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Summary 
Scope / Objective 

Message Sequence Chart is a graphical and textual language for the description and specification of the interactions 
between system components. The purpose of the formal definition of the semantics is to provide for an unambiguous 
interpretation of Message Sequence Charts. 

Coverage 

The document presents a formal definition of the semantics of Message Sequence Charts. Examples are added to explain 
the formal definitions. 

Application 
The formalization of the semantics of Message Sequence Charts serves several purposes. For users it will help in order to 
obtain a clear understanding of Message Sequence Charts and in order to further a harmonization of the use. Tool 
builders can use the semantics for derivation of prototypes directly from the definitions provided or they can base their 
computer applications on these definitions. Validation and comparison of tools may be based on the formal semantics. 
Finally, the developers of the Message Sequence Chart language can benefit because the semantics may show overlap of 
features and may guide in unification of features. 

Status / Stability 

The semantics described here is a formalization of the semantics informally explained in the main text of the 
Recommendation. This interpretation of Message Sequence Charts is fairly stable. This annex describes the semantics of 
a Message Sequence Chart, a High-level Message Sequence Chart and a Message Sequence Chart document. 
Substructure references and substitution are not covered in this semantics. 

Associated work 

Recommendation Z.120: Message Sequence Charts (MSC). 

 

 

Source 
Annex B to ITU-T Recommendation Z.120 was prepared by ITU-T Study Group 10 (1997-2000) and approved under the 
WTSC Resolution 1 procedure on 1 April 1998. 
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FOREWORD 
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Recommendations on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Conference (WTSC), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSC Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
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Annex B to Recommendation Z.120

Formal Semantics of Message Sequence Charts
(This annex forms an integral part of the Recommendation.)

B.1 Introduction

Message Sequence Chart is a graphical and textual language for the description and specification of the in-
teractions between system components. The main area of application for Message Sequence Charts is as
an overview specification of the communication behaviour of real-time systems, in particular telecommu-
nication switching systems. Message Sequence Charts may be used for requirement specification, interface
specification, simulation and validation, test-case specification and documentation of real-time systems.

This document contains a formal semantics of the Message Sequence Chart language based on the infor-
mal explanation of the semantics in the main text of the Recommendation. The formal semantics is based
on [MR97, MR98]. The primary reason for formalizing the semantics is to provide for an unambiguous
interpretation of Message Sequence Charts. A formal semantics may be useful for users, tool builders and
developers of the Message Sequence Chart language.

The semantics is defined in a compositional way. The semantics of a composite MSC is formulated in terms
of the composites and the means of composing.

This document is structured in the following way. Section B.2 contains an overview of the Message Se-
quence Chart language and informally lists all static requirements which are relevant for the definition of
the semantics. This section is subdivided into four parts. In the first part the core language (Basic Message
Sequence Charts) is introduced. In the second part other basic concepts are added one by one. The third part
extends the language with ordering facilities such as coregions and general orderings. The last part intro-
duces the means offered by MSC to compose MSCs. These means are inline expressions, MSC reference
expressions and High-level Message Sequence Charts.

Section B.3 contains an informal introduction on the extension of the Message Sequence Chart language
with gates.

In Section B.4 the formal framework for the definition of the semantics is defined. This framework consists
of process expressions that are built from a number of constants and operators. These constants and oper-
ators are defined by means of term deduction rules. These describe the actions that can be performed by a
process.

In order to facilitate the definition of a formal semantics the textual syntax of MSCs has been transformed.
These transformations as well as the textual syntax actually used for the definition of the formal semantics
are given in Section B.5.

The semantic functions are defined in Section B.6. The main function maps every Message Sequence Chart
into an expression over the operators introduced in the Section B.4. The philosophy that has led to these
definitions is explained first.
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B.2 Message Sequence Charts

B.2.1 Introduction

In this section the language MSC is introduced. The language is best illustrated by the graphical represen-
tation, but where the definition of a formal semantics is concerned, the textual representation is preferred.
The order in which the features of MSC are introduced differs from the order in which they are defined in
the main text of the Recommendation. The order used in this annex is based on the way the features are
treated in the formal semantics.

First the core language of Message Sequence Charts is introduced. This core language is called Basic Mes-
sage Sequence Chart. A Basic Message Sequence Chart concentrates on communications and local actions
only. These are the features encountered in most languages comparable to Message Sequence Charts such as
Extended Sequence Charts, Arrow Diagrams, InformationFlow Diagrams, Sequence Charts, Message Flow
Diagrams, Siemens-SCs, and Interworkings. The static requirements imposed on Basic Message Sequence
Charts, as far as they are of importance to the definition of the formal semantics in Section B.6, are given.
The static requirements are not formalized. After the introduction of Basic Message Sequence Charts the
other primitives incorporated in the language of Message Sequence Charts are introduced. These primitives
are process creation and process termination, timer handling, incomplete message events, and conditions.

Then the ordering facilities are introduced. These are coregions and causal orderings. Finally, the more
intricate possibilities of describing complex systems are considered. These are inline expressions, MSC
reference expressions and High-level Message Sequence Charts.

B.2.2 Basic Message Sequence Charts

The body of a Basic Message Sequence Chart is formed by a finite collection of instances. An instance is
an abstract entity on which message outputs, message inputs and local actions may be specified. A first
example of a Basic Message Sequence Chart is given in Figure B.1.

Next the graphical representation of Basic Message Sequence Charts is explained. Then their meaning is
described, and finally the textual representation is introduced.

B.2.2.1 Graphical representation

Graphically an MSC is given by a frame containing the instances. The name of the MSC following the
keyword msc is placed inside this frame, usually above the instances. For an example see Figure B.1.

i2 i3 i4i1

a

m0
m1

m2
m3

msc example1

a
m4

m3

m2
m1

m0

i1 i2 i3 i4

msc example1

m4

Figure B.1: Example Basic Message Sequence Charts

In the graphical representation there are two ways to draw an instance. These are given in Figure B.2 below.
The first is a single vertical axis (line-form) and the second is the so-called column-form. The description
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of the instance starts with the instance head symbol and ends with the instance end symbol. These do not
describe creation and termination of the instance, but the start and end of the description. The representation
of the instance and the instance head and instance end symbols should be aligned as indicated in Figure B.2.
Within one Basic Message Sequence Chart both representations of instances, line-form and column-form,
may appear.

Figure B.2: Instance symbols: line-form and column-form

With every instance an instance name is associated. The instance name may be placed above or inside the
instance head symbol. Instances are referred to by means of the instance name. Therefore, the instance
name must be unique within an MSC.

A local action is denoted by an action symbol on an instance with the action character string placed in it. A
local action describes internal activity of an instance. The action character string is an informal description
for this internal activity. When an action symbol is placed on an instance in line-form the instance axis is
“removed”. If the column-form is used, the width of the action symbol must coincide with the width of the
column-form of the instance. Multiple occurrences of an action symbol on an instance must not overlap.
See Figure B.3 for examples.

a

a

b

a

a

b

Figure B.3: Placement of local actions on line-form and column-form instances

A message between two instances is represented by an arrow which starts at the sending instance and ends
at the receiving instance. An arrow representing a message may be horizontal or with downward slope.
A message sent by an instance to the environment is represented by an arrow from the sending instance
to the exterior of the Message Sequence Chart, i.e., the surrounding frame. A message received from the
environment is represented by an arrow from the exterior of the Message Sequence Chart to the receiving
instance. With every message a message name is associated. The message name should be placed close to
the message arrow.

In principle it is not allowed to have two or more events attached to one point of the instance axis in line-
form and column-form or at the same height of the instance axes in the column-form. However, there is one
exception to this rule. An incoming event and an outgoing event may be attached to the same point or at the
same height. This is interpreted as if the incoming event is drawn above the outgoing event. Message output
events, lost message events, process creation events and timer set and reset events are outgoing events and
message input events, found message events and timeout events are incoming events.
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B.2.2.2 Intuitive semantics

An MSC is intended to describe a number of executions of the events contained. These events can be local
actions, message outputs and message inputs. An MSC does not only describe the events to be executed, it
also contains information on the order in which they can be executed. One of the basic assumptions is that
all events are executed instantaneously, i.e., it is assumed that the execution of an event consumes no time.
Another important assumption is that no two events can be executed at the same time.

As explained before, an MSC consists of a number of instances on which events are specified. The meaning
of such an instance is that it executes the events specified in the same order as they are given on the vertical
axis from top to bottom. Thus one can say that the time along each instance axis is running from top to
bottom. Therefore, the events specified on an instance are totally ordered in time. Consider, for example,
instance i2 from the MSC given in Figure B.1, then this means that instance i2 executes the events “input of
m1 from instance j”, “output of m2 to instance i3”, “action a”, and “output of m4 to instance i1”, and also
that these events are executed in this order. Although an instance describes the execution of events while
time progresses, the instance does not specify the elapse of time in between two consecutive events. It might
be the case that the first event is executed at 5 minutes and that the second event is executed at 25 minutes.

The instances of an MSC in principle operate independently of each other. No global notion of time is as-
sumed. The only dependencies between the timing of the instances come from the restriction that a message
must be sent before it is received. In Figure B.1 this implies that message m3 is received by i4 only after it
has been sent by i3, and, consequently, after the consumption of m2 by i3. Thus the events concerning m1
and m3 are ordered in time, while for the events of m4 and m3 no order is specified apart from the require-
ment that the output of a message occurs before its input. Because of the asynchronous communication, it
would even be possible to first send m3, then send and receive m4, and finally receive m3. The execution
of a local action is only restricted by the ordering of events on the instance it is defined on. The second
Basic Message Sequence Chart in Figure B.1 defines the same execution sequences (from a semantic point
of view), but in an alternative drawing.

Another consequence of this mode of communication is that overtaking of messages is allowed, as expressed
in Figure B.4.

i1

m1

msc overtaking

i2

m2

Figure B.4: Basic Message Sequence Chart with overtaking

It is not allowed that a message output is causally depending on its corresponding message input, directly or
via other messages [IT96b, IT96a, Ren95]. This is the case if the temporal ordering of the events imposed
by the Basic Message Sequence Chart specifies that a message input is executed before its corresponding
message output. Such MSCs are often called inconsistent.

Consider the first diagram in Figure B.5. Since the events which are specified on one instance are temporally
ordered from top to bottom, the message input is executed before the corresponding message output. The
diagram therefore violates the static requirements. In this example the message output is depending on its
corresponding message input in a direct way.

As an example of the indirect causal dependency between a message output and a message input the second
diagram in Figure B.5 is considered. Amongst others, there are the following temporal orderings:

4 Recommendation Z.120 (4/98)

4          ITU-T Rec. Z.120/Annex B (04/1998)



i

m

msc dep1

i j

m
n

msc dep2

Figure B.5: Two diagrams that violate the static requirements

1) the input of message m precedes the output of message n,

2) the output of message n precedes the input of message n, and

3) the input of message n precedes the output of message m.

Therefore, the diagram specifies that the input of message m precedes the output of message m. So the
diagram violates the static requirements, and is therefore not a Basic Message Sequence Chart.

B.2.2.3 Textual representation

Although the application of Message Sequence Charts is mainly focussed on the graphical representation,
they have a concrete textual syntax. This representation was originally intended for exchanging Message
Sequence Charts between computer tools only, but in this annex it is used for the definition of the semantics.

With respect to the textual description the language MSC offers two principal means to describe MSCs. First
of all an MSC can be described by giving the behaviour of all its instances in isolation. This way of describ-
ing an MSC is called instance-oriented and has been incorporated in the language from the beginning. With
the appearance of the main text of this Recommendation also another way of representing MSCs has been
incorporated: the so-called event-oriented description. With the event-oriented descriptions just a list of
events is given, for example as they are expected to occur in a trace of the system or as they are encountered
while scanning the MSC from top-to-bottom. Besides these two ways of describing an MSC there is also the
possibility to describe an MSC by mixing these two descriptions. In this annex the event-oriented textual
syntax is used for the definition of a formal semantics.

The textual representation of an MSC consists of the keywords msc and endmsc and in between those an msc
name and an msc body. The MSC body is defined differently for the three previously mentioned description
styles.

In the event-oriented syntax an MSC body consists of a list of event definitions. An event definition is an
instance name followed by an instance event. Instance events are message events and local actions.

Textually a message event is described by a message output event and a message input event. If m is a mes-
sage that is sent from instance i to instance j , textually the corresponding message output event is denoted
by “i : out m to j” and the message input event by “ j : in m from i”. In the graphical representation the
correspondence between message outputs and message inputs is given by the arrow construction. In the
textual representation a message output event and a message input event are corresponding iff

1) the events have the same message name;

2) the instance on which the message output event is specified is the same as the instance indicated by
the output address of the message input event;

3) the instance on which the message input event is specified is the same as the instance indicated by the
input address of the message output event.
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A natural requirement on the textual representation of MSCs is that for every message outputevent there is at
most one corresponding message input event, and vice versa, for every message input event there is at most
one message output event. As no dangling message output arrows and message input arrows are allowed,
another natural requirement is that for every message output (input) there is at least one corresponding mes-
sage input (output). Note that for messages that are sent to the environment or that are received from the
environment this requirement does not have to be satisfied.

A local action is denoted by the keyword action followed by an action character string.

The MSC from Figure B.1 can textually be represented by

msc example1;
i1 : out m0 to env;
i1 : out m1 to i2;
i2 : in m1 from i1;
i2 : out m2 to i3;
i3 : in m2 from i2;
i3 : out m3 to i4;
i4 : in m3 from i3;
i2 : action a;
i2 : out m4 to i1;
i1 : in m4 from i2;
endmsc;

The textual syntax of MSC is presented in Recommendation Z.120. For the definition of the semantics a
simplified version of the textual syntax is used. This simplified textual syntax as well as the explanation of
the simplifications can be found in Table B.5.

B.2.3 Additional Basic Concepts

In this section Basic Message Sequence Charts are extended with other basic concepts. These are process
creation and termination, timer handling, incomplete messages and conditions.

B.2.3.1 Process creation and process termination

In the language Message Sequence Chart a primitive is incorporated for the dynamic creation of an instance
by another instance. Such a creation is denoted by a dashed arrow, the createline symbol, from the cre-
ating instance to the instance head symbol of the created instance, usually as indicated in the MSC from
Figure B.6. An instance can be created only once. A create event may be labeled with a parameter list, i.e.,
a non-empty list of parameter names separated by commas. In case of a process create event the parameter
list is placed close to the createline symbol.

An instance can terminate by executing a process stop event. Execution of a process stop is allowed only
as the last event in the description of an instance. A process stop is denoted by replacing the instance end
symbol by a cross, the stop symbol.

In Figure B.6 a Message Sequence Chart with three instances is given. Instance i creates instance j , instance
k sends a message m to instance j , and instance j receives the message m from instance k after it is created
and then terminates.

In the textual representation the creation of an instance with name j is denoted by “create j” and the termi-
nation of an instance by “stop”. The event-oriented textual representation of the Message Sequence Chart
in Figure B.6 is given in Figure B.7.
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i
j

k

m

msc creation

Figure B.6: Process creation and termination

msc creation;
i : create j;
k : out m to j;
j : in m from k;
j : stop;
endmsc;

Figure B.7: Event-oriented textual syntax

B.2.3.2 Timer handling

In a Message Sequence Chart several timer events can be described. These are the setting of a timer, a timer
reset and the expiration of a timer.

In the graphical syntax the timer events can be used stand-alone but also in combinations. First the stand-
alone occurrences of timer events are discussed. A timer set event is denoted by an hourglass symbol at-
tached to the instance axis by means of a horizontal or bent line. A timer reset event is denoted by a cross
which is attached to the instance axis by means of a horizontal or bent line. A timeout is represented by an
hourglass symbol which is attached to the instance axis by means of an horizontal or bent arrow from the
hourglass symbol to the instance axis. Examples of the stand-alone occurrences of the timer events are given
in Figure B.8. A timer event is labeled by an identifier, the timer name. that is placed aside the hourglass
symbol or cross. A timer set event may be labeled with an identifier for the duration, the duration name.
The duration name is placed between brackets after the timer name.

T (d)

T ′

T T

T ′

Figure B.8: Timer events in stand-alone mode

The graphical syntax of MSC also leaves room for combining timer events. The language offers the possibil-
ity to describe a timer set and a subsequent reset or timeout. Graphically these combinations are indicated
by connecting the involved symbols as shown in Figure B.9. Note that for these combinations the timer
name may be omitted from the reset and timeout events. A timer event is local to the instance it is specified
on. It is not allowed to specify a timer set and a subsequent timeout or timer reset on different instances.

T (d) T
T

T (d)

Figure B.9: Combinations of timer events (I)

Besides the combinations of the timer events given above also the following combinations are possible: a
timer set symbol connected to a set-reset symbol, a timer set symbol connected to a set-reset symbol con-
nected to a reset symbol, and a timer set symbol connected to a set-reset symbol connected to a timeout
symbol. These combinations are given in Figure B.10.
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T T T

Figure B.10: Combinations of timer events (II)

The language MSC in its current form does not support the specification of a quantitative notion of time, the
interpretation of the timer events is only symbolic. This means that set, reset and timeout are interpreted as
events. Also, as no formal data language is available at the moment, the duration names that can be associ-
ated to a timer set event are symbolic. Any identifier can be written there.

In the textual representation the setting of a timer with name T is denoted by “set T ” and the corresponding
reset by “reset T ” and timeout by “timeout T ”. A duration name can be added between brackets as follows:
“set T (d)”.

B.2.3.3 Incomplete message events

Besides the specification of successful transmission of messages also a lost message and a spontaneously
found message can be described. A lost message is a message which is sent but will never be received by
the other party in the communication. Symmetrically, a found message is a message which is received but
has never been sent. A message name is associated to the lost and found messages.

Graphically a lost message is indicated by a lost message symbol, i.e., an arrow from an instance axis to a
black dot (“black hole”). To the black dot an input address may be associated. This input address, which
is either an instance name or the environment, represents the original destination of the message. A found
message is indicated by a found message symbol, i.e., an arrow from an open dot (“white hole”) to an in-
stance axis. An output address may be associated to the open dot. This output address, which is either an
instance name or the environment, is the original source of the message.

An example of the graphical representation of lost and found messages is given in Figure B.11.

m

i j

j

i

msc example lost found

n

Figure B.11: An MSC with lost and found messages

msc example lost found;
i : out m to lost j;
j : in n from found i;
endmsc;

Figure B.12: Event-oriented syntax

Semantically these events are treated just as atomic events. It is not the case that a dynamic semantics is
associated to messages such that they can result in lost and/or found messages. Thus these events are intro-
duced to describe the situation where it is known that a message is lost or found.

Consider the MSC from Figure B.11. On instance i the sending of a message m with destination j is de-
scribed. However the corresponding receive event on instance j is missing. Similarly, instance j receives
a message n which should have been sent by instance i, but on instance i the corresponding send event is
missing.

The textual representation of the incomplete messages is very similar to the textual representation of mes-
sages. The event-oriented textual representation of the MSC of Figure B.11 is given in Figure B.12.
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B.2.3.4 Conditions

Graphically a condition is represented by a condition symbol overlapping a number of instances (at least
one) and containing a list of condition names separated by commas. If an instance is not involved in a con-
dition it is drawn through. In Figure B.13 an example of an MSC with a condition is given. This condition
is associated to the instances i and k, but not to j . If a condition contains a list of condition names with
more than one entry this is a convenient shorthand for an MSC with a condition symbol for each of these
conditions. This shorthand can only be used if all conditions refer to the same set of instances and for all
instances involved in the conditions there are no events specified in between the conditions.

C

i j k

msc example

Figure B.13: Graphical representation of conditions

A condition is a first example of an event that can be associated with more than one instance. This type of
events is called multi instance events. To facilitate the description of multi instance events without repeating
them for every instance, the textual syntax is extended with the possibility to describe such an event for all
instances involved. For example the condition from Figure B.13 can be described by “i,k : condition C”.

B.2.4 Ordering facilities

B.2.4.1 Coregions

So far the events specified on an instance were totally ordered in time. To enable the specification of un-
ordered events on an instance the coregion is introduced. A coregion is a part of the instance axis for which
the events specified within that part are assumed to be unordered in time. Within a coregion only order-
able events may be specified such as message events, local actions, timer events, and process creates. An
example of an event that may not be used in a coregion is the stop event.

Graphically, for an instance in line-form a coregion is indicated by dashing a part of the instance axis and for
instances in column-form by dashing the same parts of the two vertical lines of the instance. There is also
the possibility to use a column-form coregion with a line-form instance. The other combination, a line-form
coregion with a column-form instance, is not allowed. In Figure B.14, examples of these three forms are
given. Examples of the placement of all orderable events on a coregion are given in Figure B.15.

