
Contact: Claude Kawa, John Mullins
École Polytechnique Montréal
Robert Charpentier
DRDC Valcartier

Email: claude.kawa@sympatico.ca
 John.Mullins@polymtl.ca
 Robert.Charpentier@drdc-rddc.gc.ca

Title: Certifying/verifying software compilation as a solution to ASN.1
implementations vulnerabilities

SUMMARY
CERT/CC identified vulnerabilities in SNMP and OpenSSL implementations related to the use of
ASN.1. Ill-formed ASN.1 Tag/Length/Value (TLV) structures and weak parsers and decoders are
responsible for most of these vulnerabilities and not the ASN.1 language itself. As a consequence,
exploiting SNMP and OpenSSL vulnerabilities in an operating environment may lead to failures
and denials of services. ASN.1 is used in a number of important protocols; therefore it is very
important to ensure that ASN.1 implementations are safe. This contribution is presented for
information sharing and to generate interest in the so-called language-based approach to security
and certifying compilation techniques to ensure that a protocol implementation is safe before it is
deployed in an operating environment.

1 Introduction
This contribution is presented for information sharing and to generate interest in the subject it
addresses. Abstract Syntax Notation One (ASN.1) is used in several important protocols deployed
in various environments. CERT/CC identified a number of vulnerabilities (weaknesses) in
implementations of the Simple Network management Protocol (SNMP) and Open Secure Socket
Layer (OpenSSL) related to the use of ASN.1. The vulnerabilities found can lead to threats and
attacks against an organization's computing and networking assets. In the testing environment of
SNMP, they led to buffer overflow conditions, equipment failures and denials of services.

One of the main objectives of this contribution is to identify the possible causes of the
vulnerabilities found in SNMP and OpenSSL implementations and to suggest solutions. Another
objective is to discuss the use of the so-called language-based approach to security techniques and
certifying compilers to ensure that a protocol implementation is safe before it is deployed in an
operating environment.

The contribution is organized as follows: Section 2 describes SNMP testing done at Oulu
University, the weaknesses found in SNMP implementations and their impacts. Section 3 describes
OpenSSL vulnerabilities. Section 4 discusses the causes of the vulnerabilities of ASN.1
implementations. Section 5 is an overview of language-based security techniques, certifying
compilers and their applicability to protocol implementations. Finally, section 6 is the conclusion.

Note on the terminology: The words "certifying", "certified", "certification", "certificate" and all
other variations are used in this contribution as they are defined in the field of programming
language theory and compiler design to refer to a compiler that produces evidence that the code it
produce is correct and safe to execute. A certifying compiler is a compiler that not only produces
target code but also a certificate, a machine-checkable evidence that the code respects safety
policies. In ITU-T SANCHO database, the word "certification" is assigned a different meaning than
the one used in this contribution. With this clarification, no ambiguity should occur.

2 Testing SNMP Implementations at Oulu University
The Oulu University Secure Programming Group (OUSPG) in Finland has reported numerous
vulnerabilities in SNMP v1 [RFC1067] in 2002 after stress testing a number of implementations
from many vendors [PROTOS]. OUSPG results were documented in two CERT/CC vulnerabilities
notes [CERT1, CERT2]. The OUSPG revealed vulnerabilities in the way many SNMP

- 2 -

implementations decode and process SNMP messages. Vulnerabilities in the decoding and
subsequent processing of SNMP messages may result in denial-of-service conditions and buffer
overflows.

2.1 Coverage of SNMP tests
OUSPG tested several implementations from different vendors of SNMP v1 and TCP/IP
Management Information Base (MIB) defined in RFC 1156 [RFC1156]. Most of them failed at
least one of the tests [PROTOS]. The purpose of the tests was to assess the behaviour and reaction
of an SNMP receiver when it is subjected to SNMP messages containing syntactic errors and
unusual and extreme values in the different components of a TLV. The tests were exercising mainly
SNMP TLV decoders and some of them tested the possibility of buffer overflow.
The tests covered the following areas:

- Invalid bit patterns in TLV (test series B)

- BER encoding errors (test series E)Exceptional string formats (test series F)Exceptional
integer values (test series I)Missing symbol exceptions (test series M)Overflow
conditions (test series O)Overview of test series B: This series of tests covered error

codes returned by a receiver to a sender to indicate the type of error found in the SNMP message
received.

