Some suggestions on how to write more safe and secure programs

This paper presents a list of suggestions on how to avoid the most common pitfalls that make software less secure or less safe than it should be. It is addressed to software developers and covers the phases of software design, implementation, and testing. It focuses on network application programs, but many of the suggestions are equally valid for other kinds of software.

Contact for comment/discussion

Mr. Alessandro TRIGLIA
OSS Nokalva
Email: sandro@oss.com
Table of contents

Introduction
Design
Design with security and safety in mind
Design for quality
Use formal methods and languages
Limit software complexity
Ensure that all the operations (both normal and exceptional) in your application are safe and secure
Use only well-known cryptographic algorithms
Don't assume that you can increase security by keeping the source code of your algorithms hidden
Don't rely on the users of your application to select the appropriate (more secure) security settings
Verify exchanged digital certificates and involve the user as much as possible in this process
Limit the internal data redundancy and manage the existing redundancy
Implementation
Ensure that the program doesn't try to read or write data outside an allocated memory block (buffer overflow)
Ensure that all resource allocation errors are detected and handled
Ensure that the program's stack never overflows
Check boundary conditions
Use tools for checking the correctness of the program's code
Limit use of privileged modes during program execution
When processing an input message, check that the message can be safely decoded and that its contents are valid
When processing an input message, limit the resources (memory, disk space, CPU time) used for the message.
Make generous use of assertions in your code
Use restrictive language features extensively
Compile with the highest warning level
Testing
Use system-stress simulation techniques during program testing
Use a multiprocessor computer during program testing
Ensure that the entire program code is executed during program testing
Resources
Introduction

There have been daily reports of security flaws in all kinds of software products, along with the recent discovery of vulnerabilities in several implementations of long established and widely deployed protocols such as SNMP. These are increasing the awareness among the general public that the software industry hasn't always done its best to ensure the quality of programs and that some improvements in the way software is created are generally needed today.

Security and safety are two important aspects of the quality of software. Security is the ability of a system to protect itself against accidental or intentional attacks. Safety is the ability of the system to operate without risk, both when performing normal functions and when handling exceptional conditions.

The need for safer and more secure code is true for every kind of software, but becomes critical for any program that interacts with other programs over a network. A few suggestions for the production of safe and secure code are provided below. These focus particularly on network applications, but many of the suggestions apply to other types of applications as well. Network applications are inherently critical because they can become unwanted entry points into a computer system if not properly designed or implemented.

Network applications are based on protocols, as they need to communicate with other applications over the network. In the following, it will be assumed that the software developers are implementing a pre-existing protocol, so that the focus will be on the software development process, rather than on protocol design.

The use of Abstract Syntax Notation One (ASN.1) in protocol specifications greatly reduces the size and complexity of the implementations, thus lessening the likelihood of defects. However, the developers are still responsible for the overall quality and security of the application.

Several suggestions are given, but the most important one is probably the first, which can be summarized as security-consciousness.

Note that the following suggestions apply to the implementation of any type of communications protocol, whether it is specified using a formal language such as ASN.1 or XML Schema, or is specified using ad hoc manual techniques such as a picture of bytes and bits or an ABNF grammar.

It should also be noted that although general suggestions can be formulated on how to avoid common program defects and security flaws, each specific network application will usually have other potential vulnerabilities. Developers should therefore grow a security-conscious mindset and apply it throughout the development process.

NOTE: This paper offers general suggestions. It does not present a methodology or provide specific instructions to implement these suggestions. See the Resource section for a list of reference documents which can be accessed for specific implementation details and for deeper coverage of the topics briefly discussed in this paper.

Design

Design with security and safety in mind

Don't assume that you will be able to add security or safety to your software as an add-on after it is finished or - worse - released. These are not features of a program, but properties that emerge from the way the software product is designed and built. They are also influenced by the environment where the program runs, such as the operating system and the type of network. For many programs, porting them from one operating system to a different operating system requires a careful examination of security-related aspects. Moreover, your decisions on the cryptographic algorithms to use, their parameters, the length of the cryptographic keys, etc., should depend on the nature and value of the information that you want to protect and on the way this information is used.