Figure B.14: Graphical representations of coregions
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Figure B.15: Placement of events on coregions

In Figure B.16 an instance with a coregion is specified which contains an input of message m and an output
of a message n. These two events are not ordered in time, but they are executed after the output of message
k and before the input of message l. On instance j the events are totally ordered in time.

msc coregion

i j

k

m
n

l

Figure B.16: Message Sequence Chart with a coregion

msc coregion;
i : out k to j;
i : concurrent;

in m from j;
out n to j;

endconcurrent;
i : in l from j;
j : in k from i;
j : out m to i;
j : in n from i;
j : out l to i;
endmsc;

Figure B.17: Textual syntax

In the textual notation a coregion is denoted by a list of the orderable events specified within the coregion
started with the reserved keyword concurrent and ended by the reserved keyword endconcurrent. An ex-
ample of the event-oriented textual syntax of coregions is given in Figure B.17.

B.2.4.2 General orderings

General orderings are introduced to facilitate the description of orderings between events when this ordering
cannot be derived from the ordering of the events on an instance and the ordering by means of communica-
tion. For example if a local action a on instance i has to occur before a timeout event on instance j . Then
the features of the language discussed so far are not sufficient. The only way to describe this with the MSC-
language introduced until now is by defining a communication from i to j where the output occurs after the
local action and the input occurs before the timeout event. As MSCs are mostly used for High-level require-
ments specifications this is undesirable. Also, if many such orderings need to be specified, the additionally
introduced communication overhead is disturbing.

Graphically a general ordering of two events is represented by a solid line with an arrowhead in the middle,
the general order symbol (see Figure B.18). This distinguishes it from normal messages where the arrow-
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head is placed on one end of the line. The line may have any orientation and may also be bent. The general
order symbol should be attached to the events that need to be ordered. Only orderable events can be used
in general orderings.

a

i j k

m

Figure B.18: Example of a general ordering

In case of a local action the general order symbol can start or end at any point of the action symbol. In case
of another orderable event the start or end of a causal order symbol coincides with the point of the instance
where the event symbol is attached.

The way to describe general orderings as discussed above can also be used to describe the general ordering
of orderable events from the same instance. In cases where one of the events to be ordered is not inside a
coregion, this either results in an inconsistent MSC or it results in an MSC for which the additional general
ordering is superfluous. Examples where two local actions on one instance are causally ordered are given in
Figure B.19. In the first MSC the general ordering is superfluous as the local actions are already ordered by
the total ordering of events on the instance. The fact that this general ordering is superfluous does not mean
that it is not allowed. The second MSC is inconsistent as the local actions are ordered in two conflicting
ways.

a

b

i

a

b

j

msc superfluous msc inconsistent

Figure B.19: Example of a general ordering within an instance

A general ordering between two events in the same coregion does give additional information. See Fig-
ure B.20 for an example. The input of message m, the output of message n, and the output of message o
are specified in a coregion and therefore unordered. But the causal ordering between the input of m and the
output of o defines that the first precedes the latter. Note that although the output of n and the output of o
are specified under each other on the same line they are not ordered.

As an alternative the language MSC offers the possibility to leave the head of the arrow out. Thereby the
order symbol is reduced to a single line. These lines are always interpreted from top to bottom. Also cross-
ings of these lines have meaning. Event a is ordered causally before event b iff there is a line going from a
to b that never goes up. The coregion from Figure B.22 can then also be depicted as shown in Figure B.23.

In the textual syntax general orderings are represented by using the keyword before followed by a list of
event names. An event name refers to an event specified somewhere in the MSC. Thus it can be an event
from the same instance or an event from another instance. An event name can be associated to an event in
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i
msc causal

m n

o

Figure B.20: General ordering within an in-
stance

msc causal;
i : concurrent;

in m from env before l2;
out n to env;
l2 out o to env;

endconcurrent;
endmsc;

Figure B.21: Event-oriented textual syntax

i1

i2 o2

o1

Figure B.22: General ordering within an in-
stance

i1

i2 o2

o1

Figure B.23: General ordering within an in-
stance

the textual syntax by placing the event name just before the event. See Figure B.21 for an example of the
event-oriented textual representation of the MSC shown in Figure B.20.

An event name can be associated with only one event, i.e., there cannot be two or more events in the same
MSC document with the same event name. It is not allowed that an event is ordered before itself. Textually
this means that in an event definition an event name associated with an event cannot occur in the event name
list following the keyword before.

B.2.5 Combining MSCs with composition constructs

MSC based specifications often consist of many different MSCs, instead of one single MSC. MSC offers
ways to group single MSCs into MSC documents. An MSC document is a collection of MSCs.

MSCs can be put in a wider context by means of composition operators. The three primitive operators are
seq, par and alt. In the MSC language these concepts of composing MSCs are manifest in different ways:
in inline expressions, MSC reference expressions and High-level Message Sequence Charts. MSCs can
also be composed using operators to express loops, exceptional behaviour and optional behaviour. For the
semantics of these composition operators the notions of vertical, horizontal and alternative composition are
used. These notions refer to the semantics of MSC and their intuition is sketched to strenghten the intuition
about the primitive composition operators mentioned before.

First the intuitive semantics of the operations vertical, horizontal and alternative composition are given.
Then MSC documents are treated, followed by inline expressions and MSC references. The last part of this
section describes the use of the composition mechanism in High-level MSC. Wherever possible the graphi-
cal syntax for each of these language constructs is treated first, then the (event-oriented) textual syntax, then
the requirements and finally the intuitive semantics, if necessary.

B.2.5.1 Vertical, horizontal and alternative composition of MSCs

In this section the intuitivesemantics of vertical, horizontal and alternative composition is explained, mainly
by providing examples. These examples do not form a complete and precise definition of the semantics. For
a formal definition of the semantical equivalent of these operations see Section B.4.
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Vertical composition

The vertical composition of two MSCs refers to the operation of placing one MSC at the bottom of another
one and then linking the instances they have in common thus obtaining a new MSC.

If the MSCs have no instances in common the meaning of the vertical composition is the same as an MSC
with the instances of these MSCs placed next to each other. See Figure B.24 for an example. MSC first has
instances named i and j and MSC second has instances named k and l. The MSCs have no instances in
common, so there are no links to be made. Thus vertical composition of MSCs does not necessarily mean
that all events from the first MSC (in the example MSC first) have to be executed before any event from the
second MSC (MSC second) can be executed. In the example this means that the sending of n might as well
occur before the sending of m.

msc second
k l

n

k l

nm

i j

msc together

m

i j
msc f irst

Figure B.24: Vertical composition with disjoint instances

Another case occurs if the MSCs have all instances in common. Then all events from an instance of the
second MSC have to occur after the events from the same instance of the first MSC. For an example see Fig-
ure B.25. The MSCs first and second have the instances i, j , and k in common. The reception of message
m by instance j necessarily has to precede the reception of message n by instance j in the resulting MSC
together. In this example it is still possible that the sending of message n by instance i which is an event
described in MSC second is executed before the reception of message m by instance j in MSC first.

Also the situation in which the MSCs have instances in common and also have different instances is allowed.
For example the MSCs A and B from Figure B.26 have the instance j in common, but instance i is only
described for MSC A and instance k is only described for MSC B. The result of the vertical composition
of the MSCs A and B is given as MSC AB in the same figure.

Horizontal composition

The horizontal composition of two MSCs refers to the operation of placing them next to each other. If the
MSCs have some or all instances in common, it is assumed that the behaviour of the common instance(s) is
the interleaving of the behaviours of these instance(s) in the separate MSCs.

In the case that the MSCs have no instances in common, the horizontal composition is similar to the vertical
composition (see Figure B.24). For an example of the case where the MSCs have at least one instance in
common, we refer to Figure B.27.

In this example the MSCs first and second have the instance j in common. As stated before, the behaviour
of the shared instance is obtained by interleaving the events of the separate instance descriptions. This can
be expressed in a coregion with general orderings as shown in MSC together.
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msc f irst

i j k
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msc second

i j k
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msc together

Figure B.25: Vertical composition with a common instance

m

i j
msc A

n

j k
msc B

i j k

m
n

msc AB

Figure B.26: Vertical composition

msc second

o

p

j k i j k

m

i j
msc f irst

m

n n

o

p

msc together

Figure B.27: Horizontal composition with shared instance
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Alternative composition

Usually a system is not described by means of one single MSC, instead a number of MSCs is used to describe
several alternative scenarios. With the features of MSC introduced so far, alternative scenarios can only be
described for one MSC. So each trace contains precisely the same events. For example, it is impossible to
describe that either an event a or an event b is executed. A reasonable means to describe alternatives is by
giving one MSC for each of the alternatives. Thus large piles of scenarios come into existence, for example
when describing system requirements or when describing a system by giving different Use Cases.

In complex systems there are many points of deviating behaviour. Therefore, it is important to be able to
indicate at what point alternatives occur. For that reason the language MSC offers an operator to describe
alternatives in an MSC. An important aspect of the meaning of the alternative composition mechanism in
MSC is that the moment of choice between the different scenarios is postponed until that choice can no
longer be avoided.

Consider the MSCs A and B as given in Figure B.28. Each of these MSCs has one initial event, the sending
of m and the sending of n respectively. The alternative composition of these MSCs now has two initial
events: the sending of message m and the sending of message n. If the sending of message m is executed
a choice is made for the execution of MSC A. On the other hand, if the sending of message n is executed,
a choice is made in favour of MSC B. Thus, with the execution of an event which can be executed by only
one of the alternatives, all alternatives that cannot execute this event are discarded.

msc C

i j

m

a

msc B

i j

n

msc A

i j

m

Figure B.28: MSCs

Now consider the MSCs A and C from Figure B.28. If the local action on instance j of MSC C is executed
necessarily a choice is made in favour of MSC C. But, if the sending of message m occurs, this event can
originate from either MSC A or C, though it is not clear from which of the two MSCs it originates at the
moment of execution of this event. Alternative composition in MSCs is defined in such a way that no choice
is made until this cannot be avoided. One could say that after the execution of the sending of message m
there still are two alternatives: the parts of the MSCs A and C that remain to be executed. In this specific
example now a choice has to be made as the MSCs have no initial events in common anymore.

B.2.5.2 MSC documents

In the following sections the means offered by MSC to compose MSCs are considered. As a consequence
it must be possible to describe more than one MSC. For this purpose Message Sequence Chart documents
are used.

Graphically an MSC document is given as a frame symbol with a document head in it.

Textually, an MSC document consists of an MSC document head and an MSC document body. The MSC
document head consists of the keyword mscdocument followed by an MSC document name. The MSC
document body consists of a number of Message Sequence Charts.

For MSC documents the followingstatic requirements are formulated. Within an MSC document there must
not be two or more MSCs with the same name. Within the MSCs of an MSC document only references to
MSCs specified within that MSC document may be used. An MSC may not be depending on itself, directly
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or through a number of references.

B.2.5.3 Inline expressions

Inline expressions provide a means to formulate the composition of MSCs within the MSC language. The
operators that can be used are the ones discussed before except for vertical composition.

Graphically an inline expression consists of an inline expression symbol that is attached to a number of
instances (at least one). This inline expression symbol contains in the left-upper corner one of the key-
words alt, par or loop. These keywords indicate the composition operation that is described by the inline
expression. The keyword alt refers to an alternative composition, the keyword par refers to a horizontal
composition. The keyword loop indicates iteration of the events within the inline expression.

Both alternative and horizontal compositioncan have any finite, positive number of operands. These operands
are all drawn inside the inline expression symbol and they are separated by a dashed vertical line, the sep-
arator symbol.

i j

alt

i j

m

n

msc A msc B

par m

n

o

p

Figure B.29: Examples of inline expressions

Some examples of inline expressions are given in Figure B.29. In MSC A an inline expression is attached to
the instances i and j . This inline expression has the keyword alt in its upper left corner in order to indicate
that the parts of the MSCs that are separated by means of the separator symbol are considered alternatives.
In this particular example there are two operands. The first describes the sending of a message m by instance
i and its subsequent reception by instance j . The second operand describes the sending of a message n by
instance i and its subsequent reception by instance j . The meaning of this MSC in terms of sequences of
events that can be performed is that either the sending and reception of m or the sending and reception of
n takes place but not both. As soon as the sending of one of the messages takes place it is known which
operand is executed.

In MSC B the horizontal composition of two “MSCs” is indicated by means of the keyword par. In this
case all events are executed in such a way that the orderings described by the first operand are respected and
at the same time the orderings described by the second operand are respected. MSC B′ from Figure B.30
has the same behaviour as MSC B.

An inline loop expression has exactly one operand. This operand is described by means of the part of the
MSC that is drawn inside the inline expression symbol. An example is given in Figure B.31. The inline
loop expression in MSC B describes that the sending and receiving of message m occurs zero, one or two
times, followed by the sending and receiving of message p. Intuitively the behaviour of MSC B is the same
as the behaviour of MSC D from the same figure.

The keyword loop is followed by a loop boundary. This loop boundary refers to the number of repeated
vertical compositions. The loop boundary, if present, indicates the minimal and maximal number of verti-
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Figure B.30: MSC equivalent to MSC B
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msc B
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loop<0,2>

i j
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m
m

msc D
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Figure B.31: Examples of inline expressions
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cal compositions of the operand. Such a number can either be the keyword inf, representing infinity, or a
sequence of natural names. A natural name can be any label. For the semantics it is important to be able to
interpret the sequences of natural names as natural numbers. For the semantics definition, it is assumed that
a natural name can only be the keyword inf or a sequence of digits. An interpretation of loop boundaries in
IN ∪ {∞} is assumed.

The loop boundary is be of the form <n,m> where n and m are natural numbers or inf. The combination
loop <n,m> means that the operand of the operator is executed at least n and at most m times. If the in-
terpretation of natural number n is greater than the interpretation of natural number m (with the standard
interpretation) then this means that the operand is executed zero times.

If an instance is not involved in the operands of an inline expression, then it is possible to hide the part of
the instance axis of such an instance behind the inline expression. See Figure B.32.

i j

n

malt

k

msc A

m ′

o

Figure B.32: Examples of inline expressions

B.2.5.4 MSC reference expressions

An MSC reference expression can be used to refer to other MSCs in an MSC document by means of their
MSC name. Graphically an MSC reference expression is represented by a textual formula in a rounded
frame, the msc reference symbol, which is placed on top of a number of instances. This textual formula is
an expression containing references to other MSCs in the MSC document via their MSC name. Operators for
composing MSCs are: alt, seq, par, empty, loop operators and parentheses for grouping subexpressions.

An MSC reference expression is indicated in the textual syntax by the keyword reference followed by the
textual formula.

The event-oriented textual syntax of MSC D of Figure B.33 is given by:

msc D;
i,j,k reference A;
i,j,k reference B;
endmsc;

The binding power of the operators is in descending order as follows: loop, opt, exc, seq, par, alt. The
binding powers can be superseded by using parentheses. Examples of MSC reference expressions are:

A (A alt B) seq C loop < 5,16 > (A par B) A seq loop < 3,inf > B

There are two requirements that must be satisfied with respect to the instances that are overlapped:
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1) If an instance that is present in the enclosing MSC diagram is also present in the MSC reference ex-
pression, then the MSC reference symbol must overlap this instance. An instance is present in an
MSC reference expression if at least one of the MSCs that are referenced in the expression has an
instance with that name.

2) If two MSC reference expressions in the same enclosing MSC diagram share an instance then this
instance must be drawn in the enclosing MSC diagram.

Note that these requirements do not say that every instance that is present in the MSC reference expression
must be visible in the enclosing MSC. The requirements also do not say that an MSC reference expression
may not overlap an instance that is not present in the MSC reference expression.

The reason for these requirements is that otherwise it is possible to draw an MSC with an MSC reference
expression such that it is not clear how the events on an instance are ordered. MSCs D and E from Fig-
ure B.33 show two correct ways of combining MSCs A and B with MSC reference expressions. Because
of the requirements it is obligatory that both MSC reference symbols overlap instance j .

i

m

j
msc A msc B

j k

n

i j k
msc D

i j k

A

B

msc E

A

B

Figure B.33: An example

B.2.5.5 High-level Message Sequence Charts

High-level Message Sequence Charts (HMSC) provide an attractive graphical way to combine Message Se-
quence Charts using the operators from the former sections. An HMSC is a directed graph, where the nodes
are formed by other (H)MSCs and the vertices (arrows) imply an order on the nodes. There are also other
elements that make up an HMSC:

1) start node:

2) end node:

3) msc reference node:

4) condition node:

5) connection node:

6) parallel frame:
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These elements are all used in MSC HMSC Example, in Figure B.34. This MSC depicts the horizontal
composition of MSC3 with the left part of the parallel frame. The left part of the parallel frame is the vertical
composition of MSC1 with the alternative composition of MSCs MSC2A and MSC2B.

MSC1

MSC2A MSC2B

MSC3

MSC HMSC_Example

Figure B.34: An example of an High-level Message Sequence Chart

An HMSC is described textually by associating a label to every node of the HMSC except the start symbol.
The start symbol is implicitly named since there is only one start symbol for every HMSC. The connections
between the start symbol and the other nodes are described first. For example if the start symbol has suc-
cessor nodes labeled with l1, . . . , l4, this is described by “expr l1 alt l2 alt l3 alt l4 ;”. It indicates that there
is an arrow from the start symbol to the nodes labeled with l1, . . . , ln . Then for every node of the HMSC in
isolation its type/contents is described possibly followed by a list of its successor nodes in a “node expres-
sion”. For example if the HMSC contains a node labeled l with successor nodes labeled l′ and l′′ and this
node labeled l is a reference to an MSC named A, then this is described as follows: “l : A seq ( l′ alt l ′′ )
;”.

There are a number of requirements on HMSCs. First of all, every HMSC must have one start node. Every
node must be reachable from this start node. An arrow head is always connected to the upper segment of a
node symbol, and the open end of an arrow is always connected to the lower segment. Each node, except
the end node, has a successor, i.e. has an outgoing arrow to another (possibly the same) node.

The semantics of an HMSC is relatively easy to explain at this point, since no new operators are introduced.
The semantics of MSC reference nodes in HMSC is the same as that for MSC reference nodes for MSC
treated in Section B.2.5.4. If two MSC reference nodes are connected via exactly one arrow, they are verti-
cally composed. If an MSC reference node has more than one outgoing arrow, then all the successors of that
node are alternatives for the vertical composition with that MSC reference node. Horizontal composition of
MSC reference nodes can be achieved with a parallel frame, i.e. a bounding box within the bounding box of
the MSC in question. A parallel frame can contain more than one start node. Each start node indicates a sub
MSC, i.e. an operand for the horizontal composition operator. Within a parallel frame all nodes but the end
node must have a successor as well. The meaning of condition nodes is not defined in this semantics. The
meaning of connector nodes is void, they disambiguate crossing lines in a HMSC document from splitting
lines.

The arrows in an HMSC can form cycles. This indicates repetition. Figure B.35 shows such a HMSC that
contains a cycle. This MSC is equivalent to MSC Loop shown in the same figure. In general, it is not pos-
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sible to translate a cycle in an MSC with the loop〈inf〉 operator. If e.g. the HMSC would have an endnode
connected to the MSC reference node, the cycle would have to be interpreted with the operator loop〈1,inf〉,
The precise explanation of the semantics of cycles in HMSCs is given in Section B.4.10.3.

MSC1

MSC Cycle MSC Cycle

MSC1

loop<inf,inf>

i

Figure B.35: An example HMSC with a cycle
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B.3 Message Sequence Charts with Gates

B.3.1 Gates

B.3.1.1 Motivation

When describing industrial systems with the use of Message Sequence Charts as presented so far one of the
biggest problems is the number of instances and the number of events on these instances. The diagrams eas-
ily get to big to handle, print, read, etc. In order to solve this problem complex MSCs must be decomposed
into smaller MSCs. In general it is impossible to do this by means of horizontal or vertical composition
without ever having to cut a message or causal ordering in two parts, where one part is located in the one
component and another part is located in another component. An example of such an MSC is given in Fig-
ure B.36. To facilitate this gates are introduced.

m2

m3

m1

m4

i1 i2 i3 i4

msc nondecomposable

Figure B.36: An MSC that cannot be decomposed.

Gates are implicitly or explicitly named parts of the environment. As such they can be used to describe
the interface between an MSC and its environment. Any message arrow or causal order arrow attached to
the frame surrounding an MSC defines a gate. In the recommendation there are two types of gates: mes-
sage gates and order gates. Message gates are used for message events and order gates are used for causal
orderings.

B.3.1.2 Graphical representation of gates

Graphically an explicitly named gate is indicated by associating a gate name with the place where a message
arrow or causal order arrow is attached to the frame of the MSC, i.e., the environment. A message gate
always has a name, either explicitly given or implicitly defined. By associating a name with the gate on
the frame of the MSC the gate name is explicitly defined. In this annex it is assumed that all gates have
explicitly given names. Examples of explicitly named message gates are the message gates g1 and g2 in
Figure B.37. Graphically it is only possible to distinguish the two types of gates, message gates and order
gates, by means of the type of arrow associated to it. If this is a message arrow the gate is a message gate;
if it is a causal order arrow, the gate is an order gate.

In principle order gates are treated similarly as message gates. Order gates always have to be named explic-
itly. See Figure B.37 for an example of an MSC with two order gates g3 and g4. The gate indicated by the
name g1 is called an order in gate and the gate with gate name g2 is an order out gate.

