution of a if sx
cannot. Thisis expressed by the last deductionrulein Table B.11.

ExampleB.4.10.3.1 Consider the recursive specification givenby X = coY andY = ¢ o X. Does X
permit a? In order to answer this question consider Xr/~a—>7. Observe that Xr~/~a—>1 iff & o Yr~/~a—>1 iff
em AT or YT LS T YT A S T iff e o X7 T iff X747, So X4 T depends on X/ 7. This
means that Xr~/~a—>1 is not derivable, so X1,

The reason for splitting the definition of transition and permission into two phases, possibility to transit or
permit and result after transition or permission, is that the the recursive specification has to be modified to

obtain the results.

ITU-T Rec. Z.120/Annex B (04/1998) 41

Table B.12: Structured operational semantics for recursion (a € A, X = s¢x € E)

(sx|E) (X|E)37 (X|E)r... 0
(XIE) (X|E) > (X?| E?) (X|E) - (X3 E?)

Definition B.4.10.3.2 Let E be arecursive specification. Then

E? = {X%=ja(sx) | X=sx € EJUEUE®
E® = {X®=pa(sx) | X=sx € E}.

where p, is defined inductively by

pa(e) =
pa(8) = 3§ .]
~ e ITa=
pa(d) = 15 ifazb
PaX FY) = pa(X) F paly)
A s Pa(X) o@Dy 5 (x) oPUaS) o (y) if yT37 and enabled(a, S)
PalXOZY) =) 5 (%) e y if y™5 7 and enabled(a, S)
pa(X) | PIESy F x || P4@D 5 (y) if xT 37, y™5 7 and enabled(a,)
a1y = 1 Al upd(@.9) y if x~37, y2 " and enabled(a, S)
X || WP@-S) 5 (y) if x5 7, y™57 and enabled(a, S)
8 otherwise
pa(X) o X* if xr~/~a—>1 and x™3 7
palX*) = 1 5a(0)* o (Fa(¥) ox*) ifx- T and xT 30
8 if XA
Pa(X) o X if xr~/~a—>1 and x5
Pax®) = {1 Ba()* o (Ba(X) 0 x®) if X" and xT3 7
8 if x© AT
pa(pi (X)) = pt(Pr-13 (X))
pa(X) = X2

and where p, is defined inductively by

Pa(e) = ¢

pa(8) = 4

5 _ [b ife@) #Lb)

pad) = s ife@ =eb)

PaXFY) = pa(X) F paly)

sy | a0 oS paly) ifxT s and yr T
palX oY) =) otherwise

s oSy = | A00I%Fa(y) xS and yre T
pax II7y) - = F) otherwise

-] if x50

PO = a0 i

ﬁa(xoo) = ﬁa(x)oo

pa(pi (X)) = pt(Of-13 (X))

pa(X) = XA

42 ITU-T Rec. Z.120/Annex B (04/1998)

ExampleB.4.10.3.3 Leta, b € A suchthat ¢(a) £ ¢(b). Consider the recursive specification given by
E={X=aoV,Y=boX}

Can X execute actiona? Yesitc%n as can be derived asfollows. X™ 2 TiffacY™ 2 iffa” 2 Tand Y™ 27
iff bo X™2Tiff b™ 27 or br.- "7 and XT3 7 iff true. So X™-27. Now, what is the resulting process
after the execution of b? The deduction rules state that (X | E) > (XP| EP) where

EP = (XP=§oYFaoY’, YP=coXF8s0XP, X=aoY,Y=boX}

Supposethat ¢ € A suchthat ¢(c) # ¢(a) and £(c) # £(b). Now, consider the process X oc. Inorder tofind
out if this process can execute action c it is rel evant to establish whether X ... The deduction rule states
that thisis the case if X™--->7. Consider thefollowing derivation: X~ - > 7iff ao Y™ /- > Tiff am /.27
or Y™ £ Tiff YT 4SS T iff o XT4 s T iff b4 T or XT4 T iff X747, Thusitisnot possibleto
derive Xr~/~c—>7. Therefore, X™--- 5.

What is the resulting process after the execution of c. Following the deduction rules the resulting process
is X® o ¢ where the process X° is defined by the recursive specification:

EC:{)2°=ao\?°,\?°=bo)V(C}

ExampleB.4.10.3.4 Consider the recursive specification E = {X = X}. Then clearly Xr;}ﬂ, X
and X) foral a € A. Consider the recursive specification E = {X = Y,Y = X}. Also, in thiscase

XmA7 X and X yforalace A

ExampleB.4.10.3.5 Next, consider the recursive specification E = {X =ao (Y FZ), Y=bo X, Z =
co X}, wherea, b, and ¢ are pairwise independent actions. Consider the process (X | E) o d whereb’ and b
are dependent. The action b’ can only be executed if the process (X | E) permits the execution of k. Then
the recursive specification E,, must be constructed: Ey = {Xpy = ao Yy FZp), Yo =6, Zy = Co Xp}.

Hence (X | E) AN (Xy | Ep). Thusthe process (X | E) o b is capable of performing the action b’ and
thereby evolvesinto the process (Xy | Er). Thisexample shows that by permitting action b’ the choice for
executing the b actionsis resolved.

ITU-T Rec. Z.120/Annex B (04/1998) 43

B.5 Textual syntax of MSC for the semantics

In this section we present the textual syntax that has actually been used for the definition of the formal se-
mantics. In Section B.5.2 the textual syntax is given and in Section B.5.1 the changes that have lead to this
textual syntax are explained.

B.5.1 Changestothetextual syntax

Thetextual syntax of M SC as presented in Recommendation Z.120ischanged in several aspectsfor the defi-
nition of theformal semantics. These changes can be subdivided into several categories. In SectionB.5.1.1,
we explain the changes to the textual syntax dueto the fact that certain concepts are not treated in the formal
semanticsinthisthesis. In Section B.5.1.7, we optimizethe textual syntax by removing irrelevant informa-
tion. In Section B.5.1.8, we explain the optimization of the textual syntax by considering certain construc-
tionsas abbreviationsof other constructions. In Section B.5.1.9, we extend thetextual syntax for the purpose
of defining the formal semantics. In Section B.5.1.10, we explain the assumptionsthat have led to a further
simplification of the textual syntax.

Besides the changes presented in the following sections also reformulations of the BNF rules have taken
place in order to facilitate the definition of the formal semantics. These reformulations are replacing a non-
terminal in the righthand sides of BNF rules by its productions, reformulatinga BNF rule such that it facil-
itates inductive definitions and the introduction of new nonterminalsto facilitate definitions.

All changes explained below are given with respect to the textual syntax of MSC as presented in Recom-
mendation Z.120. The nonterminal () denotes the empty word.

B.5.1.1 Partsof thelanguagethat are not treated
B.5.1.2 Instance-oriented representation

The textual syntax of MSC offers the possibility to describe an MSC in an instance-oriented way, in an
event-oriented way and even by mixing these two description styles. For the definition of the semantics it
is assumed that the MSC is represented in an event-oriented way. This restriction has great consequences
for the textual syntax that is used for the definition of the formal semantics. These consequences are listed
below:

e The MSC statementsthat are produced by the sequence of nonterminals (old instance head statement)
(instance event list) are used to give the user of the language M SC the possibility to describe an in-
stance in isolation. This combination is removed as an aternative for the productions of the nonter-
minal (msc statement).

e Theshared conditions, shared M SC reference expressions and shared inlineexpressions are only used
for the instance-oriented textual syntax and can therefore be omitted as alternative productionsin the
rule for the nonterminal (non-orderable event).

e Asaconsequence of theabove ommissionsanumber of nonterminal sisnot necessary anymore. These
are removed.

B.5.1.3 Instance decomposition
No semantics is provided for instance decomposition. As a consequence it isnot necessary to indicate that

an instanceis decomposed by means of the productions of the nonterminal (decomposition) inthe BNFrule
for the nonterminal (instance head statement).

44 ITU-T Rec. Z.120/Annex B (04/1998)

B.5.1.4 Substitution

No semanticsis provided for the substitution mechanism in M SC reference expressions. The optional use of
the nonterminal (parameter substitution) inthe BNFrulefor the nonterminal (msc ref 1oop expr) istherefore
removed.

B.5.1.5 Incomplete message events and gates

No semanticsisprovidedfor lost and found message eventsthat are sent to or received from the environment.
This has severa consequences for the textual syntax.

o A lost message event can only be sent to an instance or the environment without a gate name being
associated withit. Similarly, afound message event can only be received from an instance or the envi-
ronment without a gate name being associated with it. Therefore, the BNF rulesfor the nonterminals
{(incomplete message output) and (incomplete message input) is replaced by the rules

(incompl ete message output)
(incompl ete message input)

out (msg identification) to lost [(instance name) | env |
in (msg identification) from found [(instance name) | env |

e Asincomplete message events cannot be sent to the environment or received from the environment
the nonterminals (output dest) and (input dest) can be simplified to (and thus replaced by) the non-
terminal's (output address) and (input address) respectively.

B.5.1.6 Natural names

Natural names are used to specify the loop boundaries. For the semantics it is relevant that these natural
names can be interpreted as natural numbers. Therefore, the nontermina (natural name) has been replaced
by the nonterminal (decimal digit).

B.5.1.7 Irrelevant information

In the textual syntax of MSC at several places information is provided that isirrelevant for the semantics.
For the purpose of defining the semantics of MSC it is assumed that the MSCs do not contain this type of
information.

o All partsof thetextual syntax that specify comments are removed. The BNF rulefor the nonterminal
(end) isreplaced by the BNF rule

(fendy =

As a consequence all occurrences of the nonterminal (end) are replaced by the terminal ;. Further-
more, the possibility to have a text definition as an MSC statement is removed.

e Graphical parts of the grammar are removed. These are the nonterminals (document head area) and
{msc diagram) which occur in the BNF rules for {(msc document head) and (msc document body),
respectively.

e The part of the MSC document head that contains references to external sourcesis removed. The
BNF rule for the nonterminal (document head) is replaced by the BNF rule

(document head) ::= mscdocument {msc document name) ;

ITU-T Rec. Z.120/Annex B (04/1998) 45

e Theoptional MSC interface ({(msc interface)) isremoved asit containsno information that isrelevant

to the definition of the formal semantics. This is only possible due to the extension of the textual
syntax with akeyword after as explained in Section B.5.1.9.