Design for quality

It is a good idea to develop your application following a rigorous methodology for high-quality software. As an example, the Radio Technical Commission for Aeronautics (RTCA) DO-178B standard provides guidelines for the production of software to be used in airborne systems and describes many techniques and methods appropriate to ensure the integrity, reliability, and safety of such software. This standard is general enough to be useful in assessing the quality of many other kinds of applications.

Use formal methods and languages

Formal methods can be used at all stages of a software development project. Different methods and languages cover different aspects of a software system, from requirements definition to system specification, down to low-level design and implementation. The main benefit to using formal methods and languages is the ability to exploit tools to verify the correctness of the system description at each abstraction level. Moreover, each of the resulting descriptions can be manually reviewed and checked against earlier, higher-level descriptions to ensure consistency as details are progressively added. All this helps to eliminate ambiguities and limit the introduction of defects at each stage, and makes it easier to identify and remove any existing defects as early as possible.

Limit software complexity

Complexity is an enemy of security and safety, so it should be limited as much as possible. Given a set of requirements for an application, good design methodologies can help reduce the complexity of the software product.

Ensure that all the operations (both normal and exceptional) in your application are safe and secure

Your application should always behave in a secure and safe way, both when it is operating normally and when it is handling exceptional conditions. Unfortunately, certain systems become less safe or less secure when they are reacting to a failure. This should be avoided. Actually, a system that becomes insecure when handling exceptional conditions cannot be considered secure at all. An example of a well-known methodology for assessing the safety of systems is "Fault tree analysis". Fault tree analysis is a top-down approach to the identification of process hazards, aimed at systematically identifying and graphically displaying the many ways something can go wrong.

Use only well-known cryptographic algorithms

Whenever there is a need to implement confidentiality and integrity in your application, it is always better to use an established cryptographic algorithm than invent your own algorithm. No cryptographic algorithm can be mathematically proven to be resistant to all possible attacks (current and future), so the only way that an algorithm can be considered secure enough is by relying on the existing community of cryptography experts, who scrutinize algorithms and are often highly motivated to discover weaknesses in them.

Don't assume that you can increase security by keeping the source code of your algorithms hidden

Not providing source code can help protect your interests as a software vendor, but it is hardly effective in protecting any secrets that may be embedded in your program. Attackers are often very able at reverse-engineering machine code and reconstructing "hidden" algorithms. Sometimes this reverse-engineering is not even necessary. Certain cryptographic algorithms, used by well-known applications, have proved so naive that crypto-analysts were able to reproduce them just by observing the program's behavior. Hiding the source code of a poor cryptographic algorithm doesn't make it any more secure. Again, it is much better to rely on a well-known algorithm.

Don't rely on the users of your application to select the appropriate (more secure) security settings

Few people bother to read manuals or to play with the configuration. Common users are non-proactive and system administrators are often too busy to do these things. If the secure modes of your application (for example, encryption) are not set by default, most users will never be aware of their existence and will never enable them. The result is that your application will needlessly run in an insecure mode on most systems. So in general it is better to enable security by default and require positive action to disable it.

Verify exchanged digital certificates and involve the user as much as possible in this process

When using public key cryptography and receiving a certificate from a third party, make sure your program checks the certificate against your trusted certificate files and certificate revocation lists, and provide the user with the ability to view the third party's certificate. The program should be able to ascertain the identity of the third party automatically in most cases, otherwise it should display the third party's certificate to the user (with clear warnings and instructions) whenever appropriate.. You shouldn't simply rely on the user requesting the display of the certificates , as most users won't remember to do such a thing even if they are aware of the potential risks (for example, the web server they are talking to may not be what it says it is or what it looks like).