So far we have only considered gates as the input address of message output events and as the output address
of message input events. The recommendation also allows a gate to be used as the input address of a lost
message output event or as the output address of a found message input event.
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msc example

n1

n2
g3

g4

i j k

m

g1

g2

Figure B.37: MSC to illustrate message and order gates.

The intended use of gates is, as already explained in the motivation, for composing and decomposing large
specifications and descriptions into more tractable pieces. This will become more apparent in the sections
on MSC reference expressions and gates and inline expressions and gates. For now we will only discuss the
aspects related to gates on the MSC-level without these composition mechanisms.

B.3.1.3 Semantics of gates

For the semantics of gates we refer to the upcoming two sections where gates are connected on MSC refer-
ence expressions and inline expressions.

B.3.1.4 Textual representation of gates

Textually, the name of a message gate can be used as an output or input destination for message output
and message input events. An explicitly named gate is textually represented by the keywords env and via
followed by a gate name. For example, the sending of message n2 from instance j to the gate g2 is denoted
by “ j : out n2 to env via g2”. Textually the MSC from Figure B.37 can be represented by

msc example ;
i : l1 in m from j after env via g1 ;
j : l2 out m to i before env via g2 ;
k : in n1 from env via g3 ;
k : out n2 to env via g4 ;
endmsc ;

Textually, a causal order arrow from an event on an instance i to a gate g is described by “i : e before env
via g”. Thus, the keywords env and via followed by a gate name can be used to describe the destination of
the causal order arrow. However, a causal order arrow from a gate g on the frame of an MSC to an event e
on an instance i cannot be described in a similar way. For this purpose the MSC gate interface necessarily
contains a defining occurrence of a gate and an ordering. There is a simple, elegant solution however. If
the textual syntax of MSC is extended with a keyword after which can be used on all places where before
is allowed, then the gate g1 can be described in the MSC body by “i : in m from j after env via g1”. In
Section B.5 the extension of the textual syntax with a keyword after is discussed.

For lost message output events and found input events the input address and output address respectively can
also be an explicitly named gate. The textual syntax for these output and input addresses is identical to the
syntax for message output and input events.

B.3.2 MSC reference expressions and gates

B.3.2.1 Graphical representation

In the previous section we have seen how gate definitions can be described both graphically and textually.
In this section we will extend the syntax for MSC reference expressions with gates. An MSC reference ex-
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pression is indicated graphically by a textual formula in an MSC reference symbol. As the MSCs referenced
in the textual formula can have gates, it should be possible to connect gates from referenced MSCs. For this
purpose actual gates are used. An actual gate is defined by connecting a message arrow with the MSc refer-
ence expression symbol. By placing a gate name close to the point of connection an explicitly named actual
gate is defined. If the gate name is omitted an implicitly named actual gate is defined. In Figure B.38 the
different occurrences of gates are named.

A

i

g

msc example

h

m n

n

m
g

h

i

msc A

actual input gate actual output gate input gate definition output gate definition

Figure B.38: Terminology on gates.

The actual gates of an MSC reference expression may connect to corresponding constructs in the enclosing
MSC. An actual message gate (on an MSC reference symbol) may connect to another actual message gate,
an instance, or a message gate definition (implicitly or explicitly named) of the enclosing MSC by means
of a message arrow. Similarly, an actual order gate may connect to another actual order gate, an orderable
event, or an order gate definition of the enclosing MSC by means of a causal order arrow.

A message arrow can only be connected to an MSC reference symbol if at least one of the MSCs that are
referenced has a corresponding gate. If a message m is sent to an actual input gate g of an MSC reference
expression, then the MSC reference expression must contain a reference to an MSC with an input gate defini-
tion of gate g for a message m. If a message m is received from an actual output gate g of an MSC reference
expression, then the MSC reference expression must contain a reference to an MSC with an output gate def-
inition of gate g for a message m. Examples of the graphical appearance of such connections are given in
Figure B.39.

i

msc example

j k

n
A B

om

g1 g2 g3 g4

g5

Figure B.39: Gates on MSC reference expressions.

It is important to define what the gates are of an MSC reference expression as the above explanation refers
to this notion. The set of gates of an MSC reference expression is the union of the sets of gates of the MSCs
referenced by that expression.

It is allowed to connect two message gates from the same MSC reference expression in an enclosing MSC.
An example of this situation is the MSC given in Figure B.40. It is also possible to connect gates from
different MSCs that are referenced in the same MSC reference expression.
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i

g

h

m

msc A

B

i

m
g

h
m

msc B

Figure B.40: Connecting gates from the same MSC reference expression.

B.3.2.2 Semantics of MSC reference expressions

MSC reference expressions with gates that are connected on the outside of the MSC reference symbol de-
scribe how a message or causal order arrow is continued outside the MSC reference symbol. For the MSC
in Figure B.41 a message arrow is drawn from instance i to the MSC reference expression. This means that
a message m is sent by instance i to the receiver of the corresponding message input event in MSC A. In
this case this is instance j .

msc example

i j k

m
A

j k

m

n

msc A

g

g

Figure B.41: Connecting a gate.

It is also possible to connect the gates of two MSC reference expressions by means of a message arrow (see
Figure B.39). If a gate of an MSC reference A is connected to a gate of an MSC reference expression B by
means of a message arrow with message identifier m this means that the output of message m inside MSC
A is connected to the input of message m inside MSC B. Note that by the requirements these have to exist
and have to be unique.

A third possibilityis to connect a gate from an MSC reference expression witha gate of the MSC. This means
that the message output or input event is sent to or received from the environment of the enclosing MSC.
Also, if a gate of an MSC reference expression is not connected this implicitly means that it is connected
to the environment of the enclosing MSC. Examples of both situations are given in Figure B.42. From a
semantics point of view the two MSCs A are equivalent.

So far we have only indicated what the meaning is of connecting gates in the case that the MSC reference
expression is only a reference to an MSC by means of its name. However, MSC reference expressions can
easily become more complex.

For example the MSC reference expression can be the alternative composition of two MSC reference ex-
pressions by means of the keyword alt. It can be the case that the one MSC reference expression has a gate
g and the other has no such gate. An example of this situation is given in Figure B.43.

In case that the MSC A is selected for execution, the MSC can only perform the sending of message m and
its subsequent reception. On the other hand, if MSC B is selected, we expect the execution of local action
a and the output of message m in an arbitrary order. Note that in this case, the input of message m does not
take place.
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Figure B.42: Propagation of a gate to the environment.

msc example

i j

m

g
A alt B

j

m

msc A

g

j

a

msc B

Figure B.43: Connecting a gate.

Thus it is possible that a message is sent by an instance to an instance while the receiver instance never
receives the message. For message inputs however it is impossible that this situation arises.

In Figure B.44 an MSC example is given that refers to an MSC A by means of the MSC reference expres-
sion loop A. Instance j receives a message from the gate g. In MSC A a message is sent to a gate g. As
a consequence MSC example expresses that message m is sent an arbitrary number of times, but at least
once, to instance j and that instance j receives message m exactly once. The MSC does not specify which
occurrence of the sending of message m is received. The other occurrences of the sending of message m
are never received.

msc example

i j j

msc A

m
g

g

m
loop A

Figure B.44: Gates and loops.

B.3.2.3 Textual representation of MSC reference expressions with gates

It extends the description of MSC reference expressions without gates with an MSC reference identification
and with a reference gate interface. The MSC reference identification is used to unambiguously identify
an MSC reference expression. If a gate on an MSC reference symbol acts as output or input address of
a message arrow or as the destination of an causal order arrow, this is described textually by the keyword
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reference followed by an MSC reference identification and by the keyword via and the gate name. The
defining occurrence of the MSC reference identification therefore has to be unique.

A par B

kji2i1

msc example

A par B

m

m

Figure B.45: MSC where MSC reference identifications are needed in the textual description.

Consider for example the MSC from Figure B.45. Graphically it is immediately clear that the output of m
by instance i1 is to the first occurrence of the expression A par B and the output of m by instance i2 is to the
second occurrence of the expression A par B. Textually we need a means to distinguishthese two references
which have the same appearance. Thereto the MSC reference identification is used. In this example we
use parallel1 and parallel2 as MSC reference identifications for the first and second occurrence of the
expression A par B respectively. Textually this MSC is described as follows:

msc C ;
i1 : out m to reference parallel1 via g ;
i2 : out m to reference parallel2 via g ;
j , k: reference parallel1 : A par B ;
j , k: reference parallel2 : A par B ;
endmsc ;

With every MSC reference expression a reference gate interface can be associated. This interface describes
how the gates of the MSCs that are referenced in the MSC reference expression are connected in the en-
closing diagram. If a gate of the MSC reference expression is not connected in the enclosing MSC no entry
in the reference gate interface is required. Syntactically the entries in this interface are described similar to
the descriptions of the gates in the MSC gate interface.

B.3.3 Inline expressions and gates

B.3.3.1 Graphical representation of inline expressions with gates

Graphically an inline expression is indicated by an inline expression symbol or an exc inline expression
symbol. Inside the inline expression symbol the operands are described in the form of an anonymous MSC
(i.e., an MSC without an MSC name) without instance head and end symbols. A message arrow or causal
order arrow that is attached to the inline expression symbol constitutes a gate definition. At the same time a
continuation of this arrow in the enclosing MSC describes a connection of this gate. Thus, for inline expres-
sions the definition of a gate (of the anonymous MSC) coincides with the use of the gate (the actual gate).
As was the case for gates on MSC reference symbols the actual gates can be explicitly or implicitly named.
Again, it is assumed in this annex that all gates are explicitly named. In Figure B.46 the gate definitions and
actual gates are indicated.

A message gate on the inline expression symbol can be connected by means of a message arrow. Similarly,
an order gate on an inline expression symbol can be connected by means of a causal order symbol.
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actual output gate

input gate definition output gate definition

actual input gate

Figure B.46: Terminology of gates on inline expressions.

B.3.3.2 Semantics of inline expressions with gates

If a message arrow or causal order arrow is connected to the inline expression symbol internally, but not
externally this indicates that the gate propagates to the frame of the enclosing MSC. The gate name remains
the same.

For all occurrences of a gate on an inline expression the internal address of the different occurrences of this
gate must be identical. The reason for this requirement is that in the textual syntax there is no means to
distinguish the different occurrences of the gate.

B.3.3.3 Textual representation of inline expressions with gates

The introductionof an inline expression identification in the textual representation of inline expressions with
gates is motivated similarly as the introduction of the MSC reference identification in the previous section.

If a gate of an inline expression is the output or input address of a message arrow this is described by means
of the keyword inline followed by the inline expression identifier and by the keyword via and the gate name.

For each operand of the inline expression an inline gate interface can be described. Such an inline gate
interface describes both the internal and external connections of the gates on the inline expression symbol.
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B.4 Process theory for Message Sequence Charts

B.4.1 Introduction

In this section a number of constructs are defined operationally by means of deduction rules. These con-
structs are

• special constants δ and ε;

• atomic actions a ∈ A;

• delayed choice operator ∓;

• delayed parallel composition ‖ ;

• weak sequential composition ◦;
• bounded repetition ∗;

• unbounded repetition ∞;

• generalized parallel composition ‖ S and generalized weak sequential composition ◦S;

• renaming operator ρ f ;

• recursion variables.

Together these constants and operators form the signature 
. The deduction rules defining the operational
behaviour of these operators is explained and illustrated by means of examples. With these constants and
operators expressions can be built. The operators have the following binding powers in decreasing order:

1) the unary operators ∗, ∞ and ρ f ;

2) the binary operators ‖ , ‖ S , ◦ and ◦S;

3) the binary operator ∓.

For operators with equal binding power brackets are associated from the left. As a consequence of these
binding rules the expression a ◦ b ∓ c should be read as (a ◦ b) ∓ c. Another example is the expression
a ◦ b ‖ c which should be read as (a ◦ b) ‖ c.

B.4.2 Operational semantics

In this section terminology is introduced with respect to the mathematical framework that is used to define
an operational semantics. Both terminology and notation are taken from [BV95]. The goal of an operational
semantics is, given an expression denoting a process in a certain state, to describe all possible activities that
can be performed by the process in that state and to describe the state of the process after such an activity.
This expression represents the initial state of the MSC. The activities that are considered for the operational
semantics of MSC are the execution of an event and the termination of the MSC. Also the states resulting
after such activities are described by means of expressions. If from a state s an event a can be performed
and the resulting state is represented by the expression s′, then this is usually denoted by the ternary relation
s

a→ s′. If in a given state s the process is capable of terminating immediately and successfully, this is
indicated by means of s↓.

The predicate −↓⊆ P is called the termination predicate as it indicates that a process has the possibility
to terminate immediately and successfully. The set P denotes all expressions that can be built from the
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constants and operators in the signature. It is assumed that all events are represented by atomic actions

from the set A. Then the ternary relation− −→ − ⊆ P × A × P is called the transition relation.

This predicate and these relations are defined by means of deduction rules (operational rules). A deduction
rule is of the form H

C where H is a set of premises and C is the conclusion. Each individual premise and the

conclusion are of the form s
a→ s′ or s↓ for arbitrary s, s ′ ∈ P and a ∈ A. Such a deduction rule should

be interpreted as follows: If all premises are true, the conclusion, by definition, also holds. A special kind
of deduction rule appears if the set of premises is empty (H = ?). Such a deduction rule is also called
a deduction axiom and usually simply denoted by the conclusion C. An example of a deduction axiom is
deduction axiom (At 1) given in Table B.1:

a
a→ ε

.

This deduction axiom expresses that a process that is in a state represented by the atomic action a can per-
form event a and thereby evolves into a state represented by the expression ε. This expression ε indicates
the state in which no events can be performed but in which it is possible to terminate successfully and im-
mediately. This is expressed by the deduction axiom (E 1) also from Table B.1:

ε↓ .

These are the only rules for expressions a ∈ A and ε. The expression ε is used to denote an MSC without
events.

Clearly the process a cannot terminate and the process ε cannot perform events. Note that these negative
results are not explicitly defined. The following convention applies: If it is impossible to derive s↓, then by
definition not s↓, which is denoted by s �↓. Similarly, if it is impossible to derive s

a→ s′, then by definition
not s

a→ s′. This is usually denoted as s � a→ s′. Such negative results can also be used in the set of premises,
and then these are called negative premises. The notation s

a→ expresses that a process represented by the
expression s can perform action a. This does not say anything about the resulting state after the execution
of a. Formally, s

a→ means that there exists a state s′ such that s
a→ s′. Then s � a→ should be read as there

does not exists a state s′ such that s
a→ s′, or for all states s′, it is the case that s � a→ s′. These abbreviations

extend to the relation− −···→ − to be introduced in Section B.4.7.

B.4.3 Equivalence of processes

Through the relations
a→ and

a···→ and the predicate ↓, the behaviour of a process is defined. Using this
behaviour it is possible to formally define when two processes should be considered equal. Many differ-
ent notions of equivalence have been studied in literature. For MSC the prefered notion of equivalence is
bisimulation [Par81].

Definition B.4.3.1 (Bisimulation relation) A binary relation B ⊆ P ×P is called a bisimulation relation
if for all a ∈ A and s, t ∈ P with sBt the following conditions hold:

∀s′∈P(s
a→ s′ ⇒ ∃t ′∈P(t

a→ t ′ ∧ s′Bt ′)),

∀s′∈P(s
a···→ s′ ⇒ ∃t ′∈P(t

a···→ t ′ ∧ s′Bt ′)),

∀t ′∈P(t
a→ t ′ ⇒ ∃s′∈P (s

a→ s′ ∧ s′Bt ′)),

∀t ′∈P(t
a···→ t ′ ⇒ ∃s′∈P (s

a···→ s′ ∧ s′Bt ′)),
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and

s↓⇒ t↓,

t↓⇒ s↓ .

Two closed terms p, q ∈ P are bisimilar, notation p ↔ q, if there exists a bisimulation relation B such
that pBq.

Intuitively, two bisimilar processes can execute the same actions, and if they do so, will result in bisimilar
processes again. For a concise treatment of bisimulation refer to [BW90].

B.4.4 Deadlock, empty process and atomic actions

In this section the smallest building blocks of the signature are introduced. These are divided into the spe-
cial constants and the atomic actions. There are two special constants: δ and ε. The deadlock constant δ

represents a process that cannot execute an event and cannot terminate. The empty process ε represents a
process that cannot execute an event, but contrary to deadlock it terminates successfully.

The set of atomic actions is a parameter of the term algebra. In the context of Message Sequence Charts it is
chosen to represent the events of the MSC language such as output and input of a message, timer statements,
and local actions. As is the case with MSC, each smallest event is defined on an instance. To mimic this
in the term algebra the existence of a total mapping � : A → Id is assumed which associates to an atomic
action an identifier representing an instance name.

The operational semantics contains two relations and one predicate on processes. The transition relation
x

a→ x ′ means that process x can perform event a and thereby evolves into process x′. Stated differently:
in a state x event a can be performed and state x′ will then be entered. The termination predicate x↓means

that the process x can terminate immediately and successfully. The permission relation x
a···→ x ′ will be

explained later when relevant.

Table B.1: Deduction rules for constants: a, b ∈ A

ε↓ (At 1)
a

a→ ε
(E 1)

As indicated before, the empty process ε is capable of terminating immediately and successfully. This is
expressed by the deduction rule ε↓ (in the form of a deduction axiom). An atomic action a can execute
event a and thereby it evolves into the empty process: a

a→ ε.

The deduction rules for the permission relation will be discussed when the time is right. For now they will
only play a minor role.

B.4.5 Delayed choice

The structured operational semantics associated to delayed choice by means of the deduction rules presented
in Table B.2 eminently illustrates the purposes of this operator. The deduction rules for

a→ clearly express
that x ∓ y can perform an a-transition thereby resolving the choice if exactly one of its operands can, and
in the case that both operands can perform an a-transition the choice is not yet resolved.

The deduction rules for the termination predicate ↓ and the transition relation
a→ from Table B.2 are taken

from [BM94] where the delayed choice operator was introduced in the setting of bisimulationsemantics as a
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Table B.2: Deduction rules for delayed choice

x↓
x ∓ y↓ (DC 1)

y↓
x ∓ y↓ (DC 2)

x
a→ x ′, y � a→

x ∓ y
a→ x ′

(DC 3)
x � a→, y

a→ y′

x ∓ y
a→ y′

(DC 4)
x

a→ x ′, y
a→ y′

x ∓ y
a→ x ′ ∓ y′

(DC 5)

means of composing MSCs. The deduction rules (DC 1) and (DC 2) express that the alternative composition
of two processes has the option to terminate if and only if at least one of the alternatives has this option.

Example B.4.5.1 The process action(i, a)∓ ε has an option to terminate as the second alternative has this
option. On the contrary the process action(i, a)∓ action(j, b) does not have an option to terminate as none
of its alternatives can terminate.

The deduction rules (DC 3) and (DC 4) express that, in the situation that exactly one of the alternatives can
execute an action a, the alternative composition can execute this event as well and that the execution of this
event resolves the choice.

Example B.4.5.2 The process action(i, a)∓ action(j, b) can execute the action action(i, a) and the action
action(j, b). In both cases the action can be executed by only one of the alternatives. Thus in both cases
making a choice between the alternatives cannot be avoided. Operationally this is seen as follows:

action(i, a)∓ action(j, b)
action(i,a)→ ε

and

action(i, a)∓ action(j, b)
action(j,b)→ ε.

Deduction rule (DC 5) deals with the situation that both alternatives can execute an action a. It states that,
in that case, the alternative composition can execute a and, moreover, that there remain two alternatives.

Example B.4.5.3 The process action(i, a) ∓ action(i, a) has two alternatives both of which can execute
action action(i, a). The choice between the alternatives is not resolved. Operationally this can be seen as
follows:

action(i, a)∓ action(i, a)
action(i,a)→ ε ∓ ε.

The delayed choice is commutative and associative and deadlock is a unit for delayed choice. These proper-
ties are exactly what was required for the delayed choice. These properties enable the definition of a multi-
nary delayed choice operator as in the following definition.

Definition B.4.5.4 (Multinary delayed choice) Let I be a finite set. Let Pi be a process term in which only
the variable i occurs freely. Then the multinary delayed choice operator is defined by

∓
i∈I

Pi =



δ if I = ?,

Pj ∓
( ∓

i∈I\{ j}
Pi

)
if j ∈ I .
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B.4.6 Delayed parallel composition

The delayed parallel composition of two processes is the interleaved execution of the events of the processes
while maintaining the ordering of events as specified by the processes in isolation. This operator is a de-
layed version of the interleaving operators normally used. If both processes that are composed by means
of delayed parallel composition can perform the same event, it is not visible which of the two is actually
executed. In other word, a delayed choice is made between the two occurrences. In this aspect the delayed
parallel composition operator used for the semantics of MSC differs from the interleaving operators of ACP-
style process algebras [BW90]. The deduction rules for the delayed parallel composition operator are given
in Table B.3.