The part of the syntax referring to instance head and end statements (({instance head statement) and
(instance end statement)) isremoved. The information which instances are described inthe MSC is
only used as additional informationthat is useful when drawing an M SC starting from the textual rep-
resentation. Also, thisinformationisusedtointerpretthekeywordall. We assumethat all occurrences
of the keyword all are replaced by the corresponding list of instance names (see Section B.5.1.8).

B.5.1.8 Shorthands

In the textual syntax of MSC at a number of places shorthands can be used in the textual syntax. For the
purpose of defining semantics these can be treated asif they were replaced by their unabbreviated represen-
tations.

46

e The textual syntax for event definitions is restricted to contain exactly one instance event or multi

instance event.

(event definition) ::= (instance name) : (instance event) ;
| (instance namelist) : (multi instance event) ;

The original event definitions that have more than one instance event or multi instance event can be
replaced according to the following scheme:

isreplaced by

i e

A similar scheme isused for replacing the event definitionswith more than one multi instance event.
Asaconsequence the nonterminal s (instance event list) and (multi instance event list) are redundant.

The possibility to use the keyword all as a means to refer to all instances defined in the MSC isre-
moved. It isassumed that al occurrences of this keyword are replaced by a list of instance names.
The BNF rule for the nonterminal (instance name list) isreplaced by the rule

(instance namelist) ::= (instance name) | (instance name) , (instance name list)
The possibility to use the keyword loop with only one inf-natural is removed.
(loopboundary) = < (inf naturd) , (inf natural) >

The loop boundaries with one inf-natural can be replaced by a loop boundary with two inf-naturals
according to the following scheme: < k > isreplaced by < k,k >.

ITU-T Rec. Z.120/Annex B (04/1998)

e The possihility to use the keyword loop without specifying aloop boundary and the possibility to use
the loop boundary without using the keyword loop are removed. An occurrence of the keyword loop
without aloop boundary is considered a shorthand for the combinationloop <1,inf>. Anoccurrence
of aloop boundary | without the keyword loop is considered a shorthand for the combination loop I.

e The optioninline expression is considered a shorthand for an alternative inline expression with two
operands where the second operand is an empty MSC. The exception inline expression is considered
ashorthand for an alternative inline expression where the second operand isthe part of the MSC fol-
lowing the exception inline expression.

e The option MSC reference expression is considered a shorthand for an aternative MSC reference
expression with two operands where the second operand is an empty MSC. The exception MSC ref-
erence expression is considered a shorthand for an alternative M SC reference expression where the
second operand is the part of the MSC following the exception MSC reference expression.

B.5.1.9 Extensions

In favour of symmetry, the textual syntax is adapted in such a way that besides the already present before
part, for orderable events, an additional after part is created such that both eventsin a causal ordering have
theinformationthat they are causally ordered. Thischange has several consequences for thetextual syntax:

e The BNF rulefor the nontermina (orderable event) is replaced by therule

(orderableevent) = [(event name)]
{ (message event)
incompl ete message event)
create)
timer statement)
action)

o~~~

|
|
|
|
}
[before (event name list)]
[after (event name list)]

e TheBNFrulesfor (actual order in gate), (inline order out gate) and (inline order in gate) arereplaced
by therules

(actual order in gate)
(inline order out gate)
(inline order in gate)

(gate name) after (order dest)
(gate name) after (order dest) [external before (order dest)]
(gate name) before (order dest) [external after (order dest)]

B.5.1.10 Assumptions

o Itisassumed that the message name alone is sufficient for establishing the correspondence between
message input and message output events. Asaconsequence the optional message instance name and
parameter list are removed.

o Itisassumed that the M SC reference names and the inline expression names are unique with respect
to the MSC document. The nonterminals {msc reference name) and (inline expr name) are replaced
by the nonterminal (ref name).

o Itisassumed that the timer name aone is sufficient for establishing if timer events correspond. Thus
the nonterminal (timer instance name) is removed.

o Itisassumed that every M SC reference expression or inline expression has an MSC reference iden-
tification or an inline expression identification respectively.

ITU-T Rec. Z.120/Annex B (04/1998) 47

e Itisassumed that there are no implicitly defined gates. As a consequence the via-part in the BNF
rules for the nonterminal's (output address) and (input address) becomes obligatory.

Also, the optional gate name in the BNF rules for the nonterminals (actual out gate), (actua in gate),
(def out gate) and (def in gate) becomes obligatory.

e Itisassumed that all external and internal connections of gates of an inline expression are described

initsinlinegate interfaces. For MSC reference expressionsitis assumed that all external connections
are described inits M SC reference gate interface.

B.5.2 Textual syntax for semantics definition

If there are multiplerules for one nonterminal then this should be read as an extension and not as a replace-
ment.

B.5.2.1 M SC documents

{msc document)
{msc document body)

mscdocument (msc document name) ; (msc document body)
() | (message segquence chart) (msc document body)

B.5.22 Message Sequence Charts

(message sequence chart) ::= msc (msc name) ; (msc body) endmsc ;

B.5.2.3 Events

action) action (action character string)

message event) {message output) | (message input)

message output) out (message name) to (input address)

message input) in (message name) from (output address)

incomplete message event) (incomplete message output) | (incomplete message input)
incomplete message output) out (message name) to lost [(instance name) | env |

(

(

(

(

(

(
(incompl ete message input) in (message name) from found [(instance name) | env]
(create) create (instance name) [((parameter list))]

(stop

((set) | (reset) | (timeout)

(set set (timer name) [((duration name)) |

(r
(
(

reset (timer name)

stop)

timer statement)
)

eset)

timeout) timeout (timer name)
condition) condition (condition name list)
(output address) ;= (instance name)

| env via (gate name)

| (reference identification) via (gate name)
(input address) = (instance name)

| env via (gate name)

| (reference identification) via (gate name)
(reference identification) = reference (ref name)

| inline (ref name)
(parameter name) [, (parameter list) |
(condition name) { , (condition name) }*

(parameter list)
{condition name list)

48 ITU-T Rec. Z.120/Annex B (04/1998)

B.5.24 Causally ordered events

(orderable event)

(ordered event)

(event name list)
(order dest)

B.5.25 Coregions

(coregion)
(coevent list)

B.5.2.6 M SC bodies

{msc body)
(event definition)

instance event)
non-orderabl e event)
multi instance event)
instance name list)

o~ o~~~

message event) | (incomplete message event) | (create)
timer statement) | (action)

event name) (orderable event) before (event name list)
event name) (orderable event) after (event name list)
(event name) (orderable event)

before (event name list)

after (event namelist)

(order dest) [, (event name list)]

(event name)

env via (gate name)

(reference identification) via (gate name)

o~ o~~~

concurrent ; (coevent list) endconcurrent
{) | (orderable event) ; (coevent list)

() | (event definition) (msc body)

(instance name) : (instance event) ;

(instance name list) : (multi instance event) ;
{(orderable event) | (non-orderable event)

(stop) | (coregion)

(condition) | (msc reference) | (inline expr)

(instance name) | (instance name) , (instance name list)

B.5.27 MSC reference expressions

(msc reference)

{msc ref expr)
{msc ref par expr)
{msc ref seq expr)
{msc ref loop expr)
(expr body)

(loop boundary)
(inf natural)
(decimal digit)

(reference gate interface)
(ref gate)

actual out gate)
actua in gate)
actual order out gate)

(
(
(
(actual order in gate)

reference (ref name) :
(msc ref expr) (reference gate interface)
(msc ref par expr) | (msc ref par expr) alt (msc ref expr)

(msc ref seq expr) | (msc ref seq expr) par (msc ref par expr)
(msc ref loop expr) | (msc ref loop expr) seq (msc ref seq expr)

[loop (loop boundary)] (expr body)
empty | (msc name) | ((msc ref expr))

< (inf natural) , (inf natural) >
inf | (decimal digit)+
0111213]415/6]7]8]9

() | ; gate (ref gate) (reference gate interface)

(actual out gate) | (actual in gate)

(actual order out gate) | (actual order in gate)

(gate name) out (message name) to (input address)
(gate name) in (message name) from (output address)
(gate name) before (order dest)
(gate name) after (order dest)

ITU-T Rec. Z.120/Annex B (04/1998)

49

B.5.2.8 Inlineexpressions

(inline expr) = (loopexpr) | (at expr) | (par expr)
(loop expr) == loop (loop boundary) begin (ref name) ;
(inline gate interface) (msc body)
loop end
(alt expr) := alt begin (ref name) ; (alt list) alt end
(alt list) = (inline gate interface) (msc body)
| (inline gate interface) (msc body) alt ; (alt list)
{par expr) := par begin (ref name) ; (par list) par end
(par list) = (inline gate interface) (msc body)
| (inline gate interface) (msc body) par ; (par list)

(inline gate interface)
(inline gate)

) | gate (inline gate) ; (inline gate interface)
inlineout gate) | (inlinein gate)

(inline order out gate) | (inline order in gate)

def out gate) external out (message name) to (input address)

(
(
|
inline out gate) (
(def in gate) external in (message name) from (output address)
(
(
{
(

inlinein gate)

inline order out gate)
inline order in gate)
def out gate)

def in gate)

gate name) after (order dest) external before (order dest)
gate name) before (order dest) external after (order dest)
gate name) in (message name) from (output address)
gate name) out (message hame) to (input address)

o~~~ o~~~

B.5.29 High-level M essage Sequence Charts

(message sequence chart) ::= msc (MSC name) ; expr (msc expression) endmsc ;
{msc expression) = (start) (node expression list)
(start) = (label namelist) ;
(node expression list) = () | (node expression) (node expression list)
{node expression) := (label name) : { (node) seq ((label namelist)) | end } ;
(node) = empty

| (msc name)

| (par expression)

| condition (condition name list)

| connect

| ((mscref expr))
(par expression) = expr (msc expression) endexpr

| expr (msc expression) endexpr par (par expression)
(label name list) = (label name) | (label name) alt (label name list)

50 ITU-T Rec. Z.120/Annex B (04/1998)

B.6 Semanticsof Message Sequence Charts

B.6.1 I ntroduction

This section contains the denotationa semantics of the fragment of MSC that is considered in this annex.
This denotational semantics associates to an MSC in textual representation a process term. The textual rep-
resentation used in the definition of this denotational semantics isidentical to the textual syntax used in
Section B.2. For some nonterminalsthere is no explicitly defined semantical mapping. Thisisthe caseif it
is defined in terms of alternatives and nonterminals only. The semantics of such a nonterminal is obtained
by considering the semantics of the nonterminalsthat are the alternatives on the righthand side of the BNF
rule.

