Question 1/10 - Description techniques for GII interfaces��

Type:��Background Questions

Reason for the Question��Advanced Information Infrastructures (II) are evolving rapidly on a global (GII) and regional scale (for example NII and EII). These infrastructures can utilize broadband and other technologies to deliver services originating from both the area of information processing and from the area of telecommunications. The success of these II depends critically on the interworking of a number of different elements provided by different actors. Consequently it will be difficult to define precisely the borders between public telecommunications networks and other interconnected networks.

The dynamic nature of the GII environment dictates that only some of the necessary interworking standards should be defined in standardization bodies such as ITU-T. However, some interfaces need to be formally standardized in order to guarantee a fast growth and an open environment for the GII. Some of the interfaces standardized by ITU-T for the GII will be interworking interfaces between network elements (implemented by protocols), but a large number of the standardized interfaces will be between modules (hardware and software) within network elements.

Descriptions of interfaces between modules have many characteristics. These depend to some extent on how the modules are implemented (for example hardware or software). Functional and operational characteristics are less implementation dependent, and can be expressed in a more implementation independent way. Successful interworking of systems can only be assured by the use of well-defined techniques. To determine from interface descriptions if two or more modules can interwork successfully, will be much simpler if the interfaces are described using similar or the same techniques.

A coordinated effort to minimize the divergence between the operational descriptions of different interfaces will have benefits in technical quality and cost effectiveness to the benefit of all parties. This question suggests an initial study of these issues. A background study of not more than 24 months is proposed, that may lead to a further Question resulting in Recommendations.

Question��What are the needs for description techniques for interfaces to be standardized by ITU-T for the GII, and how can the description of interfaces across different studies related to GII be kept uniform?

Task Objectives:��·	Provide contributions to JRG-GII on the interface description issues related to the identification of interfaces for the GII (3Q97).

·	Collect requirements on techniques for the description of these interfaces (3Q97).

·	Report on the effectiveness of techniques and need for new approaches (1Q98).

·	(Optionally) Draft a Question leading to new Recommendation(s) for description techniques for interfaces (1Q98).

Relationships��·	JRG-GII studies on GII in individual Study Groups.

·	Work in other bodies on Information Infrastructure as well as initiatives to support information services across wide area networks.

·	Interface description techniques such as OMG IDL and the proposed new Question "Object definition language".

Question 2/10 - ITU-T object definition language��

Type:��Question should lead to a Recommendation

Reason for the Question��ISO/IEC is currently in the process of standardizing OMG IDL (Object Management Group Interface Definition Language) as the interface description language for Open Distributed Processing - ODP (ISO/IEC DIS 14750). OMG IDL features essential for telecommunication are currently in various stages of development. For example:

1) Support for stream (continuous) communication and the notion of stream interfaces (i.e. interfaces which take part in continuous information exchange between objects) is the subject of an RFP (Request For Proposal) currently being drafted in the telecommunications domain task force of the OMG.

2) QoS attributes can be grouped into two types: first, QoS of stream connections, which will be dealt with in the RFP mentioned above, and second, QoS of the ORB (Object Request Broker) and object implementations, which is currently being studied by the OMG real time special interest group with the intention of drafting an RFP. QoS attributes are important especially for setting up multimedia connections in a telecommunication environment.

3) Support for objects with multiple interfaces and composition of objects is the subject of a current OMG RFP.

4) The description of the behaviour of interfaces and objects. OMG welcomes suggestions on this topic which may trigger a new OMG RFP.

TINA-C has defined an Object Definition Language (ODL) to support computational specifications of telecommunications systems. This is an extension of OMG IDL, with additions to support the concepts described above. ODL is intended to be a strict superset of OMG IDL.

Since OMG IDL features considered important for the development of telecommunication applications are still being developed, the telecommunication standardization bodies should take an active role in identifying and defining the extensions that are necessary to the telecommunication community. ITU-T could consider ODL as a starting point for the work on this Question.

Work on language maintenance in other study Questions may include work on language bindings to OMG IDL. Such work should be done in connection with the work on this Question.

Questions��Which activities should be done within ITU-T in order to influence the OMG IDL with requirements from the telecommunications applications domain?

Could a future version of OMG IDL be recommended by the ITU-T as an object definition language for telecommunications systems?

Task objectives��·	Identification of extensions (in addition to the ones mentioned in this Question) to OMG IDL. Target date: 2Q97.

·	Evaluation of the ODL extensions to OMG IDL. Target date: 2Q97.

·	Evaluation of possible integration of OMG IDL with existing techniques (e.g. SDL and ASN.1). Target date: 2Q97.

·	Recommendation on Object Definition Language. Target date: 2Q98.

·	Methodology guidelines for using Object Definition Language. Target date: 2Q98.

·	If sufficient support is given, work should be accelerated further than indicated here.

Relationships��This activity is related to:

– Study Group 7 - Open Distributed Processing.

– ISO/IEC JTC 1/SC 21/WG 7 - ODP standardization of OMG IDL.

– TINA-C - Object Definition Language.

– OMG IDL. The text of this Question has been drafted in collaboration with OMG. OMG is the main external liaison contact for this Question.

"Whereas the overall responsibility of Recommendations related to ODP in ITU is with SG 7, this Question contributes the language expertise of SG 10. This study will be harmonized with any progress on IDL in SG 7 to ensure a joint position from ITU towards the ODP activities of ISO/IEC JTC 1."

Question 3/10 - Software platforms and middlewares for the telecom domain��

Type:��Question should lead to Recommendations and supplements

Reason for the Question��With the rapid advances in the communications technology, today’s telecommunications networks are becoming intelligent and provide opportunities for offering a host of advanced services.

Because of technological complexities and cost considerations, providers and customers are looking for ways to improve cost-effectiveness in the operation, administration and maintenance of their network and services.

Greater demands for faster development, increased customization and multivendor support are placed on the network and service management systems to help providers and customers achieve the cost-effectiveness.

A key aspect of network and service management systems development is the availability of a software architecture to support distributed processing. A lot of activities are going on in the information processing area (e.g. A-Open, Open Software Foundation (OSF), Object Management Group (OMG)) that the telecom domain may adopt or influence.

Middleware is a class of generic software which enables cooperation of software applications to achieve a common goal. Middleware can support client-server applications, file transfer, message passing, remote procedure calls, distributed databases, transaction handling, object request broker and management of software - including their operations and permissions. Middleware can include directories of sources and sinks for data exchange, and generic software to provide this exchange between software applications. Middleware is especially of interest in the telecommunications area as it provides the glue between the applications and the underlying telecommunications infrastructure including call and service control.

The key issues are:

1) Telecom industries and network operators are facing an era of demand of great flexibility in the network and in the software to provide advanced services.

2) Cost effectiveness, multivendor environments and interoperability with legacy systems are required.

3) Provisioning and management of international and interorganizational services should be supported.

The information processing domain is very active to define open distributed computing environment frameworks and to provide open products. Therefore, work on this Question shall take into account the existing standards of the information processing domain and other relevant activities to support distributed applications.

Question��What Recommendations should apply:

1) in the area of software architectures and software platforms for the new generation of network and service management systems;

2) for the role of middleware in the software framework to support the Global Information Infrastructure.

Task objectives��1) Pre-study to assess the current state-of-the-art resulting in a report that identifies ongoing work of interest to ITU-T.This result should be provided to all other Study Groups that address specific application areas in this context including(4Q97).

2) Getting feedback from other Study Groups and working out a plan for further work based on common, fundamental issues not closely linked with a specific area (2Q98). This plan will be harmonized with SG 7 plans for populating the ODP reference model. The work plan must consider that applications-specific work needs to be done in the relevant Study Groups and that this is aligned with the overall considerations on the GII within ITU-T.

3) Recommendation on software architectures and techniques for identifying and specifying software interfaces relevant in the telecoms area (2Q99).

4) Recommendation on the role of middleware to support the GII (2Q99).

NOTE - Items 3) and 4) depend on the outcome of 1) and 2).

Relationship��

SG 7�Open Distributed Processing��SG 11�Intelligent Network studies��SG 13�Global Information Infrastructure��Other�Other standardization bodies and industrial consortia��

Question 4/10 - Software quality of telecommunication systems��

Type:��Continuation of Question 4/10 (1993-1996, revised text) - should lead to a Recommendation

Reason for the Question��The first objective of Question 4/10 was to develop a generic Recommendation to assure quality assurance guidelines for telecommunication products. The quality activities considered at the beginning were envisaged to be applicable to the most current types of telecommunication software.

When the situation is considered objectively, it seems difficult to provide a Recommendation with generic quality assurance activities appropriate for all types of software and that can be applied to a specific telecommunication software with a basic tailoring.

Actually, two types of events in the field of telecommunications must be considered due to the development of technologies.

At first new products are or will be used in telecommunications based on concepts such as:

• IN, TMN, ATM, API.

Those new specific products require that we define particular activities to assure the software quality during the software life-cycle process. Those products implicate:

• particular problems;

• special technical requirements;

• specific considerations for the activities to implement for the development process;

• particular life-cycle process;

• particular methodologies to carry out the test;

• special quality parameters or measurements.

Secondly, the new technical procedures to develop the software require to revise the activities and tasks which can be or could be efficient to implement in order to assure the software quality and meet the objectives stated in the original Question 4. Among other things following aspects could be examined:

• rapid programming process;

• process with use or reuse of common modules;

• "re-sourcing" process or fast rebuild process;

• object oriented programming process;

• "incremental" process;

• prototyping process;

• active involvement of the acquirer in the development of a part of the software.

ITU-T should identify and define which activities and procedures could be considered and implemented for those new products and new development techniques in order to:

• provide suppliers with the means to demonstrate how the quality needs were built;

• enable acquirers to evaluate the process under which the needed quality was built into those telecommunication products;

• establish a common understanding between acquirer and supplier on what are the quality needs for those topics.

Questions��Which specific quality assurance activities should be recommended or tailored for specific telecommunication software and particular life-cycle process?

Task objectives��• Identification of specific telecommunication products or processes. Collect and review information on those products or processes. Expected completion: 4Q97.

• Evaluation of the application of the Z.410 Recommendation. Expected completion: 3Q98.

• Identification of possible new quality assurance activities. Expected completion: 4Q98.

• Establish methodology guidelines to define and implement those new quality assurance activities in the concerned part of the software life-cycle. Expected completion: 2Q99.

• Distribute final Recommendation. Expected completion: 3Q99.

Relationships��– ISO/TD 176 - Quality management and quality assurance.

– ISO/IEC JTC 1/SC 7 - Software engineering.

Question 5/10 - Specification of behaviour in GDMO��

Type:��Question should lead to Recommendations and supplements

Reason for the Question��GDMO lacks a notation for specifying behaviour. There are at least three reasons for describing behaviour of GDMO formally:

• assistance in conformance testing;

• making standards more precise;

• in order for implementors of management systems to know the effects of actions that are requested on managed objects;

• in order to derive managed object implementations.

Joint Coordination Group on TMN has recommended the combined use of GDMO and SDL for the behaviour specification. SDL is therefore a candidate.

Questions��Considering that there is a need for specifying behaviour for GDMO and that initial requirements have been formulated as listed in Annex A to this Question and the experience so far that GDMO cannot simply be mapped onto the current SDL,

What new Recommendation and changes to existing Recommendations, or other provisions are required for:

• specification of behaviour in GDMO;

• a combined use of GDMO and SDL based upon a behaviour specification in an SDL-like extension to GDMO;

• support of this combined use by integrated tools?

Task Objectives��• Draft an SDL-like behaviour specification formalism for GDMO and its implementation in SDL, and discuss this with relevant liaisons (2Q97).

• Identify eventual extensions and changes to SDL (4Q97).

• Produce a draft Recommendation on the combined use of GDMO and SDL, thereby involving relevant tool vendors and verifying the Recommendation and ensuring the support of the Recommendation by tools.

• Ensure that this draft Recommendation is accepted as common text between ISO and the ITU as an amendment to X.722.

Relationships��• Joint ITU-T/ISO work on including behaviour descriptions into GDMO (ISO/IEC JTC 1/SC� 21/WG 4). This collaboration with SC 21 will be done in cooperation with Study Group 7.

• Maintenance of GDMO.

• Maintenance (or integration with Z.100), as GDMO is based upon ASN.1.

• Work on combined use of SDL and other languages.

• Other efforts on specifying behaviour in GDMO.

Annex�(to Question 5/10)��

Requirements for the combined use of GDMO and SDL��The following list of requirements for the formalization of GDMO behaviour in general and specifically in SDL have been identified:

1) behaviour specification must be able to involve the sending and reception of requests, and not only express required relationships between attribute values;

2) behaviour specification must be on the premises of GDMO;

3) the GDMO requirement that behaviour for subclasses shall be extensions of the behaviour for the superclass shall be covered;

4 behaviour specifications in GDMO are fragmented and may therefore not be represented directly as e.g. procedures;

5) behaviour specification shall also be useful for specification of behaviour in General Relationship Model (GRM);

6) behaviour specification shall be useful for the derivation of GDMO object implementations, the GDMO behaviour part should include control structures and arithmetic and logical operators;

7) properties expressed by name binding and relations already specified in GDMO/GRM shall not be duplicated in the behaviour specification;

8) behaviour specification specified implicitly in ASN.1 types shall be covered, together with the implicit requirement (considering a formalization in SDL);

9) behaviour specification shall lend itself to an easy transfer to SDL.