Table B.3: Deduction rules for delayed parallel composition

x↓, y↓
x ‖ y↓ (DP 1)

x
a→ x ′, y � a→

x ‖ y
a→ x ′ ‖ y

(DP 2)
x

a→ x ′, y
a→ y′

x ‖ y
a→ x ′ ‖ y ∓ x ‖ y′

(DP 3)
x � a→, y

a→ y′

x ‖ y
a→ x ‖ y′

(DP 4)

Deduction rule (DP 1) expresses that the delayed parallel composition of two processes has an option to
terminate if and only if both processes have this option.

Example B.4.6.1 The process (a ∓ ε) ‖ (b ∓ ε) has an option to terminate as both a ∓ ε and b ∓ ε have
this option. Operationally this is seen as follows: a ∓ ε↓ and b∓ ε↓ and therefore by deduction rule (DP
1) also (a ∓ ε) ‖ (b ∓ ε)↓.

The process a ‖ ε does not have an option to terminate as the left-hand side a of the delayed parallel com-
position does not have this option (a �↓) and therefore deduction rule (DP 1) is not applicable.

The deduction rules (DP 2) and (DP 4) express that if exactly one of the operands of a delayed parallel com-
position can execute an action a, then the delayed parallel composition can and it is known which operand
has actually executed a.

Example B.4.6.2 The process a ‖b is capable of performing action a and thereby it evolves into the process
ε ‖ b. But it is also possible for this process to perform action b and then the process a ‖ ε remains.

The deduction rule (DP 3) expresses that, in a situation that both operands can execute an action a, the
delayed parallel composition can execute an a and moreover that it is not known which operand executed a.
This is seen in the deduction rule by the term x ′ ‖ y∓x ‖ y′. The first alternative results from the execution of
a by process x and the second from the execution of a by process y. The fact that the process x ‖ y evolves
into the process x ′ ‖ y ∓ x ‖ y′ indicates that it is not known which a has been executed.

Example B.4.6.3 An example illustrating the delayed nature of the delayed parallel composition is the pro-
cess a ‖ a. It can perform the following sequence of transitions:

a ‖a
a→ ε ‖ a ∓ a ‖ ε

a→ ε ‖ ε ∓ ε ‖ ε↓ .

The delayed parallel composition is commutative and associative and the empty process is a unit for delayed
parallel composition. These properties enable the definition of a multinary delayed parallel composition
operator as in the following definition.
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Definition B.4.6.4 (Multinary delayed parallel composition) Let I be a finite set. Let Pi be a process
term in which only the variable i occurs freely. Then the multinary delayed parallel composition operator
is defined by

‖
i∈I

Pi =




ε if I = ?,

Pj ‖
(
‖

i∈I\{ j}
Pi

)
if j ∈ I .

B.4.7 Weak sequential composition

In order to explain the weak sequential composition operator it is necessary to consider the purpose of this
operator in the semantics of MSC. The weak sequential composition operator is introduced to represent the
vertical composition of MSCs. It has a similar behaviour as the delayed parallel composition operator, but
additionally it maintains the ordering of events from instances that the MSCs have in common. Thus an
event on instance i in the second MSC can only take place in situations where all events on instance i (if
any) in the first MSC have already taken place.

However, there is a complication with respect to alternatives. Suppose that an MSC A is given that describes
two alternatives. The first alternative only describes a local action a on instance i and the second alternative
only contains a local action b on instance j . Suppose that this MSC is composed vertically with an MSC B
that only contains a local action c on instance i. The vertical composition of the first alternative of MSC A
with MSC B should not allow the execution of local action c as it must be preceded by local action a. The
vertical composition of the second alternative of MSC A with MSC B can execute local action c as there
are no events in the second alternative of MSC A that must precede the execution of local action c. Thus,
one alternative of MSC A does not allow the execution of local action c and one alternative does allow the
execution of local action c. The expected result is that the execution of local action c is allowed and moreover
that if local action c is executed the first alternative disappears.

In order to deal with this aspect of the weak sequential composition operator the permission relation
a···→ is

used. The propositionx
a···→ x ′ states that process x allows the execution of an action a and thereby evolves

into the process x ′ due to the resolving of choices. On the other hand, the proposition x � a···→ indicates that
x does not allow the execution of action a from a process with which x is composed vertically.

In an MSC every event is associated with an instance on which it is defined. In the operational semantics
this is incorporated by assuming a mapping � : A → I , where I represents the set of all instance names,
which associates with an atomic action a ∈ A the name of the instance it is defined on �(a).

The deduction rules for the permission relation are given in Table B.4 and the deduction rules for weak
sequential composition are given in Table B.5.

Deduction rule (WS 1) expresses that the weak sequential composition of two processes has an option to
terminate if and only if both processes have this option.

Example B.4.7.1 The process ε ◦ (a∓ε) has the option to terminate as both operands have this option: ε↓
and a ∓ ε↓.

The deduction rules (WS 2), (WS 3) and (WS 4) deal with the transitions of the vertical composition of two
processes. In the case that x can execute a and either y cannot execute a or x does not allow the execution
of a by y, only the execution of a by x can take place. This is expressed by deduction rule (WS 2).

Example B.4.7.2 Suppose that �(a) �= �(b). The process a ◦ b can execute action a and evolves into the
process ε ◦ b since a

a→ ε and b � a→.

In the case that both x and y can execute action a and x allows the execution of a by y, there are two pos-
sibilities for executing action a. A delayed choice of the individual occurrences of action a results. This is
expressed by deduction rule (WS 3).
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Table B.4: Deduction rules for the permission relation

ε
a···→ ε

�(a) �= �(b)

b
a···→ b

x
a···→ x ′, y

a···→ y′

x ∓ y
a···→ x ′ ∓ y′

(DC 6)
x

a···→ x ′, y � a···→
x ∓ y

a···→ x ′
(DC 7)

x � a···→, y
a···→ y′

x ∓ y
a···→ y′

(DC 8)

x
a···→ x ′, y

a···→ y′

x ‖ y
a···→ x ′ ‖ y′

(DP 5)
x

a···→ x ′, y
a···→ y′

x ◦ y
a···→ x ′ ◦ y′

(WS 5)

Table B.5: Deduction rules for weak sequential composition

x↓, y↓
x ◦ y↓ (WS 1)

x
a→ x ′, x � a···→ ∨y � a→
x ◦ y

a→ x ′ ◦ y
(WS 2)

x
a→ x ′, x

a···→ x ′′, y
a→ y′

x ◦ y
a→ x ′ ◦ y ∓ x ′′ ◦ y′

(WS 3)

x � a→, x
a···→ x ′, y

a→ y′

x ◦ y
a→ x ′ ◦ y′

(WS 4)
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Example B.4.7.3 Suppose that �(a) �= �(b). The process (a ∓ b) ◦ a can execute action a and thereby
evolves into the process ε ◦a∓b ◦ ε. The first alternative of the resulting process describes the result of the
execution of a by a ∓ b and the second alternative describes the result of the execution of a by the process
a. Note that due to the execution of the second a, the alternative a from a∓ b is not present anymore since
a ∓ b

a···→ b.

In the case that x cannot execute an action a and y can and x permits the execution of a by y, there is one
possibility of executing a. This is expressed by deduction rule (WS 4).

Example B.4.7.4 Suppose that �(a) �= �(b). The process a ◦ b can execute an action b since the second

operand of the vertical composition can (b
b→ ε) and the first operand allows this (a

b···→ a). The resulting
process after the execution of action b is a ◦ ε.

The n-times repeated application of weak sequential composition xn is introduced as a shorthand. No op-
erational rules are given for this operator.

Definition B.4.7.5 Let n ∈ IN. Then for x ∈ P the process xn is defined inductively as follows:

xn =
{

ε if n = 0,
x ◦ xn−1 if n > 0.

Another convenient shorthand is the expression x [m,n] where x ∈ P and m, n ∈ IN∪ {∞}. This expression
indicates that at least m and at most n copies of x are composed by means of weak sequential composition.
For example the expression x[2,4] represents the expression x ◦ x ∓ x ◦ (x ◦ x) ∓ x ◦ (x ◦ (x ◦ x)). If the
minimal number of repetitions exceeds the maximal number of repetitions it is assumed that x is executed
zero times.

Definition B.4.7.6 Let m, n ∈ IN ∪ {∞}. Then for x ∈ P the process x[m,n] is defined as follows:

x [m,n] =




ε if m > n,∓
m≤i≤n

xi if m ≤ n and n �= ∞,

x∞ if m = n = ∞,

xm ◦ x∗ if m < n and n = ∞.

B.4.8 Generalization of the composition operators

In this section generalized versions of the delayed parallel composition operator and the weak sequential
composition operator are defined. These generalization are necessary to capture ordering requirements that
need to be satisfied that refer to events from the different processes that are composed horizontally or verti-
cally. The operators for delayed parallel and weak sequential composition are generalized by labeling them
with a set of ordering requirements. An ordering requirement is a triple of the form a

n�→ b where a and b

are different atomic actions and n is a natural number. As a notational shorthand a
0�→ b is written as a �→ b.

Often the curly brackets of the set of ordering requirements are simply omitted.

The deduction rules for the generalized parallel composition operator are given in Table B.6 and the deduc-
tion rules for the generalized weak sequential composition operator are given in Table B.7. The auxiliary
predicate enabled and the auxiliary mapping upd are explained and defined below.

Definition B.4.8.1 For a ∈ A and S a set of ordering requirements:

enabled(a, S) ⇐⇒ ∀b,c∈A,n∈IN b
n�→ c ∈ S  ⇒ (c �≡ a ∨ n > 0),

upd(a, S) = {b n�→ c | b
n�→ c ∈ S ∧ b �≡ a ∧ c �≡ a}

∪ {b n+1�→ c | b
n�→ c ∈ S ∧ b ≡ a}

∪ {b n−1�→ c | b
n�→ c ∈ S ∧ c ≡ a ∧ n > 0}.
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One difference between the deduction rules for ‖ S and ◦S and the deduction rules for ‖ and ◦ is that the
execution of an event a is restricted to the situations where enabled(a, S) holds. Before this predicate can
be explained first the interpretation of the ordering requirements must be explained.

The ordering requirement a
n�→ b expresses that every m + nth execution of event b must be preceded by

at least m executions of event a. The natural number n basically describes the difference in the number of

executions of a and b. Thus if the set S contains the requirement a
0�→ b, it is not allowed to execute event

b. The predicate enabled(a, S) holds if and only if there is no ordering requirement in the set S that does
not allow the execution of event a.

Table B.6: Deduction rules for generalized parallel composition

x↓, y↓
x ‖ S y↓ (HC 1)

x
a→ x ′, y � a→, enabled(a, S)

x ‖ S y
a→ x ′ ‖ upd(a,S) y

(HC 2)
x

a→ x ′, y
a→ y′, enabled(a, S)

x ‖ S y
a→ x ′ ‖ upd(a,S) y ∓ x ‖ upd(a,S) y′

(HC 3)

x � a→, y
a→ y′, enabled(a, S)

x ‖ S y
a→ x ‖ upd(a,S) y′

(HC 4)
x

a···→ x ′, y
a···→ y′

x ‖ S y
a···→ x ′ ‖ S y′

(HC 5)

Execution of an event a can lead to an update of the set of ordering requirements as follows. If event a
occurs as the righthand side of a requirement this means that the natural number must be decreased by one.
If event a occurs as the lefthand side of a requirement this means that the natural number must be increased
by one. The requirements in which a does not occur, are not changed. For the purpose of updating the set
S due to the execution of event a the mapping upd(a, S) is used.

Table B.7: Deduction rules for generalized weak sequential composition

x↓, y↓
x ◦S y↓ (VC 1)

x
a→ x ′, x � a···→ ∨y � a→, enabled(a, S)

x ◦S y
a→ x ′ ◦upd(a,S) y

(VC 2)

x
a→ x ′, x

a···→ x ′′, y
a→ y′, enabled(a, S)

x ◦S y
a→ x ′ ◦upd(a,S) y ∓ x ′′ ◦upd(a,S) y′

(VC 3)

x � a→, x
a···→ x ′, y

a→ y′, enabled(a, S)

x ◦S y
a→ x ′ ◦upd(a,S) y′

(VC 4)
x

a···→ x ′, y
a···→ y′

x ◦S y
a···→ x ′ ◦S y′

(VC 5)

Note that for both operators the deduction rules are similar to the deduction rules for their non-generalized
counterparts. In fact ‖? = ‖ and ◦? = ◦.

Example B.4.8.2 Consider the process ?m ‖ !m �→?m!m. If the ordering requirement is not considered, i.e.,
the process ?m ‖ !m is considered, the actions !m and ?m would be executed in any order. However, the
presence of the requirement !m �→?m blocks the execution of ?m as long as !m has not been executed.
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Thus the only possible execution for this process is

?m ‖ !m �→?m!m
!m→?m ‖ !m

1�→?mε
?m→ ε ‖ !m �→?mε↓ .

B.4.9 Renaming operator

A mapping f : A → A is called an injective renaming iff for all a, b ∈ A, if f (a) = f (b) then a = b. The
renaming operator ρ f renames an atomic action a into f (a).

Table B.8: Deduction rules for renaming

x↓
ρ f (x)↓

x
f −1(a)···→ x ′

ρ f (x)
a···→ ρ f (x ′)

x
f −1(a)→ x ′

ρ f (x)
a→ ρ f (x ′)

B.4.10 Repetitive behaviour

B.4.10.1 Iteration

The process x∗ is the process that is capable of executing x any number of times including zero times. The
choice of how many times the x is executed, however, is delayed. The consecutive occurrences of the process
x are composed by means of weak sequential composition. Intuitively speaking the process x∗ represents
the process ∓

i≥0
xi = ε ∓ x ∓ x ◦ x ∓ · · · .

The deduction rules for iteration are presented in Table B.9. The operation of the iteration operator is closely
related to the operation of the weak sequential composition and the delayed choice as will be clear from the
explanation of the deduction rules.

Table B.9: Deduction rules for iteration

x∗↓ (IT 1)

x
a→ x ′, x � a···→

x∗
a→ x ′ ◦ x∗

(IT 2)
x

a→ x ′, x
a···→ x ′′

x∗
a→ x ′′∗ ◦ (x ′ ◦ x∗)

(IT 3)

x � a···→
x∗

a···→ ε
(IT 4)

x
a···→ x ′

x∗
a···→ x ′∗

(IT 5)

The process x∗ has the option to execute x zero times and thus it that has the option to terminate successfully
and immediately. This is what is expressed by deduction rule (IT 1).

The process x∗ can perform an event a if the process x can do so. To determine what the resulting process
will be it is of importance whether x also permits the event a. Suppose that x

a→ x ′.
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1) In the case that x does not permit event a, i.e., x � a···→, the only possibility for the execution of event a
is the a from the first x in each of the sequences xi (i ≥ 1). If the alternative x i (i ≥ 1) is considered in
isolation then it can perform an a event and the resulting process will be x ′ ◦xi−1. Since this execution
of a by the first occurrence of x in each of the alternatives is delayed the resulting process is

∓
i≥1

x ′ ◦ xi−1,

which equals
x ′ ◦∓

i≥1
xi−1,

or in the formulation chosen for deduction rule (IT 2)

x ′ ◦ x∗.

2) In the case that x does permit an a and thereby evolves into x ′′, i.e., x
a···→ x ′′, there are many more

possibilities for the execution of the a. Again the choice is delayed. For each of the sequences xi an
a event can be executed by any of the occurrences of x . Thus, if the alternative xi is considered in
isolation, then it can perform an a event and it thereby evolves into

∓
1≤ j≤i

x ′′ j−1 ◦ (x ′ ◦ xi− j ).

Thus process x∗ can perform an a event and thereby evolves into the process

∓
i≥1
∓

1≤ j≤i
x ′′ j−1 ◦ (x ′ ◦ xi− j ),

which is equal to
x ′′∗ ◦ (x ′ ◦ x∗).

This is expressed by deduction rule (IT 3).

Example B.4.10.1.1 Consider the process a∗. This process describes an arbitrary number of executions of
action a. Only the first occurrence of a can be executed as all actions a necessarily are defined on the same
instance and a � a···→. Thus a∗

a→ ε ◦ a∗.

Example B.4.10.1.2 Consider the process (a ◦ b)∗ where �(a) �= �(b). The first occurrence of b can be

executed as a allows this (a
b···→ a). The other occurrences of b cannot be executed as the previous occur-

rences of b prohibit this a ◦ b � b···→. Thus, (a ◦ b)∗
b→ (a ◦ ε) ◦ (a ◦ b)∗.

Example B.4.10.1.3 Consider the process (a ∓ b)∗ where �(a) �= �(b). Then a∓b
a···→ b and a∓b

a→ ε.
Deduction rule (IT 3) then gives (a ∓ b)∗

a→ b∗ ◦ (ε ◦ (a ∓ b)∗). This result can be explained as follows.
Consider the alternative (a ∓ b)i for some i ≥ 1. Clearly this alternative can execute action a. If (a ∓ b)i

is represented by
(a1 ∓ b1) ◦ (a2 ∓ b2) ◦ · · · ◦ (ai ∓ bi )

one can observe that each aj (1 ≤ j ≤ i) can be executed. The result of executing the j th occurrence of a,
i.e., aj is then given by the following scheme

(a1 ∓ b1) ◦ (a2 ∓ b2) ◦ · · · ◦ (a j−1 ∓ b j−1) ◦ (a j ∓ b j ) ◦ (a j+1 ∓ b j+1) ◦ · · · ◦ (ai ∓ bi)
a···→ a···→ a···→ a→
b1 ◦ b2 ◦ · · · ◦ b j−1 ◦ ε ◦ (a j+1 ∓ b j+1) ◦ · · · ◦ (ai ∓ bi ).

The delayed choice of all these possibilities gives (a ∓ b)∗
a→ b∗ ◦ (ε ◦ (a ∓ b)∗). The deduction rule ex-

presses that an arbitrary occurrence of a can be executed and that as a consequence all previous occurrences
of a are removed.
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If process x does not permit the execution of action a, then x∗ permits the execution of action a (IT 4). The
reason for this is that x ∗ has the empty process ε as one of its alternatives. If, on the other hand, the process
x does permit the execution of a and thereby evolves into x ′, then x∗ also permits the execution of a and it
evolves into x ′∗ (IT 5).

B.4.10.2 Unbounded repetition

The unbounded repetition of the process x , i.e., x∞, corresponds to the notion where fresh copies of x are
composed by means of weak sequential composition ad infinitum. The fact that the operation of unbounded
repetition is so closely linked with the operation of weak sequential composition is visible in the deduction
rules presented in Table B.10.

Table B.10: Deduction rules for unbounded repetition

x
a→ x ′, x � a···→

x∞ a→ x ′ ◦ x∞
(UR 1)

x
a→ x ′, x

a···→ x ′′

x∞ a→ x ′′∗ ◦ (x ′ ◦ x∞)
(UR 2)

x
a···→ x ′

x∞
a···→ x ′∞

(UR 3)

Next consider the transition relation. There are only two relevant (disjoint) cases. The first is where x can
execute an a event and x does not permit an a event, and the second is where x can execute an a event and
also permits an a event. The other case, i.e., where x cannot execute an a event, does not give rise to a
transition of x∞ as none of the copies of x can execute the a event.

1) Suppose that x can perform an a event and thereby evolves into x ′ and suppose that x does not permit
an a event. Then, following the deduction rules for weak sequential composition, the process x∞ can
only execute the a event from the first copy of x . Thus x∞ performs the a event as well and thereby
evolves into the process x ′ ◦ x∞. This is expressed by deduction rule (UR 1).

2) Alternatively, if x permits and a event and thereby evolves into x ′′, there are in principle infinitely
many possibilities for the execution of the a event, due to the permission for a each of the copies
can perform the a event. Thus the deduction rule expresses that one of the copies of x will perform
the a event. All preceding copies thus evolve into x ′′. Thus the process x∞ evolves into the process
x ′′∗ ◦ (x ′ ◦ x∞) after the execution of action a. This is expressed by deduction rule (UR 2).

The deduction rule for the permission relation (UR 3) is based directly on the deduction rule for weak se-
quential composition.

B.4.10.3 Recursion

The language HMSC can be used to describe infinitary behaviour. Therefore, the semantic domain is ex-
tended with recursive specifications. Let 
 be a signature and let V be a set of recursion variables. A re-
cursive specification E(V ) is a set of equations

{X = sX (V ) | X ∈ V },

where each sX (V ) is a term over the signature 
 and the set of variables V .
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Let E be a recursive specification in which X occurs as a recursion variable. Then 〈X | E〉 denotes the
solution for X with respect to the recursive specification E . For t a term possibly containing recursion vari-
ables, the process 〈t | E〉 denotes the process t with all occurrences of recursion variables r replaced by their
solution 〈r | E〉.
An operational semantics for recursion which generates exactly one solution for every recursive specifica-
tion is given by the deduction rules in Table B.12. In order to define the structured operational semantics
for recursion it is necessary to determine whether the process represented by a recursion variable is capa-
ble of performing actions and of permitting actions. Therefore, auxiliary predicates p

a→q and p� a···→q are
introduced which are defined by the deduction rules in Table B.11.