B.6.2 Theapproach
B.6.2.1 General introduction

In this section a denotational semantics for MSC documentsis defined. 1t consists of a family of mappings
[0 which transform (part of) an MSC in textual representation into a process expression over the signature
introduced in Section B.4. On the level of these process expressions an operational semantics has been de-
fined in Section B.4. Two process expressions are consider to be equivalent if and only if they are (strongly)
bisimilar. For a definition of this notion of equivalence we refer to Section B.4. Thus, the intended model
of these process expressionsis the term model modul o strong bisimulation. This notion of strong bisimula-
tion is a congruence relation with respect to all operators from the signature. This means that in reasoning
with/about those process expressionsit is allowed to reason in a context.

The semantics is defined compositionally. Basically, thisalso refers to this notion of congruence discussed
before. 1t also amountsto the fact the when defining the semantics of a piece of textual syntax noinformation
isused that is only available in the context in which that part of syntax is used.

B.6.2.2 M SC documents

An MSC document contains a finite number of MSCs. In MSCs references to other MSCs can be used
by means of the unique MSC names. A reference to an MSC with name A can be dealt with semantically
be substituting the MSC name with the body of the MSC with that name. However, the approach that is
followed in this annex is such that for every MSC in the MSC document a recursive equation is given that
associates with an MSC with name A the equation A = Swhere A is arecursion variable associated with
the MSC with name A and Sisthe semantics of the body of thisMSC. As a conseguence the semantics of
an M SC document thus consists of a set of recursive equations.

B.6.2.3 Message Sequence Charts

Then boththe semantics of an MSC withname A inthe context of such an MSC document and the semantics
of areference to such an MSC are given by the recursion variable A. This approach alowsto consider the
semantics of an MSC document by considering the semantics of every MSC inisolation.

B.6.24 Message Sequence Chart bodies

The body of an MSC in event-oriented textual representation basically consists of alist of event definitions.
Theintuition of such alist of event definitionsis that these can be thought of as being composed vertically
in the same order as the event definitions appear in the event-oriented representation. The approach that is
followed to obtain the semantics of an MSC body can then be paraphrased by: an MSC body isthe vertical
composition of the event definitionsthat are contained.

ITU-T Rec. Z.120/Annex B (04/1998) 51

In the approach towards the definition of the formal semantics in this annex one such event definition is
almost an MSC onitsown. It differsfrom an MSC in the following aspects:

1) It does not have a name.
2) It can have dangling message arrows and dangling general order arrows.
In Figure B.47 an MSCisgiven and in Figure B.48 its decomposition into three M SC fragmentsis given by

means of horizontal dashed lines. Additionally the textual syntax of each of the MSC fragmentsisgivenin
the figure.

i j k

N

Figure B.47: An example MSC

i: | action abefore|’

m j: 1" out mto k|after |

B R

k: inmfrom

Figure B.48: Attributed example MSC

The MSC isdecomposed intothree MSC fragments. Each M SC fragment describes oneevent. Additionally
textually the MSC fragments contain enough information to establish how the dangling message arrows
and general order arrows are to be connected. For example the fact that local action a precedes the output
of message m is available in the event names | and I’ and the parts of the textual syntax that describe “I

beforel”” and “I” after |” respectively. In isolation the three M SC fragments could be represented as given
in Figure B.49. In thisfigure dangling arrows are connected with the frame around the M SC fragment and
the information that is necessary for determining if the dangling arrows should be connected is described
close to the connection with the frame.

The connection of two dangling message arrows is appropriate if oneis an output arrow and one an input
arrow and if they agree on sender and receiver instance name and message name. The connection of two
dangling genera ordering arrowsisappropriateif oneisan outgoingarrow and the other an incoming arrow

52 ITU-T Rec. Z.120/Annex B (04/1998)

a > (AD)] (AD)] > G.km) (.km)

Figure B.49: Decomposed example MSC

andthey refer tothegenera ordering. Graphically thiscannot be detected, but textually thisreferringisdone
viaevent names.

Intheexample only very simple M SC fragments appeared. In principle, also more complex M SC fragments
are used in the semantics definition. The following M SC fragments are distingui shed:

1) Singleinstance events: An event attached to an instance with some dangling causal arrows. Examples
of thistype of MSC fragments are alocal action a with event name| on instancei whichiscausaly
ordered beforethe eventsreferred to by means of the event namesly, - - - , |y and causally ordered after
the eventsreferred to by the event names kg, - - - , km. Another example isthe output of a message m
from instancei to instance j.

2) Multi instance events: A multi instance event attached to a number of instances (at least one). The
only such multi instance event is a condition.

3) Vertical composition: The vertical composition of two MSC fragments is again considered an MSC
fragment. In such a vertical composition corresponding dangling arrows are connected and the re-
quired orderings are maintained.

4) Coregions: A coregion containsa number of single instance events.
5) Inline expressions; The composition of a number of M SC fragments by means of an operator.

6) MSC reference expressions:

B.6.2.5 Events

The singleinstance events are in the semantics denoted by atomic actions. The semantics of singleinstance
eventsis considered in Section B.6.4. These atomic actions can be labeled by an event name and a set de-
noting the dangling general ordering arrows (see Section B.6.5). This is necessary as thisinformation is
needed when single instance events are composed vertically or horizontally.

B.6.26 Complex MSC fragments

Coregions, inline expressions and M SC reference expressions are also considered M SC fragments as these
cannot necessarily be decomposed into smaller M SC fragmentsthat are composed vertically and at the same
time can occur inan MSC at every place one of the other M SC fragments can.

A coregion isthe horizontal composition of a number of events that are defined on the same instance. Also
for thishorizontal composition dangling arrows need to be connected if appropriate. A coregion asawhole

ITU-T Rec. Z.120/Annex B (04/1998) 53

can still have dangling arrows of both types. The horizontal composition mechanism used for obtaining a
coregion from its eventsis defined in Section B.6.6. The semantics of a coregion isformally described in
Section B.6.7.

Inline expressions are a means to describe the composition of two M SC fragments that have no dangling ar-
rows. Thusfor vertical and horizontal compositionininlineexpressionsthereisno need to connect dangling
arrows.

An MSC reference expression is a textual formulawhich describes a composition of MSCs by means of a
number of operators. The smallest building blocks of MSC reference expressions are references to other
MSCs by means of their MSC name. Semantically, these are dealt with by means of recursion variables.
This also means that a recursive equation must be given for such arecursion variable. Thisisthereason for
associating a recursive specification with an MSC document.

B.6.3 Semantics of an M SC document

The semantics associated with an MSC document is a set of recursive equations. The recursion variables
used in these recursive equations are the following: for every MSC in the M SC document a recursion vari-

able isintroduced. For an MSC with name id, this recursion variable is denoted as id. Additionally re-

cursion variables are introduced for every non-start node of the HMSCs in the MSC document (see Sec-

tion B.6.11).

The mapping M SC associates with an MSC document a set of pairs of MSC names with their textual rep-
resentation as they appear in that M SC document.

Definition B.6.3.1
The mapping MSC : £({msc document)) — IP(L£({msc name)) x L ({message sequence chart))) is for
docid € £({msc document name)) and docbody € £({msc document body)) defined as follows:

M SC(mscdocument docid ; docbody) = M SC(docbody).

The mapping M SC : £({msc document body)) — IP(L({msc name)) x £ ({message segquence chart))) is
for msc e £ ({message sequence chart)) and docbody € £({msc document body)) defined inductively as
follows:

MSC() = g,
M SC(msc docbody) {(Name(msc), msc)} U M SC(docbody),

where the mapping Name : £ ({message sequence chart)) — £({msc name)) isforid € L({msc hame)),
body € £({msc body)) and expr € L£({msc expression)) defined as follows:

Name(msc id ; body endmsc ;) = id,
Name(mscid ; expr expr endmsc;) = id.

As an MSC document cannot contain two or more M SCs with the same MSC name this set of pairs can
be considered a mapping. In the sequel we will write MSC(id) if we mean msc such that (id, msc) e
MSC(doc). Note that we must be certain that we only do this for id such that there actually isan MSC
with that name in the M SC document.

The mapping Egs associates to an M SC document the set of recursive equationsthat describe the semantics
of the MSCsin the M SC document. For an MSC (not an HM SC) thisequation isof the formid = Swhere
id isthe name of the MSC and Sis the semantics of the body of the MSC. The definition of the mapping
Egs for HMSCs is given in Definition B.6.11.1 in Section B.6.11.

Definition B.6.3.2 For docid € £({msc document name)) and docbody € £ ({msc document body))

Eqgs(mscdocument docid ; docbody) = Eqs(docbody).