Question 6/10 - Maintenance and support of SDL��

Type:��Continuation of Question 6/10 with revised text - should lead to Recommendations and supplements

Reason for the Question��SDL has become a mature language that is in use both within ITU-T itself, as well as in industry in the software development process. The language is being widely used and there is good tool support for the language. In the last study period, the new Recommendation Z.105 has been issued, which combines SDL and ASN.1, thus fulfilling a strong need of users. With the new Recommendation Z.106 on the Common Interchange Format, it has become possible to interchange specifications in SDL between different platforms without losing graphical information.

Combinations of SDL with other techniques are being discussed, such as the combination of SDL with GDMO or OMT. In some cases, tool support is available even though no official standard or Recommendation exists. The whole development has become much more market-driven.

Some minimum standardization remains necessary, as has been shown in the case of the Common Interchange Format, where a neutral standardization body is still required. The demands of the future will be much better met if user and market needs are catered for. In some cases it may be sufficient to just "rubber-stamp" de facto standards, if other activities from ITU-T Sector are needed. Also, the support of users remains important despite dwindling resources for such support from the member organizations. A separate Question of this Study Group on the fast development of protocol standards addresses this issue.

Comments in natural languages (such as French, English, Spanish, Arabic, Chinese and Russian) within SDL, which includes SDL combined with ASN.1, are very important to facilitate the widest use of documents, such as Recommendations using SDL. It is therefore important that SDL can support the use of many natural languages including those with non-Roman alphabets and the possibility to mix languages and writing systems in comments.

Question��What new Recommendation and changes to existing Recommendations, or other provisions are required:

1) for the release of a new Z.100 adapted to contemporary user requirements;

2) to resolve the open items from the last study period;

3) to support the use of SDL in new, emerging architectures and frameworks, such as ODP;

4) to allow the use of SDL in combination with other methods and languages;

5) for Z.110 maintenance;

6) for Z.105 maintenance or alternatively integration of Z.105 with a new version of Z.100;

7) for the maintenance of the methodology manual;

8) to allow different natural languages and writing systems to be used with SDL to aid human understanding?

Task objectives��1) Maintain a master list of corrections of the current version of �Z.100 (1996).

2) Produce a formal basis for the new Recommendation on SDL, thereby placing emphasis on ease of use and easy maintainability by 1999.

3) The continued study of new uses of SDL, especially in conjunction with other languages, such as GDMO and IDL, for example in the domains of Open Distributed Processing (ODP), TMN and IN.

4) Issue a new version of Z.100 in 2000. The direction of the effort should be towards simplification, both by decommitting non-used features of SDL and by combining similar concepts of the language. A new formal definition of SDL should be more closely linked to the semantics of SDL, especially including object-orientation, and be easier to maintain. The existing Change Request Procedure will be taken as a starting point for the collection of user requests.

5) If not integrated into a new version of Z.100, issue a new revised version of Z.105 in 2000 using a Change Request Procedure similar to the one for Z.100.

6) Issue a new methodology manual after the revision of Z.100 by 2001.

Relationship��1) Joint ITU-T/ISO work on combining SDL and GDMO (ISO/IEC JTC 1/SC 21/WG 4).

2) Support of the use of SDL in the area of ODP (ISO/IEC JTC 1/SC 21).

3) Support of the use of SDL for methodology in Study Group 11 (ITU-T SG 11).

4) Support of the use of SDL for signalling and IN (ITU-T SG 11).

5) Maintenance of ASN.1 (ITU-T SG 7 and ISO/IEC JTC 1/SC 21).

6) Maintenance of Message Sequence Charts (MSC) (Question 9/10).

Annex A�(to Question 6/10)��

Guidelines for the maintenance of SDL��Introduction

The following guidelines are based on the guidelines attached to Q.8/X 1989-1992 and Q.6/10 1993-1996. Experience has shown such guidelines to be extremely useful.

Maintenance of the language will be at two levels and follow a twin-track procedure. One track will follow a more conservative approach to the language with strict adherence to the requirement of stability. This will allow minor upgrades of the language to be available in short intervals of time, thereby reflecting the immediate needs of users and tool vendors.

The second track will liaise with other ongoing activities, such as ITU-ODL, ODP and OMG work, and satisfy the needs of new users. This track must also fulfil the requirements stated in the new Question, such as the requirement for backwards compatibility.

Terminology

1) An error is an internal inconsistency within Z.100, Z.105 or Z.106.

2) An error correction is a change to the text or diagrams of Z.100, Z.105 or Z.106 which corrects an error in previous text or diagrams.

3) A textual correction is a change to text or diagrams of Z.100, Z.105 or Z.106 which corrects clerical or typographical errors.

4) An open item is a concern identified but not resolved. An open item may be identified either by a Change Request, or by agreement of the Study Group.

5) A deficiency is an issue identified where the syntax or semantics of SDL are not (clearly) defined by Z.100, Z.105 or Z.106.

6) A clarification is a change to the text or diagrams of Z.100, Z.105 or Z.106 which clarifies deficiencies in previous text or diagrams which could be ambiguously understood without the clarification. The clarification should attempt to make Z.100, Z.105 and Z.106 correspond to the syntax and semantics of SDL as understood by the Study Group.

7) A modification is a change to the text or diagrams of Z.100, Z.105 or Z.106 which changes the syntax or semantics of SDL. These will be classified into the subcategories minor modifications and major modifications.

8) An extension is a new feature, which must not change the syntax or semantics of features defined in Z.100, Z.105 or Z.106. These will be classified into the subcategories minor extensions and major extensions.

9) Minor modifications and extensions require minimal changes to the language definition and are widely accepted as easily implementable in existing tools.

Rules for track-one maintenance

1) When an error or a deficiency is detected in Z.100, Z.105 or Z.106, it must be corrected or clarified. The correction of an error should imply as small as possible a change. Error corrections and clarifications are put into Master lists of Changes to Z.100, Z.105 and Z.106 and come into effect immediately.

2) Except for error corrections and resolution of open items from the 1993-1996 study period, modifications and extensions to SDL may only be considered as the result of a request for change by a substantial user community.A request for change should be followed by investigation by the Study Group in collaboration with representatives of the user group, so that the need and benefit is clearly established and it is certain that an existing feature of SDL is unsuitable.

3) Minor modifications and extensions that reflect a strong user need are put into the Master lists of Changes and come into effect immediately.

4) Modifications and extensions not resulting from error correction should be widely publicized and the views of users and tool-makers canvassed before the change is adopted. Unless there are special circumstances requiring such changes to be implemented as soon as possible in Addenda to the Recommendations, such changes will not be recommended until Z.100, Z.105 or Z.106 are revised.

5) Until a revised Z.100, Z.105 or Z.106 is published a Master lists of Changes to Z.100, Z.105 and Z.106 will be maintained covering Z.100, Z.105 or Z.106 and all annexes except the formal definition. Appendices will be issued as decided by the Study Group. To ensure effective distribution of the Master lists of Changes to Z.100, Z.105 and Z.106, it will be published as COM Reports and on appropriate electronic forms such as WWW sites.

6) The maintenance of SDL should be harmonized as much as possible with the requirements of ITU Object Definition Language and complementing languages like MSC, TTCN, GDMO, etc.

7) The next revision of SDL shall be backwards compatible with SDL 92 in the sense that current investments made in SDL specifications, SDL designs and SDL tools are protected. Any deviations from backward compatibility must be motivated by requirements from the user community and by harmonization with other languages as discussed above. The deviations, and means to minimize their negative effects, shall be documented in a Transition Manual for the revised language.

Rules for track-two maintenance

1) All changes shall reflect strong user needs and be aimed at opening the use of the language to new markets that are not fulfilled by the existing version of SDL.

2) The new version of SDL shall follow the SDL philosophy of communicating extended finite-state machines and have the same look-and-feel as earlier SDL versions.

3) The new version of SDL shall look into appropriate ways of modifying the language to be able to be combined easily with other techniques, such as GDMO, OMG-IDL, ITU-ODL, MSC and TTCN.

4) Concepts shall only be removed from SDL if these concepts would not be used even if they were appropriately strengthened.

5) The intention is to produce a new revision of SDL consistent with rule 7 of track-one unless some unresolvable conflict of requirements exists.

Annex B�(to Question 6/10)��

List of open items for the Recommendation Z.100��Introduction

To assist the maintenance of SDL, a list of open and closed items is maintained to direct ongoing work for Recommendation Z.100. This document lists the open and closed items.

Open items

An open item is a concern identified but not yet resolved. An open item may be identified either by a Change Request, or by agreement of the Study Group as requiring further study.

1) Handling of error in the data model.

2) Extended alphabet for SDL.

3) Channels and signal routes looped back to the same process.

4) Support of union data sorts ("data types").

5) Support of optional values in data sorts ("data types").

6) Built-in data type conversion feature.

7) Renaming literals and operators of parameterized data sort ("data type").

8) Extension of operator set for strings (e.g. rtail, tail).

9) Allow algorithmic operators with external data.

10) Extension of operator set for Pid (e.g. operator takes to get a Pid from a PId set).

11) Description terms and expressions by the same syntax.

12) Virtual and polymorphic sort types ("data types")

13) Operators returning sets of values (multivalued operators).

14) Procedures with multiple exits and acting like states.

Annex C�(to Question 6/10)��

Open item of extending SDL to include exception handling��I. Background

This concept was discussed for inclusion in the Addendum 1 to Z.100. It was considered very important to add this concept to the language. Because some additional technical discussion was considered necessary, this has not been included but added as a priority item for inclusion in the next revision of SDL. This document contains the current text of this extension.

TABLE OF CONTENTS

1 Motivation for the extension

2 Solution

3 New constructs for exception handling

3.1 Exception

3.2 Exception state

3.3 On-exception

3.4 Catch

3.5 Resume

3.6 Cause

3.7 Miscellaneous

4 Other changes implied by exception handling

4.1 Extensions to graphs and graph nodes of SDL-92

4.2 Extensions to timers

1 Motivation for the extension

One of the obstacles for using SDL directly as a programming language is the lack of exception handling. A new version of SDL should therefore support a powerful mechanism for invoking and handling exceptions.

Related to exception handling is the ability to catch time-out during remote procedure calls. The ability to time-out is very important in distributed systems where you never can be certain about the status of the entity you are communicating with. With the introduction of exceptions, a mechanism for time-out is implied as time-out easily can be expressed by mentioning timer signals in the handler.

2 Solution

The concept has the following properties:

Exceptions are special signals.

• Actions with dynamic behaviour can have an exception handler (i.e. an extra input-like transition) attached. Such actions are create, call, and output plus other of those which include expression evaluation. Associating it to the start symbol could mean handling exceptions caused in any symbol of the graph.

• A new action/operator cause (<exception signal identifier>(...)) is used for causing an exception. A caused exception will be caught by the associated handler, if any. If no handler is specified, the exception will automatically be passed to the calling scope. If there is no handler in any of the calling scopes, the future behaviour is undefined.

3 New constructs for exception handling

3.1 Exception

Abstract grammar

Exception-definition :: Exception-name

Sort-reference-identifier*

Exception-name = Name

Exception-identifier = Identifier

Concrete textual grammar

<exception definition> ::=

exception

<exception definition item>

{ , <exception definition item> }* <end>

<exception definition item> ::=

<exception name> [<sort list>]

Semantics

An exception instance denotes that an exceptional situation (typically an error situation) has occurred while interpreting a system. An exception instance is created implicitly by the underlying system or explicitly by a Cause-node, and the exception instance ceases to exist if it is caught by a Catch-node or Else-catch-node.

Creation of an exception instance breaks the normal flow of control within a process, service or procedure. If an exception instance is created within a called procedure and is not caught there, the procedure terminates, and the exception instance propagates (dynamically) outwards to the caller and is treated as if it were created at the place of the procedure call. This rule also holds for calls of remote procedures; in this case the exception instance propagates back to the calling process instance rather than outwards within the called process instance.

If an exception instance is created within a process or service instance and is not caught there, the further behaviour of the system is undefined.

A number of exception types are predefined within the package Predefined. These exception types are the ones which the underlying system is able to create instances of implicitly (however, see also [[section number of "Extensions to timers"]]). It is allowed for the specifier to create instances of these exception types explicitly.

NOTE - An exception instance may well exist outside the scope unit where the corresponding exception type is defined. For example, a procedure may declare an exception type locally and create an instance of it without catching this instance. The only way for the caller to catch such an instance is by means of an Else-catch-node.