Table B.11: Auxiliary predicates and relations for recursion (a ∈ A, X = sX ∈ E)

δp� a···→q

�(a) = �(b)

bp� a···→q

xp� a···→q, yp� a···→q

x ∓ yp� a···→q

xp� a···→q

x ◦S yp� a···→q

yp� a···→q

x ◦S yp� a···→q

xp� a···→q

x ‖ S yp� a···→q

yp� a···→q

x ‖ S yp� a···→q

xp� a···→q

x∞p � a···→q ap
a→q

xp
a→q

x ∓ yp
a→q

yp
a→q

x ∓ yp
a→q

xp
a→q, enabled(a, S)

x ‖ S yp
a→q

yp
a→q, enabled(a, S)

x ‖ S yp
a→q

xp
a→q, enabled(a, S)

x ◦S yp
a→q

xp
a···→q, yp

a→q, enabled(a, S)

x ◦S yp
a→q

xp
a→q

x∗p a→q

xp
a→q

x∞p a→q

xp
f −1(a)→ q

ρ f (x)p
a→q

xp� f
−1(a)···→q

ρ f (x)p � a···→q

〈sX | E〉p a→q

〈X | E〉p a→q

〈sX | E〉p� a···→q

〈X | E〉p� a···→q

The proposition xp
a→q indicates that the process x can execute action a. The process 〈X | E〉 can execute

a if sX can. This is expressed by the deduction rules in Table B.11. The proposition xp� a···→q indicates that
the process x cannot permit the execution of a. The process 〈X | E〉 cannot permit the execution of a if sX

cannot. This is expressed by the last deduction rule in Table B.11.

Example B.4.10.3.1 Consider the recursive specification given by X = ε ◦ Y and Y = ε ◦ X . Does X

permit a? In order to answer this question consider Xp� a···→q. Observe that Xp� a···→q iff ε ◦ Yp� a···→q iff
εp� a···→q or Yp � a···→q iff Yp � a···→q iff ε ◦ Xp� a···→q iff Xp� a···→q. So Xp� a···→q depends on Xp� a···→q. This
means that Xp � a···→q is not derivable, so Xp

a···→q.

The reason for splitting the definition of transition and permission into two phases, possibility to transit or
permit and result after transition or permission, is that the the recursive specification has to be modified to
obtain the results.
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Table B.12: Structured operational semantics for recursion (a ∈ A, X = sX ∈ E)

〈sX | E〉↓
〈X | E〉↓

〈X | E〉p a→q

〈X | E〉 a→ 〈X̂ a | Êa〉
〈X | E〉p a···→q

〈X | E〉 a···→ 〈X̌ a | Ěa〉

Definition B.4.10.3.2 Let E be a recursive specification. Then

Êa = {X̂ a = ρ̂a(sX ) | X = sX ∈ E} ∪ E ∪ Ěa,

Ěa = {X̌ a = ρ̌a(sX ) | X = sX ∈ E}.
where ρ̂a is defined inductively by

ρ̂a(ε) = δ

ρ̂a(δ) = δ

ρ̂a(b) =
{

ε if a ≡ b
δ if a �≡ b

ρ̂a(x ∓ y) = ρ̂a(x) ∓ ρ̂a(y)

ρ̂a(x ◦S y) =
{

ρ̂a(x) ◦upd(a,S) y ∓ ρ̌a(x) ◦upd(a,S) ρ̂a(y) if yp
a→q and enabled(a, S)

ρ̂a(x) ◦upd(a,S) y if yp� a→q and enabled(a, S)

ρ̂a(x ‖ S y) =




ρ̂a(x) ‖ upd(a,S) y ∓ x ‖ upd(a,S)ρ̂a(y) if xp
a→q, yp

a→q and enabled(a, S)

ρ̂a(x) ‖ upd(a,S) y if xp
a→q, yp� a→q and enabled(a, S)

x ‖ upd(a,S)ρ̂a(y) if xp� a→q, yp
a→q and enabled(a, S)

δ otherwise

ρ̂a(x∗) =




ρ̂a(x) ◦ x∗ if xp� a···→q and xp
a→q

ρ̌a(x)∗ ◦ (ρ̂a(x) ◦ x∗) if xp
a···→q and xp

a→q

δ if xp� a→q

ρ̂a(x∞) =




ρ̂a(x) ◦ x∞ if xp� a···→q and xp
a→q

ρ̌a(x)∗ ◦ (ρ̂a(x) ◦ x∞) if xp
a···→q and xp

a→q

δ if xp� a→q

ρ̂a(ρ f (x)) = ρ f (ρ̂ f −1(a)(x))

ρ̂a(X ) = X̂ a

and where ρ̌a is defined inductively by

ρ̌a(ε) = ε

ρ̌a(δ) = δ

ρ̌a(b) =
{

b if �(a) �= �(b)

δ if �(a) = �(b)

ρ̌a(x ∓ y) = ρ̌a(x) ∓ ρ̌a(y)

ρ̌a(x ◦S y) =
{

ρ̌a(x) ◦S ρ̌a(y) if xp
a···→q and yp

a···→q

δ otherwise

ρ̌a(x ‖ S y) =
{

ρ̌a(x) ‖ S ρ̌a(y) if xp
a···→q and yp

a···→q

δ otherwise

ρ̌a(x∗) =
{

ε if xp� a···→q

ρ̌a(x)∗ if xp
a···→q

ρ̌a(x∞) = ρ̌a(x)∞

ρ̌a(ρ f (x)) = ρ f (ρ̌ f −1(a)(x))

ρ̌a(X ) = X̌ a
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Example B.4.10.3.3 Let a, b ∈ A such that �(a) �= �(b). Consider the recursive specification given by

E = {X = a ◦ Y, Y = b ◦ X }

Can X execute action a? Yes it can as can be derived as follows: Xp
b→q iff a◦Yp

b→q iff ap
b→q and Yp

b→q

iff b ◦ Xp
b→q iff bp

b→q or bp
b···→q and Xp

b→q iff true. So Xp
b→q. Now, what is the resulting process

after the execution of b? The deduction rules state that 〈X | E〉 b→ 〈X̂ b | Êb〉 where

Êb = {X̂ b = δ ◦ Y ∓ a ◦ Ŷ b, Ŷ b = ε ◦ X ∓ δ ◦ X̂ b, X = a ◦ Y, Y = b ◦ X }

Suppose that c ∈ A such that �(c) �= �(a) and �(c) �= �(b). Now, consider the process X ◦c. In order to find

out if this process can execute action c it is relevant to establish whether X
c···→. The deduction rule states

that this is the case if Xp
c···→q. Consider the following derivation: Xp� c···→q iff a ◦ Yp� c···→q iff ap� c···→q

or Yp� c···→q iff Yp � c···→q iff b ◦ Xp� c···→q iff bp� c···→q or Xp� c···→q iff Xp� c···→q. Thus it is not possible to
derive Xp� c···→q. Therefore, Xp

c···→q.

What is the resulting process after the execution of c. Following the deduction rules the resulting process
is X̌ c ◦ ε where the process X̌ c is defined by the recursive specification:

Ěc = {X̌ c = a ◦ Y̌ c, Y̌ c = b ◦ X̌ c}

Example B.4.10.3.4 Consider the recursive specification E = {X = X }. Then clearly Xp� a→q, Xp
a···→q

and X �↓ for all a ∈ A. Consider the recursive specification E = {X = Y, Y = X }. Also, in this case
Xp� a→q, Xp

a···→q and X �↓ for all a ∈ A.

Example B.4.10.3.5 Next, consider the recursive specification E = {X = a ◦ (Y ∓ Z ), Y = b ◦ X, Z =
c ◦ X }, where a, b, and c are pairwise independent actions. Consider the process 〈X | E〉 ◦b′ where b′ and b
are dependent. The action b′ can only be executed if the process 〈X | E〉 permits the execution of b′. Then
the recursive specification Eb′ must be constructed: Eb′ = {Xb′ = a ◦ (Yb′ ∓ Zb′), Yb′ = δ, Zb′ = c ◦ Xb′ }.
Hence 〈X | E〉 b′···→ 〈Xb′ | Eb′ 〉. Thus the process 〈X | E〉 ◦ b′ is capable of performing the action b′ and
thereby evolves into the process 〈Xb′ | Eb′〉. This example shows that by permitting action b′ the choice for
executing the b actions is resolved.
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B.5 Textual syntax of MSC for the semantics

In this section we present the textual syntax that has actually been used for the definition of the formal se-
mantics. In Section B.5.2 the textual syntax is given and in Section B.5.1 the changes that have lead to this
textual syntax are explained.

B.5.1 Changes to the textual syntax

The textual syntax of MSC as presented in Recommendation Z.120 is changed in several aspects for the defi-
nition of the formal semantics. These changes can be subdivided into several categories. In Section B.5.1.1,
we explain the changes to the textual syntax due to the fact that certain concepts are not treated in the formal
semantics in this thesis. In Section B.5.1.7, we optimize the textual syntax by removing irrelevant informa-
tion. In Section B.5.1.8, we explain the optimization of the textual syntax by considering certain construc-
tions as abbreviations of other constructions. In Section B.5.1.9, we extend the textual syntax for the purpose
of defining the formal semantics. In Section B.5.1.10, we explain the assumptions that have led to a further
simplification of the textual syntax.

Besides the changes presented in the following sections also reformulations of the BNF rules have taken
place in order to facilitate the definition of the formal semantics. These reformulations are replacing a non-
terminal in the righthand sides of BNF rules by its productions, reformulating a BNF rule such that it facil-
itates inductive definitions and the introduction of new nonterminals to facilitate definitions.

All changes explained below are given with respect to the textual syntax of MSC as presented in Recom-
mendation Z.120. The nonterminal 〈〉 denotes the empty word.

B.5.1.1 Parts of the language that are not treated

B.5.1.2 Instance-oriented representation

The textual syntax of MSC offers the possibility to describe an MSC in an instance-oriented way, in an
event-oriented way and even by mixing these two description styles. For the definition of the semantics it
is assumed that the MSC is represented in an event-oriented way. This restriction has great consequences
for the textual syntax that is used for the definition of the formal semantics. These consequences are listed
below:

• The MSC statements that are produced by the sequence of nonterminals 〈old instance head statement〉
〈instance event list〉 are used to give the user of the language MSC the possibility to describe an in-
stance in isolation. This combination is removed as an alternative for the productions of the nonter-
minal 〈msc statement〉.

• The shared conditions, shared MSC reference expressions and shared inline expressions are only used
for the instance-oriented textual syntax and can therefore be omitted as alternative productions in the
rule for the nonterminal 〈non-orderable event〉.

• As a consequence of the above ommissions a number of nonterminals is not necessary anymore. These
are removed.

B.5.1.3 Instance decomposition

No semantics is provided for instance decomposition. As a consequence it is not necessary to indicate that
an instance is decomposed by means of the productions of the nonterminal 〈decomposition〉 in the BNF rule
for the nonterminal 〈instance head statement〉.
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B.5.1.4 Substitution

No semantics is provided for the substitutionmechanism in MSC reference expressions. The optional use of
the nonterminal 〈parameter substitution〉 in the BNF rule for the nonterminal 〈msc ref loop expr〉 is therefore
removed.

B.5.1.5 Incomplete message events and gates

No semantics is provided for lost and found message events that are sent to or received from the environment.
This has several consequences for the textual syntax.

• A lost message event can only be sent to an instance or the environment without a gate name being
associated with it. Similarly, a found message event can only be received from an instance or the envi-
ronment without a gate name being associated with it. Therefore, the BNF rules for the nonterminals
〈incomplete message output〉 and 〈incomplete message input〉 is replaced by the rules

〈incomplete message output〉 ::= out 〈msg identification〉 to lost [ 〈instance name〉 | env ]
〈incomplete message input〉 ::= in 〈msg identification〉 from found [ 〈instance name〉 | env ]

• As incomplete message events cannot be sent to the environment or received from the environment
the nonterminals 〈output dest〉 and 〈input dest〉 can be simplified to (and thus replaced by) the non-
terminals 〈output address〉 and 〈input address〉 respectively.

B.5.1.6 Natural names

Natural names are used to specify the loop boundaries. For the semantics it is relevant that these natural
names can be interpreted as natural numbers. Therefore, the nonterminal 〈natural name〉 has been replaced
by the nonterminal 〈decimal digit〉.

B.5.1.7 Irrelevant information

In the textual syntax of MSC at several places information is provided that is irrelevant for the semantics.
For the purpose of defining the semantics of MSC it is assumed that the MSCs do not contain this type of
information.

• All parts of the textual syntax that specify comments are removed. The BNF rule for the nonterminal
〈end〉 is replaced by the BNF rule

〈end〉 ::= ;

As a consequence all occurrences of the nonterminal 〈end〉 are replaced by the terminal ;. Further-
more, the possibility to have a text definition as an MSC statement is removed.

• Graphical parts of the grammar are removed. These are the nonterminals 〈document head area〉 and
〈msc diagram〉 which occur in the BNF rules for 〈msc document head〉 and 〈msc document body〉,
respectively.

• The part of the MSC document head that contains references to external sources is removed. The
BNF rule for the nonterminal 〈document head〉 is replaced by the BNF rule

〈document head〉 ::= mscdocument 〈msc document name〉 ;
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• The optional MSC interface (〈msc interface〉) is removed as it contains no information that is relevant
to the definition of the formal semantics. This is only possible due to the extension of the textual
syntax with a keyword after as explained in Section B.5.1.9.

• The part of the syntax referring to instance head and end statements (〈instance head statement〉 and
〈instance end statement〉) is removed. The information which instances are described in the MSC is
only used as additional information that is useful when drawing an MSC starting from the textual rep-
resentation. Also, this information is used to interpret the keyword all. We assume that all occurrences
of the keyword all are replaced by the corresponding list of instance names (see Section B.5.1.8).

B.5.1.8 Shorthands

In the textual syntax of MSC at a number of places shorthands can be used in the textual syntax. For the
purpose of defining semantics these can be treated as if they were replaced by their unabbreviated represen-
tations.

• The textual syntax for event definitions is restricted to contain exactly one instance event or multi
instance event.

〈event definition〉 ::= 〈instance name〉 : 〈instance event〉 ;
| 〈instance name list〉 : 〈multi instance event〉 ;

The original event definitions that have more than one instance event or multi instance event can be
replaced according to the following scheme:

i : e1;
e2;
...

en;

is replaced by

i : e1;
i : e2;
...

...
...

i : en;

A similar scheme is used for replacing the event definitions with more than one multi instance event.
As a consequence the nonterminals 〈instance event list〉 and 〈multi instance event list〉 are redundant.

• The possibility to use the keyword all as a means to refer to all instances defined in the MSC is re-
moved. It is assumed that all occurrences of this keyword are replaced by a list of instance names.
The BNF rule for the nonterminal 〈instance name list〉 is replaced by the rule

〈instance name list〉 ::= 〈instance name〉 | 〈instance name〉 , 〈instance name list〉

• The possibility to use the keyword loop with only one inf-natural is removed.

〈loop boundary〉 ::= < 〈inf natural〉 , 〈inf natural〉>

The loop boundaries with one inf-natural can be replaced by a loop boundary with two inf-naturals
according to the following scheme: < k > is replaced by < k,k >.
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• The possibility to use the keyword loop without specifying a loop boundary and the possibility to use
the loop boundary without using the keyword loop are removed. An occurrence of the keyword loop
without a loop boundary is considered a shorthand for the combination loop <1,inf>. An occurrence
of a loop boundary l without the keyword loop is considered a shorthand for the combination loop l.

• The option inline expression is considered a shorthand for an alternative inline expression with two
operands where the second operand is an empty MSC. The exception inline expression is considered
a shorthand for an alternative inline expression where the second operand is the part of the MSC fol-
lowing the exception inline expression.

• The option MSC reference expression is considered a shorthand for an alternative MSC reference
expression with two operands where the second operand is an empty MSC. The exception MSC ref-
erence expression is considered a shorthand for an alternative MSC reference expression where the
second operand is the part of the MSC following the exception MSC reference expression.

B.5.1.9 Extensions

In favour of symmetry, the textual syntax is adapted in such a way that besides the already present before
part, for orderable events, an additional after part is created such that both events in a causal ordering have
the information that they are causally ordered. This change has several consequences for the textual syntax:

• The BNF rule for the nonterminal 〈orderable event〉 is replaced by the rule

〈orderable event〉 ::= [ 〈event name〉 ]
f 〈message event〉
| 〈incomplete message event〉
| 〈create〉
| 〈timer statement〉
| 〈action〉
g
[ before 〈event name list〉 ]
[ after 〈event name list〉 ]

• The BNF rules for 〈actual order in gate〉, 〈inline order out gate〉 and 〈inline order in gate〉 are replaced
by the rules

〈actual order in gate〉 ::= 〈gate name〉 after 〈order dest〉
〈inline order out gate〉 ::= 〈gate name〉 after 〈order dest〉 [ external before 〈order dest〉 ]
〈inline order in gate〉 ::= 〈gate name〉 before 〈order dest〉 [ external after 〈order dest〉 ]

B.5.1.10 Assumptions

• It is assumed that the message name alone is sufficient for establishing the correspondence between
message input and message output events. As a consequence the optional message instance name and
parameter list are removed.

• It is assumed that the MSC reference names and the inline expression names are unique with respect
to the MSC document. The nonterminals 〈msc reference name〉 and 〈inline expr name〉 are replaced
by the nonterminal 〈ref name〉.

• It is assumed that the timer name alone is sufficient for establishing if timer events correspond. Thus
the nonterminal 〈timer instance name〉 is removed.

• It is assumed that every MSC reference expression or inline expression has an MSC reference iden-
tification or an inline expression identification respectively.
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• It is assumed that there are no implicitly defined gates. As a consequence the via-part in the BNF
rules for the nonterminals 〈output address〉 and 〈input address〉 becomes obligatory.

Also, the optional gate name in the BNF rules for the nonterminals 〈actual out gate〉, 〈actual in gate〉,
〈def out gate〉 and 〈def in gate〉 becomes obligatory.

• It is assumed that all external and internal connections of gates of an inline expression are described
in its inline gate interfaces. For MSC reference expressions it is assumed that all external connections
are described in its MSC reference gate interface.

B.5.2 Textual syntax for semantics definition

If there are multiple rules for one nonterminal then this should be read as an extension and not as a replace-
ment.