Overview of test series E: This series of tests covered various cases of TLV encoding. Tests cases
for the tag, length and value fields were performed with invalid values. The purpose of this series of
tests was to find out how robust was the SNMP decoder of the implementation under test (IUT).

Overview of test series F: This series of tests checked the decoding by the IUT of unusual string
formats.

Overview of test series I: This series of tests covered unusual integer values: Boundary values
(integers close to the minimum and maximum integers) and overflow values (very large or very
small integers) that could cause an overflow condition in the IUT.

Overview of test series M: The purpose of the tests of this series was to check the reaction of the
IUT with a zero-length value.

Overview of test series O: This series of tests covered several cases of overflow conditions. For
example, very long strings of characters were sent to the IUT.

2.2 Consequences of SNMP Vulnerabilities
OUSPG tests found multiple vulnerabilities or weaknesses in the way many SNMP managers
decode and process Trap messages sent by agents [CERT2] and multiple vulnerabilities in the way
request messages are decoded and processed by an agent [CERT1]. Request messages are sent by
managers to agents to either request information or to instruct an agent to configure a managed
equipment.

In an operating or production environment, an SNMP implementation could encounter a condition
similar to that of the tests and fails. The tests showed different types of failures:

- A fatal failure that will cause the equipment to stopA crash of SNMP implementation
that will require a manual restart of the equipment

- A crash of SNMP implementation followed by an automatic restart

- A failure of SNMP that will cause a freeze of the equipment or a consumption of the
entire available memory

- 3 -

When an SNMP implementation encounters one of the above failures, it will result in a denial of
service situation since it will not be able to respond to legitimate requests until it recovers from the
failure. Furthermore, a malicious user could exploit SNMP implementation vulnerabilities to
intentionally cause harm.

2.3 Possible explanations of SNMP lack of robustness
Several reasons can explain SNMP implementations lack of robustness:

1. RFC 1155 that describes SNMP MIB syntax lacks rigor and clarity. Therefore it is
possible that SNMP tool designers misinterpret some RFC 1155 and ASN.1
Recommendation statements and produce incorrect parsers, coders or decoders.

2. Several SNMP implementations use third-party ASN.1 library functions to encode and
decode SNMP messages. Third party encoding and decoding functions are generic. They
check SNMP messages conformance to RFC 1155 and 1156 and not to a specific MIB
with possibly tight sub-types. For example, a MIB may define a range for an integer
object. If a transmitter encodes values outside the range, they will be undetected by an
ASN.1 decoder and if SNMP agent or manager subsequently does not perform
additional checking, invalid values will be accepted.

3. Some MIBs do not use subtypes (for example they will use the type "integer" instead of
a small range). If subtypes are not used, a transmitter could encode unexpected values
that will potentially cause a receiver to crash if its decoder does not check between legal
and illegal values or does not expect exceptional values.

4. In many cases the same vendor supplies both SNMP agents and managers. As long as
they interact with one another, they will work fine however if they have to interact with
a third party implementation, they may fail or cause the other side to fail.

3 OpenSSL vulnerability
3.1 SSL and ASN.1
The Secure Sockets Layer (SSL), originally developed by Netscape Communications, is a popular
protocol that allows a browser to securely access a Web server. The main role of SSL is to provide
security for web traffic. SSL security functions include confidentiality, message integrity, and
authentication. SSL realizes these functions through the use of cryptography, digital signatures, and
certificates.

To authenticate servers and optionally clients, SSL uses X.509 certificates to validate identities
[X509]. X.509 certificates contain information about the entity (for example a web server),
including its public key and name. The certificate is signed by a certificate authority to give
confidence to the certificate receiver about the validity of the sender. X.509 Certificates are
specified in ASN.1.