3.2 Exception state

Abstract grammar

Exception-state-node :: Exception-state-name

[On-exception]

Catch-node-set

Else-catch-node

Exception-state-name = Name

The Exception-state-nodes within a given Process-graph, Service-graph or Procedure-graph must all have different Exception-state-names.

The Exception-identifiers in the Catch-node-set must be distinct.

Concrete textual grammar

<exception state> ::=

exceptionstate <exception state list> <end>

[<on-exception>]

{ <catch part> }*

[endexceptionstate [<exception state name>] <end>]

When the <exception state list> contains one <state name>, the <state name> represents an Exception-state-node. For each Exception-state-node, the Catch-node-set is represented by the <catch part>s containing <exception identifier>s in their <exception stimulus list>s. For each Exception-state-node, the Else-catch-node is represented by an explicit or implicit <catch part> in which the <exception stimulus list> is an <asterisk exception stimulus list>.

An <exception state> may contain at most one <asterisk exception stimulus list>.

An exception state may have at most one on-exception associated.

Concrete graphical grammar

<exception state area> ::=

{ <exception state symbol> contains <exception state list> }

is associated with

{ [<on-exception association area>]

<exception state body area> }

<exception state symbol> ::=

�includepicture \d "C:\\Contrib\\Image7.gif" * MERGEFORMATINET �Error! Not a valid filename.�

<exception state body area> ::=

{ <catch association area> }*

<catch association area> ::=

<solid association symbol> is connected to <catch area>

An <exception state area> represents one or more Exception-state-nodes.

The <solid association symbol>s originating from an <exception state symbol> may have a common originating path.

An <exception state area> must contain <state name> if it coincides with an <on-exception area>.

Semantics

An exception state represents a particular condition in which a process, service or procedure may catch an exception instance that it has created. Catching an exception instance results in a transition.

If the Exception-state-node has no Catch-node with the same Exception-identifier as the exception instance, the exception instance is caught by the Else-catch-node.

Model

When the <exception state list> of a certain <exception state> contains more than one <state name>, a copy of the <exception state> is created for each such <state name>. Then the <exception state> is replaced by these copies.

Asterisk state and multiple appearance of state are handled in the same way for exception states as for normal states.

After these transformations, if an <exception state> does not contain an explicit asterisk catch transition, the following implicit one is added:

catch *;

cause -;

NOTE - An <asterisk state list> in a <state> does not cover exception states. An <asterisk state list> in an <exception state> does not cover normal states.

3.3 On-exception

Abstract grammar

On-exception :: Exception-state-name

Concrete textual grammar

<on-exception> ::=

onexception <exception state name> <end>

Concrete graphical grammar

<on-exception association area> ::=

<solid on-exception association symbol> is followed by

{ <on-exception area> |

<exception state area> |

<exception state body area> }

<solid on-exception association symbol> ::=

�includepicture \d "C:\\Contrib\\Image8.gif" * MERGEFORMATINET �Error! Not a valid filename.�

<on-exception area> ::=

<exception state symbol> contains <exception state name>

If an <exception state body area> directly follows a <solid on-exception association symbol> in an <on-exception association area>, this is equivalent to inserting an <exception state symbol> with an implicit and unique exception state name.

Semantics

An on-exception indicates which exception state a process, service or procedure should enter if the process, service or procedure creates an exception instance. An on-exception is said to be active whenever it is able to react on creation of an exception instance.

Several on-exceptions may be active at the same time; an on-exception is pushed onto a stack of active on-exceptions when it is activated (i.e., becomes active), and it is popped from the stack when it is deactivated (i.e., ceases to be active). An on-exception is activated when control enters the construct it is associated to; an on-exception is deactivated when control leaves the construct it is associated to, or the on-exception reacts on an exception instance created by the construct.

An on-exception may be associated to a whole process/service/procedure graph, a start transition, a state, an exception state, a state trigger (e.g., input or catch) with its associated transition, a transition action (most kinds of), or a transition terminator (some kinds of). The following text describes for each case when the on-exception is activated and deactivated, and what happens with the on-exception in subtypes.

• Whole process/service/procedure graph

The on-exception is activated when the process, service or procedure instance starts executing the graph; the on-exception is deactivated when the process, service or procedure instance ceases to exist, or when the on-exception reacts on creation of an exception instance. The on-exception is reactivated if the catch transition handling the exception instance executes a nextstate node.

If a subtype inherits the on-exception from a supertype, the on-exception also covers start transitions and (normal) states added or redefined in the subtype.

• Start transition

The on-exception is activated when the process, service or procedure starts executing the start transition; the on-exception is deactivated when the process, service or procedure executes a nextstate node or ceases to exist, or when the on-exception reacts on creation of an exception instance.

If the start transition is redefined in a subtype, the on-exception does not cover the redefined start transition.

• State

The on-exception is activated whenever the process, service or procedure enters the given state; the on-exception is deactivated when the process, service or procedure executes a nextstate node or ceases to exist, or when the on-exception reacts on creation of an exception instance.

If a subtype inherits the state from a supertype, the on-exception also covers state triggers (and associated transitions) added or redefined in the subtype.

• Exception state

The on-exception is activated whenever the process, service or procedure enters the given exception state; the on-exception is deactivated when the process, service or procedure executes a nextstate node, a resume node (i.e., a Resume-node within this Exception-state-node) or ceases to exist, or when the on-exception reacts on creation of an exception instance (i.e., a new one).

If a subtype inherits the exception state from a supertype, the on-exception also covers catch transitions added or redefined in the subtype.

• State trigger

The on-exception is activated whenever the process, service or procedure starts executing the given state-trigger node; the on-exception is deactivated when the process, service or procedure executes a nextstate node, a resume node (i.e., a Resume-node within the abstract counterpart of this state-trigger transition) or ceases to exist, or when the on-exception reacts on creation of an exception instance.

If the state-trigger transition is redefined in a subtype, the on-exception does not cover the redefined state-trigger transition.

• Decision

The on-exception is activated whenever the process, service or procedure starts executing the given decision (however, see [[section title of "Extensions to graphs and graph nodes"]], Model); the on-exception is deactivated when the process, service or procedure executes a nextstate node, a resume node (i.e., a Resume-node within this Decision-node) or ceases to exist, or when the on-exception reacts on creation of an exception instance.

• Transition action (except decision)

The on-exception is activated whenever the process, service or procedure starts executing the given action; the on-exception is deactivated when the process, service or procedure ends executing the action, or when the on-exception reacts on creation of an exception instance.

• Transition terminator (except decision)

The on-exception is activated whenever the process, service or procedure starts executing the given terminator; the on-exception is deactivated when the process, service or procedure ends executing the terminator, or when the on-exception reacts on creation of an exception instance.

NOTE - The rules above imply that in some cases, several on-exceptions may be deactivated at the same time. For example, if an on-exception for a state and one for an associated input transition are active at the same time, both on-exceptions are deactivated when the input transition executes a nextstate node.

3.4 Catch

Abstract grammar

Catch-node :: Exception-identifier

[Variable-identifier]*

[On-exception]

Transition

Else-catch-node :: [On-exception]

Transition

The length of the [Variable-identifier]* in Catch-node must be the same as the number of Sort-reference-identifiers in the Exception-definition denoted by the Exception-identifier.

The sorts of the variables must correspond by position to the sorts of the values that can be carried by the exception.

Concrete textual grammar

<catch part> ::=

catch [<virtuality>] <exception stimulus list> <end>

[<on-exception>]

<transition>

<exception stimulus list> ::=

<exception stimulus> { , <exception stimulus> }* |

<asterisk exception stimulus list>

<exception stimulus> ::=

<exception identifier> [<input variable list>]

<input variable list> ::=

([<variable>] { , [<variable>] }*)

<asterisk exception stimulus list> ::=

*

When the <exception stimulus list> contains one <exception stimulus>, the <catch part> represents a Catch-node. A <catch part> with <asterisk exception stimulus list> represents an Else-catch-node.

Commas may be omitted after the last <variable> in <input variable list> of <exception stimulus>.

Concrete graphical grammar

<catch area> ::=

{ <catch symbol> contains { [<virtuality>] <exception stimulus list> } }

is associated with [<on-exception association area>]

is followed by <transition area>

<catch symbol> ::=

�includepicture \d "C:\\Contrib\\Image9.gif" * MERGEFORMATINET �Error! Not a valid filename.�

The path to <transition area> in <catch area> must originate in <catch symbol>.

A <catch area> whose <exception stimulus list> contains one <exception stimulus>, corresponds to one Catch-node. Each of the <exception identifier>s contained in a <catch symbol> gives the name of one of the Catch-nodes which this <catch symbol> represents. A <catch area> with <asterisk exception stimulus list> represents an Else-catch-node.

Semantics

A catch allows to consume an instance of the specified exception type. The consumption of the exception instance makes the information conveyed by the exception instance available to the process, service or procedure. The variables mentioned in the catch are assigned the values conveyed by the consumed exception instance.

The values are assigned to the variables from left to right. If no variable is mentioned for a given parameter position in the exception, the value at this position is discarded. If no value is associated with a given parameter position, the corresponding variable becomes "undefined".

The sender expression is given the same value as the self expression.

Model

When the <exception stimulus list> of a certain <catch part> contains more than one <exception stimulus>, a copy of the <catch part> is created for each <exception stimulus>. Then the <catch part> is replaced by these copies.

When one or more of the <variable>s of a certain <exception stimulus> are <indexed variables> or <field variables>, all the <variable>s are replaced by unique, new, implicitly declared <variable identifier>s. Immediately before the <transition> of the <catch part>, a <task> is inserted which in its <task body> contains an <assignment statement> for each of the <variable>s, assigning the value of the corresponding new variable to the <variable>. The values are assigned in the order from left to right of the list of <variable>s. This <task> becomes the first <action> in the <transition>.

A <catch part> or <catch area> which contains <virtuality> is called a virtual catch transition. Virtual catch transitions are handled in the same way as other kinds of virtual state-trigger transition.

3.5 Resume

Abstract grammar

Resume-node :: ()

A Resume-node may only occur within a Transition which (directly or through other Transitions) occurs within a Catch-node or Else-catch-node. A Resume-node must not occur in an Exception-state-node whose Exception-state-name is mentioned in an On-exception of anything else than a Graph-node.

Concrete textual grammar

<resume> ::=

resume

Concrete graphical grammar

<resume symbol> ::=

�includepicture \d "C:\\Contrib\\Image10.gif" * MERGEFORMATINET �Error! Not a valid filename.�

Semantics

A Resume-node causes control to return to the point immediately after the action which caused the containing Catch-node or Else-catch-node to be executed. The sender expression gets the value it had immediately before creation of the exception instance which was caught by the Catch-node or Else-catch-node.

3.6 Cause

Abstract grammar

Cause-node :: (Exception-identifier | REPEAT)

[Expression]*

A Cause-node with REPEAT may only occur within a Transition which (directly or through other Transitions) occurs within a Catch-node or Else-catch-node.

If a Cause-node contains Exception-identifier, the length of [Expression]* must be the same as the number of Sort-reference-identifiers in the Exception-definition denoted by the Exception-identifier. If a Cause-node contains REPEAT, the length of [Expression]* is zero.

Each Expression must have the same sort as the corresponding (by position) Sort-reference-identifier in the Exception-definition.

Concrete textual grammar

<cause> ::=

cause <cause body>

<cause body> ::=

<exception identifier> [<actual parameters>] |

<dash cause>

<dash cause> ::=

-

A <cause> with <exception identifier> represents a Cause-node with Exception-identifier. A <cause> with <dash cause> represents a Cause-node with REPEAT.

Concrete graphical grammar

<cause area> ::=

<cause symbol> contains <cause body>

<cause symbol> ::=

�includepicture \d "C:\\Contrib\\Image11.gif" * MERGEFORMATINET �Error! Not a valid filename.�

Semantics

Execution of a Cause-node creates an exception instance. The values conveyed by the exception instance are the values of the actual parameters of the cause. If an Expression in [Expression]* is "omitted" (the corresponding <expression> in <actual parameters> is omitted), no value is conveyed with the corresponding place of the exception instance - i.e., the corresponding place is "undefined".

Execution of a Cause-node with REPEAT creates again the exception instance which was caught by the (directly or indirectly) containing Catch-node or Else-catch-node.

If a syntype is specified in the exception definition, and an expression is specified in the cause, the range check defined in Z.100, 5.3.1.9, is applied to the expression.

Model

A cause may be transformed to a list of actions (possibly containing implicit states) + a new cause according to the model (of, e.g., expressions) in Z.100. Then the model for transition terminators in [[section number of "Extensions to graphs and graph nodes of SDL-92"]], Model, applies.

3.7 Miscellaneous

Exception types belong to the same entity kind as signal and timer types.

The graphical symbols for exception handling may be mirrored horizontally, vertically, or both.