B.5.2.1 MSC documents

〈msc document〉 ::= mscdocument 〈msc document name〉 ; 〈msc document body〉
〈msc document body〉 ::= 〈〉 | 〈message sequence chart〉 〈msc document body〉

B.5.2.2 Message Sequence Charts

〈message sequence chart〉 ::= msc 〈msc name〉 ; 〈msc body〉 endmsc ;

B.5.2.3 Events

〈action〉 ::= action 〈action character string〉
〈message event〉 ::= 〈message output〉 | 〈message input〉
〈message output〉 ::= out 〈message name〉 to 〈input address〉
〈message input〉 ::= in 〈message name〉 from 〈output address〉
〈incomplete message event〉 ::= 〈incomplete message output〉 | 〈incomplete message input〉
〈incomplete message output〉 ::= out 〈message name〉 to lost [ 〈instance name〉 | env ]
〈incomplete message input〉 ::= in 〈message name〉 from found [ 〈instance name〉 | env ]
〈create〉 ::= create 〈instance name〉 [ ( 〈parameter list〉 ) ]
〈stop〉 ::= stop
〈timer statement〉 ::= 〈set〉 | 〈reset〉 | 〈timeout〉
〈set〉 ::= set 〈timer name〉 [ ( 〈duration name〉 ) ]
〈reset〉 ::= reset 〈timer name〉
〈timeout〉 ::= timeout 〈timer name〉
〈condition〉 ::= condition 〈condition name list〉

〈output address〉 ::= 〈instance name〉
| env via 〈gate name〉
| 〈reference identification〉 via 〈gate name〉

〈input address〉 ::= 〈instance name〉
| env via 〈gate name〉
| 〈reference identification〉 via 〈gate name〉

〈reference identification〉 ::= reference 〈ref name〉
| inline 〈ref name〉

〈parameter list〉 ::= 〈parameter name〉 [ , 〈parameter list〉 ]
〈condition name list〉 ::= 〈condition name〉 f , 〈condition name〉 g*
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B.5.2.4 Causally ordered events

〈orderable event〉 ::= 〈message event〉 | 〈incomplete message event〉 | 〈create〉
| 〈timer statement〉 | 〈action〉

〈ordered event〉 ::= 〈event name〉 〈orderable event〉 before 〈event name list〉
| 〈event name〉 〈orderable event〉 after 〈event name list〉
| 〈event name〉 〈orderable event〉

before 〈event name list〉
after 〈event name list〉

〈event name list〉 ::= 〈order dest〉 [ , 〈event name list〉 ]
〈order dest〉 ::= 〈event name〉

| env via 〈gate name〉
| 〈reference identification〉 via 〈gate name〉

B.5.2.5 Coregions

〈coregion〉 ::= concurrent ; 〈coevent list〉 endconcurrent
〈coevent list〉 ::= 〈〉 | 〈orderable event〉 ; 〈coevent list〉

B.5.2.6 MSC bodies

〈msc body〉 ::= 〈〉 | 〈event definition〉 〈msc body〉
〈event definition〉 ::= 〈instance name〉 : 〈instance event〉 ;

| 〈instance name list〉 : 〈multi instance event〉 ;
〈instance event〉 ::= 〈orderable event〉 | 〈non-orderable event〉
〈non-orderable event〉 ::= 〈stop〉 | 〈coregion〉
〈multi instance event〉 ::= 〈condition〉 | 〈msc reference〉 | 〈inline expr〉
〈instance name list〉 ::= 〈instance name〉 | 〈instance name〉 , 〈instance name list〉

B.5.2.7 MSC reference expressions

〈msc reference〉 ::= reference 〈ref name〉 :
〈msc ref expr〉 〈reference gate interface〉

〈msc ref expr〉 ::= 〈msc ref par expr〉 | 〈msc ref par expr〉 alt 〈msc ref expr〉
〈msc ref par expr〉 ::= 〈msc ref seq expr〉 | 〈msc ref seq expr〉 par 〈msc ref par expr〉
〈msc ref seq expr〉 ::= 〈msc ref loop expr〉 | 〈msc ref loop expr〉 seq 〈msc ref seq expr〉
〈msc ref loop expr〉 ::= [ loop 〈loop boundary〉 ] 〈expr body〉
〈expr body〉 ::= empty | 〈msc name〉 | ( 〈msc ref expr〉 )

〈loop boundary〉 ::= < 〈inf natural〉 , 〈inf natural〉>
〈inf natural〉 ::= inf | 〈decimal digit〉+
〈decimal digit〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈reference gate interface〉 ::= 〈〉 | ; gate 〈ref gate〉 〈reference gate interface〉
〈ref gate〉 ::= 〈actual out gate〉 | 〈actual in gate〉

| 〈actual order out gate〉 | 〈actual order in gate〉
〈actual out gate〉 ::= 〈gate name〉 out 〈message name〉 to 〈input address〉
〈actual in gate〉 ::= 〈gate name〉 in 〈message name〉 from 〈output address〉
〈actual order out gate〉 ::= 〈gate name〉 before 〈order dest〉
〈actual order in gate〉 ::= 〈gate name〉 after 〈order dest〉
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B.5.2.8 Inline expressions

〈inline expr〉 ::= 〈loop expr〉 | 〈alt expr〉 | 〈par expr〉
〈loop expr〉 ::= loop 〈loop boundary〉 begin 〈ref name〉 ;

〈inline gate interface〉 〈msc body〉
loop end

〈alt expr〉 ::= alt begin 〈ref name〉 ; 〈alt list〉 alt end
〈alt list〉 ::= 〈inline gate interface〉 〈msc body〉

| 〈inline gate interface〉 〈msc body〉 alt ; 〈alt list〉
〈par expr〉 ::= par begin 〈ref name〉 ; 〈par list〉 par end
〈par list〉 ::= 〈inline gate interface〉 〈msc body〉

| 〈inline gate interface〉 〈msc body〉 par ; 〈par list〉

〈inline gate interface〉 ::= 〈〉 | gate 〈inline gate〉 ; 〈inline gate interface〉
〈inline gate〉 ::= 〈inline out gate〉 | 〈inline in gate〉

| 〈inline order out gate〉 | 〈inline order in gate〉
〈inline out gate〉 ::= 〈def out gate〉 external out 〈message name〉 to 〈input address〉
〈inline in gate〉 ::= 〈def in gate〉 external in 〈message name〉 from 〈output address〉
〈inline order out gate〉 ::= 〈gate name〉 after 〈order dest〉 external before 〈order dest〉
〈inline order in gate〉 ::= 〈gate name〉 before 〈order dest〉 external after 〈order dest〉
〈def out gate〉 ::= 〈gate name〉 in 〈message name〉 from 〈output address〉
〈def in gate〉 ::= 〈gate name〉 out 〈message name〉 to 〈input address〉

B.5.2.9 High-level Message Sequence Charts

〈message sequence chart〉 ::= msc 〈msc name〉 ; expr 〈msc expression〉 endmsc ;
〈msc expression〉 ::= 〈start〉 〈node expression list〉
〈start〉 ::= 〈label name list〉 ;
〈node expression list〉 ::= 〈〉 | 〈node expression〉 〈node expression list〉
〈node expression〉 ::= 〈label name〉 : f 〈node〉 seq ( 〈label name list〉 ) | end g ;
〈node〉 ::= empty

| 〈msc name〉
| 〈par expression〉
| condition 〈condition name list〉
| connect
| ( 〈msc ref expr〉 )

〈par expression〉 ::= expr 〈msc expression〉 endexpr
| expr 〈msc expression〉 endexpr par 〈par expression〉

〈label name list〉 ::= 〈label name〉 | 〈label name〉 alt 〈label name list〉
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B.6 Semantics of Message Sequence Charts

B.6.1 Introduction

This section contains the denotational semantics of the fragment of MSC that is considered in this annex.
This denotational semantics associates to an MSC in textual representation a process term. The textual rep-
resentation used in the definition of this denotational semantics is identical to the textual syntax used in
Section B.2. For some nonterminals there is no explicitly defined semantical mapping. This is the case if it
is defined in terms of alternatives and nonterminals only. The semantics of such a nonterminal is obtained
by considering the semantics of the nonterminals that are the alternatives on the righthand side of the BNF
rule.

B.6.2 The approach

B.6.2.1 General introduction

In this section a denotational semantics for MSC documents is defined. It consists of a family of mappings
[[]] which transform (part of) an MSC in textual representation into a process expression over the signature
introduced in Section B.4. On the level of these process expressions an operational semantics has been de-
fined in Section B.4. Two process expressions are consider to be equivalent if and only if they are (strongly)
bisimilar. For a definition of this notion of equivalence we refer to Section B.4. Thus, the intended model
of these process expressions is the term model modulo strong bisimulation. This notion of strong bisimula-
tion is a congruence relation with respect to all operators from the signature. This means that in reasoning
with/about those process expressions it is allowed to reason in a context.

The semantics is defined compositionally. Basically, this also refers to this notion of congruence discussed
before. It also amounts to the fact the when defining the semantics of a piece of textual syntax no information
is used that is only available in the context in which that part of syntax is used.

B.6.2.2 MSC documents

An MSC document contains a finite number of MSCs. In MSCs references to other MSCs can be used
by means of the unique MSC names. A reference to an MSC with name A can be dealt with semantically
be substituting the MSC name with the body of the MSC with that name. However, the approach that is
followed in this annex is such that for every MSC in the MSC document a recursive equation is given that
associates with an MSC with name A the equation A = S where A is a recursion variable associated with
the MSC with name A and S is the semantics of the body of this MSC. As a consequence the semantics of
an MSC document thus consists of a set of recursive equations.

B.6.2.3 Message Sequence Charts

Then both the semantics of an MSC with name A in the context of such an MSC document and the semantics
of a reference to such an MSC are given by the recursion variable A. This approach allows to consider the
semantics of an MSC document by considering the semantics of every MSC in isolation.

B.6.2.4 Message Sequence Chart bodies

The body of an MSC in event-oriented textual representation basically consists of a list of event definitions.
The intuition of such a list of event definitions is that these can be thought of as being composed vertically
in the same order as the event definitions appear in the event-oriented representation. The approach that is
followed to obtain the semantics of an MSC body can then be paraphrased by: an MSC body is the vertical
composition of the event definitions that are contained.
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In the approach towards the definition of the formal semantics in this annex one such event definition is
almost an MSC on its own. It differs from an MSC in the following aspects:

1) It does not have a name.

2) It can have dangling message arrows and dangling general order arrows.

In Figure B.47 an MSC is given and in Figure B.48 its decomposition into three MSC fragments is given by
means of horizontal dashed lines. Additionally the textual syntax of each of the MSC fragments is given in
the figure.

a

i j k

m

Figure B.47: An example MSC

a

i j k

m

m

i: l action a before l’

j: l’ out m to k after l

k: in m from j

Figure B.48: Attributed example MSC

The MSC is decomposed into three MSC fragments. Each MSC fragment describes one event. Additionally
textually the MSC fragments contain enough information to establish how the dangling message arrows
and general order arrows are to be connected. For example the fact that local action a precedes the output
of message m is available in the event names l and l′ and the parts of the textual syntax that describe “l
before l′” and “l′ after l” respectively. In isolation the three MSC fragments could be represented as given
in Figure B.49. In this figure dangling arrows are connected with the frame around the MSC fragment and
the information that is necessary for determining if the dangling arrows should be connected is described
close to the connection with the frame.

The connection of two dangling message arrows is appropriate if one is an output arrow and one an input
arrow and if they agree on sender and receiver instance name and message name. The connection of two
dangling general ordering arrows is appropriate if one is an outgoing arrow and the other an incoming arrow
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i

l
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m
(l,l’)
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(j,k,m) (j,k,m)

m

k

Figure B.49: Decomposed example MSC

and they refer to the general ordering. Graphically this cannot be detected, but textually this referring is done
via event names.

In the example only very simple MSC fragments appeared. In principle, also more complex MSC fragments
are used in the semantics definition. The following MSC fragments are distinguished:

1) Single instance events: An event attached to an instance with some dangling causal arrows. Examples
of this type of MSC fragments are a local action a with event name l on instance i which is causally
ordered before the events referred to by means of the event names l1, · · · , lN and causally ordered after
the events referred to by the event names k1, · · · , kM . Another example is the output of a message m
from instance i to instance j .

2) Multi instance events: A multi instance event attached to a number of instances (at least one). The
only such multi instance event is a condition.

3) Vertical composition: The vertical composition of two MSC fragments is again considered an MSC
fragment. In such a vertical composition corresponding dangling arrows are connected and the re-
quired orderings are maintained.

4) Coregions: A coregion contains a number of single instance events.

5) Inline expressions: The composition of a number of MSC fragments by means of an operator.

6) MSC reference expressions:

B.6.2.5 Events

The single instance events are in the semantics denoted by atomic actions. The semantics of single instance
events is considered in Section B.6.4. These atomic actions can be labeled by an event name and a set de-
noting the dangling general ordering arrows (see Section B.6.5). This is necessary as this information is
needed when single instance events are composed vertically or horizontally.

B.6.2.6 Complex MSC fragments

Coregions, inline expressions and MSC reference expressions are also considered MSC fragments as these
cannot necessarily be decomposed into smaller MSC fragments that are composed vertically and at the same
time can occur in an MSC at every place one of the other MSC fragments can.

A coregion is the horizontal composition of a number of events that are defined on the same instance. Also
for this horizontal composition dangling arrows need to be connected if appropriate. A coregion as a whole
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can still have dangling arrows of both types. The horizontal composition mechanism used for obtaining a
coregion from its events is defined in Section B.6.6. The semantics of a coregion is formally described in
Section B.6.7.

Inline expressions are a means to describe the composition of two MSC fragments that have no dangling ar-
rows. Thus for vertical and horizontal composition in inline expressions there is no need to connect dangling
arrows.

An MSC reference expression is a textual formula which describes a composition of MSCs by means of a
number of operators. The smallest building blocks of MSC reference expressions are references to other
MSCs by means of their MSC name. Semantically, these are dealt with by means of recursion variables.
This also means that a recursive equation must be given for such a recursion variable. This is the reason for
associating a recursive specification with an MSC document.

B.6.3 Semantics of an MSC document

The semantics associated with an MSC document is a set of recursive equations. The recursion variables
used in these recursive equations are the following: for every MSC in the MSC document a recursion vari-
able is introduced. For an MSC with name id, this recursion variable is denoted as id . Additionally re-
cursion variables are introduced for every non-start node of the HMSCs in the MSC document (see Sec-
tion B.6.11).

The mapping MSC associates with an MSC document a set of pairs of MSC names with their textual rep-
resentation as they appear in that MSC document.

Definition B.6.3.1
The mapping MSC : L(〈msc document〉) → IP(L(〈msc name〉) × L(〈message sequence chart〉)) is for
docid ∈ L(〈msc document name〉) and docbody ∈ L(〈msc document body〉) defined as follows:

MSC(mscdocument docid ; docbody) = MSC(docbody).

The mapping MSC : L(〈msc document body〉) → IP(L(〈msc name〉)× L(〈message sequence chart〉)) is
for msc ∈ L(〈message sequence chart〉) and docbody ∈ L(〈msc document body〉) defined inductively as
follows:

MSC() = ?,

MSC(msc docbody) = {(Name(msc), msc)} ∪ MSC(docbody),

where the mapping Name : L(〈message sequence chart〉) → L(〈msc name〉) is for id ∈ L(〈msc name〉),
body ∈ L(〈msc body〉) and ex pr ∈ L(〈msc expression〉) defined as follows:

Name(msc id ; body endmsc ;) = id,

Name(msc id ; expr ex pr endmsc ;) = id.

As an MSC document cannot contain two or more MSCs with the same MSC name this set of pairs can
be considered a mapping. In the sequel we will write MSC(id) if we mean msc such that (id, msc) ∈
MSC(doc). Note that we must be certain that we only do this for id such that there actually is an MSC
with that name in the MSC document.

The mapping Eqs associates to an MSC document the set of recursive equations that describe the semantics
of the MSCs in the MSC document. For an MSC (not an HMSC) this equation is of the form id = S where
id is the name of the MSC and S is the semantics of the body of the MSC. The definition of the mapping
Eqs for HMSCs is given in Definition B.6.11.1 in Section B.6.11.

Definition B.6.3.2 For docid ∈ L(〈msc document name〉) and docbody ∈ L(〈msc document body〉)
Eqs(mscdocument docid ; docbody) = Eqs(docbody).
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For msc ∈ L(〈message sequence chart〉) and docbody ∈ L(〈msc document body〉)
Eqs() = ?,

Eqs(msc docbody) = Eqs(msc) ∪ Eqs(docbody).

For id ∈ L(〈msc name〉) and body ∈ L(〈msc body〉)
Eqs(msc id ; body endmsc ;) = {id = [[body]]}.

The semantics of an MSC msc with MSC name id from a given MSC document doc is then given by the
solution of the recursion variable id in the recursive specification that consists of the equations Eqs(doc).
The notation introduced in Section B.4 is 〈id | Eqs(doc)〉.

Definition B.6.3.3 Let doc ∈ L(〈msc document〉). For arbitrary msc ∈ L(〈message sequence chart〉) such
that (Name(msc), msc) ∈ MSC(doc)

[[msc]]doc = 〈Name(msc) | Eqs(doc)〉.

The way in which the semantics of MSC documents and MSCs is treated in this section makes it possible to
deal with references to an MSC by using the appropriate recursion variable for the semantics. For example
an MSC reference expression to an MSC A is semantically represented by A.

B.6.4 Semantics of events

In this section the semantics for events is defined. In the Recommendation several types of events are distin-
guished. The first distinction is between single instance events and multi instance events. A single instance
event is an event that is defined on exactly one instance. A multi instance event is an event that can be de-
fined on one or more instances. Besides this distinction there is also a distinction between orderable and
non-orderable events. An orderable event is an event that can be used in a general ordering and an non-
orderable event is an event that may not be used in a general ordering. In Table B.13 the events that are
present in the language MSC are placed in the correct class.

Table B.13: Classes of events

event single instance multi instance
non-orderable instance stop condition
orderable local action

(incomplete) message event
instance create
timer events

B.6.4.1 Local actions

Local actions are represented in the semantics by atomic actions from the set Aact defined below. A local
action that is defined on an instance i with action name a is denoted by action(i, a).

Definition B.6.4.1.1 The set Aact is defined as follows:

Aact = {action(i, a) | i ∈ L(〈instance name〉) ∧ a ∈ L(〈action character string〉)}.

Definition B.6.4.1.2 Let i ∈ L(〈instance name〉). Then, for a ∈ L(〈action character string〉)
[[action a]]i = action(i, a).
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B.6.4.2 Message events

The atomic actions that represent message output and message input events have four parameters. For a
message output event the following information is maintained:

1) the name of the instance on which the event is executed;

2) an abstract representation of the gate via which the message is sent (if available);

3) the name of the instance that should receive the message (if available);

4) the name of the message.

Message output events as they occur in the textual syntax have either a gate part or a receiver instance name.
Thus it would be possible to combine these two parameters into one. If a message output event is placed in a
context which is capable of executing the corresponding message input event, then the name of the receiver
instance becomes available. This does not mean that the gate part is not relevant anymore in such a case.
The information through which gate the message goes remains relevant since omission of this information
would make it impossible to distinguish two message output events that are sent through different gates.

At first sight it seems to be sufficient to maintain the name of the gate via which the message is sent to the
environment. However, as there can be more than one reference to an MSC in an MSC document (even in
one MSC), this still does not mean that the different occurrences of the message output event can be distin-
guished. For this purpose the reference identification is added to the gate name. The reference identification
must therefore be unique within the MSC document.

For the input address of a message output event there are three possibilities. If it is an instance name then
the message is not sent via a gate and the receiver instance name is known. This is indicated in the gate
part by . If the input address of a message output event is a gate g in the environment this is indicated by
means of env(g). If the input address of a message output event is an actual gate g of an MSC reference
expression or inline expression with reference identification l, then this is indicated by (l, g). This way
the three possibilities can easily be distinguished. These three different notations for the representation of
the gate parameter of the message output and input events are combined in the set AMG which is defined
in Definition B.6.4.2.1. Besides these notations this set also contains elements of the form ((l, g), (l ′, g′))
where l and l′ are reference identifications and g and g′ are gate names. These are added explicitly for the
purpose of finding corresponding message output and message input events (see Section B.6.6).

Definition B.6.4.2.1 (Abstract Message Gate) The set AMG is defined as follows:

AMG = { , env(g), (l, g), ((l, g), (l ′, g′)) | g, g′ ∈ L(〈gate name〉)
∧ l, l ′ ∈ L(〈ref name〉)}.

Definition B.6.4.2.2 The sets Aout and Ain are defined as follows:

Aout = {out(i, G, j, m), out(i, G, , m)

| i, j ∈ L(〈instance name〉)∧ G ∈ AMG ∧m ∈ L(〈message name〉)},
Ain = {in(i, G, j, m), in( , G, j, m)

| i, j ∈ L(〈instance name〉)∧ G ∈ AMG ∧m ∈ L(〈message name〉)}.
Definition B.6.4.2.3 Let i ∈ L(〈instance name〉). Then, for m ∈ L(〈message name〉), g ∈ L(〈gate name〉),
j ∈ L(〈instance name〉), and l ∈ L(〈ref name〉)

[[out m to j]]i = out(i, , j, m),

[[out m to env via g]]i = out(i, env(g), , m),

[[out m to reference l via g]]i = out(i, (l,g), , m),

[[out m to inline l via g]] i = out(i, (l,g), , m),

[[in m from j]]i = in(j, , i, m),

[[in m from env via g]]i = in( , env(g), i, m),

[[in m from reference l via g]]i = in( , (l,g), i, m),

[[in m from inline l via g]] i = in( , (l,g), i, m).
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B.6.4.3 Incomplete message events

Lost message output events and found message input events are represented by atomic actions from the sets
Alost and Afound respectively.

Definition B.6.4.3.1 The sets Alost and Afound are defined as follows:

Alost = {lost-out(i, j, m), lost-out(i, , m), lost-out(i, env, m)

| i, j ∈ L(〈instance name〉) ∧m ∈ L(〈message name〉)},
Afound = {lost-in(i, j, m), lost-in( , j, m), lost-in(env, j, m)

| i, j ∈ L(〈instance name〉) ∧m ∈ L(〈message name〉)}.

The first parameter of these atomic actions refers to the sender of the message, the second parameter refers to
the receiver of the message and the third parameter represents the message identification. For a lost message
output event it is possible that the receiver is an instance, a gate or unknown. If the intended receiver is a
gate this is indicates by env. The case that the intended receiver is unknown is indicated by . Similarly, for
a found message input the sender can be an instance, a gate or unknown.

Definition B.6.4.3.2
Let i ∈ L(〈instance name〉). Then, for m ∈ L(〈message name〉) and j ∈ L(〈instance name〉)

[[out m to lost]]i = lost-out(i, , m),

[[out m to lost j]]i = lost-out(i, j, m),

[[out m to lost env]]i = lost-out(i, env, m),

[[in m from found]]i = lost-in( , i, m),

[[in m from found j]]i = lost-in(j, i, m),

[[in m from found env]]i = lost-in(env, i, m).

B.6.4.4 Instance create and instance stop events

Instance create events are represented by atomic actions from the set Acr and instance stop events are rep-
resented by atomic actions from the set Astop.

Definition B.6.4.4.1 The sets Acr and Astop are defined as follows:

Acr = {create(i, j, p), create(i, j, ) | i, j ∈ L(〈instance name〉) ∧ p ∈ L(〈parameter list〉)},
Astop = {stop(i) | i ∈ L(〈instance name〉)}.