Limit the internal data redundancy and manage the existing redundancy

Document all the existing dependencies among the data managed by the application and include in your design specific operations that verify the consistency of these data.
Implementation

Ensure that the program doesn't try to read or write data outside an allocated memory block (buffer overflow)

This is an extremely common program flaw, so it deserves special attention. An important example of this is writing data to a memory block without first ensuring that the memory block is large enough to hold all the data. Another important example is writing to addresses immediately below or immediately above an allocated block. Writing outside the memory block is usually more dangerous than reading, but both must absolutely be avoided. For example, in C/C++, whenever a memory block is accessed through a pointer or array name (possibly with an offset) or a string variable name, the developers must take extreme care to avoid accessing data on either side of the memory block. A very common source of this error is using the C runtime-library string-manipulation functions (strcpy, sprintf, etc.) without making sure that the resulting string will fit into the buffer.

Ensure that all resource allocation errors are detected and handled

Checking for memory allocation errors is very important, but since such errors are rare in normal conditions and probably yet more so during program development, it may happen that the developers fail to write code that handles them. The same holds for any errors occurring in the allocation of other resources, such as disk space, file handles, communications sockets, windows, and so on. Failure to check for these errors is a serious program flaw. Programs released with such defects may work well for months but then they may fail under unusual system-stress conditions.

Ensure that the program's stack never overflows

Whenever a program calls a function using more than the space currently available in the stack for storing the parameters of the call and the local variables of the function (plus a few other things), the stack overflows. Certain languages (or language processors) provide some assistance, throwing an exception on any attempt to overflow the stack, but in the general case the program itself must prevent such an event from happening. As with memory allocation errors, even if the language processor checks for stack overflows, this is of little help if the program doesn't handle a resulting exception. With any programming language, it is much better to take preventive actions to avoid stack overflows altogether. Special care must be taken in the functions that implement recursive algorithms, by ensuring that function calls never nest beyond some given practical limit. Note that in some cases a recursive loop can involve other functions (not apparently recursive) due to two-way interactions with the system (presence of callbacks). All the possible cases must be carefully examined to identify the potential dangers and provide defensive measures. The most appropriate stack size should also be carefully determined.

Check boundary conditions

This depends very much on the application, but as a general principle, the developers should make sure that the program (or a given program fragment) behaves correctly when the variables take certain special values such as 0, -1, +1, the size of a container, the size of a container minus 1 or plus 1, etc. Many programming errors are related to a wrong handling of such special cases.

Use tools for checking the correctness of the program's code

The ability of a human reader to discover defects when reviewing a program's source code is often limited and tools can be very helpful in identifying troublesome code. Such tools can perform various kinds of source code analysis, which may or may not be based on observing the program while it is running. Interestingly, code analyzer tools for the C and C++ languages largely focus on identifying potential buffer overflows and on tracking the use of dynamically allocated variables to reveal potential memory leaks and misuse of pointers. These tools usually offer a tradeoff between complexity of the analysis and performance. In general, they do a good job of finding defects, although they may miss some of them and may also find "false positives" when faced with unusual coding patterns (which is not necessarily a bad thing, as it may indicate lack of clarity in the source code).

Limit use of privileged modes during program execution

In many operating systems, there are operations that can be invoked only by programs running in a privileged mode (an example of this is setting a listener on a low-numbered port in UNIX). However, while the program must be running in a privileged mode at the moment the special operating system function is called, it doesn't have to do so during the rest of the execution. If a program error (such as a buffer overflow) occurs while the program is running in a privileged mode and an attacker manages to exploit the error, he/she ends up with much greater control over the system. Special care is needed when the program invokes some external code (a library function, another program, or a system service). In such cases, you should ensure that the privilege levels at which the external function or process is executed are not higher than is necessary. In general, it is a good idea to limit the number of times, the extent of code, and the duration of time in which the application uses a privileged mode, so that the potential damage in case of attack is greatly reduced. (A historical example of this vulnerability is in the UNIX sendmail program, which unnecessarily ran in a privileged mode all the time; attackers have been able to exploit a buffer overflow to gain full control over the entire system.)