A <solid on-exception association symbol> may consist of several horizontal and vertical line segments. The "lightning part" of a <solid on-exception association symbol> should be drawn close to the symbol (if any) that the containing <on-exception association area> is attached to.

4 Other changes implied by exception handling

4.1 Extensions to graphs and graph nodes of SDL-92

Abstract grammar

The following abstract non-terminals of SDL-92 are extended with the field [On-exception]: Process-graph, Process-start-node, Service-graph, Service-start-node, Procedure-graph, Procedure-start-node, State-node, Input-node, Spontaneous-transition, Graph-node, Decision-node. Within each of these non-terminals, the field is placed such that the constituents of the abstract non-terminal occur in the same order as the corresponding constituents of the concrete textual non-terminal. For example, [On-exception] becomes the first constituent of Process-graph, and the third constituent of Input-node.

The grammar rule for Terminator is changed to:

Terminator :: (Nextstate-node |

Stop-node |

Return-node |

Resume-node |

Cause-node)

[On-exception]

Concrete textual grammar

In the grammar rules for <process definition>, <service definition>, <procedure definition>, <process type definition> and <service type definition>, the constructs [<... body>] are replaced by <... body>.

The non-terminals <process body> and <procedure body> are changed to:

<process body> ::=

[<on-exception>] <start> { <state> | <exception state> | <free action> }*

<procedure body> ::=

[<on-exception>] [<start>] { <state> | <exception state> | <free action> }*

In the grammar rule for <operator definition>, the construct <start> { <free action> }* is replaced by <operator body>, and <operator body> is defined as:

<operator body> ::=

[<on-exception>] <start> { <free action> | <exception state> }*

The following non-terminals are extended with the sub-construct [<on-exception>]: <start>, <state>, <input part>, <spontaneous transition>, <decision>, <priority input>, <continuous signal>. In each of these non-terminals (except <continuous signal>), the [<on-exception>] occurs immediately after the first <end>. In <continuous signal>, the [<on-exception>] occurs immediately after the construct [priority <Integer literal name> <end>].

[[NOTE - The paragraph immediately above assumes that the changes which are a result of introducing remote procedures in signal lists, have already been applied to the text of Z.100. (That is, the changes concerning <input part>, <basic input part> and <remote procedure input transition> in Z.100.)]]

A given state may have at most one on-exception associated.

The grammar rules for the non-terminals <action statement>, <action>, <terminator statement> and <terminator> are replaced by:

<action statement> ::=

[<label>]

{ <action 1> <end> [<on-exception>] |

<action 2> <end> }

<action 1> ::=

<task> |

<output> |

<create request> |

<set> |

<reset> |

<export> |

<procedure call> |

<remote procedure call>

<action 2> ::=

<decision> |

<transition option>

<terminator statement> ::=

[<label>]

{ <terminator 1> <end> [<on-exception>] |

<terminator 2> <end> }

<terminator 1> ::=

<return> |

<cause>

<terminator 2> ::=

<nextstate> |

<join> |

<stop> |

<resume>

Concrete graphical grammar

The non-terminals <process graph area>, <procedure graph area> and <process type graph area> are changed to:

<process graph area> ::=

[<on-exception association area>] <start area>

{ <state area> | <exception state area> | <in-connector area> }*

<procedure graph area> ::=

[<on-exception association area>] [<procedure start area>]

{ <state area> | <exception state area> | <in-connector area> }*

<process type graph area> ::=

[<on-exception association area>] [<start area>]

{ <state area> | <exception state area> | <in-connector area> }*

In the grammar rule for <operator diagram>, the construct <procedure start symbol> is followed by <transition area> { <in-connector area> }* is replaced by <operator graph area>, and <operator graph area> is defined as:

<operator graph area> ::=

[<on-exception association area>] <procedure start area>

{ <in-connector area> | <exception state area> }*

The following non-terminals are extended with the sub-construct [<on-exception association area>]: <procedure start area>, �<start area>, <state area>, <input area>, <spontaneous transition area>, <task area>, <output area>, <create request area>, �<set area>, <reset area>, <export area>, <procedure call area>, <remote procedure call area>, <return area>, <decision area>, <priority input area>, <continuous signal area>. Within each of these non-terminals, the [<on-exception association area>] is attached to the "main" symbol - for example, in <state area> the construct is attached to the <state symbol>, and in <input area> the construct is attached to the <input symbol>.

[[NOTE - The paragraph immediately above assumes that the changes which are a result of introducing remote procedures in signal lists, have already been applied to the text of Z.100. (That is, the changes concerning <input area>, <basic input area> and <remote procedure input area> in Z.100.)]]

Semantics

[[Section number of "On-exception"]] explains the semantics of associating on-exceptions to graphs and graph nodes.

In Z.100, 2.6.8.1, Semantics, the text ", with a resume" is added after "with a return".

Model

Transformation of transition actions and transition terminators: A transition action may be transformed to a list of actions (possibly containing implicit states) according to the transformation rules in Z.100. A transition terminator or decision may be transformed to a list of actions (possibly containing implicit states) + a new terminator or decision. Then the list of actions is encapsulated in a new, implicitly defined procedure X as follows (any implicit states in list of actions are handled as in Z.100 unless this Addendum states otherwise elsewhere):: A transition action may be transformed to a list of actions (possibly containing implicit states) according to the transformation rules in Z.100. A transition terminator or decision may be transformed to a list of actions (possibly containing implicit states) + a new terminator or decision. Then the list of actions is encapsulated in a new, implicitly defined procedure X as follows (any implicit states in list of actions are handled as in Z.100 unless this Addendum states otherwise elsewhere):

procedure X;

start;

list of actions;

return;

endprocedure;

In case of an action, the old action is replaced by a call to X. If an on-exception was associated to the old action, the on-exception is associated to the call to X.

In case of a terminator or decision, the old terminator or decision is replaced by a call to X, followed by the new terminator or decision. If an on-exception was associated to the old terminator or decision, the on-exception is associated to the call to X and to the new terminator or decision.

In case of a decision with an associated on-exception, knowledge is kept that the call to X + new decision is a result of transforming a decision.

No on-exception is associated to the <body> of X or to any part of this <body>.

Transformation of dash nextstates within exception states: The following rules apply immediately before dash nextstates are transformed according to Z.100:

• An <on-exception> within a <start> or associated to a whole <body> must not, directly or indirectly (through <on-exception>s within <exception state>s), lead to an <exception state> containing <dash nextstate>s.

• For each <state>, the following rule applies: The <on-exception>s within the <state> lead, directly or indirectly (through <on-exception>s within <exception state>s), to a certain set of <exception state>s. These <exception state>s are copied, and each new <exception state> gets a new, distinct <exception state name>. Then all <on-exception>s within the <state> and within the new <exception state>s are modified accordingly.

Those of the old exception states which have been made "unreachable" this way, are removed.

Now a given <exception state> containing <dash nextstate>s can be reached, directly or indirectly, from exactly one <state>. The <dash nextstate>s within each such <exception state> are replaced by the <state name> of this <state>.

Transformation of priority input, continuous signal, enabling condition, remote variable and remote procedure: The models of these facilities are modified as follows:

• Priority input

If an on-exception is associated to a state with priority input, the on-exception becomes associated to both of the states which result from applying the Z.100 model of priority input.

If an on-exception is associated to a priority input, the on-exception becomes associated to the corresponding, resulting normal input.

• Continuous signal

A new implicit state S and a new implicit signal type Continue are defined for each continuous signal. The following is inserted immediately before the decision corresponding to the continuous signal:

output Continue to self;

"wait" in state S, saving all other signals than Continue;

input Continue;

If an on-exception is associated to a state with continuous signals, the on-exception also becomes associated to all of the corresponding states S.

If an on-exception is associated to a continuous signal, the on-exception becomes associated to the corresponding decision.

• Enabling condition

For each decision (here called Di) introduced in step 2) of the Z.100 model of enabling conditions, a new implicit state Si and a new implicit signal type Continue-i are defined. Immediately before each decision Di, the following is inserted:

output Continue-i to self;

"wait" in state Si, saving all other signals than Continue-i;

input Continue-i;

If an on-exception is associated to a state with enabling conditions, the on-exception becomes associated to all Si and to all of the states resulting from Z.100, step 2).

If an on-exception is associated to a state trigger with an enabling condition, the on-exception becomes associated to all of the corresponding, resulting state triggers without enabling conditions, and to all of the corresponding decisions.

• Remote variable (imported and exported value)

A parameter of the predefined type Integer is added to the parameter list of each of the implicit signals xQUERY and xREPLY.

Importer

For each explicit or implicit <imported variable specification>, two implicit Integer variables n and newn are defined, and n is initialized to 0.

The SDL text in step a) of the Z.100 model is changed to the following (the via clause is only present if it is so in the original import expression):

task n:= n + 1;

output xQUERY(n) to destination via via-path;

wait in state xWAIT, saving all other signals;

input xREPLY(x,newn);

decision newn = n;

(True):

(False): nextstate xWAIT;

enddecision;

transition action which contained the <import expression>;

This SDL text is encapsulated in an implicit procedure, as described above under Transformation of transition actions and transition terminators. If transition action which contained the <import expression> is not an action, but a terminator, this terminator is instead placed after the call to the implicit procedure, as also described above under Transformation of transition actions and transition terminators.

Exporter

An implicit Integer variable n is defined for each <input part> added in step b) of the Z.100 model.

The SDL text of this <input part> is changed to:

input xQUERY(n);

output xREPLY(imcx,n) to sender;

nextstate the state containing this input;

• Remote procedure

A parameter of the predefined type Integer is added to the parameter list of the implicit signal pCALL. A parameter of the predefined type Integer and one of the predefined type Boolean are added to the parameter list of the implicit signal pREPLY.

In the requesting process, an implicit variable OK of the predefined sort Boolean is defined. For each explicit or implicit <imported procedure specification>, two implicit Integer variables n and newn are defined, and n is initialized to 0.

The SDL text in step a) of the Z.100 model is changed to the following (the via clause is only present if it is so in the original remote-procedure call):

task n:= n + 1;

output pCALL(apar,n) to destination via via-path;

wait in state pWAITe, saving all other signals;

input pREPLY(aINOUTpar,newn,OK);

decision newn = n;

(True):

(False): nextstate pWAITe;

enddecision;

decision OK;

(True):

(False): cause <<package Predefined>> ExceptionInServer;

enddecision;

This SDL text is encapsulated in an implicit procedure, as described above under Transformation of transition actions and transition terminators.

ExceptionInServer is a predefined exception type.

In the server process, an implicit exception state pEXC and an implicit Integer variable n are defined for each explicit or implicit <input part> being a remote-procedure input. Furthermore, there is one ivar variable for each such <input part>.

The SDL text for explicit remote-procedure inputs in step b) of the Z.100 model is changed to:

input pCALL(fpar,n);

task ivar:= sender;

call Proc(fpar);

onexception pEXC;

output pREPLY(fINOUTpar,n,True) to ivar;

transition;

The SDL text for implicit remote-procedure inputs in step b) of Z.100 is changed to the same, except that transition above is replaced by "nextstate the state containing this input".

The implicit exception states are defined as follows:

exceptionstate pEXC;

catch *;

output pREPLY(fINOUTpar,n,False) to ivar;

cause -;

If an on-exception is associated to a remote-procedure input, the on-exception becomes associated to the resulting signal input (not shown in the SDL text above).

Transformation of decisions with loops: Immediately before the specification is transformed to the abstract grammar according to Z.100, a <transition> T may still contain a <join> which leads back to a point in the same <transition>, or to a point in another <transition> T’ which (directly or through other <transition>s) contains T.

In the latter case, T is contained in a <decision> D which loops back to a point outside the <decision>, and the Transition corresponding to T’ will contain infinitely many nested copies of D. If an <on-exception> is associated to D, the corresponding On-exception only becomes associated to the outermost copy of D in T’ - no On-exception becomes associated to the other copies. Furthermore, if knowledge has been kept (as described above) that some of the preceding actions + D result from one or more transformations of the original decision, only the outermost copy of each of these actions gets the On-exception associated - no On-exceptions become associated to the other copies.

4.2 Extensions to timers

The specifier can specify that when a timer instance expires, the underlying system should create an exception instance instead of a signal instance.

Abstract Syntax

The grammar rule for Set-node is changed to:

Set-node :: [EXCEPTION]

Time-expression

Timer-identifier

Expression*

Concrete textual grammar

The grammar rule for <set> is changed to:

<set> ::=

set [exception] <set statement> { , <set statement> }*

Concrete graphical grammar

No graphical grammar rules are changed.

Semantics

If EXCEPTION is omitted from a Set-node, the timer instance behaves as described in Z.100. If EXCEPTION is specified, the underlying system creates an exception instance in the situations where the underlying system would otherwise have created a signal instance from the timer instance. This exception instance has the same name and the same parameter values as the corresponding timer instance.

If the exception instance is caught, the sender expression is given the same value as the self expression.