The first parameter of these atomic actions represents the instance on which the event is defined. In case of
a create event the second parameter of the atomic action is the name of the created instance and the third pa-
rameter represents the parameter list. If the parameter list is not specified for a create event, this is indicated
in the atomic action by denoting the third parameter by .

Definition B.6.4.4.2
Let i ∈ L(〈instance name〉). Then, for j ∈ L(〈instance name〉) and p ∈ L(〈parameter list〉),

[[create j]]i = create(i, j, ),

[[create j (p)]]i = create(i, j, p),
[[stop]]i = stop(i).

B.6.4.5 Timer events

Timer events are represented by atomic actions from the set Atimer.
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Definition B.6.4.5.1 The set Atimer is defined as follows:

Atimer = { set(i, t, d), set(i, t, ), reset(i, t), timeout(i, t)
| i ∈ L(〈instance name〉) ∧ t ∈ L(〈timer name〉)∧ d ∈ L(〈duration name〉)
}.

The first parameter of these atomic actions represents the name of the instance on which the timer event
is defined, the second parameter represents the name of the timer and the third parameter represents the
duration name associated with the timer set event. If no duration name is associated with the timer set event
this is denoted by . If in a timer event no duration name occurs this is represented in the atomic action by
denoting its last parameter by .

Definition B.6.4.5.2
Let i ∈ L(〈instance name〉). Then, for t ∈ L(〈timer name〉) and d ∈ L(〈duration name〉),

[[set t]]i = set(i, t, ),

[[set t(d)]]i = set(i, t, d),
[[reset t]]i = reset(i, t),
[[timeout t]]i = timeout(i, t).

B.6.4.6 Conditions

Although conditions are not really events, they are only used as a means to restrict vertical composition in
HMSCs, they are best treated in this section. With a condition no atomic action is associated. As a condition
does not disallow any further events it is represented by the empty process ε.

Definition B.6.4.6.1 Then, for cl ∈ L(〈condition name list〉)
[[condition cl]] = ε.

B.6.5 Semantics of causally ordered events

Semantically, events are represented by atomic actions. These atomic actions can have parameters which
play a symbolic role. For example the output of a message with name m by instance i with receiver instance
j is represented by out(i, , j, m). The corresponding message input event is represented by in(i, , j, m).
With these parameters enough information is available to decide whether a message output and a message
input are corresponding. For the correspondence of events that are involved in a causal ordering this is not
so easy. For example if a local action with name a on instance i must precede a local action with name b on
instance j then this cannot be determined from the atomic actions action(i, a) and action(j, b) representing
these events. This implies that additional information has to be maintained.

There are three situations that need to be considered.

• the other end of the causal ordering is an event attached to an instance;
• the other end of the causal ordering is a gate on the frame of the MSC;
• the other end of the causal ordering is a gate on the frame of an MSC reference expression or an inline

expression.

For each of these situations different information is available. Therefore, three different representations are
used. Additionally, this has the advantage that the three situations can be distinguished.

In the first situation both events that are involved in the causal ordering are known via the event names.
Therefore the causal ordering can easily be represented via the event names. For example, the event “i1 :
l1 e1 before l2” describes that the event e1 with event name l1 is causally ordered before an unknown event
with event name l2. This is represented by labeling the atomic action representing the event e1 with the pair
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l1 �→ l2. The corresponding event, say “i2 : l2 e2 after l1”, is labeled with the pair l1 �→ l2 as well. Thus it
is easy to establish that these two events are ordered.

In the second situation only one of the events is available. In a broader context however the gate may be
connected to another gate or event and then both events will be available. Thus, even although there is
only one event, it still is necessary to maintain the information. An example of this situation is the event
“i1 : l1 e1 before env via g”. The available information in this case is that the event with event name l1
is ordered before an event that might be connected to gate g. This is represented by l1 �→ env(g). Later
we will see that if this MSC is placed in a context in which the gate g is connected the information will be
changed accordingly.

The third situation is comparable to the second situation. In this case however, it is known that the order
arrow connects to an actual gate. Textually this is indicated by a reference to an MSC reference expression
or an inline expression by means of a reference identification. An example is the event “i1 : l1 e1 before
reference l2 via g”. As there can be more than one occurrence of gate g due to multiple references to MSCs,
the reference identification is essential information. The causal ordering is represented by the pair l1 �→
(l2, g).

With an orderable event an event name can be associated. These event names are used to refer to an event
when describing a causal ordering. The event names are also necessary to distinguish multiple occurrences
of the same event. As a result it is necessary to label an atomic action representing an event by its event
name. As one event can be involved in many general orderings the atomic action is labeled with a set of
ordering requirements.

The sets AOD and AOR represent the information that is provided textually when an event is causally
ordered. An abstract order destination, that is an element of the set AOD, describes one half of a causal
ordering. An abstract ordering requirement, that is an element of the set AOR, describes both halves of a
causal ordering.

Definition B.6.5.1 (Abstract Order Destination and Abstract Ordering Requirement) The setAOD is
defined as follows:

AOD = L(〈event name〉)
∪ {env(g) | g ∈ L(〈gate name〉)}
∪ L(〈ref name〉)× L(〈gate name〉)
∪ (L(〈ref name〉)× L(〈gate name〉))2.

The set AOR is defined as follows:

AOR = AOD ×AOD

Not all elements of AOR will appear in the semantics.

The mapping S associates with an order destination an element of the set AOD, that is, an abstract order
destination, as explained informally before.

Definition B.6.5.2
The mapping S : L(〈order dest〉) → AOD is for e ∈ L(〈event name〉), l ∈ L(〈ref name〉) and g ∈
L(〈gate name〉), defined as follows:

S(e) = e,
S(env via g) = env(g),

S(reference l via g) = (l, g),

S(inline l via g) = (l, g).

Then, some notation is introduced for the set of all atomic actions and for labelled atomic actions.

Definition B.6.5.3 (Labelled atomic actions) The set A is defined as follows:

A = Aact ∪ Aout ∪ Ain ∪ Alost ∪ Afound ∪ Acr ∪ Astop ∪ Atimer.
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The sets LA, LAout , LAin and LAmsg are defined as follows:

LA = {a, ae, aO
e | a ∈ A ∧ e ∈ L(〈event name〉)∧ O ⊆ AOR},

LAout = {a, ae, aO
e | a ∈ Aout ∧ e ∈ L(〈event name〉)∧ O ⊆ AOR},

LAin = {a, ae, aO
e | a ∈ Ain ∧ e ∈ L(〈event name〉) ∧ O ⊆ AOR},

LAmsg = LAout ∪ LAin.

The mapping � : A → L(〈instance name〉) is defined as follows:

�(action(i, a)) = i,
�(out(i, G, j, m)) = i,
�(out(i, G, , m)) = i,
�(in(i, G, j, m)) = j,
�(in( , G, j, m)) = j,
�(lost-out(i, j, m)) = i,
�(lost-out(i, , m)) = i,
�(lost-out(i, env, m)) = i,
�(lost-in(i, j, m)) = j,

�(lost-in( , j, m)) = j,
�(lost-in(env, j, m)) = j,
�(create(i, j, p)) = i,
�(create(i, j, )) = i,
�(stop(i)) = i,
�(set(i, t, d)) = i,
�(set(i, t, )) = i,
�(reset(i, t)) = i,
�(timeout(i, t)) = i.

The mapping � : LA → L(〈instance name〉) is for a ∈ A, e ∈ L(〈event name〉) and O ⊆ AOR defined as
follows:

�(a) = �(a),

�(ae) = �(a),

�(aO
e ) = �(a).

The semantics of an ordered event is obtained as follows. The event that is ordered is translated into an
atomic action as defined in Section B.6.4. This atomic action is labelled with the event name and a set of
abstract ordering requirements.

Definition B.6.5.4 (Ordered events) Let i ∈ L(〈instance name〉). Then, for l ∈ L(〈event name〉), enl,
enl′ ∈ L(〈event name list〉) and e ∈ L(〈orderable event〉) an orderable event,

[[l e before enl]]i = ([[e]]i )
beforel(enl)
l ,

[[l e after enl]]i = ([[e]]i )
afterl(enl)
l ,

[[l e before enl after enl′]]i = ([[e]]i )
beforel(enl)∪afterl(enl′ )
l .

where the mappings beforel , afterl : L(〈event name list〉) → IP(AOR) are, for d ∈ L(〈order dest〉) and
enl ∈ L(〈event name list〉), defined as follows:

beforel (d) = {(l, S(d))}, afterl (d) = {(S(d), l)},
beforel (d , enl) = {(l, S(d))} ∪ beforel (enl), afterl (d , enl) = {(S(d), l)} ∪ afterl (enl).

B.6.6 Vertical and horizontal composition of MSC fragments

If two MSC fragments are composed vertically or horizontally, it is possible that the MSC fragments contain
corresponding message events or corresponding causally ordered events. A message output event and a
message input event are considered to be corresponding if they have the same message name and either the
same sender instance and receiver instance, or the message output is sent to a gate which is connected to
the gate from which the message input is received. In a similar way it can be established that two causally
ordered events are corresponding. In Definition B.6.6.1 these notions are formalized.

Definition B.6.6.1
The relation ◦→◦ ⊆ LA × LA is the smallest relation that satisfies: for all i, j ∈ L(〈instance name〉),
m ∈ L(〈message name〉), G ∈ AMG, O, O′ ⊆ AOR and e, e′ ∈ L(〈event name〉)

out(i, , j, m)O
e ◦→◦in(i, , j, m)O ′

e′ ,

out(i, G, , m)O
e ◦→◦in( , G, j, m)O ′

e′ .
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The relation ◦→−◦ ⊆ LA × LA is for a, b ∈ A, O, O′ ⊆ AOR and e, e′ ∈ L(〈event name〉) defined by

aO
e ◦→−◦bO ′

e′ ⇐⇒ (e, e′) ∈ O ∩ O ′ ∨ (e, e′) ∈ O ◦ O ′,

where ◦ : IP(AOR)→ IP(AOR) is for O, O ′ ⊆ AOR defined by

O ◦ O ′ = {(s, u) | ∃t∈AOD(s, t) ∈ O ∧ (t, u) ∈ O ′}.
The relation ↪→⊆ LA × LA is the smallest relation that satisfies: for all a ∈ A, O, O′ ⊆ AOR, e, e′ ∈
L(〈event name〉), i, j ∈ L(〈instance name〉) and p ∈ L(〈parameter list〉) defined by

create(i, j, p)O
e ↪→ aO ′

e′ ⇐⇒ �(aO ′
e′ ) = j.

The mapping α associates with a process the set of atomic actions. The mapping M associates with a process
the set of atomic actions that refer to the message output and message input events that occur in the process.
The mapping O associates with a process the set of all atomic actions that refer to an ordered event.

Definition B.6.6.2 The mapping α : P → IP(LA) is for ⊗ ∈ {∓, ◦S , ‖ S | S ⊆ LA × IN × LA}, ' ∈
{∗,∞, [m,n] | m, n ∈ IN ∪ {∞}}, a ∈ LA and x, y ∈ P defined as follows:

α(ε) = ?,

α(δ) = ?,

α(a) = {a},
α(x ⊗ y) = α(x) ∪ α(y),

α(x') = α(x),

α(ρ f (x)) = { f (a) | a ∈ α(x)},
α(〈X | E〉) = 〈Xα | Eα〉,

where Eα is defined as follows:

Eα = {Xα = α(sX ) | X = sX ∈ E}.
The mapping M : P → IP(LAmsg) is for ⊗ ∈ {∓, ◦S , ‖ S | S ⊆ LA × IN× LA}, ' ∈ {∗,∞, [m,n] | m, n ∈
IN ∪ {∞}}, a ∈ LA and x, y ∈ P defined as follows:

M(ε) = ?,

M(δ) = ?,

M(a) =
{ {a} if a ∈ LAmsg,

? otherwise,
M(x ⊗ y) = M(x) ∪ M(y),

M(x') = M(x),

M(ρ f (x)) = { f (a) | a ∈ M(x)},
M(〈X | E〉) = 〈X M | EM〉,

where EM is defined as follows:

EM = {X M = M(sX ) | X = sX ∈ E}.
The mapping O : P → IP(LA) is for ⊗ ∈ {∓, ◦S, ‖ S | S ⊆ LA × IN × LA}, ' ∈ {∗,∞, [m,n]} | m, n ∈
IN ∪ {∞}}, a ∈ A, e ∈ L(〈event name〉), O ⊆ AOR and x, y ∈ P defined as follows:

O(ε) = ?,

O(δ) = ?,

O(aO
e ) =

{ {aO
e } if O �= ?,

? otherwise,
O(ae) = ?,

O(a) = ?,

O(x ⊗ y) = O(x) ∪ O(y),

O(x') = O(x),

O(ρ f (x)) = { f (a) | a ∈ O(x)},
O(〈X | E〉) = 〈X O | EO〉,
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where EO is defined as follows:

EO = {X O = O(sX ) | X = sX ∈ E}.

Observe that M(x) = α(x) ∩ LAmsg. Note that this only gives the desired result if the renaming mapping
f is such that for all a ∈ LA: a ∈ LAmsg if and only if f (a) ∈ LAmsg.

If two MSC fragments are composed vertically or horizontally it can be the case that one of them contains a
message output event and the other a corresponding message input event. In that case the ordering require-
ment that the message output event precedes the message input event must be taken into account. This is
achieved by finding the pairs of atomic actions that refer to a message output or input event (using the map-
ping M and the relation ◦→◦). Such a pair then gives rise to an ordering requirement. Similarly if the MSC
fragments contain corresponding ordered events this also gives rise to an ordering requirement. The map-
pings MsgReq and Ord Req are used to obtain the ordering requirements that must be taken into acount
when two MSC fragments are composed due to the requirement that an output precedes the corresponding
input and due to causal order relations between orderable events. The mapping Cr Req is used to enforce
the ordering of all events on a created instance after the execution of the create event.

Definition B.6.6.3 The mapping MsgReq : P×P → IP(LAout×LAin) is for x, y ∈ P defined as follows:

MsgReq(x, y) = {o �→ i | o◦→◦i ∧ o ∈ M(x) ∧ i ∈ M(y)}
∪ {o �→ i | o◦→◦i ∧ o ∈ M(y) ∧ i ∈ M(x)}.

The mapping Ord Req : P ×P → IP(LA × LA) is for x, y ∈ P defined as follows:

Ord Req(x, y) = {s �→ d | s◦→−◦d ∧ s ∈ O(x) ∧ d ∈ O(y)}
∪ {s �→ d | s◦→−◦d ∧ s ∈ O(y) ∧ d ∈ O(x)}.

The mapping Cr Req : P × P → IP(LA × LA) is for x, y ∈ P defined as follows:

Cr Req(x, y) = {c �→ a | c ↪→ a ∧ c ∈ α(x) ∧ a ∈ α(y)}
∪ {c �→ a | c ↪→ a ∧ c ∈ α(y) ∧ a ∈ α(x)}.

If the connection of a message output event and a message input event is established via a gate it is necessary
to change the atomic actions in such a way that the atomic action for the message output event is updated
with the receiver instance name and the atomic action for the message input event is updated with the sender
instance name. Before the connection was established these names were not known and therefore indicated
by . Given two processes x and y the mapping f (x, y) associates with every atomic action a possibly
renamed atomic action. Note that for output events this renaming only applies to the receiver instance part
and for input events only to the sender instance part.

Definition B.6.6.4 Let x, y ∈ P. Then, the mapping f (x, y) : LA → LA is for i, j ∈ L(〈instance name〉),
m ∈ L(〈message name〉), G ∈ AMG, S ⊆ AOR, a ∈ LA and e ∈ L(〈event name〉) defined as follows:

f (x, y)(out(i, G, , m)S
e ) = out(i, G, j, m)S

e if out(i, G, , m)S
e ∈ M(x) ∧ in( , G, j, m)S ′

e′ ∈ M(y)

or out(i, G, , m)S
e ∈ M(y) ∧ in( , G, j, m)S ′

e′ ∈ M(x),

f (x, y)(in( , G, j, m)S
e ) = in(i, G, j, m)S

e if out(i, G, , m)S ′
e′ ∈ M(x) ∧ in( , G, j, m)S

e ∈ M(y)

or out(i, G, , m)S ′
e′ ∈ M(y) ∧ in( , G, j, m)S

e ∈ M(x),

f (x, y)(a) = a otherwise.

Note that the f (x, y) and the other renaming mappings used in this section are not bijective by definition.
However, in all situations that can occur they are bijective due to the severe uniqueness requirements on
MSC.

Definition B.6.6.5 For x, y ∈ P
x • y = ρ f (x,y)(x ◦MsgReq(x,y)∪Ord Req(x,y)∪Cr Req(x,y) y),

x�y = ρ f (x,y)(x ‖ MsgReq(x,y)∪Ord Req(x,y)∪Cr Req(x,y) y).
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B.6.7 Semantics of coregions

A coregion contains a number (possibly zero) of orderable events. These events are defined on the same
instance, but are nevertheless not ordered for that reason. It is however possible that a coregion contains
both the output and the input of a message or both events involved in a general ordering. The semantics of
a coregion is thus the horizontal composition of the semantics of its events.

Definition B.6.7.1 Let i ∈ L(〈instance name〉). Then, for e ∈ L(〈orderable event〉) and coevents ∈
L(〈coevent list〉)

[[concurrent; endconcurrent]]i = ε,

[[concurrent; e ; coevents endconcurrent]]i = [[e]]i�[[concurrent; coevents endconcurrent]]i .

Example B.6.7.2 Consider a coregion on instance i which contains the input of message m, a local action
a and the output of message m. Then, the semantics of this coregion is given by

out(i, , i, m) ‖ R2(action(i, a) ‖ R1 out(i, , i, m)),

where R1 = ? and R2 = {out(i, , i, m) �→ in(i, , i, m)}.

B.6.8 Semantics of MSC bodies

An MSC body is a possibly empty list of event definitions. As explained before such a list of event defini-
tions is interpreted as a list of MSC fragments that are composed vertically.

Definition B.6.8.1 For eventdef ∈ L(〈event definition〉) and mscbody ∈ L(〈mscbody〉)
[[]] = ε,

[[eventde f mscbody]] = [[eventdef ]] • [[mscbody]].

In composing an event definition with an MSC body it can be the case that gates are connected.

There are two types of event definitions that are considered in this section: single instance events and multi-
instance events. Single instance events are instance events that are defined on one instance. In order to asso-
ciate an atomic action with the defining instance as a parameter to these single instance events the defining
instance(s) are determined and the semantic mapping is labeled with it. Multi instance events are events that
are defined on a non-empty set of instances. There is no use for labeling the semantic mapping with these
instances as in any relevant case the instances appear again in the textual description of the multi instance
event.

Definition B.6.8.2
For i ∈ L(〈instance name〉), ilist ∈ L(〈instance name list〉), instanceevent ∈ L(〈instance event〉) and
mult iinstanceevent ∈ L(〈multi instance event〉)

[[i : instancevent;]] = [[instanceevent]]i ,

[[ilist : mult iinstanceevent;]] = [[mult iinstanceevent ]].

Example B.6.8.3 (Simple communication) Consider the MSC A with two instances i and j and one mes-
sage m from instance i to instance j . There are two event-oriented textual representations for this MSC:

msc A;
i : out m to j;
j : in m from i;
endmsc;

and
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msc A;
j : in m from i;
i : out m to j;
endmsc;

Using the first textual representation the recursive equation

A = out(i, , j, m) ◦out(i, ,j,m) �→in(i, ,j,m) in(i, , j, m)

is obtained and using the second textual representation the recursive equation

A = in(i, , j, m) ◦out(i, ,j,m) �→in(i, ,j,m) out(i, , j, m)

is obtained. The semantics of the MSC is in both cases given by A. Operationally the first can be depicted
as

A
out(i, ,j,m)−−−−−→ ε ◦out(i, ,j,m)

1�→in(i, ,j,m) in(i, , j, m)
in(i, ,j,m)−−−−−→ ε ◦out(i, ,j,m) �→in(i, ,j,m) ε −−−−→

and the second as

A
out(i, ,j,m)−−−−−→ in(i, , j, m) ◦out(i, ,j,m)

1�→in(i, ,j,m) ε
in(i, ,j,m)−−−−−→ ε ◦out(i, ,j,m) �→in(i, ,j,m) ε −−−−→

Observe that in both cases the same traces can be performed.

Example B.6.8.4 (General ordering) Consider the MSC from Figure B.50. Suppose that this MSC is tex-

a b

ji

msc A

Figure B.50: MSC with a general ordering

tually represented by

msc A;
i : l1 action a before l2;
j : l2 action b after l1;
endmsc;

This MSC consists of two MSC fragments. These fragments are semantically represented by

action(i, a)
{l1�→l2}
l1

and
action(j, b){l1�→l2}

l2 .