54 ITU-T Rec. Z.120/Annex B (04/1998)

For msc € £({message sequence chart)) and docbody € £ ({msc document body))

Eqgs() = 4,
Eqgs(msc docbody) = Eqs(msc) U Eqs(docbody).

Forid € £({msc name)) and body € £ ({msc body))
Egs(mscid ; body endmsc ;) = {id = [body]}.

The semantics of an MSC msc with MSC name id from a given MSC document doc is then given by the
solution of the recursion variableid inthe recursive specification that consists of the equations Egs(doc).
The notationintroduced in Section B.4 is (id | Eqs(doc)).

Definition B.6.3.3 Letdoc € £({msc document)). For arbitrary msc € £({message sequence chart)) such
that (Name(msc), msc) € M SC(doc)

[mscllagoc = (Name(msc) | Eqs(doc)).

The way in which the semantics of MSC documents and M SCsistreated in this section makesit possibleto
deal with references to an MSC by using the appropriate recursion variable for the semantics. For example
an M SC reference expression to an MSC A is semantically represented by A.

B.6.4 Semantics of events

In thissection the semantics for eventsisdefined. Inthe Recommendation several typesof eventsare distin-
guished. Thefirst distinctionis between singleinstance events and multi instance events. A singleinstance
event is an event that is defined on exactly one instance. A multi instance event is an event that can be de-
fined on one or more instances. Besides this distinction there is also a distinction between orderable and
non-orderable events. An orderable event is an event that can be used in a genera ordering and an non-
orderable event is an event that may not be used in a genera ordering. In Table B.13 the events that are
present in the language M SC are placed in the correct class.

Table B.13: Classes of events

event singleinstance multi instance
non-orderable | instance stop condition
orderable local action

(incomplete) message event

instance create

timer events

B.6.4.1 L ocal actions

Local actions are represented in the semantics by atomic actions from the set Ay defined below. A local
action that is defined on an instance i with action name a is denoted by action(i, a).

Definition B.6.4.1.1 The set Ayt isdefined as follows:

At = {action(i, @) | i € L({instance name)) A a € L({action character string))}.

Definition B.6.4.1.2 Leti € £((instance name)). Then, for a € £ ((action character string))

[action a]]; = action(, a).

ITU-T Rec. Z.120/Annex B (04/1998) 55

B.6.4.2 M essage events

The atomic actions that represent message output and message input events have four parameters. For a
message output event the following information is maintained:

1) the name of the instance on which the event is executed;

2) an abstract representation of the gate via which the message is sent (if available);
3) the name of the instance that should receive the message (if available);

4) the name of the message.

M essage output events as they occur in thetextual syntax have either agate part or areceiver instance name.
Thusit would be possibleto combine these two parametersinto one. If amessage output event isplacedina
context which is capable of executing the corresponding message input event, then the name of the receiver
instance becomes available. This does not mean that the gate part is not relevant anymore in such a case.
The information through which gate the message goes remains relevant since omission of thisinformation
would make it impossible to distinguish two message output events that are sent through different gates.

At first sight it seems to be sufficient to maintain the name of the gate via which the message is sent to the
environment. However, as there can be more than one reference to an MSC in an MSC document (even in
one MSC), this still does not mean that the different occurrences of the message output event can be distin-
guished. For thispurposethe reference identification is added to the gate name. The reference identification
must therefore be unique within the M SC document.

For the input address of a message output event there are three possibilities. If it isan instance name then
the message is not sent via a gate and the receiver instance name is known. Thisisindicated in the gate
part by _. If the input address of a message output event is a gate g in the environment thisis indicated by

means of env(g). If the input address of a message output event is an actual gate g of an MSC reference
expression or inline expression with reference identification I, then thisisindicated by (I, g). This way

the three possibilities can easily be distinguished. These three different notationsfor the representation of

the gate parameter of the message output and input events are combined in the set AMG which is defined
in Definition B.6.4.2.1. Besides these notationsthis set also contains elements of the form ((, 9), (I, 9'))

wherel and |” are reference identificationsand g and g’ are gate names. These are added explicitly for the
purpose of finding corresponding message output and message input events (see Section B.6.6).

Definition B.6.4.2.1 (Abstract Message Gate) The set A MG isdefined as follows:

AMG = {Lew(g), (1,9, ((,9),0",9)) 19,9 € L((gate name))
AL e L({ref name))}.

Definition B.6.4.2.2 The sets Aoyt and Aj,, are defined as follows:

At = {out(i, G, j, m),out(i, G, , m)
|i,] € L{(instancename)) A G € AMG A m e L({message name))},
Ain = {in(i’G9j’m)’in(—9 ij’ m)

|i,] € L{{instancename)) A G € AMG A m e L({message name))}.

Definition B.6.4.2.3 Leti € L({instance name)). Then, form € £({message name)), g € L({gate name)),
j € L({instance name)), and | € L({ref name))

[out mto jJ = out(, -, j, M),

[out mto env viag]; = out(, env(g), -, M),
[out mtoreferencel viag]i = out(, (1,9), -, m),
[out mtoinlinel viag]; = outd, (1,9), -, m),
[in mfrom i = ing, -, i, m),

[in mfrom env via gJ; = in(, env(g), i, M),
[inmfrom referencel viagy = in(, (1,9), i, m),
[in mfrom inlinel viad]; = in(, (1,9), i, m).

56 ITU-T Rec. Z.120/Annex B (04/1998)

B.6.4.3 Incomplete message events

L ost message output events and found message input events are represented by atomic actions from the sets
Ajost and Agoung respectively.

Definition B.6.4.3.1 The sets Ajog and Asoung are defined as follows:

Aot = {lost-out(i, j, m), lost-out(i, _, m), lost-out(i, env, m)
|i,] € L({instance hame)) A m € L({message name))},
A¢0und = {IOSt-In(I9 j’ m)’ |O§'in(_, j’ m)a |OSt-|n(enV7 j’ m)

| i,] € L({instance hame)) A m € L({message hame))}.

Thefirst parameter of these atomic actionsrefersto the sender of the message, the second parameter refersto
thereceiver of the message and the third parameter representsthe message i dentification. For alost message
output event it is possible that the receiver is an instance, a gate or unknown. If the intended receiver isa
gatethisisindicatesby env. The case that the intended receiver isunknownisindicated by _. Similarly, for
afound message input the sender can be an instance, a gate or unknown.

Definition B.6.4.3.2
Leti € L£L({instance name)). Then, for m € £({message hame)) and j € L ((instance name))

[out mtolost]; = lost-out(i, _, m),
[out mtolost j; = lost-out(i, j, m),
[out mtolost env]; = lost-out(i, env, m),
[in mfrom found]; = lost-in(_, i, m),
[in mfrom found j]); = lost-in(j, i, m),

[in mfrom found env]; lost-in(env, i, m).

B.6.4.4 Instancecreate and instance stop events

Instance create events are represented by atomic actions from the set A, and instance stop events are rep-
resented by atomic actions from the set Agqp.

Definition B.6.4.4.1 The sets A, and Agqp are defined as follows:

A = {create(,j, p), create(, |, o) | i, j € L((instance name)) A p € L({parameter list))},
Asop = {stop(i) | i € L({instance name))}.

Thefirst parameter of these atomic actions represents the instance on which the event is defined. In case of
acreate event the second parameter of the atomic action isthe name of the created instance and the third pa-
rameter represents the parameter list. If the parameter listisnot specified for acreate event, thisisindicated
in the atomic action by denoting the third parameter by _.

Definition B.6.4.4.2
Leti € L({instance name)). Then, for j € L({instance name)) and p € £ ({parameter list)),

[create j]i = create(, j,),
[create j(p)i = create(, j, p),
[stop]; = stop(i).

B.6.4.5 Timer events

Timer events are represented by atomic actions from the set Aimer-

ITU-T Rec. Z.120/Annex B (04/1998) 57

Definition B.6.4.5.1 The set Aimer iS defined as follows:

set(i, t, d), set(, t,), reset(i, t), timeout(i, t)

Atimer = {
| i e L({instance name)) At € L({timer name)) A d € L({duration name))
3

The first parameter of these atomic actions represents the name of the instance on which the timer event
is defined, the second parameter represents the name of the timer and the third parameter represents the
duration name associated with the timer set event. If no duration name is associated with the timer set event
thisis denoted by _. If in atimer event no duration name occurs this is represented in the atomic action by
denoting itslast parameter by _.

Definition B.6.4.5.2
Leti € L({instance name)). Then, fort € L({timer name)) and d € £({duration name)),

[set thi = sat(i,t,),
[set t(d)]i = set(i, t, d),
[reset t; = reset(,t),
[timeoutt]i = timeout(,t).

B.6.4.6 Conditions

Although conditions are not really events, they are only used as a means to restrict vertical compositionin
HMSCs, they are best treated in thissection. With a conditionno atomic actionisassociated. Asacondition
does not disallow any further eventsiit is represented by the empty process .

Definition B.6.4.6.1 Then, for cl € £({condition name list))

[condition cl]] = «.

B.6.5 Semanticsof causally ordered events

Semantically, events are represented by atomic actions. These atomic actions can have parameters which
play asymbolicrole. For example the output of a message with name m by instancei with receiver instance
j isrepresented by out(i, _, j, m). The corresponding message input event is represented by inc, _, j, m).

With these parameters enough information is available to decide whether a message output and a message
input are corresponding. For the correspondence of events that are involved in a causal ordering thisis not

so easy. For exampleif alocal action with name a on instancei must precede alocal action with name b on
instance j then this cannot be determined from the atomic actions action(i, a) and action(j, b) representing

these events. Thisimplies that additional information has to be maintained.

There are three situations that need to be considered.

o the other end of the causal ordering is an event attached to an instance;
o the other end of the causal ordering is a gate on the frame of the MSC;
o theother end of the causal orderingisagate on the frame of an M SC reference expression or aninline

expression.