A Set-node without EXCEPTION is allowed to set a timer instance which has earlier been set by a Set-node with EXCEPTION, or the other way round. This holds regardless of whether the timer instance is still active when the Set-node is interpreted.

Model

When a <set> with multiple <set statement>s is transformed to a list of <set>s, the presence or absence of the keyword exception is copied to each new <set>.

Annex D�(to Question 6/10)��

Error corrections to Recommendation Z.105��Introduction

This document contains proposals for error corrections and a list of open items for Z.105.

List of error corrections

The following lists the corrections of errors detected since the Recommendation Z.105 was issued by ITU-T in 1995.

·	Section 4.2.3 Sequenceof, page 16 (Example)

·	Section 4.2.4 Choice, rule for <choice>

·	Annex A, newtype Bit_string, page 36, axioms for or

·	Annex A, newtypes NumericString, PrintableString, VixibleString, page 32

·	Other corrections

Other corrections to Z.105

·	Section 4.4.2.3

Discussion

It must be possible to identify an <objectidentifiervalue> syntactically (as opposed to by context) as it may involve derivation of new implicit synonym. If it only has one value then it cannot be distinguished from a sequence of value so it should be forbidden. Furthermore, as Object_identifier is generated from String, then if it only has one value, a sequenceof value can be used instead. If it has two values then it cannot be distinguished from a sequence value. In that case, an extra rule is used to determine the construct.

Changes

Change the production of <objectidentifiervalue> to

<objectidentifiervalue> ::= {<objidcomponent> <objidcomponent>+}

Change the first sentence in Model to

"There is syntactic ambiguity between an <objectidentifiervalue> and a <sequencevalue> in case that the <objectidentifiervalue> starts with an unqualified <identifier> and if it consists of exactly two <objidcomponent>s. In this case a <qualifier> must be part of the first <objidcomponent> to force the construct to denote an <objectidentifiervalue>.

If the leftmost <objidcomponent> is a synonym or variable <identifier> of the predefined sort Object_identifier, then the <objectidentifiervalue> is the same as the expression:"

·	Section 3

Discussion

It seems not possible to use an ASN.1 module in an SDL system. This must be a clear error.

Changes

Add the text and the production:

The <package reference clause> is extended as follows (<package reference clause> should also be added to the list of changed productions on page 52):

<package reference clause> :: use <package name> {, <definition selection>}* <end> |

<imports>

Add the sentence

Any of the two alternatives of <package reference clause> can be used, independent of whether the package was defined using ASN.1 notation or Z.100 notation.

Change the production of <modulebody> to

<modulebody> ::= [<exports>] <package reference clause>* <entity in package>*

Delete the 2. item in NOTES on top of page 6

List of open items

The below changes are not directly errors in Z.105, but they are meant to make Z.105 even more user-friendly. They are listed here as open items and should be part of the maintenance work for the new Question 6/10.

Annex A, types object_element and object_identifier (page 38)

It is impossible to make computations with type object_element, as it only has operators =, /=. We would like to be able to have �the normal integer operators on elements of Object_Identifier.

Proposal: remove 'object_element', and change newtype Object_Identifier String (object_element, EmptyString) to newtype Object_Identifier String (Natural, EmptyString) This change request could be approved directly at the meeting.

4.2.7 Subrange

In Z.105 there is no way to 'and' two ranges. For example:

A ::= IA5String(FROM("XY"))(SIZE(2))

according to ASN.1 this means that A can have values 'XX', 'XY', 'YX', and 'YY'.

According to Z105 as it is now, A can have any value as long as length(A) = 2. There is no way to express the ASN.1 semantics in SDL. Somehow, we should have an 'and' on ranges. A solution (although not perfect) is to change the rule for <subrange> on page 20 to:

<subrange> ::= <sort> (<range condition>) { (<range condition>) }*

and add special semantics to this, map for example to

syntype <subrange> = <sort>

constants (<range condition1>) and (<range condition2>) and ...

endsyntype;

(or just leave out the keyword 'and') Section 4.3 also needs extensions for this. How this exactly should look like I do not know, any help is appreciated, for example Denmark could have some suggestions here.

This could be added as an 'open issue' to the Z.105 error correction list.

4.2.2 Sequence

As I have explained earlier on the sg10q6 mailing list: the arguments of the Make! operator for Sequence are in a very strange order, viz. the alphabetical order of the components.

i.e. for

S ::= SEQUENCE {

b BOOLEAN,

a INTEGER }

you would expect that you could use

DCL s S;

TASK s := (. TRUE, 5 .)

However, this is an error! You should write

TASK s := (. 5, TRUE .)

because 'a' (the name of the second field) is alphabetically before 'b'!

This is very confusing for users, and furthermore it is also very difficult to implement in SDT, especially in combination with support for the encoding rules. Our proposal is to extend the SDL struct construct to add optional and default fields there.

The idea is that in SDL we can write

newtype S struct

a Boolean optional; /* optional field */

b Integer := 5; /* default field. Note that keyword 'default' would

cause syntactic ambiguity */

c Charstring;

endnewtype;

Then we can have a much simpler mapping from SEQUENCE/SET to a struct with such optional/default fields, and we have no problems to define an intuitively easy to understand Make! operator.

Actually we (Telelogic) think that this extension to SDL should be part of Z.100! Optional fields are very frequently used in definitions of protocols, something SDL is supposed to be good at.

This could be added as an 'open issue' to the Z.105 error correction list.

Annex E�(to Question 6/10)��

Recommendations Z.100, Z.105 and Z.120 change request procedure��The change request procedure is designed to enable SDL users from within and outside ITU-T to ask questions about the precise meaning of Z.100, Z.105 and Z.106 Recommendations make suggestions for changes to SDL or Recommendations, and to provide feedback on proposed changes to SDL. Proposed changes to SDL will be published by the SDL experts group before they are implemented.

Requests for changes should either use the Change Request Form (see below) or provide the information listed by the form. The kind of request should be clearly indicated (error correction, clarification, simplification, extension, modification or decommitted feature). It is also important that for any change other than an error correction, the amount of user support for the request is indicated.

All change requests will be treated by the ITU-T Study Group 10 Question 6 (SDL) meetings. For corrections or clarifications the changes may be put on the list of corrections without consulting users. Otherwise a list of open items is compiled and distributed �to users:

• as ITU-T white contribution reports;

• via the SDL Newsletter;

• electronic mail to the mailing list SDL_News@eutokom.ie (Please DO NOT mail direct to this list. To join the list email rick_reed@tseng.co.uk);

• others means as agreed by the Study Group 10 experts.

Reactions from users will be evaluated by Study Group 10 experts to determine the level of support and opposition for each change. A change will only be put on the accepted list of changes if there is substantial user support and no serious objections to the proposal from more than just a few users. Finally accepted changes will be incorporated into a revised Recommendation or a Recommendation addendum. Users should be aware that until changes have been incorporated in and approved by Study Group 10 they are not recommended by ITU-T.

Change Request Form

Please fill in the following details� � ��Character of change:�q error correction�q clarification�� �q simplification�q extension�� �q modification�q decommission��Short summary of change request� � �� � � �� � � �� � � ��Short justification of the change request� � �� � � �� � � �� � � ��Is this view shared in your organisation�q yes�q no��Have you consulted other users�q yes�q no��How many users do you represent?�q 1-5�q 6-10�� �q 11-100�q over 100��Your name and address� � �� � � �� � � �� � � ��

Question 7/10 - Support for fast development of protocol standards using formal methods��

Type��Question should lead to Recommendations and supplements

Reason for the Question��There is a growing need for quick deployment of protocols. Machine-readable reference specifications and implementations can meet this need by considerably cutting development time and reduce the necessary investment in new products. Some experience, for example in the Internet community, have already demonstrated the usefulness of this technique.

Before specifications are released, they can be validated and verified with regard to correctness, thereby providing assurance to those adopting the reference specifications. SDL and MSC are two standard languages that fulfil this purpose and have demonstrated their viability in this context. Commercial tools which include simulators and code-generators exist for these languages. The use of techniques, such as SDL and MSC, are recommended in Z.110.

To enable the support of fast development of protocol standards, the following requirements can be identified:

– Defining templates for MSC and SDL standards that will ease the procedure of writing such a standard and the implementation of protocols from standards.

– MSC and SDL promotion.

– A user manual to advise and guide the Rapporteurs with emphasis on the needs for standards.

– Support for Rapporteurs in the use of MSC and SDL in developing "formal" standard.

– Support for Study Groups to define their own development methodologies of using MSC/SDL in their standards (such as Q.65).

– Encourage (and support) Study Groups to build a MSC/SDL library for standards on basic calls and supplement services.

Questions��·	What new Recommendations, supplements or other provisions are required in order to be able to support fast development of protocol standards using formal methods?

Task objectives��1) Study of current use MSC/SDL in (protocol) Recommendation (1Q97).

2) Report on suggested actions within ITU-T to improve the use of MSC/SDL within standards (3Q97).

3) Recommendation consisting of templates (1Q98).

4) Standard modules and libraries for reference specifications (1Q98).

5) Manual for the use of MSC/SDL in protocol (and other) Recommendations (1Q98).

Relationships��• Recommendations: Z.100, Z.105 and Z.120; other Study Groups methodologies Recommendation.

• Questions: Q.6/10 and Q.9/10.

• Any other Study Group which uses MSC or SDL.

• Relevant standardization bodies: ETSI (TC MTS).

Annex�(to Question 7/10)��

Use of MSC/SDL��The use of MSC/SDL in the development of new standards will accelerate their production and improve their quality.

The promotion of MSC/SDL is a necessity in the launch of any other activity. This could be done in three (parallel) activities:

1) Articles (one or more) in the ITU news letter, describing:

• Study Group 10 role and activities.

• Experimental reports in ITU and ETSI.

2) An MSC/SDL WWW site with tutorial on both languages and pointers to other sites.

3) Seminar and education session in order to:

• Sensitize people that the use of MSC/SDL will improve their work.

• Give Rapporteurs a basic knowledge on MSC/SDL.

Template for a "formal" (MSC/SDL) standard

A template for a "formal" standard is needed to ease the procedure of writing a standard. It will define what has to be included in each part of a "formal" standard. This includes:

• Scenarios (MSC).

• Behaviour (SDL process diagrams).

• Validation model(s) (SDL system and blocks diagrams).

User manual

A user manual will explain how to use MSC and SDL in standards. It will be of use both as a text book and reference text as what to do and what not do.

Rapporteurs

From the experience in ETSI, an ongoing support for the Rapporteurs is needed. Rapporteurs have an excellent knowledge in their subject domain, but perhaps a very poor knowledge in MSC/SDL. An MSC/SDL assistance is needed, not only to improve the use of MSC/SDL, but to demonstrate the ways of using MSC/SDL.

Development methodologies of using MSC/SDL by other Study Groups

Study Group 10 has to encourage other Study Groups to define their own methodologies to fit their particular needs. Applications to unified functional methodology (Q.65) in Study Group 11 is a good example.

MSC/SDL "Standard cell" libraries

The expression "standard cell" is taken from chips design. The idea to enlarge the ability of:

• Reuse code (components).

• Use framework as much as possible.

It is possible to define both:

• Generic standard components today have a number of appearances and they are redefined again and again (an example could be 'counters').

• Basic calls and supplement services, even though they define different things, have a large degree of commonality.

Such a library will help in the standardization procedure. Specific knowledge in the application domains is needed to build such a library. Good coordination is needed to build a large and effective library.

Question 8/10 - Testing based on formal specifications and validation of formal specifications��

Type��Continuation of Question 8/10 with revised text- should lead to a Recommendation

Reason for the Question��Specification and Description Language (SDL), Message Sequence Chart (MSC), Tree and Tabular Combined Notations (TTCN) and other Formal Description Techniques (FDTs) are today both in industry and in international standardization organizations to define precisely the properties of systems. Given a formal specification there is a strong need for:

a) determining whether it meets certain correctness criteria;

b) determining whether an implementation conforms to it.

Questions��What new Recommendations or enhancements of existing Recommendations are needed to verify that formal specifications meet appropriate correctness criteria, e.g. absence of deadlocks and consistency, and how formal specifications can be utilized for conformance and interoperability testing, e.g. computer aided test case generation.

Specific task objectives with expected time frames for completion��1) Formulating a draft Recommendation Z.500 on formal methods in conformance testing by 4Q1997. Common text with work in ISO/IEC SC 21 Project 54 is envisaged. The work is based on the working Document ISO/IEC JTC 1/SC 21 N 10071 currently under ballot for Committee Draft in ISO/IEC SC 21.

2) Define correctness criteria and a validation methodology for telecommunication specifications for SDL, MSC and TTCN. It is expected that this work will result in a draft Recommendation or a manual by 4Q1997. The definition of correctness criteria includes methods for determining correctness for SDL, MSC and TTCN.

Relationships��a) Recommendations

X.29x: Conformance Testing Methodology and Framework (SG 7).

Z.100: Specification and Description Language (Question 6/10).