Observe that
O(action(i, a)

{l1�→l2}
l1 ) = {action(i, a){l1�→l2 }

l1 }
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and
O(action(j, b)

{l1�→l2}
l2 ) = {action(j, b){l1�→l2 }

l2 }
Then, the following set of ordering requirements is obtained:

R = {action(i, a)
{l1�→l2}
l1 �→ action(j, b)

{l1�→l2}
l2 }

Thus, the expression representing the semantics of the MSC, is the following:

action(i, a)
{l1�→l2}
l1 ◦R action(j, b)

{l1�→l2}
l2

B.6.9 Semantics of MSC reference expressions

Textually an MSC reference expression consists of a textual formula containing MSC names and operators,
a MSC reference identification and a reference gate interface. The semantics of the textual formula itself is
rather easy as a semantical equivalent has been defined for each of the composition operators that can occur
in this formula.

Definition B.6.9.1
For mscre f ex pr ∈ L(〈msc ref expr〉), par ∈ L(〈msc ref par expr〉), seq ∈ L(〈msc ref seq expr〉), loop ∈
L(〈msc ref loop expr〉), b ∈ L(〈expr body〉), m, n ∈ IN ∪ {∞} and mscname ∈ L(〈msc name〉),

[[par alt mscre f ex pr]] = [[par]] ∓ [[mscre f ex pr]],
[[seq par par]] = [[seq]] ‖ [[par]],
[[loop seq seq]] = [[loop]] ◦ [[seq]],
[[loop 〈m,n〉 b]] = [[b]][m,n],

[[empty]] = ε,

[[mscname]] = mscname,

[[(mscre f ex pr)]] = [[mscre f ex pr]].

Example B.6.9.2 The semantics of the textual formula

reference (A alt empty) par B seq C

is given by the process (A ∓ ε) ‖ B ◦ C.

Example B.6.9.3 The semantics of the textual formula

reference loop <5,3> A seq B

is given by the process (A)[5,3] ◦ B which cannot perform any events from MSC A.

If gates of an MSC reference expression are connected on the outside, the gate definitions in the MSCs refer-
enced by the textual formula become actual gates. The semantics of the textual formula contains these gate
definitions as the via part of message output events and message input events and as labels of the orderings
with which atomic actions can be labelled. For message gates three different types of connection can exist.

1) A gate can be connected to the environment of the enclosing MSC fragment.

2) A gate can be connected to an instance of the enclosing MSC fragment.

3) A gate can be connected to an MSC reference expression or inline expression of the enclosing MSC
fragment.
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Figure B.51: Three different situations

These three situations are depicted in Figure B.51 for the MSC reference expression A.

In the semantics of the textual formula A the gates g1, g2 and g3 appear as env(g1), env(g2) and env(g3)

respectively. In the context of the MSC which contains this MSC reference expression these gates are not
necessarily connections to the environment anymore. Only gate g1 is connected to the environment (again).
In order to indicate this situation we replace all occurrences of env(g1), env(g2) and env(g3) by more ap-
propriate and convenient gate names. This renaming is based on the information that is available in the
reference gate interface.

1) The gate with name g1 is connected externally to the environment via a gate with name h1. Therefore,
all occurrences of env(g1) in the semantics of A are replaced by env(h1).

2) The gate with name g2 is connected externally to instance j by means of a message arrow. The in-
tuition is that the output of message m in A is received by instance j . Thus, this communication will
become internal. This is part of the reason why env(g2) is replaced by (l, g2). Another reason is that
we must be able to distinguish the actual gates of references to an MSC in different MSC reference
expressions. As the MSC reference identification is unique the combination of the MSC reference
identification and the gate name is a nice name for the conceptual gate. Looking at the semantics of
the message input event on instance j we find that it also has a via part (l, g2). So additionally, but
on purpose, we have created the situation in which we can establish which output and input event
together make one communication.

3) For similar reasons the occurrences of env(g3) are replaced by ((l, g3), (l′, h3)) where l′ is the MSC
reference identification of the MSC reference expression on instance j . The occurrences of env(h3)

in the semantics of this second MSC reference expression are also replaced by ((l, g3), (l′, h3)). This
again, gives us a nice way to establish correspondence of the message output event and the message
input event.

The information needed for the renamings discussed above is available in the reference gate interface. For
the example MSC from Figure B.51 it contains the entries: “gate g1 out o to env via h1”, “gate g2 out m to j”
and “gate g3 out m to reference l’ via h3”.

The mapping G that is defined in the following definition abstracts from the textual representation of the
reference gate interface and turns it into a set of pairs of connections. The gates of the MSC reference ex-
pression are indicated by a pair consisting of the MSC reference identification and the original gate name.
A connection with a gate h in the environment is indicated by env(h), a connection with an instance j by
j and a connection with an MSC reference expression or an inline expression by its identification and the
gate used on it. The pairs are ordered such that an arrow is drawn from the first ‘gate’ to the second ‘gate’.
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Definition B.6.9.4 (Abstract Message Address and Abstract Gate Interface) The set AMA is defined
as follows:

AMA = L(〈instance name〉)
∪ {env(g) | g ∈ L(〈gate name〉)}
∪ L(〈reference identification〉)× L(〈gate name〉
∪ (L(〈ref name〉)× L(〈gate name〉))2.

The set AGI is defined as follows:

AGI = IP((AMA ∪AOD)× (AMA ∪AOD))

The mapping S associates with an output or input address of a message event an abstract message address.

Definition B.6.9.5
The mapping S : L(〈output address〉) ∪ L(〈input address〉) → AMA is for i ∈ L(〈instance name〉),
g ∈ L(〈gate name〉) and l ∈ L(〈ref name〉) defined by

S(i) = i
S(env via g) = env(g)

S(reference l via g) = (l, g)

S(inline l via g) = (l, g)

The mapping G associates with a reference gate interface an abstract gate interface.

Definition B.6.9.6 Let l ∈ L(〈ref name〉). The mapping Gl : L(〈reference gate interface〉) → AGI is for
re fgate ∈ L(〈ref gate〉) and gates ∈ L(〈reference gate interface〉) defined inductively by

Gl () = ?

Gl (; gate re fgate gates) = {Gl (re fgate)} ∪ Gl (gates)

Let l ∈ L(〈ref name〉). The mapping Gl : L(〈ref gate〉) → AGI is for g ∈ L(〈gate name〉), m ∈
L(〈message name〉), a ∈ L(〈output address〉) ∪ L(〈input address〉) and d ∈ L(〈order dest〉) defined by

Gl (g out m to a) = ((l, g), S(a))

Gl (g in m from a) = (S(a), (l, g))

Gl (g before d) = ((l, g), S(d))

Gl (g after d) = (S(d), (l, g))

In the following definition a mapping via is defined. This mapping implements the renaming of the gate
definitions of the referenced MSCs into actual gates following the lines explained before. For via to be
well-defined it is necessary that there are no two gate definitions with the same gate name, not even if they
have another direction. It is also necessary that there are no two different external connections for a given
gate g on the MSC reference expression. The mapping via is extended to the ordering sets with which the
atomic actions are labelled and to the atomic actions in the obvious way.

Definition B.6.9.7 Let l ∈ L(〈ref name〉 and let gates ⊆ AGI. The mapping via(l, gates) : (AMG ∪
AOD)→ (AMG ∪AOD) is for g ∈ L(〈gate name〉) and G ∈ AMG ∪AOD defined as follows:

via(l, gates)(env(g)) =




env(h) if ((l, g), env(h)) ∈ gates
or (env(h), (l, g)) ∈ gates

(l, g) if ((l, g), j ) ∈ gates
or (i, (l, g)) ∈ gates

((l, g), (l ′, g′)) if ((l, g), (l ′, g′)) ∈ gates
((l ′, g′), (l, g)) if ((l ′, g′), (l, g)) ∈ gates
env(g) otherwise

via(l, gates)(G) = G otherwise
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Let l ∈ L(〈ref name〉 and let gates ⊆ AGI. The mapping via(l, gates) : LA → LA is for i, j ∈
L(〈instance name〉), g ∈ L(〈gate name〉), m ∈ L(〈message name〉), O ⊆ AOD × AOD, a ∈ A and
e ∈ L(〈event name〉) defined as follows:

via(l, gates)(out(i, env(g), j, m)O
e ) = out(i, via(l,gates)(env(g)), j, m)

via(l,gates)(O)
e

via(l, gates)(in(i, env(g), j, m)O
e ) = in(i, via(l,gates)(env(g)), j, m)

via(l,gates)(O)
e

via(l, gates)(a O
e ) = avia(l,gates)(O)

e otherwise

Let l ∈ L(〈ref name〉 and let gates ⊆ AGI. The mapping via(l, gates) : IP((AMG ∪AOD)× (AMG ∪
AOD))→ IP((AMG ∪AOD)× (AMG ∪AOD)) is for O ⊆ AOR defined as follows:

via(l, gates)(O) = {(via(l, gates)(g1), via(l, gates)(g2)) | ∃g1,g2∈AOD(g1, g2) ∈ O}

Using the above definitions the semantics of the MSC reference expression can be described by

ρvia(l,Gl (gates))([[mscre f ex pr]]I )

where l is the MSC reference identification, gates is the reference gate interface and mscre f ex pr is the tex-
tual formula. However, it is possible that two gates of the MSC reference expression are connected. There-
fore, an ordering requirement must be added to the semantics and, if this is a connection between message
gates, atomic actions have to be renamed. The mapping g(x) defined below gives the necessary renaming
and the mapping R(x) defines the (not yet renamed) ordering requirements. The process x represents the
semantics of the MSC reference expression including the renaming according to via(l, Gl (gates)).

Definition B.6.9.8 The mapping R : P → IP(LA × LA) is for x ∈ P defined as follows:

R(x) = {o �→ i | o◦→◦i ∧ o, i ∈ M(x)}
∪ {s �→ d | s◦→−◦d ∧ s, d ∈ M(x)}

Definition B.6.9.9 Let x ∈ P. The mapping g(x) : LA → LA is for i, j ∈ L(〈instance name〉), m ∈
L(〈message name〉), l ∈ L(〈ref name〉), g, h ∈ L(〈gate name〉), O ⊆ AOR, e ∈ L(〈event name〉) and
a ∈ LA defined by:

g(x)(out(i, ((l,g),(l,h)), , m)O
e ) = out(i, ((l,g),(l,h)), j, m)O

e

if out(i, ((l,g),(l,h)), , m)O
e , in( , ((l,g),(l,h)), j, m)O ′

e′ ∈ M(x)

g(x)(in( , ((l,g),(l,h)), j, m)O
e ) = in(i, ((l,g),(l,h)), j, m)O

e

if out(i, ((l,g),(l,h)), , m)O ′
e′ in( , ((l,g),(l,h)), j, m)O

e ∈ M(x)

g(x)(a) = a otherwise

Definition B.6.9.10
For l ∈ L(〈ref name〉, mscre f ex pr ∈ L(〈msc ref expr〉) and gates ∈ L(〈reference gate interface〉)

[[reference l : mscre f ex pr gates]] = ρg(ρv([[mscre f ex pr ]]) ◦R ε),

where v = via(l, Gl (gates)), g = g(ρv([[mscre f ex pr]])) and R = R(ρv([[mscre f ex pr ]])).

B.6.10 Semantics of inline expressions

The semantics of inline expressions is easily obtained from the semantics of the arguments of an inline ex-
pression by combining them by means of the semantical equivalent of the operation indicated in the inline
expression. The operation indicated with the keyword alt is interpretedby the operator delayed choice∓, the
operation indicated by par is interpreted as delayed parallel composition ‖ and the operation loop<m,n>

by the operator [m,n].

Define the gates of an inline expression and the gates of an inline expression that connect gates from the
inline expression with gates from the inline expression.
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Definition B.6.10.1 (External connections of inline expressions) Let l ∈ L(〈ref name〉). The mapping
Gl : L(〈alt list〉) → AGI is for gates ∈ L(〈inline gate interface〉), b ∈ L(〈msc body〉) and altlist ∈
L(〈alt list〉) defined inductively by:

Gl (gates b) = Gl (gates),
Gl (gates b alt ; altlist) = Gl (gates) ∪ Gl (altlist).

Let l ∈ L(〈ref name〉). The mapping Gl : L(〈par list〉) → AGI is for gates ∈ L(〈inline gate interface〉),
b ∈ L(〈msc body〉) and parlist ∈ L(〈par list〉) defined inductively by:

Gl (gates b) = Gl (gates),
Gl (gates b par ; parlist) = Gl (gates) ∪ Gl (parlist).

Let l ∈ L(〈ref name〉). The mapping Gl : L(〈inline gate interface〉)→ AGI is for igate ∈ L(〈inline gate〉)
and gates ∈ L(〈inline gate interface〉) defined as follows:

Gl () = ?,

Gl (gate igate ; gates) = Gl (inlinegate) ∪ Gl (gates).

Let l ∈ L(〈ref name〉). The mapping Gl : L(〈inline gate〉) → AGI is for g ∈ L(〈gate name〉), m, m′ ∈
L(〈message name〉), s ∈ L(〈output address〉), d ∈ L(〈input address〉) and o, o′ ∈ L(〈order dest〉) defined
as follows:

Gl (g in m from s external out m′ to d) = {((l, g), S(d))},
Gl (g out m to d external in m′ from s) = {(S(s), (l, g))},
Gl (g after o external before o′) = {((l, g), S(o′))},
Gl (g before o external after o′) = {(S(o′), (l, g))}.

Please note that the recommendation allows the use of different message names in the internal and external
connection of a gate. A static requirement that forbids this should be defined.

Definition B.6.10.2 (Inline loop expression)
For m, n ∈ IN ∪ {∞}, l ∈ L(〈ref name〉, gates ∈ L(〈inline gate interface〉) and b ∈ L(〈msc body〉)

[[loop 〈m,n〉 begin l ; gates b loop end]] = ρg(ρv([[b]][m,n]) ◦R ε),

where v = via(l, Gl (gates)), g = g(ρv([[b]][m,n])) and R = R(ρv([[b]][m,n])).

Definition B.6.10.3 (Inline alternative expression) For l ∈ L(〈ref name〉), altlist ∈ L(〈alt list〉), gates ∈
L(〈inline gate interface〉) and b ∈ L(〈msc body〉)

[[alt begin l ; altlist alt end]] = ρ g(ρv([[altlist ]]) ◦R ε),

[[gates b]] = [[b]],
[[gates b alt ; altlist ]] = [[b]] ∓ [[altlist ]],

where v = via(l, Gl (altlist)), g = g(ρv([[altlist ]])) and R = R(ρv([[altlist ]])).

Definition B.6.10.4 (Inline parallel expression) For l ∈ L(〈ref name〉), parlist ∈ L(〈par list〉), gates ∈
L(〈inline gate interface〉) and b ∈ L(〈msc body〉)

[[par begin l ; parlist par end]] = ρg(ρv([[parlist ]]) ◦R ε),

[[gates b]] = [[b]],
[[gates b par ; parlist ]] = [[b]] ‖ [[parlist ]],

where v = via(l, Gl (parlist)), g = g(ρv([[parlist ]])) and R = R(ρv([[parlist ]])).
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B.6.11 Semantics of High-level Message Sequence Charts

Textually an HMSC is described by associating a label with every node except the start node. The start node
is describes first in the textual syntax by simply listing its successor nodes in a label name list. Then all other
nodes are described. Such a description consists of the label name associated with the node followed by a
description of the type of the node and a label name list representing the label names of the successor nodes.

If a node has successor nodes then these are interpreted as alternative vertical compositions. For example if
a node labeled l has two successor nodes labeled l1 and l2 this means that the node l is vertically composed
with either node l1 or l2.

Semantically, HMSCs are dealt with by associating a recursion variable l with a node labeled l. Since the
start node of an HMSC does not have a label the name of the HMSC is used as a recursion variable for
this node. For each of the recursion variables introduced in this way a recursive equation is determined as
follows. The recursive equation associated with a node labeled l is of the form l = C ◦ (l1 ∓ · · · ∓ lN )

where C represents the semantics of the node with label l and l1, · · · lN are the labels associated with the
successor nodes of the node labeled with l. The recursive equation associated with the recursion variable
introduced for the start node, say mscname, is mscname = l1 ∓ · · · ∓ lN where l1, · · · , lN are the labels
of the successor nodes of the start node.

The set of all recursive equations of an HMSC is obtained by applying the mapping Eqs given in Defini-
tion B.6.11.1. The mappings Start and Suc used in this definition are given in Definition B.6.11.2.

Definition B.6.11.1 Then, for mscname ∈ L(〈msc name〉), mscex pr ∈ L(〈msc expression〉), labellist ∈
L(〈label name list〉), nodeex prlist ∈ L(〈node expression list〉), nodeex pr ∈ L(〈node expression〉), l ∈
L(〈label name〉), node ∈ L(〈node〉), mscre f ex pr ∈ L(〈msc ref expr〉), parex pr ∈ L(〈par expression〉)
and clist ∈ L(〈condition name list〉)

Eqs(msc mscname; expr mscex pr endmsc;) = {mscname = Start (mscex pr)} ∪ Eqs(mscex pr)

Eqs(labellist; nodeex prlist) = Eqs(nodeex prlist)

Eqs() = ?,

Eqs(nodeex pr nodeex prlist) = Eqs(nodeex pr) ∪ Eqs(modeex prlist),

Eqs(l: end;) = {l = ε}
Eqs(l: node seq (labellist);) = {l = [[node]] ◦ Suc(labellist)} ∪ Eqs(node)

Eqs(empty) = ?

Eqs(mscname) = ?

Eqs(parex pr) = Eqs(parex pr)
Eqs(condition clist) = ?

Eqs(connect) = ?

Eqs((mscre f ex pr)) = ?

Eqs(expr mscex pr endexpr) = Eqs(mscex pr),
Eqs(expr mscex pr endexpr parparex pr) = Eqs(mscex pr) ∪ Eqs(parex prlist).

The semantics of a node in an HMSC depends on the type of node. Start nodes, condition nodes, connector
nodes and end nodes do not describe the execution of events. Therefore their semantics is given by the
empty process ε. An MSC reference node describes the composition of a number of MSCs by means of a
textual formula and a parallel frame node describes the parallel composition of a number of sub-HMSCs.
The semantics of one such sub-HMSC is given by the delayed choice of the recursion variables associated
with the successor nodes of the start node of the sub-HMSC. This is necessary as the start node does not
have a name. For this purpose the mapping Start is given in Definition B.6.11.2.
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Definition B.6.11.2 The mapping Start : L(〈msc expression〉) → P is, for list ∈ L(〈label name list〉)
and nodeex prlist ∈ L(〈node expression list〉), defined by

Start (list; nodeex prlist) = Suc(list)

and the mapping Suc : L(〈label name list〉)→ P is, for l ∈ L(〈label name〉) and list ∈ L(〈label name list〉)
defined by

Suc(l) = l,
Suc(l alt list) = l ∓ Succ(list).

The semantics of a parallel frame node is then given by the delayed parallel composition of the semantics
of the sub-HMSCs.

Definition B.6.11.3 (Semantics of a node)
For mscre f ex pr ∈ L(〈msc ref expr〉), mscname ∈ L(〈msc name〉), parex pr ∈ L(〈par expression〉),
clist ∈ L(〈condition name list〉) and mscex pr ∈ L(〈msc expression〉),

[[empty]] = ε

[[mscname]] = mscname
[[parex pr ]] = [[parex pr ]]
[[condition clist ]] = ε

[[connect]] = ε

[[(mscre f ex pr)]] = [[mscre f ex pr]]

[[expr mscex pr endexpr]] = Start (mscex pr),
[[expr mscex pr endexpr par parex pr ]] = Start (mscex pr) ‖ [[parex pr]].

When a recursive specification is described often the curly brackets are omitted.

Example B.6.11.4 Consider the HMSC in Figure B.52. Besides the HMSC also the labels associated with
each node and the textual syntax of the HMSC are presented in the figure. With this HMSC the following
recursive equations are associated:

alternative = L1
L1 = disconnected ◦ (L2∓ L3)
L2 = message lost ◦ L4
L3 = t ime out ◦ L4
L4 = disconnection ◦ L1.

Example B.6.11.5 Consider the HMSC shown both in graphical and textual form in Figure B.53. The
graphical version of the HMSC is annotated by the label names used for the description of the nodes in
the textual representation. Applying the semantics to the textual representation results in

〈par H MSC | par H MSC = L 1,

L1 = (L2 ‖ L4) ◦ L6,

L2 = CR ◦ L3,

L3 = ε,

L4 = DR ◦ L5,

L5 = ε,

L6 = ε〉.
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msc alternative

disconnected

message_lost time_out

disconnection

L1

L2 L3

L4

msc alternative;

expr L1;

   L2: message_lost seq (L4);

   L3: time_out seq (L4);

   L4: disconnection seq (L1);

endmsc;

   L1: disconnected seq (L2 alt L3);

Figure B.52: HMSC with a loop

CR DR

msc par_HMSC

L1

L2

L3

L4

L5

L6

par_HMSC

Figure B.53: HMSC with a parallel frame
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