3.2 Nature and Impact of SSL vulnerability
According to CERT Vulnerability note VU #748355 [CERT3], the ASN.1 library used by OpenSSL
[OSSL] has several parsing errors that allow invalid certificate encodings to be parsed incorrectly
and considered valid. More specifically, the parser implemented in various ASN.1 libraries accepts
certain invalid TLV length field leading to improper interpretation of the data. Affected ASN.1
library functions include those supporting SSL and TLS protocols.

4 Vulnerabilities of ASN.1 implementations
4.1 Causes of vulnerabilities
There are four possible causes to ASN.1 implementation vulnerabilities:

- 4 -

- Protocol designers use generic ASN.1 data types (e.g. integer instead of a range) enabling an
implementation to send unexpected large values causing its peer to crash,

- ASN.1 compiler translates an ASN.1 subtype to a more generic programming language type
(e.g. an integer range to a integer) allowing implementations to send invalid values to the
other end,

- ASN.1 coder generates incorrect ASN.1 TLV (with errors in tag, length or value fields),

- ASN.1 decoder generates incorrect data structures from ASN.1 transfer syntax byte
streams.4.2 Remedies against vulnerabilities

What are the remedies against ASN.1 implementation vulnerabilities? There could be three types of
remedies:

- Against sloppy protocol design: Enforce the use of sub-typing. One way is to use an ASN.1
editor that prevents the use of ASN.1 generic types such as integer. This is difficult to enforce
since most ASN.1 specifications are written in standard bodies and for some applications
unusual data types are required, for example very long integers. Another possibility is to write
type safety policies in a declarative language to override the generic types used in an ASN.1
specification.

- Against ASN.1 compilers: Ensure that the most appropriate mapping is done between ASN.1
types and the corresponding types of the programming language. There are cases with some
commercial ASN.1 compilers where an ASN.1 sub-type is converted to a generic Java type.

- Against ASN.1 coders and decoders: This is a matter of ensuring the correct and robust
implementation of the coder and the decoder; obviously it is not a simple matter. The next
section discusses this item in some details.

4.3 Remedies against faulty coders and decoders
4.3.1 Classification of TLV errors
TLV errors are either caused by a faulty coder or a faulty decoder or both.

Errors caused by a faulty coder:
- Encoding of invalid tag value,

- Encoding of an invalid length inconsistent with the actual length of the value field,

- Invalid contents of the value field inconsistent with the tag,

- Abnormal long TLV.

Errors caused by a faulty decoder:
- Unable to cope with an invalid TLV,

- Acceptance of an incorrect TLV that will cause problems later to the hosting computer.

4.3.2 Prevention of TLV errors:
Against errors caused by a faulty coder:

- Ensure correct tag values are used,

- Ensure length field is consistent with the actual length of the value field,

- Ensure contents of the value field is consistent with the tag,

- Ensure that there are no abnormally long TLV.

- 5 -

Against errors caused by a faulty decoder:
- Ensure correct parsing and decoding of well-formed TLV,

- Ensure a robust implementation of the decoder to cope against a faulty or malicious
coder.

4.3.3 Protocol conformance:
If we look at the problem in terms of protocol conformance, for the coder we need to ensure that:

- Its output (transfer syntax) is equivalent to the abstract syntax,

- It does not generate anything that is not in the abstract syntax.

For the decoder we need to ensure that:

- Its output (concrete syntax) is equivalent to the abstract syntax corresponding to the byte
stream (transfer syntax) received and decoded,

- It does not generate anything that is not in the abstract syntax

Things get complicated because the coder and decoder do not deal directly with the abstract syntax
(see Figure 4.1) but only with the transfer syntax and concrete syntax. So we have to assume that
the concrete syntax is correct and acts as a surrogate for the abstract syntax.

Figure 4.1 – Equivalence between the abstract and concrete syntax

However, one important question is whether we can rely on ASN.1 compilers to generate:

1) The correct data structures in the concrete syntax corresponding to ASN.1 data types
expressed in the abstract syntax,

2) The corresponding correct coders and decoders.