When processing an input message, check that the message can be safely decoded and that its contents are valid

In general, the application should not assume that a message received from the network is well-formed and the values of its fields after decoding are valid and consistent according to the protocol. The only case in which the application can safely make such assumptions is when it uses a toolkit (such as an ASN.1 toolkit) and the documentation of the toolkit states that any ill-formed or invalid messages are not delivered to the application or are delivered with a warning.

When processing an input message, limit the resources (memory, disk space, CPU time) used for the message

The purpose is to protect the system from any abnormal behavior of the application following the receipt of a message carrying some unexpected values. The abnormal behavior may consist of entering an infinite program loop, or in allocating a huge amount of memory or disk space, etc. In these cases, a defect in the software is the cause of the abnormal behavior. The event may occur accidentally, or be the result of an intentional attack performed by sending a specially constructed message. Obviously the problem, as soon as it is diagnosed, needs to be solved in another part of the application; yet the suggested measure prevents worse consequences.

Make generous use of assertions in your code

Assertions are not a substitute for error checks, but are very useful during program development to discover bugs in the program. The purpose of assertions is to verify those assumptions that must be true if the program is correct, and to help to catch program bugs as early as possible in the program execution flow. Whenever an assertion is not verified, the runtime library code throws an exception, so that the developer is immediately informed of the problem and the place where it occurred. (Examples of common assertions are: asserting that a pointer is not NULL, asserting that a variable has a value within a given range, asserting that the values of the member variables of an object are in a certain relationship to one another, etc.) In most C/C++ compilers, assertions are completely discarded by the language preprocessor during release builds, so that they don't at all affect the size and performance of the final program. Assertions are also useful as a form of in-line documentation of the program code.

Use restrictive language features extensively

Such a practice allows you to discover many potential logical defects at compile time and reduce the number of potential errors that can occur at a later time. Let the compiler help you. When declaring variables, use the most restrictive data type that comprises all the values needed. Exploit the name-scoping facilities of the programming language. Limit the lifetime and visibility of variables as much as possible. In C++, use protected/private member variables and methods to the largest extent possible. Also, in C++, make a clear distinction between methods that modify the state of the object and methods that don't and declare all of the latter as "const". Besides allowing early discovery of many program defects, such a programming style allows you to convey more semantic information to the human reader.

Compile with the highest warning level

Let the compiler output all the warning messages it is able to produce. In general, it is preferable to make small changes to the program to make the compiler happy rather than suppress the output of warning messages. Some of the warnings may seem unnecessary, but others are really helpful in spotting programming errors. A well-written program should compile with no warnings at all, although this is not always easy to achieve.

Testing

Use system-stress simulation techniques during program testing

Such techniques, usually supported by development tools, include the artificial reduction of the available memory or of other system resources (CPU cycles, disk space, etc.). Stress simulation techniques can reveal inadequate error checking on memory or resource allocation, and can also reveal problems in thread synchronization.

Use a multiprocessor computer during program testing

On a single-processor computer, certain program defects related to thread synchronization may remain undiscovered forever because not all thread concurrency patterns may actually occur in practice, or they may be widely constrained. In contrast, the use of a multiprocessor computer increases the randomness of thread concurrency patterns and therefore can cause bugs in thread synchronization to manifest themselves so that they can be caught and corrected. (The thread timings change between a single-processor computer and a multiple-processor computer because they depend both on operating system policies and on the interactions between the physical system components - mainly CPUs and memory). An example of this is synchronized access to a variable pair, such that after a thread has changed the first one and before it changes the second one as well, another thread cannot read or change either variable. If this synchronization is not done correctly, depending on what other work these threads do, the frequency of collisions may vary, but it may be higher on a multiprocessor machine than on a single-processor machine. You'll surely want to see one of these collisions occur during development.

Ensure that the entire program code is executed during program testing

This is usually facilitated by development tools (profiling utilities) which can report the coverage of code achieved during execution. Whatever test methodologies you use, you must make sure that every statement or part of a statement of the program is executed at some time.