For each of these situationsdifferentinformationisavailable. Therefore, three different representations are
used. Additionally, this has the advantage that the three situations can be distinguished.

In the first situation both events that are involved in the causal ordering are known via the event names.
Therefore the causal ordering can easily be represented viathe event names. For example, the event “4 :
I1 e beforel,” describesthat the event e; with event namel; is causally ordered before an unknown event
with event namel,. Thisisrepresented by labeling the atomic action representing the event e; with the pair

58 ITU-T Rec. Z.120/Annex B (04/1998)

[1 — l,. The corresponding event, say “iz : |» & after |1, islabeled with the pair I; — |, aswell. Thusit
is easy to establish that these two events are ordered.

In the second situation only one of the events is available. In a broader context however the gate may be
connected to another gate or event and then both events will be available. Thus, even although there is
only one event, it still is necessary to maintain the information. An example of this situation is the event
“i1 : 11 e before env via g”. The available information in this case is that the event with event name I,
is ordered before an event that might be connected to gate g. Thisis represented by 11 — env(g). Later
we will see that if thisMSC is placed in a context in which the gate g is connected the information will be
changed accordingly.

The third situation is comparable to the second situation. In this case however, it is known that the order

arrow connectsto an actual gate. Textually thisisindicated by areference to an MSC reference expression
or an inline expression by means of a reference identification. An example isthe event “i; : |1 e before
referencel, viag”. Asthere can be more than one occurrence of gate g dueto multiplereferencesto MSCs,
the reference identification is essentia information. The causal ordering is represented by the pair I; +—

(2, 9.

With an orderable event an event name can be associated. These event names are used to refer to an event
when describing a causal ordering. The event names are also necessary to distinguish multiple occurrences
of the same event. Asaresult it is necessary to label an atomic action representing an event by its event
name. As one event can be involved in many general orderings the atomic action is labeled with a set of
ordering requirements.

The sets AOD and AOR represent the information that is provided textually when an event is causally
ordered. An abstract order destination, that is an element of the set AOD, describes one half of a causal
ordering. An abstract ordering requirement, that is an element of the set AOR,, describes both halves of a
causal ordering.

Definition B.6.5.1 (Abstract Order Destination and Abstract Ordering Requirement) Theset AOD is
defined as follows:

AOD L ({event name))
{env(Q) | g € L({gate name))}
L((ref name)) x L ({gate name))

(L ((ref name)) x L((gate name)))?.

cccl

The set AOR isdefined as follows:
AOR = AOD x AOD

Not al elements of AOR will appear in the semantics.

The mapping S associates with an order destination an element of the set AOD, that is, an abstract order
destination, as explained informally before.

Definition B.6.5.2
The mapping S : L((order dest)) — AOD isfore € L({eventname)), | € L({ref name)) and g €
L({gate name)), defined as follows:

S(e) = &

S(env via g) = enw(g),
S(referencel viag) = (,Q),
S(inlinel via g) = (,09).

Then, some notation isintroduced for the set of all atomic actions and for labelled atomic actions.

Definition B.6.5.3 (Labelled atomic actions) The set A is defined as follows:

A = Aget U Agut U Ain U Ao U Asoung U A U Astop U Atimer-

ITU-T Rec. Z.120/Annex B (04/1998) 59

The sets LA, LAy, LAin and LAnsy are defined as follows:

LA = {a,a a2 |acAArec L({eventname)) A O C AOR},
LAt = {a, @ ad|acAwuAee L((eventname)) A O € AOR},
LAn = f{a,a, ad|acAnAec L({eventname)) A O € AOR},
LAmsg = LAot ULA.

The mapping £ : A — L({instance name)) is defined as follows:

i L(lost-in(_, j, m))
i £(lost-in(env, j, m))
i, {(create(i, j, p)

£(action(i, a))
L(out(i, G, j, m))
£(out(i, G, _, m)

’
’

’

j
J
i
ia
i
i
i
i
i

3ind, G, j, my) i {(create(i, j, -))

£(inC, G, j, m)) ' £(stop(i)) ,
£(lost-out(i, j, m)) i £(set(i, t, d)) ,
£(lost-out(i, _, m)) i, £(set(i, t,) ,
£(lost-out(i, env, m)) i, £(reset(i, t)) ,

—

edlost-ing, j, m) i, e(timeout(i, t))

Themapping ¢ : LA — L(({instance name)) isfora € A, e € L({event name)) and O € AOR defined as
follows:

a = {a),
lae) = Ha),
@) = @)

The semantics of an ordered event is obtained as follows. The event that is ordered is trandated into an
atomic action as defined in Section B.6.4. This atomic action is labelled with the event name and a set of
abstract ordering requirements.

Definition B.6.5.4 (Ordered events) Leti e L({instance name)). Then, for | € L({event name)), enl,
enl” € L({event name list)) and e € £ ({orderable event)) an orderable event,

[l e beforeenl]; (elHPeoree,
[l e after enl]; ([e]]i)f‘“e”(e“”’
[l e before enl after enl']; (Ee]]i)lbefora (enl) Uafter (enl')

where the mappings beforg, after; : £((event namelist)) — IP(AOR) are, for d € L({order dest)) and
enl € £L((event name list)), defined as follows:

beforg (d) {d, S}, after, (d)
beforg (d |, enl) {d, S(d))} U beforg (enl), after; (d , enl)

{(S(d), D},
{(S(d), D} U after, (enl).

B.6.6 Vertical and horizontal composition of M SC fragments

If two M SC fragmentsare composed vertically or horizontally, it ispossiblethat the M SC fragments contain
corresponding message events or corresponding causally ordered events. A message output event and a
message input event are considered to be corresponding if they have the same message name and either the
same sender instance and receiver instance, or the message output is sent to a gate which is connected to
the gate from which the message input is received. In asimilar way it can be established that two causally
ordered events are corresponding. In Definition B.6.6.1 these notionsare formalized.

Definition B.6.6.1
The relation o»>o0 C LA x LA isthe smallest relation that satisfies: for al i, j € L({instance name)),
m € L ({message name)), G € AMG, O, O C AOR and e, € € L({event name))

out(i, -, j, mSo—oin(, -, j, MY,

out(i, G, , mo—oain(_, G,j, M.

60 ITU-T Rec. Z.120/Annex B (04/1998)

Therdationo——o C LA x LAiisfora,be A, O, O C AOR and e, € € L({event name)) defined by

alos—obl «— (6,€)c0ON0O' V(e €)e0o0,
whereo : IP(AOR) — IP(AOR) isfor O, O’ € AOR defined by
Oo O ={(s,U) | Ftesaon(s,t) € OA(t,u) € O}.

Therelation —C LA x LA isthe smallest relation that satisfies: forala € A, O, 0 € AOR, e € €
L((event name)), i, j € L((instance name)) and p € L({parameter list)) defined by

create(i, j, p) <

o

ad = @d)=j.

Themapping « associates witha processthe set of atomic actions. The mapping M associates with aprocess
the set of atomic actionsthat refer to the message output and message input events that occur in the process.

The mapping O associates with a process the set of all atomic actions that refer to an ordered event.

Definition B.6.6.2 The mappinga : P — IP(LA) isfor® € {F,05 |S| SC LAx INx LA}, O €
{*,°,Im 'm neINU{oo}},ae LAand x, y € P defined as follows:

where E, is defined asfollows:

a(e)

a(d)

a@)
a(X®y)
a(X®)

a (ot (X))
a((X|E))

Ey={Xs=a

g,

g,

{a},

a(X) Ua(y),
a(X),

{f@ aeaX),
(Xo | Ba),

(sx) | X = sx € EJ.

The mapping M : P — IP(LAnsg) isfor ® € {F, 05, || SCLAxINx LA}, © € (*,>, ™1 | mne
INU {c0}}, a € LAand x, y € P defined as follows:

where Ey isdefined as follows:

M(e)
M (8)

M(a)
M ®Yy)
M (x®)

M(pt (X))
M(XTE))

o,
o,
{a} ifae LAmsg,
@ otherwise,
M) U M(y),
M),
{f(@laeMX)]},
(Xm | Em),

Em = {Xm = M(sx) | X =sx € E}.

The mapping O : P — IP(LA)isfor® € {F, 0%, || SCLAXxINx LA}, © € {*,°, ™M} | mne
INU {o0}}, a € A, e € L({event name)), O € AOR and x, y € P defined as follows:

O(e)

(0]¢)]
0@?)
O(ae)
O(a)
ox®y
o(x®)
O(pt(x))
O(XIE))

z,
z,

{@%) ifo#o,
{ %] otherwise,
a,
%)

3

O(x) U O(y),
0,

{f(@lae O}
(XolEo),

ITU-T Rec. Z.120/Annex B (04/1998)

61

where Eg isdefined as follows:

Eo = {Xo = O(sx) | X = sx € E).

Observe that M(x) = a(X) N LAnsg. Note that this only gives the desired result if the renaming mapping
f issuchthat for al a € LA: @ € LAngg if and only if f(a) € LAmsg.

If two M SC fragments are composed vertically or horizontally it can be the case that one of them containsa
message output event and the other a corresponding message input event. In that case the ordering require-
ment that the message output event precedes the message input event must be taken into account. Thisis
achieved by finding the pairs of atomic actions that refer to a message output or input event (using the map-
ping M and the relation o—o). Such a pair then givesriseto an ordering requirement. Similarly if the MSC
fragments contain corresponding ordered events this also gives rise to an ordering requirement. The map-
pings MsgReq and OrdReq are used to obtain the ordering requirements that must be taken into acount
when two M SC fragments are composed due to the requirement that an output precedes the corresponding
input and due to causal order relations between orderable events. The mapping Cr Req is used to enforce
the ordering of all events on a created instance after the execution of the create event.