The answer is no. We cannot rely on ASN.1 compilers to generate the correct data structures with
the correct coders and decoders because such compilers can be faulty in several ways. So basically
we have two problems:

1. The robustness of ASN.1 decoders to cope with incorrect TLV and the correctness of the
coders and decoders. By correctness we mean that assuming the input of a coder (or
decoder) has a certain value, the output of the coder (or decoder) must have a correct
value depending on its inputs.

2. The correctness of ASN.1 compiler to generate the correct concrete syntax
corresponding to the abstract syntax of the ASN.1 specification being compiled. This

ASN.1 run-time decoder
ASN.1

abstract
syntax

Concrete syntax
ASN.1 run-time coder

ASN.1
transfer
Syntax

ASN.1 compiler

or manually

Equivalence ?

?

ASN.1 run-time decoder
ASN.1

abstract
syntax

Concrete syntax
ASN.1 run-time coder

ASN.1
transfer
Syntax

ASN.1 compiler

or manually

Equivalence ?

?

Equivalence ?

?

- 6 -

problem is about showing the correctness of an ASN.1 compiler and conformance to a
protocol specification.
We do not deal directly with this second problem is this contribution.

Solving part of the first problem will ensure that:
- Correct tag values are used,

- The length field is consistent with the actual length of the value field,

- Ensure contents of the value field is consistent with the Tag,
- Ensure that there are no abnormal long TLV,

- Ensure correct parsing and decoding of well-formed TLV.

However, we will not ensure that the compiler generates the correct data types and structures
(second problem) nor that the decoder is robust to cope against a malicious or faulty coder, these are
two separate questions.

5 Language-based approaches to software safety
5.1 Overview of certifying compilation
The growing use of mobile code with web applications has created a research trend since the
nineties to address the issue of protection against malicious code using the so-called language-
based approach to security [McM00]. Language-based approach to security is a set of techniques
based on programming language theory and implementation, program analysis (including type
checking), abstract interpretation, proof checking, program rewriting and program verification to
ensure that the code is safe to execute [SMH, Ko99].

Certified compilation is a technique requiring that a compiler produce evidence that the code is safe
to execute. A certifying compiler is a compiler that not only produces object code but also a
certificate, a machine-checkable evidence that the object code respects safety policies such as:

1- Instruction safety (restriction on instruction the component can execute),

2- Memory and type safety (the program does not access unauthorized memory locations and
the variables are of the right types),

3- System-call safety (restrictions on what system functions the component can invoke) and,

4- Partial correctness (restriction on the input/output behaviour of a component entry/exit
points.

Such compilers were built for a type-safe subset of the C programming language [Ne98, NL98] and
for Java [CLB00]. However, these projects are far from complete.

5.2 Certified compilation and Programming by contract
Programming by contract is a metaphor used for the first time by Bertrand Meyer [Me88] to
describe the relationship between a class and its clients. Programming by contract sees this
relationship as a formal agreement expressing each party's rights and obligations. At the heart of
programming by contract are the pre- and post-conditions attached to a function specifying the
contract between the client and the function (Figure 5.1). The pre-condition states that if the client
calls the function with input parameters satisfying the pre-condition, in return the function promises
to deliver the results satisfying the post-condition.

- 7 -

The use of pre- and post-conditions is defined, for example, for the programming language Eiffel
[Me92]. The capability to include assertions in a program was added to the Java programming
language [Jv] but it is more rudimentary than in Eiffel.

Is there any use to the assertion capabilities found in Eiffel and Java for the ASN.1 problem? We
could write ASN.1 coder and decoder in Java (or Eiffel) with pre- and post-conditions and design a
checker to verify that the pre and post conditions hold. What form the checker takes is an open
question. A full-fledged certifying (or verifying) compiler is still a research activity, however, good
progress was made [Ho03].

Figure 5.1 – Pre-and post-conditions for ASN.1 coder/decoder verification

6 Conclusion
ASN.1 is used in several important protocols deployed in commercial and non-commercial (for
example, military) environments; therefore it is very important to ensure that ASN.1
implementations are safe. A number of vulnerabilities related to ASN.1 were found in
implementations of SNMP and OpenSSL. Some vulnerabilities led to buffer overflows and caused
the devices to fail. SNMP uses ASN.1 to describe MIB objects and OpenSSL for security
certificates. It should be emphasized that the failures of SNMP and SSL implementations are
caused by incorrect software designs that lack also robustness and not because of any flaw of the
ASN.1 language.