Resources

Provisional Harmonised Criteria, version 1.2, Information Technology Security Evaluation Criteria (ITSEC), Cheltenham, UK, June 1991

ISO/IEC 15408:1999, Common Criteria for Information Technology Security Evaluation, version 2.1, International Organization for Standardization, Geneva, 1999

S. Robertson and J. Robertson, Mastering the Requirements Process, Addison-Wesley, Reading, Mass., 1999

J.M. Spivey, The Z Notation: A Reference Manual, 2nd ed., Prentice-Hall, Upper Saddle River, N.J., 1992

CESG Computer Security Manual "F": A Formal Development Method for High Assurance Systems, Communications Electronics Security Group, Cheltenham, UK, 1995

A. Hall and R. Chapman, Correctness by Construction: Developing a Commercial Secure System, IEEE Software, January/February 2002, http://computer.org/publications/dlib
D. Evans and D. Larochelle, Improving Security Using Extensible Lightweight Static Analysis, IEEE Software, January/February 2002, http://computer.org/publications/dlib
S.L. Pfleeger and L.Hatton, Investigating the Influence of Formal Methods, Computer, vol. 30, n. 2, Feb. 1997
DO-178B, Software Considerations in Airborne Systems and Equipment Certification, Radio Technical Commission for Areonautics (RTCA), December 1, 1992, http://www.rtca.org
Leslie A. (Schad) Johnson, DO-178B, Software Considerations in Airborne Systems and Equipment Certification, http://www.stsc.hill.af.mil/crosstalk/1998/oct/schad.asp
Software Productivity Consortium, RTCA DO-178B, http://www.software.org/quagmire/descriptions/rtcado-178b.asp
Carnegie Mellon University - Electrical and Computer Engineering Department, Contents: Topics in Dependable Embedded Systems, http://www-2.cs.cmu.edu/~koopman/des_s99/contents.html
Ian Sommerville, Dependability, http://www.comp.lancs.ac.uk/computing/resources/SE6/Slides/PDF/ch16.pdf
McGraw Gary, John Viega, Selecting technologies for building secure software, Part 1, http://www-106.ibm.com/developerworks/security/library/s-build.html?dwzone=security
Gary McGraw, John Viega, Making software behave, http://www-106.ibm.com/developerworks/security/library/behave.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Assuring your software is secure, http://www-106.ibm.com/developerworks/security/library/assurance.html?dwzone=security

Gary McGraw, John Viega, Make your software behave: Everything to hide, http://www-106.ibm.com/developerworks/security/library/everything.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Cryptography essentials, http://www-106.ibm.com/developerworks/security/library/hashing/index.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Learning the basics of buffer overflows, http://www-106.ibm.com/developerworks/security/library/overflows/index.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Preventing buffer overflows, http://www-106.ibm.com/developerworks/security/library/buffer-defend.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Brass tacks and smash attacks, http://www-106.ibm.com/developerworks/security/library/smash.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Security by obscurity, http://www-106.ibm.com/developerworks/security/library/s-obs.html?dwzone=security
Gary McGraw, John Viega, Make your software behave: Tried and true encryption, http://www-106.ibm.com/developerworks/security/library/tried/index.html?dwzone=security
Gary McGraw, John Viega, Software security principles: Part 1, http://www-106.ibm.com/developerworks/security/library/s-link.html?dwzone=security
Gary McGraw, John Viega, Software security principles: Part 2: Defense in depth and secure failure, http://www-106.ibm.com/developerworks/security/library/s-fail.html?dwzone=security
Gary McGraw, John Viega, Software security principles: Part 3: Controlling access: Least privilege and compartmentalization, http://www-106.ibm.com/developerworks/security/library/s-priv.html?dwzone=security
Gary McGraw, John Viega, Keep it simple; keep it private, http://www-106.ibm.com/developerworks/security/library/s-simp.html?dwzone=security
Gary McGraw, John Viega, Software security principles: Part 5: On keeping secrets, trusting others, and following the crowd, http://www-106.ibm.com/developerworks/security/library/s-princ5.html?dwzone=security