Definition B.6.6.3 Themapping MsgReq : P x P — IP(LAout x LAin) isforx, y € P defined asfollows:

MsgReq(X,y) = {0 i |0o—0ci A0 M(X) Al € M(Y)}
U {0 1i]|00—>0i AO€ M(Yy) Al € M(X)}.

The mapping OrdReq : P x P — IP(LA x LA) isfor x, y € P defined as follows:

OrdReq(x,y) = {s—~>d]|so>—odAse OX)Ade O(y)}
U {s—d]|so>—odAse O Ad e OX)}.

The mapping CrReq : P x P — IP(LA x LA) isfor x, y € P defined as follows:

CrReg(x,y) = {c—aljc—aAceaX)Aacaualy)}
U {c—alc—=ancea(y)rnacaX).

If the connection of amessage output event and amessage input event is established viaa gateit isnecessary
to change the atomic actions in such a way that the atomic action for the message output event is updated
withthereceiver instance name and the atomic action for the message input event is updated with the sender
instance name. Before the connection was established these names were not known and therefore indicated
by _. Given two processes x and y the mapping f (x, y) associates with every atomic action a possibly
renamed atomic action. Note that for output events this renaming only appliesto the receiver instance part
and for input events only to the sender instance part.

Definition B.6.6.4 Letx, y € P. Then, themapping f (X, y) : LA — LAisfori, j € L({instance hame)),
m € £ ({message name)), G € AMG, SC AOR,a e LA ande € L({event name)) defined as follows:

f(x, y)out(, G, ,mS) = outli,G,j,ms ifoutl,G, ,mSe MXx)AiInC, G,j,m3 e M(y)
or out(i, G, , mS € M(y) Ain(., G, j, M3 € M(x),
f(x, Y)(In, G,j,md) = inG, G j,ms ifouti, G, _ms e MX AinC, G,j,mS e M(y)
orout(i, G, ., mS € M(y) Ain(, G,j, m3 € M(x),
f(x, y)(@) = a otherwise.

Note that the f (x, y) and the other renaming mappings used in this section are not bijective by definition.
However, in al situations that can occur they are bijective due to the severe uniqueness requirements on
MSC.

Definition B.6.6.5 Forx,y € P

Xey = ,Of(x,y)(x OMngeq(x,y)uOrdReq(x,y)UCr Req(x,y) Y),
le = Pty (X “ MsgReq(x,y)UOrdReq(x,y)UCr Req(x,y) y)

62 ITU-T Rec. Z.120/Annex B (04/1998)

B.6.7 Semanticsof coregions

A coregion contains a number (possibly zero) of orderable events. These events are defined on the same
instance, but are nevertheless not ordered for that reason. It is however possible that a coregion contains
both the output and the input of a message or both events involved in a general ordering. The semantics of
a coregion isthusthe horizontal composition of the semantics of its events.

Definition B.6.7.1 Leti e L({instance name)). Then, for e € L({orderable event)) and coevents e
L ({coevent list))

[concurrent; endconcurrent] = &,
[concurrent; e ; coevents endconcurrent]] = [€]j@[concurrent; coevents endconcurrent].

ExampleB.6.7.2 Consider a coregion oninstancei which contains the input of message m, alocal action
a and the output of message m. Then, the semantics of this coregion is given by

out(i, -, i, m || R (action(, a) || ®out, , i, m)),

where Ry = @ and R, = {out(i, _, i, m) — in(, i, m)}.

B.6.8 Semantics of M SC bodies

An MSC body isa possibly empty list of event definitions. As explained before such alist of event defini-
tionsisinterpreted as alist of MSC fragments that are composed vertically.

Definition B.6.8.1 For eventdef e £({event definition)) and mscbody € £ ({mscbody))

] = ¢
[eventdef mscbody]] = [eventdef] e [mscbody].

In composing an event definition with an MSC body it can be the case that gates are connected.

There are two types of event definitionsthat are considered in this section: singleinstance events and multi-
instance events. Singleinstance events are instance events that are defined on oneinstance. In order to asso-
ciate an atomic action with the defining instance as a parameter to these single instance events the defining
instance(s) are determined and the semantic mapping islabeled withit. Multi instance events are eventsthat
are defined on a non-empty set of instances. There is no use for labeling the semantic mapping with these
instances as in any relevant case the instances appear again in the textual description of the multi instance
event.

Definition B.6.8.2
Fori € L((instance name)), ilist € L({instance namelist)), instanceevent € L((instance event)) and
multiinstanceevent € £({multi instance event))

[i : instancevent;] = [instanceevent];,
[ilist : multiinstanceevent;] = [multiinstanceevent].

Example B.6.8.3 (Simple communication) Consider theMSC A withtwoinstancesi and j and one mes-
sage m from instancei to instance j. There are two event-oriented textual representations for thisMSC:

MSCA,;
i :outmtoj;
j inmfromi;
endmsc;

and

ITU-T Rec. Z.120/Annex B (04/1998) 63

mscA;

j inmfromi;
i :outmtoj;
endmsc;

Using thefirst textual representation the recursive equation
A = out(i, -, j, m) o E-bM=ING-EM G m)
is obtained and using the second textual representation the recursive eguation
A=in(, -, j, m) o®--m=inG-im gup, _j, m)
is obtained. The semantics of the MSC isin both cases given by A. Operationally the first can be depicted

as

out(i, -.j,m)

K g oout(i,_,j,m)»—1>in(i$_A,j,m) in(i, . j, m) ind, -.j,m)

g oout(i, - j,min(,_.j,m) e —
and the second as

out(i, -.j,m)

A inG, -, j, m Oout(i,_,j,m)»—1>in(i$_$j,m) e ind, -.j,m)

g oOutl,~j,m—ini,.jm o o

Observe that in both cases the same traces can be performed.

ExampleB.6.8.4 (General ordering) Consider the MSC from Figure B.50. Supposethat thisMSC istex-

msc A

i j

Figure B.50: MSC with a general ordering
tually represented by
MsCcA;
i :11action abeforel?;
j i 12action b after 11;

endmsc;

This M SC consists of two MSC fragments. These fragments are semantically represented by

action(i, a) ;"%
and

action(j, b) 52
Observe that

Ocaction(i, @){y""'#) = {action(i, ;")

64 ITU-T Rec. Z.120/Annex B (04/1998)

and
Ocaction(j, b){y""') = {action(. b5}

Then, the following set of ordering requirements is obtained:

R = {action(i, a)lull._>|21 > action(j, b)|{I21|—>I2]}

Thus, the expression representing the semantics of the MSC, is the following:

action(i, a)}"~'? oR action(j, b) 5"

B.6.9 Semanticsof M SC reference expressions

Textually an M SC reference expression consists of atextual formula containing M SC nhames and operators,
aMSC reference identification and areference gate interface. The semantics of the textual formulaitself is
rather easy as asemantical equivalent has been defined for each of the composition operatorsthat can occur
in thisformula.

Definition B.6.9.1
For mscrefexpr € £({msc ref expr)), par € £({msc ref par expr)), seq € L({msc ref seq expr)), loop €
L({msc ref loop expr)), b € L({expr body)), m, n € INU {oo} and mscname € £({msc name)),

[par alt mscrefexpr] = [par] [mscrefexpr],
[seq par par] = [seq] [[par].

[loop seq seq] = [[loop] o [seq].

[loop {m,n) b] = [bptmn,

[empty] = &

[mscname] = mscname,
[(mscrefexpr)] = [Imscrefexpr].

ExampleB.6.9.2 The semantics of the textual formula

reference (A alt empty) par Bseq C
isgiven by the process (A ¢) || Bo C.
ExampleB.6.9.3 The semantics of the textual formula

reference loop <5,3> A seq B

is given by the process (A)!>3 o B which cannot perform any events from MSC A.
If gates of an M SC reference expression are connected on the outside, the gate definitionsinthe M SCsrefer-
enced by the textual formulabecome actual gates. The semantics of the textual formula containsthese gate
definitions as the via part of message output events and message input events and as labels of the orderings

with which atomic actions can be labelled. For message gates three different types of connection can exist.

1) A gate can be connected to the environment of the enclosing MSC fragment.
2) A gate can be connected to an instance of the enclosing M SC fragment.

3) A gate can be connected to an M SC reference expression or inline expression of the enclosing MSC
fragment.

ITU-T Rec. Z.120/Annex B (04/1998) 65

Figure B.51: Three different situations

These three situations are depicted in Figure B.51 for the MSC reference expression A.

In the semantics of the textual formula A the gates g1, g2 and g3 appear as env(gl), env(g2) and env(g3)
respectively. In the context of the MSC which contains this M SC reference expression these gates are not
necessarily connectionsto the environment anymore. Only gate g1 is connected to the environment (again).
In order to indicate this situation we replace al occurrences of env(gl), env(g2) and env(g3) by more ap-
propriate and convenient gate names. This renaming is based on the information that is available in the
reference gate interface.

1) Thegatewithname glisconnected externally tothe environment viaagatewith namehl. Therefore,
all occurrences of env(gl) inthe semantics of A are replaced by env(hl).

2) The gate with name g2 is connected externally to instance j by means of a message arrow. Thein-
tuitionisthat the output of message min A isreceived by instance j. Thus, this communication will
becomeinternal. Thisispart of the reason why env(g2) isreplaced by (I, g2). Another reason isthat
we must be able to distinguish the actua gates of references to an MSC in different MSC reference
expressions. Asthe MSC reference identification is unique the combination of the MSC reference
identification and the gate name is a nice name for the conceptual gate. Looking at the semantics of
the message input event on instance j we find that it also has aviapart (I, g2). So additionaly, but
on purpose, we have created the situation in which we can establish which output and input event
together make one communication.

3) For similar reasons the occurrences of env(g3) are replaced by ({1, g3), (I, h3)) wherel’ isthe MSC
reference identification of the M SC reference expression on instance j. The occurrences of env(h3)
inthe semantics of thissecond M SC reference expression are also replaced by ({1, g3), (I, h3)). This
again, gives us a nice way to establish correspondence of the message output event and the message
input event.