Z.120: Message Sequence Charts (Question 9/10).

b) Study Groups

– Study Group 7 for testing and verification of data communication protocols.

– Study Groups 11 and 13 for signalling systems.

c) Standardization organizations

– ISO/IEC Joint Technical Committee 1 SC 21 ETSI Technical Committee on Methods for Testing and Specification.

Question 9/10 - Maintenance of message sequence charts (MSCS) syntax and semantics��

Type��Continuation of Question 9/10 with revised text- should lead to a new or revised Recommendation

Reason for the Question��Experience with the use of MSC since 1992 has shown the wide interest and acceptance of the standard within many different application areas such as telecommunication and automation industry, but also in the general field of object oriented modelling.

In the 1993-1996 study period a formal dynamic semantics and a formal description of the static requirements of MSC have been developed through close cooperation with universities.

MSC-96 has extended MSC-92 with powerful structuring mechanisms facilitating more complete and maintainable MSC documents. High level MSCs help organize large MSC documents. Online expressions give compact descriptions of smaller variations. MSC references and gates facilitate reuse of MSCs in different contexts similar to what is known from SDL (Z.100).

The work in the last study period has been followed closely by industrial users and by tool vendors such that the work had been properly founded on pragmatic as well as sound theoretical bases.

During the last study period it has become reasonable to believe that the use of the new concepts of MSC-96 will trigger more feedback and maintenance requirements from the increasing population of happy MSC users. We have in this Question foreseen that additional work might be needed for the elaboration of non-functional properties, methodological implications, data, grammar �and exchange formats, conditions, and other language issues.

Comments in natural languages (such as French, English, Spanish, Arabic, Chinese, Russian and so on) within MSC are very important to facilitate the widest usefulness of documents (such as Recommendations) using MSC. It is therefore important that MSC can support the use of many natural languages including those with non-Roman alphabets and the possibility to mix languages and writing systems in comments.

Questions��What new Recommendations or enhancement of existing Recommendations, or other provisions are required in the area of Message Sequence Charts to:

1) formalize the dynamic semantics and describe the static requirements of MSC-96;

2) further extend and modify the language concepts as needed by users in both industry and standards bodies;

3) correct minor errors and inconsistencies in Z.120;

4) resolve the issues in the list of open items;

5) improve the use of natural languages and writing systems with MSC to aid human understanding?

Specific task objectives��1) Revised Annexes B and C (formal semantics) corresponding to MSC-96 should be provided by 2H97.

2) An addendum to Z.120 should be provided by 2H98.

3) A corresponding addendum of formal semantics (Annex B and Annex C) should be provided by 2H99.

4) A revised Recommendation Z.120 should be provided by 2H2000.

5) Revised Annexes B and C (formal semantics) corresponding to MSC-2000 should be provided by 2H2001.

Relationships��a) Recommendations

Q.65, Q.699, X.210, Z.100, Z.105, Z.106, Z.500.

b) Questions

Q.9/10: MSCs are used for the purpose of test case specification and selection.

Q.6/10: MSC is used extensively together with SDL and ASN.1; both are handled by Q.6/10.

c) Study Groups

In Study Group 11: "Switching functions and signalling information flows for implementation of basic and supplementary services".

In Study Group 7: "Open system interconnection layer service definition conventions".

Annex �(to Question 9/10)��

Guidelines for maintenance of MSC��The following guidelines are based on the guidelines attached to Q.8/X 1989-1992. Experience has shown such guidelines �to be extremely useful.

Terminology

1) An error is an internal inconsistency within Z.120.

2) An error correction is a change to the text or diagrams of Z.120 which corrects an error in previous text or diagrams.

3) A textual correction is a change to text or diagrams of Z.120 which corrects clerical or typographical errors.

4) An open item is a concern identified but not resolved. An open item may be identified either by a Change Request, or by agreement of the Study Group.

5) A deficiency is an issue identified where the semantics of MSC are not (clearly) defined by Z.120.

6) A clarification is a change to the text or diagrams of Z.120 which clarifies deficiencies in previous text or diagrams which could be ambiguously understood without the clarification. The clarification should attempt to make Z.120 correspond to the semantics of MSC as understood by the Study Group.

7) A modification is a change to the text or diagrams of Z.120 which changes the semantics of MSC.

8) An extension is a new feature, which must not change the semantics of features defined in Z.120.

Rules for maintenance

1) When an error or a deficiency is detected in Z.120, it must be corrected or clarified. The correction of an error should imply as small a change as possible. Error corrections and clarifications are put into Master list of Changes to Z.120 and come into effect immediately.

2) Except for error corrections and resolution of open items from the 1993-1996 study period, modifications and extensions to MSC may only be considered as the result of a request for change by a substantial user community. A request for change should be followed by investigation by the Study Group in collaboration with representatives of the user group, so that the need and benefit is clearly established and it is certain that an existing feature of MSC is unsuitable.

3) Modifications and extensions not resulting from error correction, should be widely publicized and the views of users and tool-makers canvassed before the change is adopted. Unless there are special circumstances requiring such changes to be implemented as soon as possible, such changes will not be recommended until Z.120 is revised.

4) Until a revised Z.120 is published a Master list of Changes to Z.120 will be maintained covering Z.120 and all annexes. To ensure effective distribution of the list of Master list of Changes to Z.120, it will be published as COM Reports and on appropriate electronic forms such as WWW sites.

Open items to Z.120 to be studied

Below we have listed a number of areas where we know that further study of MSC could improve MSC in the future. The points listed below are the subject area headlines and are examples of what topics we would study under the area. These topics are not meant to be excluding other topics in the areas.

1 Non-functional properties

– Real-time descriptions such as duration.

– Quality of service properties such as performance, error rates, etc.

2 Methodology

– Use of MSC in object-oriented modelling e.g. formalizing use cases.

– Test case specifications.

– Issues related to the use of MSC in close connection with SDL e.g. timer parameters.

3 Data concepts

– Use of formal data definitions in messages, parameters, conditions and actions.

4 Grammars and exchange formats

– Improvement of the graphical grammar based e.g. on the study of graph grammar formalisms.

– Revision of textual grammars including the production of a Common Interchange Format for MSC.

5 Conditions

– Strong global condition concept.

– General predicates in conditions.

– Further investigation of the relation between composition mechanisms based on conditions and those based on process algebra operators.

6 Other language issues

– Remote procedure.

– Synchronous communication construct.

– Grouping of instances.

– Hierarchy of messages.

– Additional MSC operators e.g. disruption, interruption.

– Total ordering of events.

– Gates in HMSCs.

Question 10/10 - Maintenance and evolution of CHILL��

Type��Continuation of Question 10/10 with revised text- should lead to a revised Recommendation and/or a Manual

Reason for the Question��a) CHILL was designed to be the optimum programming language for the implementation of telecommunication systems;

b) experience has already been gained by many organizations in the implementation and usage of CHILL;

c) this widespread use of CHILL could result in the detection and the need for the correction of deficiencies in ITU-T Recommendation Z.200 or related documents;

d) it is very important to keep the language as defined in ITU-T Recommendation Z.200 stable;

e) the field of programming languages is making steady progress and extensions of CHILL are already being used in industry for new products. Therefore, CHILL must keep in pace;

f) comments in natural languages (such as French, English, Spanish, Arabic, Chinese, Russian and so on) within CHILL are very important to facilitate the widest usefulness of documents (such as Recommendations) using CHILL. It is therefore important that CHILL can support the use of many natural languages including those with non-Roman alphabets and the possibility to mix languages and writing systems in comments.

Question��What Recommendations should apply to the maintenance of ITU-T Recommendation Z.200 and/or related documents with respect to:

a) introduction of overloading;

b) possible harmonizations between ASN.1, SDL, and CHILL;

c) introduction of elements for distributed programs;

d) improvement of piecewise programming;

e) introduction of persistent data;

f) use of different natural languages and writing systems with CHILL to aid human understanding.

Task objectives��a) the definition of overloading by end of 1997;

b) the definition of elements for distributed programs by end of 1998;

c) the treatment of the remaining open items by 2000 (see the Annex).

Relationships��• ITU-T Recommendations Z.100 (Q.6/10), X.680 (SG 7).

• Liaison with the new Question on ODL (Q.2/10).

Annex �(to Question 10/10)��

List of open items��1) Possible harmonizations between CHILL and ASN.1

·	Harmonization between CHILL and ASN.1 could e.g. be obtained by defining a mapping from ASN.1 data to CHILL data or by inclusion of ASN.1 data description facilities into CHILL.

2) Introduction of default parameters for procedures and processes.

3) Possible harmonizations between CHILL and SDL. E.g. what can be done in CHILL to facilitate mappings between CHILL and SDL.

4) Improvement and simplification of piecewise programming (SPEC MODULE vs. MODULE SPEC; concept of quasi definitions).

5) Action statement list for task modes.

6) Introduction of elements for distributed programs.

7) Introduction of persistent data.

Question 11/10 - Graphic GDMO��

Type��Continuation of Question 11/10 with revised text- should lead to a Recommendation

Reason for the Question��Guidelines for the definition of managed objects (GDMO) provide an alphanumeric formalism for the definition of information models for Telecommunications Management Networks (TMN). The X.700-series Recommendations additionally include guidelines for the definition of relationships between objects General Relationship Model (GRM). No standard graphic notation exists for this specification technique. Considering that:

– Study Group 10 has identified a need for providing a graphic overview of GDMO specifications to design human-machine interfaces for TMN specifications;

– Study Group 4 has in M.3020 identified a need for a graphic overview of GDMO specifications;

– Study Group 7 has identified a similar need to that of Study Group 4 and other Study Groups may have similar needs;

– current TMN Recommendations use graphic illustrations where different symbols are used to convey the same notions, the same symbol is used for different notions, and the graphic symbols convey different ideas from that of the GDMO and the illustrations are inconsistent with the GDMO specifications,

there is an urgent need for a standardized means to provide a graphic overview of GDMO specifications.

The graphic GDMO shall provide an overview, and does not need to provide graphics for all aspects of GDMO specifications. However, the graphics provided should be true to the alphanumeric GDMO, and should not convey ideas which are not specified �in the alphanumeric GDMO.

The graphic GDMO can be used for validation of TMN systems by the specifier, implementor, expert user and purchaser in all phases of the development, purchasing and delivery processes.

Question��What Recommendations are required to provide a graphic formalism of GDMO and guidelines for its usage?

Task objectives��1) Develop common text with ISO, if this is found acceptable by ISO/IEC. Expected completion: 2Q97.

2) To initiate approval procedures of the final approval of graphic GDMO Recommendation text, Z.360. Expected completion: 2Q97.

3) To provide graphic additions to two existing or draft TMN Recommendations. Expected completion: 2Q97.

4) Maintain and provide possible revisions and extensions to the graphic GDMO, e.g., show contexts in which GDMO specifications are used. Expected completion: 2Q98.

5) To provide guidelines for the use of graphic GDMO and propose possible enhancements to existing TMN Recommendations. Expected completion: 2Q98.

Relationships��

Q.12/10�Consider the needs to overview GDMO specifications in order to define HMI data.��Q.6/10�Consider possible needs for a graphic GDMO to define behaviour in GDMO specifications.��SG 4�Undertake coordination with the TMN methodology work (M.3020) and other TMN-related work.��SG 7�Undertake coordination with Study Group 7.��JTC 1/ISO TC 97/SC 21/WG 4�Possible coordination with ISO.��SG 15�Coordination with TMN-related work.��NM Forum�Coordination with TMN-related work.��

Question 12/10 - Specification of HMI data for a GDMO/ASN.1 object model��

Type��Continuation of Question 12/10 with revised text- should lead to a Recommendation

Reason for the Question��Currently, administrations prescribe GDMO/ASN.1 object models (e.g., for the data to pass over a Q3 interface) to be provided by their NE and OS vendors. There is an urgent need for means to make the information defined by these GDMO/ASN.1 object models available at the human-machine interface. There is a need to use the same terminology for, and the same presentation�of, managed objects and their attributes, etc., at the human-machine interface independent of the vendors in a multivendor environment.

To enable a presentation of the information defined by a GDMO/ASN.1 object model at the human interface, one needs not only the syntax of a machine-machine interface to the objects to be managed, but also prescriptions for the presentation of this information, including national language specific labels, help texts and money, date and time specifications, etc.

A standardized means of specifying these presentations would enable administrations to make their presentation requirements available to their various OS vendors in a uniform way, and would enable OS vendors to understand the presentation requirements �of their various customers.

There is a need for a formal definition of these HMI data that can be understood by administrations and the OS vendors. Since the administrations and vendors are already using GDMO/ASN.1 themselves, the task of understanding the definition of the HMI data is easier if GDMO/ASN.1 is also used to provide the formal definition of the HMI data.

There is also a need for a language to enable provision of the instances of such a data model that can be used by the specifiers of the HMI data.