Exploiting SNMP and OpenSSL vulnerabilities in an operating environment may lead to denials of
services, since legitimate users will be denied access to the services provided until the network
device recovers from the failure. Furthermore rogue entities may be tempted to mount active attacks
to exploit any potential vulnerability.

Protocol implementations are part of a large and complex process known as protocol engineering;
usually this process is not rigorously followed because of lack of expert resources, limited time and
funding, even in large organizations.

Pre-condition
Properties about the input that hold

when the function is called

Post-condition
Properties about the output that the
function guarantees to hold when it

returns

Function (coder or decoder)

Pre-condition
Properties about the input that hold

when the function is called

Pre-condition
Properties about the input that hold

when the function is called

Post-condition
Properties about the output that the
function guarantees to hold when it

returns

Function (coder or decoder)Function (coder or decoder)

- 8 -

Formal verification of protocol (and software) implementations is still difficult to conduct,
especially with large-scale implementations. Checking the correctness of ASN.1 coders and
decoders and ASN.1 compilers with assertions as pre- and post-conditions is a promising approach
but it is still a challenge. The objective of this contribution is to create interest among researchers,
developers, tool builders and vendors alike to design ASN.1 tools that ensure that ASN.1
implementations are safe to deploy.

7 References
[CERT1] CERT vulnerability note VU#854306, Multiple vulnerabilities in SNMPv1 request

handling, http://www.kb.cert.org/vuls/id/854306.

[CERT2] CERT vulnerability note VU#107186, Multiple vulnerabilities in SNMPv1 trap
handling, http://www.kb.cert.org/vuls/id/107186.

[CERT3] CERT vulnerability note VU#748355, ASN.1 parsing errors exist in
implementations of SSL, TLS, S/MIME, PKCS#7 routines,
http://www.kb.cert.org/vuls/id/748355.

[CLB00] Christopher Colby, Peter Lee, et. al., A certifying compiler for Java, ACM Sigplan
Conference on programming language design and implementation 2000.

[Ho03] Tony Hoare, The verifying compiler: A grand challenge for computing research
Journal of the ACM, Vol. 50, No. 1, January 2003, pp. 63-69.

[Jv] Programming with assertions,
http://java.sun.com/j2se/1.4.1/docs/guide/lang/assert.html#usage.

[Ko99] Dexter Kozen, Language-based Security, in Proc. Mathematical Foundations of
Computer Systems, 1999, vol. 1672 of LNCS, pp. 284-298, Springer-Verlag.

[McM00] Gary McGraw, Greg Morrissett, Attacking malicious code, IEEE software vol. 17,
No. 5, September/October 2000, pp. 33-41.

[Me88] Bertrand Meyer, Object-oriented software construction, Prentice-Hall, 1988.

[Me92] Bertrand Meyer, Eiffel the language, Prentice-Hall, 1992.

[OSSL] http://www.openssl.org/.

[PROTOS] http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1/.

[RFC1067] IETF RFC 1067, A simple network management protocol, August 1988.

[RFC1155] IETF RFC 1155, Structure and identification of management information for
TCP/IP-based internets, May 1990.

[RFC1156] IETF RFC 1156, Management Information base for network management of
TCP/IP-based internets, May 1990.

[SMH] Fred B. Schneider, Greg Morrissett, Robert Harper, A Language-based approach to
Security, Dagsthul 10th Anniversary volume, 2000.

[X509] ITU-T Recommendation X.500, Information technology – Open Systems
Interconnection, The Directory: Public-key and attribute certificate frameworks.

http://www.kb.cert.org/vuls/id/854306
http://www.kb.cert.org/vuls/id/107186
http://www.kb.cert.org/vuls/id/748355
http://java.sun.com/j2se/1.4.1/docs/guide/lang/assert.html#usage
http://www.openssl.org/
http://www.ee.oulu.fi/research/ouspg/protos/testing/c06/snmpv1/