The information needed for the renamings discussed above is available in the reference gate interface. For
theexample MSCfrom FigureB.51 it containstheentries: “gateglout otoenv viahl”, “gateg2out mtoj”
and “gate g3 out mtoreference I' viah3”.

The mapping G that is defined in the following definition abstracts from the textual representation of the
reference gate interface and turnsit into a set of pairs of connections. The gates of the MSC reference ex-
pression are indicated by a pair consisting of the MSC reference identification and the original gate name.
A connection with a gate h in the environment is indicated by env(h), a connection with an instance j by
j and a connection with an MSC reference expression or an inline expression by itsidentification and the
gate used on it. The pairs are ordered such that an arrow is drawn from the first ‘ gate’ to the second ‘ gate’.

66 ITU-T Rec. Z.120/Annex B (04/1998)

Definition B.6.9.4 (Abstract Message Address and Abstract Gate Interface) The set .AM.A isdefined
asfollows:

AMA L((instance name))
{env(g) | g € L£((gate name))}
L ((reference identification)) x £({gate name)

(L ((ref name)) x L£((gate name)))?.

cccll

The set AGT is defined as follows:
AGT = IP((AMA U AOD) x (AMA U AOD))

The mapping S associates with an output or input address of a message event an abstract message address.

Definition B.6.9.5
The mapping S : L({output address)) U L({input address)) — AMA isfori € L(({instance name)),
g € L({(gate name)) and | € £ ({ref name)) defined by

S(i) = |
S(env viag) = ew(g)
S(referencel viag) = (1, 0)
S(inlinel via g) = (09

The mapping G associates with a reference gate interface an abstract gate interface.

Definition B.6.9.6 Letl € L((ref name)). The mapping G : L({reference gate interface)) — AGZ isfor
refgate e L((ref gate)) and gates € L({reference gate interface)) defined inductively by

G0
G (; gaterefgate gates)

@
(G| (refgate)} U G, (gates)

Letl € L((ref name)). The mapping G : L((ref gate)) — AGT isfor g € L({gatename)), m €
L((message name)), a € L({output address)) U L ({input address)) and d € L({order dest)) defined by

G(goutmtoa) = ((,9),S@)
Gi(ginmfroma) = (S(a),(,Q))
G (g before d) = ((,9), Sd))
G (g after d) = (S(d), d,9)

In the following definition a mapping via is defined. This mapping implements the renaming of the gate
definitions of the referenced MSCs into actual gates following the lines explained before. For via to be
well-defined it is necessary that there are no two gate definitions with the same gate name, not even if they
have another direction. It is also necessary that there are no two different external connections for a given
gate g on the MSC reference expression. The mapping via is extended to the ordering sets with which the
atomic actions are labelled and to the atomic actions in the obvious way.

Definition B.6.9.7 Let| € £((ref name) and let gates € .AGZ. The mapping via(l, gates) : (AMG U
AOD) - (AMG U AOD) isfor g € L({gate name)) and G € AMG U AOD defined as follows:

env(h) if ({1, g), env(h)) € gates
or (env(h), (, g)) € gates
(4,9 if ((,9), |) € gates
via(l, gates)(env(g)) = or (i, (, Q) € gates

((,9.0",9) ifd, 9,1,9)) < gates
(',9).d,9) if’,9),d,09) € gates
env(g) otherwise

G otherwise

via(l, gates)(G)

ITU-T Rec. Z.120/Annex B (04/1998) 67

Let| € L£((ref name) and let gates € .AGZ. The mapping via(l, gates) : LA — LA isfori,j €
L((instance name)), g € L({gate name)), m € L({message name)), O < AO0D x AOD,a € A and
e € L({event name)) defined as follows:

out(i, via(l gates)(env(g)). j, mg" 9@
ind, vialgates)(env(g)). . mye ™"

ag"a("gates)(o)otherwi se

via(l, gates) (out(i, env(g), j, m)
via(l, gates)(in(i, env(g), j, m2)
via(l, gates)(@?)

Letl € £L((ref name) and let gates € .AGZ. The mappingvia(, gates) : IP((AMG U AOD) x (AMG U
AOD)) — IP((AMG U AOD) x (AMG U AOD)) isfor O C AOR defined as follows:

via(l, gates)(O) = {(viad, gates)(g1), via(l, gates)(gz)) | 3g,gc40D (91, G2) € O}
Using the above definitions the semantics of the M SC reference expression can be described by

Puiad, G (gatesy (Imscrefexpr])

wherel istheM SC reference identification, gatesisthereference gateinterfaceand mscr ef expr isthetex-
tual formula. However, itis possiblethat two gates of the M SC reference expression are connected. There-
fore, an ordering requirement must be added to the semantics and, if thisis a connection between message
gates, atomic actions have to be renamed. The mapping g(x) defined below gives the necessary renaming
and the mapping R(x) defines the (not yet renamed) ordering requirements. The process x represents the
semantics of the MSC reference expression including the renaming according to via(l, G; (gates)).

Definition B.6.9.8 Themapping R: P — IP(LA x LA) isfor x € P defined as follows:

R(X) = {0/ i]00—0i A0, i € M(X)}
U {s+d|so>—odAs de M)}

Definition B.6.9.9 Let x € P. The mapping g(x) : LA — LAisfori, j € L({instance name)), m €
L((message name)), | € L((ref name)), g, h € L({gate name)), O € AOR, e € L({event name)) and
a € LA defined by:

g(x)(out(i, ((1,9),(,h), - M)

out(i, ((1,9),(1,h)), j, m &

if out(i, ((1,9),(1,h)), - M2, inC., ((1,9).(,h)), j. MY € M(x)
ind, ((1,9),(1,h)). j, M@

if out(i, ((1,9),(1,h)), - m'inC, ((1,).(Lh)). 1. MS € M(x)
g(x)(@) = a otherwise

g)anc, ((1,9).(Lh). 1. mS)

Definition B.6.9.10
For | € £L((ref name), mscrefexpr € L£L({msc ref expr)) and gates € £ ({reference gate interface))

[referencel : mscrefexpr gates] = py(ou([mscrefexpr]) oRe),

where v = via(l, G, (gates)), g = g(p,([mscrefexpr])) and R = R(p, ([mscrefexpr])).

B.6.10 Semanticsof inline expressions

The semantics of inline expressions is easily obtained from the semantics of the arguments of an inline ex-
pression by combining them by means of the semantical equivalent of the operation indicated in theinline
expression. The operationindicated withthe keyword alt isinterpreted by the operator delayed choice F, the
operation indicated by par isinterpreted as delayed parallel composition || and the operation loop<m,n>
by the operator ™",

Define the gates of an inline expression and the gates of an inline expression that connect gates from the
inline expression with gates from the inline expression.

68 ITU-T Rec. Z.120/Annex B (04/1998)

Definition B.6.10.1 (External connections of inlineexpressions) Let| € £({ref name)). The mapping
G : L((@tlist)) — AGZ isfor gates € L((inlinegateinterface)), b € L£((msc body)) and altlist e
L((altlist)) defined inductively by:

G (gatesb)
G (gatesb alt ; altlist)

Gi(gates),
G (gates) U G (altlist).

Letl € L((ref name)). The mapping G : L(({par list)) — AGT isfor gates € L({inline gate interface)),
b € £((msc body)) and parlist € £({par list)) defined inductively by:

G (gates b)
G (gatesb par ; parlist)

Gi(gates),
G (gates) U G, (parlist).

Letl € L((ref name)). Themapping G : L(({inline gate interface)) — AGT isforigate € L({inlinegate))
and gates € L((inline gate interface)) defined as follows:

GO = g,
G (gateigate; gates) = G(inlinegate) U G, (gates).

Letl € L£L((ref name)). The mapping G : L((inlinegate)) — AGZ isfor g € L({(gate name)), m, m' €
L({message name)), s € L ({output address)), d € L({input address)) and o, d € L({order dest)) defined
asfollows:

{((, @), S(d))},
{(S(s), (1, 90},
{((,9), S(0))},
{(S(0), (, 9N}

G (g in mfrom s external out m' tod)
G (g out mtod external in nY from s)
G (g after o external before 0)
G (g before o external after o)

Please note that the recommendation allowsthe use of different message namesin theinternal and external
connection of agate. A static requirement that forbids this should be defined.

Definition B.6.10.2 (Inline loop expression)
Form,n € INU {o0}, | € L((ref name), gates € L((inlinegate interface)) and b € £ ({msc body))

[loop (m,n) begin| ; gatesbloopend] = pg(o,([b]™™M) oR &),
where v = via(l, G (gates)), g = g(p,([b]™")) and R = R(p, ([b]™")).

Definition B.6.10.3 (Inline alternative expression) Forl € £(({ref name)), altlist € L((atlist)), gates
L((inline gate interface)) and b € £ ({msc body))

[alt begin| ; altlist alt end]] pg(ou([altlist]) oRe),

(b1,
[b] T [altlist],

where v = via(l, G (altlist)), g = g(p,([altlist]])) and R = R(p, ([altlist])).

[gatesb]
[gatesbalt ; altlist]]

Definition B.6.10.4 (Inline parallel expression) For | € £((ref name)), parlist € L({par list)), gates
L((inline gate interface)) and b € £ ({msc body))

pg(pu([parlist]) o e),

[bl.
[bl Il [parlist],

where v = via(l, G (parlist)), g = g(p, ([parlist])) and R = R(p, ([parlist])).

[par beginl ; parlist par end]

[gatesb]
[gatesb par ; parlist]]

ITU-T Rec. Z.120/Annex B (04/1998) 69

B.6.11 Semanticsof High-level M essage Sequence Charts

Textually an HM SC is described by associating alabel with every node except the start node. The start node
isdescribesfirst inthetextual syntax by simply listingitssuccessor nodesinalabel namelist. Then al other
nodes are described. Such a description consists of the label name associated with the node followed by a
description of the type of the node and alabel name list representing the label names of the successor nodes.