Question��Which Recommendation is required to:

• define a minimum set of HMI data needed to provide an HMI implementation with the national language specific labels, on-line help, and rules for the presentation of the various elements of data defined by a GDMO/ASN.1 object model?

• provide a formalism which enables specification of these HMI data for particular GDMO/ASN.1 object models?

Task objectives��• Maintain the set of requirements that the HMI data must satisfy. Target date: 2Q98.

• Formally define the HMI data using GDMO/ASN.1. Target date: 2Q97.

• Define the formalism for specifying instances of the HMI data. Target date: 2Q97.

• As validation, apply the formalism to a specific Q3 object model. Target date: 2Q98.

• Provide guidelines for the definition and usage of the HMI data. Target date: 2Q98.

• Initiate approval procedure for the new Recommendation text. Target date: 2Q98.

Relationships��Question 2/4.�Question 11/10.

Question 13/10 - Design principles for human-machine interfaces (HMI) for the management of telecommunications�network resources and services��

Type��Question should lead to one or more Recommendations

Reason for the Question��One of the most critical areas to network operators within the general domain of network management is that of the Human-Machine Interface (HMI). There has been considerable work and progress in the ITU-T on the specification of both the required functions and the data specifications related to this interface. This work, however, has not completely covered the design principles which are required to provide guidance to designers in the HMI area. Such guidance will ensure a consistent and appropriate approach to the design of user interfaces for telecommunication network equipment and network management applications. In particular, the recent wide ranging deployment of Graphical User Interfaces (GUIs), including schematic and topological maps, requires a systematic approach to the specification of HMIs.

Questions��What Recommendations are required to:

– provide a comprehensive set of design principles which can provide guidance to HMI designers?

Specific task objectives��1) Agreement on the basic structure and contents of a new Recommendation describing a comprehensive set of design principles which can be used by product designers in the specific design of the HMI. Expected completion date: 2Q1997.

2) Submission of the new Recommendation text for approval by the SG 10 Plenary. Expected completion date: 2Q1998.

3) Approval of new Recommendation(s) which is based on the results from this Question. Expected completion: 1Q1999.

4) Review of Z.300-series Recommendations. Expected completion: 1Q1999.

Relationships��– HMI reference model in Recommendation Z.352.

– TMN architecture as defined in Recommendation M.3010.

– Ongoing work in ANSI, ETSI and ISO on user interface specifications.

– F interface work in ITU-T Study Group 4.

– Question 12/10, HMI data.

Annex�(to Question 13/10)��

Design principles for the development of OAM&P graphical user interfaces��TABLE OF CONTENTS

1 Scope, purpose, and field of application

2 References

3 The "G" interface model

3.1 Modular approach to UI design

4 Design principles

4.1 Partition functionality to match the users conceptual model

4.2 Design with the minimum frame of reference necessary

4.3 Provide redundant coding in all important graphic displays

4.4 Flatten the hierarchy

4.5 Telescoping in place

4.6 Support parallelism through concurrent views

4.7 Allow for customization

4.8 Make everything concrete

4.9 Establish a consistent and complete visual language

4.10 Use animation only to communicate transitions

1 Scope, purpose, and field of application

Telecommunication networks are invariably populated by a variety of elements and systems supplied by numerous vendors, many of which use their own proprietary approach for the network management user interfaces. This lack of consistency not only creates a problem in accessing information in these very complex systems but also increases operational and training�costs to the users.

While a generic user centred design approach is applicable to the design of the human to machine interface for telecommunication network management applications, its application will be limited due to the specialized and complex nature of the operational environment, and will not provide a complete and optimum solution. This document presents specific design principles that can significantly enhance the impact, usability and power of such user interfaces, as well as providing a degree of across vendor consistency in their operation.

The most recent work in industry is focused on graphical user interfaces, commonly called GUIs. The current standard reference on the G interface, ANSI T1.232-1995 deals briefly with the relatively new and exciting potential of these interfaces in the section�on direct manipulation.

There is a set of design principles articulated in T1.232 which are intended to guide product designers as they create user interfaces. These design principles are summarized below:

1) Consistency: Consistency of user interface conventions between and among applications helps users transfer skills in new and unfamiliar situations.

2) Empowering the user: Applications are tools and users should have control over their tools.

3) Feedback: Feedback lets the user know what is happening in an application.

4) Efficiency: Efficient user interfaces enable users of all skill levels to perform their work with a minimum number of steps.

These principles are generic in that they apply to most if not all user interfaces. For example, an application designed for word processing benefits when the above principles guide the designer.

This contribution extends these principles with a complementary set which are intended to optimize benefits specifically for the management (operations, administration, maintenance, and provisioning - OAM&P) of telecommunications networks and network elements.

The principles build on those articulated in T1.232, providing design recommendations which will make the work of the craftsperson more efficient, more fulfilling and less error prone. Given that these design principles apply specifically to telecommunications systems, then it follows that the user interfaces for telecommunications products should be different from those designed with other environments in mind, for example, office applications. Section 3 elaborates on some of the reasons why this is true.

2 References

The following standards contain provisions which have been considered during the process of development of this contribution. It is believed that the proposals in this recommendation do not contradict or otherwise invalidate any of the recommendations in these standards.

ANSI T1.203-1988, American National Standards for Telecommunications - Operations, Administration, Maintenance, and Provisioning (OAM&P), Human Machine Language.

ANSI T1.232-1996, American National Standards for Telecommunications - Operations, Administration, Maintenance, and Provisioning (OAM&P), G Interface Specification for use with the Telecommunication Management Network (TMN) (NOTE - This refers to release 2 of this standard.).

ANSI T1.210-1992, American National Standards for Telecommunications - Operations, Administration, Maintenance, and Provisioning (OAM&P), Principles of Functions, Architecture, and Protocols for Interfaces Between Operations Systems and Network Elements.

ANSI T1.214-1990, American National Standards for Telecommunications - Operations, Administration, Maintenance, and Provisioning (OAM&P), Generic Network Model for Interfaces Between Operations Systems and Network Elements.

ANSI T1.215-1990, American National Standards for Telecommunications - Operations, Administration, Maintenance, and Provisioning (OAM&P), Fault Management Messages for interfaces.

ITU-T Recommendations Z.301-341 - 1988 - Man Machine Language (MML).

ITU -T Recommendation Z.352 (03/93) - Man Machine Language, Data Oriented Human-Machine Interface Specification Technique - Scope, Approach, and Reference Model.

ITU-T Recommendations M.3000-series - Telecommunications Management Network.

Bellcore GR-2869-CORE, Generic Requirements for Operations Based on the TMN Architecture, October 1995.

Bellcore, GR-1093-CORE, Generic State Requirements for Network Elements, December 1995.

3 The "G" interface model

Systems architects have partitioned the functionality of complex telecommunications systems into specific subgroups or layers. This process reduces the complexity of the design within each layer and allows the interfaces between these groups of functions or layers to be specified. Network management has been similarly partitioned in the Telecommunications Management Network (TMN) specifications. Figure 1 provides a high level view of this partitioning and identifies the interfaces between the layers, including the "G" interface.

The interface between the actual user or craftsperson and the workstation is the "G" interface. While this interface is technically outside the boundaries of the TMN architecture, ANSI has created T1.232 to provide a degree of standardization at this vital interface. The "G" interface is critically important in modern telecommunications networks. It is the only view of the system that �the craftsperson and the organization sees. Improper or inadequate design at this interface can result in significant problems in the network in terms of reliability and operational efficiency.

This contribution argues that the "G" interface can be appropriately divided into four conceptual components to provide an improved means of specifying the complex relationship between the system and the user. It also enables a better match between the users understanding of the information required for the job and the understanding required of the system designers who will be designing the interface. Finally dividing the "G" interface into components makes the job of the system designers much easier for the same reasons that motivate partitioning the system, in particular, mapping the widgets to the user model (see 3.1).

One of the most challenging aspects of user interface design is making certain that an appropriate user model is understood and reflected in the design. The user model should achieve the following:

• bring the disciplines of psychology, user needs assessment, and UI design to bear on the presentation of the� particular product functionality through the interface;

• promote the distillation of design principles to be used as guides and metrics;

• match the internal conceptual user model to the external world.

A useful model should promote high quality, consistent UI design across a wide range of product environments.

3.1 Modular approach to UI design

There are many advantages to partitioning the G interface into a number of components. Most importantly, the recommended partition will allow decoupling the "look and feel" or base operating system elements from those aspects which are application specific. For example, the rules for the visual and operational characteristics of buttons or menus are contained in the particular system such as the Motif user interface style developed by the Open Software Foundation or the Microsoft Windows style guide. The integration of these and other elements into applications is a different and higher level design domain. Also, a given set of user design principles could be used for a number of different applications, each instantiation resulting in a different interface design for the actual screens and transitions.

There are five distinct components within the proposed model, each which deals with a different set of requirements.

The data component contains information about the specific systems, network elements and components for which the craftsperson has responsibility. For example, the name or location of a network element, the directory number, address, and service specifics of a subscriber, the number of DS-0 channels available across a specific link or the description of a permanent virtual circuit will have data specifying their attributes and class characteristics. The specific structure of this information is specified in the ITU M.3000-series - Maintenance: Telecommunications Management Model.

The HMI widgets component is comprised of two principal groups. First is a generic set of elements such as buttons, windows, and scroll bars. These are defined by the specific user interface style supported at the workstation (e.g. OSF Motif, Open Look, etc.). These HMI elements are relatively stable and common across the range of systems or products currently available in the market place. Second is a telecommunications specific set of widgets such as network element symbols, link or connection graphics, and shelf level graphics. While there are differences in the specific details of these systems, and while in the interests of UI design they should converge, this is not the subject of this Question.

This contribution argues that these HMI widgets are not sufficient to ensure adequate user interfaces for telecommunications products or applications. Many of these building blocks or widgets and the ways of assembling them into functional frames were developed in and for the business office environment for which some of the most successful applications were developed. Examples are Lotus 123 and WordPerfect. This environment strongly adhered to and developed the desktop model for the interfaces deployed on workstations and to date has been perhaps best implemented in the Macintosh workstation. However,�the telecommunications management environment is significantly different in a number of critical areas. The following aspects differentiate a telecommunications applications.

1 Telecommunications network management UIs are time critical

There is no concept of "alarm" in an office word-processing application. In the management of a telecommunications network, and specifically the fault management application, faults may be critical and demand attention immediately. Thus the notion of asynchronous interrupts and the need to access specific information coupled with specific actions is vital for the user.

2 Errors can be much greater in their potential effects

The capability of taking down significant sections of a large telecommunications network carrying large volumes of traffic demands a much more rigorous approach to the means of ensuring that errors do not go undetected. Some mechanisms used in generic interfaces are appropriate, but more are required.

3 Users handle much larger volumes of data in real time

Network control centres can be likened to traffic control centres where from time to time large numbers of apparently isolated events may occur. Providing the user with assistance in prioritizing, filtering and managing these inputs is paramount in the design of effective network control applications.

4 The objects with which the applications deal are much more complex

In a typical office application a user is confronted with files, documents, and possibly spread sheets. A typical network control application for example for configuration, deals with central office switches, Sonet transport equipment, plus a host of other equipment types each of which has different capabilities and requirements.

5 Product developers are typically not experts in the operations domain

Everyone uses word processors, and spread sheets and drawing applications. Not many product developers have ever sat behind an operations desk when a number of mishaps are causing mayhem in the network .

Each of these has direct and important implications for the way the user interface is developed, and therefore requires careful consideration of those aspects that can be standardized. Section 4 presents a set of design principles which can guide the development community to produce user interfaces that meet the specific requirements of the telecommunications craftsperson. �The principles do not constrain the developers to one specific design solution. They do provide general guidelines so that design solutions are better adapted to the needs of the telecommunication user and provide solutions which enhance the performance of the user. Secondly they are constructed so that specific implementations can be measured and compared with each other.

The principles are distilled from detailed knowledge from the fields of psychology and psycho physics in conjunction with detailed knowledge of the operations environment of the user, and previous experience in the design of interfaces for telecommunications users.

4 Design principles

Each principle discussed in this section will be presented using the following format:

Statement

This section formally states the principle

Rationale

This section presents the reasoning behind the principle. It attempts to present in a concise manner the distillation of knowledge in the following areas:

– psycho physical and psychological data;

– previous design experience;

– knowledge of the requirements of the user of systems which perform OAM for telecommunications equipment.

Design implications

This section details specific implications for UI designs for telecommunications OAM applications.

Graphic example

The screen example will present an example of how the principle is realized. Note that these are examples only and are not intended in any way to represent requirements on design solutions.

4.1 Partition functionality to match the users conceptual model

It is essential that a) the right set of tools be defined to allow users to efficiently manage telecommunications networks, that �b) functionality is partitioned correctly among the tools, and c) that the functionality to perform specific tasks is available to the user without unnecessary intermediate steps.