If anode has successor nodes then these are interpreted as alternative vertical compositions. For example if
anodelabeled | has two successor nodes labeled I, and I, this means that the nodel isvertically composed
with either nodel, or I5.

Semantically, HMSCs are dealt with by associating a recursion variable! with a node labeled . Since the
start node of an HMSC does not have a label the name of the HMSC is used as a recursion variable for
this node. For each of the recursion variables introduced in thisway a recursive equation is determined as
follows. The recursive equation associated with a node labeled | isof theforml = Co (Iy F--- F Iy)
where C represents the semantics of the node with label | and 14, - - - Iy are the labels associated with the
successor nodes of the node labeled with|. The recursive equation associated with the recursion variable
introduced for the start node, say mscname, ismscname = |, F - - - F Iy wherely, - - -, |y are the labels
of the successor nodes of the start node.

The set of al recursive equations of an HMSC is obtained by applying the mapping Eqgs given in Defini-
tion B.6.11.1. The mappings Start and Suc used in this definition are given in Definition B.6.11.2.

Definition B.6.11.1 Then, for mscname € £({msc name)), mscexpr € L£({msc expression)), labellist
L((label name list)), nodeexprlist € £({node expression list)), nodeexpr € L({node expression)), | €
L((label name)), node € L({node)), mscrefexpr € L({msc ref expr)), parexpr € L({par expression))
and clist € L({condition namelist))

Eqgs(msc mschame; expr mscexpr endmsc;) = {mscname = Start(mscexpr)} U Egs(mscexpr)
Eqs(labellist; nodeexprlist) = Eqgs(nodeexprlist)

Eqgs() = o,

Eqgs(nodeexpr nodeexprlist) = Egs(nodeexpr) U Eqs(modeexprlist),
Egs(: end;) = {I=¢)

Eqgs(l: node seq (labellist);) = {I =[[node] o Suc(labellist)} U Eqs(node)
Eqgs(empty) = O

Eqgs(mscname) = O

Eqs(parexpr) = Eqs(parexpr)

Eqgs(condition clist) = O

Eqgs(connect) = g

Egs((mscref expr)) = O

Eqs(expr mscexpr endexpr) = Eqgs(mscexpr),

Eqs(expr mscexpr endexpr par parexpr) Eqgs(mscexpr) U Eqs(parexprlist).

The semantics of anodein an HM SC depends on the type of node. Start nodes, condition nodes, connector
nodes and end nodes do not describe the execution of events. Therefore their semantics is given by the
empty process ¢. An MSC reference node describes the composition of a number of MSCs by means of a
textual formula and a parallel frame node describes the parallel composition of a number of sub-HMSCs.
The semantics of one such sub-HM SC is given by the delayed choice of the recursion variables associated
with the successor nodes of the start node of the sub-HM SC. This is necessary as the start node does not
have aname. For this purpose the mapping Start is given in Definition B.6.11.2.

70 ITU-T Rec. Z.120/Annex B (04/1998)

Definition B.6.11.2 The mapping Start : £({msc expression)) — P is, for list € L£({label name list))
and nodeexprlist € £({node expression list)), defined by

Start(list; nodeexprlist) = Suc(list)

andthemapping Suc : £({label namelist)) — Pis, forl € L({label name)) andlist € £({label name list))
defined by

Suc() = 1T,
Suc(l alt list) I Succ(list).

The semantics of a paralel frame node is then given by the delayed parallel composition of the semantics
of the sub-HM SCs.

Definition B.6.11.3 (Semantics of a node)
For mscrefexpr € L({msc ref expr)), mschame € L({msc name)), parexpr € L({par expression)),
clist € £({condition name list)) and mscexpr € L£({msc expression)),

[empty] = ¢

[mscname] = mscname

[parexpr] = [[parexpr]
[condition clist]| = ¢

[connect]] = ¢
[(mscrefexpr)] = [mscrefexpr]
[expr mscexpr endexpr]| = Start(mscexpr),

[expr mscexpr endexpr par parexpr] Start(mscexpr) || [[parexpr].

When arecursive specification is described often the curly brackets are omitted.
ExampleB.6.11.4 Consider the HMSC in Figure B.52. Besidesthe HM SC also the label s associated with

each node and the textua syntax of the HM SC are presented in the figure. With this HM SC the following
recursive equations are associated:

alternative = L1

L1 = disconnected o (L2 F L3)
L2 = message.lost o L4

L3 = timeoutoL4

L4 = disconnection o L1.

ExampleB.6.11.5 Consider the HMSC shown both in graphical and textual form in Figure B.53. The
graphical version of the HMSC is annotated by the label names used for the description of the nodes in
the textual representation. Applying the semantics to the textual representation resultsin

(par HMSC| par.HMSC = L,
L = GILoLs
L, = CRolg,
Ls = &
[= DRolLs,
Ls = ¢,
Le = ¢&).

ITU-T Rec. Z.120/Annex B (04/1998) 71

msc aternative

msc alternative;
expr L1,

disconnected

L2

disconnection

L4

L1: disconnected seq (L2 alt L3);

L2: message lost seq (L4);

L3: time_out seq (L4);

L4: disconnection seq (L1);
endmsc;

Figure B.52: HMSC with aloop

msc par_HMSC par_HMSC
L1
V4 \/
L2 L4
CR DR
A L3 A L5
L6

Figure B.53: HMSC with a parallel frame

72 ITU-T Rec. Z.120/Annex B (04/1998)

References

[BM94]

[BV95]

[BWOO]

[1T964]

[1T96b]

[MR97]

[MR9g]

[Par81]

[Ren95]

J. C. M. Baeten and S. Mauw. Delayed choice: an operator for joining Message Sequence
Charts. InD. Hogrefeand S. Leue, editors, Formal Description Techniques VII, IFIP Transactions
C, Proceedings 71" International Conference on Formal Description Techniques, pages 340-354.
Chapman-Hall, 1994.

J. C. M. Baeten and C. Verhoef. Concrete process algebra. In S. Abramsky, Dov M. Gabbay,
and T.S.E. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in Computer
Science, pages 149-268. Oxford University Press, 1995.

J. C. M. Bageten and W. P. Weijland. Process Algebra, volume 18 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1990.

ITU-TS. ITU-TSRecommendation Z.120 Annex C: Satic Semanticsof Message Sequence Charts.
ITU-TS, Geneva, 1996.

ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS, Geneva,
October 1996.

S. Mauw and M.A. Reniers. High-level Message Sequence Charts. In A. Cavalli and A. Sarma,
editors, SDL'97: Timefor Testing - SDL, MSC and Trends, Proceedings of the Eighth SDL Forum,
pages 291-306. Elsevier Science PublishersB.V., 1997.

S. Mauw and M.A. Reniers. Operational semantics for MSC96. Computer Networks and |SDN
Systems, 1998. To appear.

D. M. R. Park. Concurrency and automataon infinitesegquences. In P. Deussen, editor, Proceedings
5t GI Conference, volume 104 of Lecture Notes in Computer Science, pages 167-183. Springer-
Verlag, 1981.

M. A. Reniers. Syntax requirements of Message Sequence Charts. In R. Bragk and A. Sarma,
editors, SDL'95 with MSC in CASE, Proceedings of the Seventh SDL Forum, pages 63—74, Ams-
terdam, 1995. Oslo, North-Holland.

ITU-T Rec. Z.120/Annex B (04/1998) 73

Series A
Series B
Series C
Series D
Series E
Series F
Series G
Series H
Series I

Series J

Series K
Series L

Series M

Series N
Series O
Series P
Series Q
Series R
Series S
Series T
Series U
Series V
Series X
Series Y

Series Z

SERIES OF ITU-T RECOMMENDATIONS

Organization of the work of ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone telecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Cable networks and transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communications

Global information infrastructure and Internet protocol aspects

Languages and general software aspects for telecommunication systems

Geneva, 2002

	ITU-T Rec. Z.120 Annex B (04/1998) Message Sequence Chart Annex B: Formal semantics of Message
	Summary
	Source
	FOREWORD
	CONTENTS
	B.1 Introduction
	B.2 Message Sequence Charts
	B.2.1 Introduction
	B.2.2 Basic Message Sequence Charts
	B.2.3 Additional Basic Concepts
	B.2.4 Ordering facilities
	B.2.5 Combining MSCs with composition constructs

	B.3 Message Sequence Charts with Gates
	B.3.1 Gates
	B.3.2 MSC reference expressions and gates
	B.3.3 Inline expressions and gates

	B.4 Process theory for Message Sequence Charts
	B.4.1 Introduction
	B.4.2 Operational semantics
	B.4.3 Equivalence of processes
	B.4.4 Deadlock, empty process and atomic actions
	B.4.5 Delayed choice
	B.4.6 Delayed parallel composition
	B.4.7 Weak sequential composition
	B.4.8 Generalization of the composition operators
	B.4.9 Renaming operator
	B.4.10 Repetitive behaviour

	B.5 Textual syntax of MSC for the semantics
	B.5.1 Changes to the textual syntax
	B.5.2 Textual syntax for semantics definition

	B.6 Semantics of Message Sequence Charts
	B.6.1 Introduction
	B.6.2 The approach
	B.6.3 Semantics of an MSC document
	B.6.4 Semantics of events
	B.6.5 Semantics of causally ordered events
	B.6.6 Vertical and horizontal composition of MSC fragments
	B.6.7 Semantics of coregions
	B.6.8 Semantics of MSC bodies
	B.6.9 Semantics of MSC reference expressions
	B.6.10 Semantics of inline expressions
	B.6.11 Semantics of High-level Message Sequence Charts

	References