- Rationale

Until recently, OAM systems have been developed using either command-driven or menu-driven systems. These systems essentially use modifications of the verbal or written command model to organize and access functionality. The typical grammar for this type of interface is <command> <object>; that is, the user first states the action to be performed, and then defines the object(s) to be manipulated. This is an effective method of interaction in these types of systems, since it mirrors how commands�are verbally expressed.

It is essential to note that these traditional methods of functional control do not map effectively to Graphical User Interfaces (GUI) styles, which operate best through object manipulation. This model hinges on the notion that the user manipulates graphic representations of objects using various tools that provide bundles of functionality.

In order to achieve the above, it is necessary to define a coherent model that matches the user's view for any given task. For instance, fault management technicians do not work in a clerical environment, and hence models based on clerical concepts such as "desktops" "documents" and "file folders" will be of limited use for them. Similarly, data-entry clerks who perform bulk provisioning tasks work in environments where "forms" and "audit" models are commonplace.

The primary reason for the success of current GUI-based products is not because they are more attractive, but rather because they allow the user to perform tasks in a more natural manner than traditional systems. GUIs are successful because they rely on the direct manipulation of objects and the associated commands, rather than relying on the recall of commands from long-term memory. GUI-based systems that do not take this fact into account are typically unsuccessful. Graphics, buttons, scroll bars etc. will not make up for a system that fails to partition and organize functionality to match the user's cognitive model of the task.

- Design implications

1)OAM tools and products should be defined to match functional units of specific tasks, rather than the organization of hardware or software components of the system.

2) GUI-based systems should operate using object-manipulation models which support the notion of object-oriented direct manipulation techniques. The typical grammar for these UI styles id of the form <object> <action>. That is, the user first specifies the object to be manipulated, and then defines the action to be performed on it.

3)The basic functional blocks upon which OAM tools and products are defined should match the functional breakdown defined in the basic TMN model. According to this model, OAM functions can be broken down into Fault Management, Configuration Management, Performance Management, Accounting Management and Security.

As an example, a set of Fault Management tools may be specified as follows:

Alarm Surveillance

Fault Verification

Trouble Reports

Testing

These tools can be launched via standard menus from an anchor tool that contains a representation of the target network, or as individual standalone tools. Tools to perform all other defined OAM functions may be defined, organized and accessed in similar manner.

4.2 Design with the minimum frame of reference necessary

Screen displays should contain only the information required by the user in order to a) detect important signals, b) perform the correct actions, and c) maintain a stable frame of reference in any given situation. Superfluous decorations and data which do not add information relevant to the task will decrease the effectiveness of the displays.

Rationale

Graphic displays should communicate their current state to the user clearly, unambiguously, and directly. It is crucial that the user detects all relevant information, does not misplace or lose important information or functional blocks, or lose their way around the interface.

There are two basic contributors to human ability to detect signals in any environment: The strength and quality of the signal, and the noise or irrelevant data in which signals are always imbedded. For example it is much easier to detect a hand-clap in a quiet room than in a crowded one. This notion carries across all perceptual dimensions. Noise occurs in all the senses, and affects our abilities to detect, judge and act upon all situations in a detrimental fashion.

The effort required to work in noisy environments also has negative physical and emotional effects. For example, displays noisy with many and/or bright colors, and containing too much irrelevant information will cause visual fatigue, irritations of the eyes, muscle tension, and may lead to chronic headache and other stress-related complaints.

Design implications

1) Muted colors should be used for steady state displays in surveillance tasks. Objects in this state could even appear to blend into the background, while remaining visible to the user. Objects which contain relevant information should be displayed in brighter colors, and be displayed using Redundant Coding techniques (see 4.3 below).

2) In general, there should be no more than three levels of information within a given display:

– Background (the level containing the frame of reference or context; e.g. geographical maps or schematic diagrams).

– Middle Ground (the level which contains the objects of interest to the user, e.g. nodes in the network).

– Foreground (the level which contains the most important signals to the user; e.g. display elements used to differentiate alarmed objects in the network).

These levels should be differentiated in terms of brightness and/or saturation variations, with the highest brightness and/or saturation given to the foreground.

3) Displays should limit the number of colours that are presented simultaneously in the foreground. As a rule of thumb, four different hues could be displayed simultaneously without overloading the display.

4) Avoid details that do not add information germane to the functional task at hand.

5) Use simple graphical shapes. In the graphic design of screen objects, avoid highlights and excessive detail.

4.3 Provide redundant coding in all important graphic displays

When important or time-critical information regarding an object needs to be presented, vary a minimum of two visual cue dimensions (e.g. shape, size, colour, position, etc.) simultaneously. This principle is especially important when presenting alarms or performance information which may lead to service degradation if left unattended.

Rationale

Objects in our everyday world exist in multidimensional space, and have many attributes which make them distinguishable from other objects and from the environment they inhabit. Our perceptual mechanisms are specifically geared to function in this multidimensional world. For instance, it is easier to tell one object from another if both their colours and shapes are different than�if they were identical in all but one of these dimensions.

This multidimensional perceptual strategy allows us to overcome physical limitations such as color blindness, and environmental adversities such as poor lighting, atmospheric disturbances etc. in our everyday lives.

It should also be noted that complex telecommunications equipment is often in a combination of states at any given time. For instance, a given node may have any number of active alarms of various severitys, some of them acknowledged, others not. Communicating this complexity of states to the user by varying only one dimension (e.g. colour) will result in extremely complex and extensive coding schemes which will be extremely difficult to interpret.

Design implications

1) Colour must never be used on its own as a mechanism to communicate important or time critical changes of state. Colour enhances the effectiveness and attractiveness of carefully-designed displays. However, note the following:

• a significant proportion of the population is colour-blind. Of this population, the largest proportion has difficulty in discriminating between red and green;

• colour displays are notoriously difficult to control and calibrate properly. Improper settings not only cause stress and physical discomfort, but can also mask information that is coded in colour;

• displays should effectively convey important information to the user even if the display mechanism is degraded.

This notion has long been recognized, sometimes implicitly, in applications such as displays of traffic control signs, where a missed or misinterpreted signal can lead to disastrous consequences.

2) It is desirable that one of the dimensions included in the coding mechanism for display of object state be textual. Text information, used intelligently in conjunction with other graphic displays can enhance the effectiveness of the display by providing an explicit verbal label of the state for the user. This will help users communicate among themselves, and will facilitate access to support documentation.

3) When manipulating changes in colour displays, it is desirable to vary both hue and brightness of the display in any given change of state. Manipulating only one of these dimensions significantly reduces the discriminability of the signal to the user.

4.4 Flatten the hierarchy

Most people have problems with traversing hierarchical systems because they lose their frame of reference and can quickly become lost in the hierarchy. Requiring these extra steps adds both time and effort to the task, increases the cognitive load, and decreases the user's satisfaction with the product. Presenting the hierarchy also consumes precious screen real estate.

Rationale

Objects and functions in complex systems are typically hierarchically organized and implemented. Often this hierarchy is reflected in the user interface of the systems via hierarchical menus and modes. For example, in dealing with an alarm, users often are given an indication, graphical or otherwise, that an object is alarmed somewhere in the hierarchy. Typically, the user is then required to a) traverse the hierarchy until the object is located, b) determine the state of the object, and c) act upon the situation. Also users are often required to open a number of separate windows in order to find required information for task�resolution. Besides slowing down the analysis and understanding of the problem, users may also get lost when a large number of windows is open for each task.

This hierarchy is required for implementation purposes, but should not be forced on the user.

Design implications

1) All of the primary information required to understand the context, scope and significance of the situation should be directly available to the user within the current display.

2) Supplementary information needed in a given situation should be made available to the user within one step of the current display.

3) The user should have direct access to all of the primary functionality required to resolve a given situation directly within the current display.

4) Supplementary functionality needed to resolve a given situation should be made available to the user within one step of the current display.

4.5 Telescoping in place

Users require fast, efficient means to assess a situation and act upon the objects involved in a given task. Requiring extra steps adds both time and effort to the task, and decreases the user's satisfaction with the product.

Rationale

Information regarding network events, whether these are urgent alarms or simply information displays often require the user to respond to an event presented on the screen. Often there is pertinent and limited information which could be presented with no user action required, and which would improve the overall picture the user has of the network. The system should provide key or relevant information when the context is known with no required user action.

Design implications

1) Summary information available to the system regarding alarmed network elements should be displayed directly on presentation of the alarm to the user.

2) Management systems should provide this summary information directly to the user with no actions required, and should present related information directly by accessing the alarm object.

4.6 Support parallelism through concurrent views

Users must be allowed to generate multiple concurrent views of different aspects of the network. This ensures that users can maintain a suitable context within which tasks can be accomplished.

Rationale

Humans are parallel processors, especially when solving complex problems such as those often found in large telecommunications networks. For instance, when trouble shooting a fault, a user may need to view details of several related network elements, and at the same time, maintain an overall view of the network.

Multiple views minimize the load on the user's short-term memory, thus reducing commission of memory-related errors. In addition, they often help the user maintain a stable overall frame of reference as compared with traditional systems, which force the user to constantly traverse a maze of modal hierarchical levels.

Design implications

1) Default parameters for windows locations and sizes should be designed such that newly opened windows should not completely cover the previous frame.

2) Users should be able to replace the current frame of reference with a new one.

3) A user should be able to have open several different views of the network at the same time.

4.7 Allow for customization

OAM products must allow several types of customization of their user interfaces. Administrations and users require the ability to optimize the interface for specific or unique business requirements. At the same time, it should not be possible for users to so modify their displays that the efficiency or effectiveness of task performance is negatively affected. A simple example would be for a user to change the colour of critical alarms displayed on the workstation.

Rationale

Regardless of how a given interface is constructed, there will be requirements to add or delete specific elements, choices, or options. These requirements result from differences in the operating environments in which the system is imbedded, differences in the vintage of equipment which is connected to the management platform, or differences in current operating practice and experience. Also, certain jurisdictions may allocate the tasks differently among their work forces. In addition, users may enhance their performance by customizing specific tools to accommodate task or individual requirements.

Design implications

1) A system administrator or equivalent should be able to partition functionality among various user groups according to job type and jurisdiction.

2) Users should be able to customize their individual displays to reflect their level of expertise and preference of access to frequently performed tasks.

3) Users should not be able to alter the basic layout of their displays in ways that make them fundamentally different to other users within the organization that perform the same or similar tasks.

4) The following aspects are examples of user interface customization requirements:

• Accommodation of native languages.

• Support for natural writing symbols and punctuation.

• Support native conventions for date, currency, weights, numbers and addresses.

• Provide for specific work habits and the environment.

• Communicate to users in natural and inoffensive ways.

• Be sensitive to the customers culture.

• Specific colour meaning requirements.

• Ability to filter out non-essential or not-wanted information.

4.8 Make everything concrete

Give all abstract events and constructs attributes that can be addressed, surveyed and modified, thus making them concrete.

Rationale

Network elements or events do not exist in isolation and it is the relationship of an object or event to other related objects which provide the necessary context for people to effectively deal with them.

People understand the world around them by remembering relationships between objects. They even do this in the case of abstract concepts such as network events. In order to deal with these, people first create internal representations which make the concepts concrete. In this way, they can explore interrelationships and create meaning based on the information they perceive.

Design implications

1) Every system object and every system event that is displayed should be treated as an object.

2) Abstract concepts such as logical groupings, alarms, or performance thresholds should also be treated as objects.

4.9 Establish a consistent and complete visual language

A visual language is akin to a spoken one in that it empowers users to comprehend abstract events and objects through a clear and unambiguous taxonomy and lexicon.

Rationale

The visual language presented by the user interface is critical to the effectiveness and efficiency of the users. Language systems consist of two components: vocabulary and grammar. Vocabulary is the collection of elementary symbols, for example, letters �and words. Grammar is the collection of rules used to combine symbols.

People will respond to good visual design in specific and measurable ways. In particular the system and tasks will be easier to understand, easier to learn, and will be more engaging.

Design implications

1) Contrast: If elements are the same, make them look the same. If elements are different, make them look different.

2) Repetition: Create a series of common visual threads to tie the interface together by repeating one or more elements throughout.

3) Alignment: Every element should have a visual connection to another element. Do not position elements arbitrarily

4) Proximity: Physically group related elements.

5) Apply the above - Contrast, Repetition, Alignment, Proximity, in a consistent way to the following visual attributes: position, size, shape, colour, texture, composition, viewpoint, depth, and style.

4.10 Use animation only to communicate transitions

When people see movement, they infer that something has changed, and further that there has been some event which has caused the change.

Rationale

In many situations our perception of causality is linked to our perception of movement. Motion usually results in a direct perception of causality. Animation when applied to transitions assures the user that the system is responding to a command and is not simply idle.

Design implications

1) The use of animation on screen should be reserved for the representation of a transition and NOT for steady state information.

2) The presentation of information or its retrieval that will not be completed in less than a few seconds should be accompanied by a transition indicator.

3) Steady state conditions, as they will persist until an action is taken, for example alarms are not candidates for animation.

