ITU Forum on Conformance and Interoperability Testing in CIS and Europe Regions
(Moscow, Russia, 9-11 November 2011)

TESTING EXPERIENCE OF A1 - TELEKOM AUSTRIA

Martin Brand
(WP 4/11 Vice-chairman)

Moscow, Russia, 9-11 November 2011
Presentation Outline

- Used NGN Testing methods
 - Tested Interfaces
 - Interfaces which can be tested with conformance tests
 - Limitations of the strategy
 - Testing experiences
 - Tested Interconnection Interfaces
 - TTCN-3 test systems, a system with limits?
- QoS
 - QoS Testing experiences
- Conclusions

Testing experience of A1 Telekom Austria
Characteristics and limitations of Conformance Testing

- **Characteristics**
 - Gives a high-level of confidence that the standardised parts of a product are working as specified
 - It is component (Black Box) testing
 - Requires a test system (i.e., executable test cases)
 - High degree of control and observation
 - Tests are thorough and accurate but limited in scope

- **Limitations**
 - Does not necessarily prove interoperability with other products
 - Tests are focussed on part of a product
 - Test systems may be expensive
Used Conformance and Interoperability Testing configurations

Testing experience of A1 Telekom Austria

Interfaces which can be tested with conformance tests
Limitations of the strategy

- Due to the limited number of tested interfaces (e.g. no vertical interfaces), the full system conformity of all elements can not be ensured.
- As a consequence the system components which interfaces can not be tested (e.g. H.248, RACS Interfaces) should be used from one vendor to ensure the IOP between the different network components.
- To ensure the end-to-end functionality, internal E2E tests with different interfaces must be executed.
- As an option, tests performed with tools supplied from the vendors can be executed.

Testing experiences

- The conformity of the products from some vendors could be not supported.
- These products are mostly cheaper, because they are not tested according to the standards.
- The time for “go in service” will be for such products much longer.
Characteristics
- TTCN-3 specifies the test structure but a specific system is needed for the execution
- The test system architecture is defined with the TRI (TTCN-3 Runtime Interface) and TCI (TTCN-3 Control Interface) standards
- TTCN-3 allows reuse of test platforms with different tools but also for different SUTs
- A test system requires
 • A TTCN-3 tool = TTCN-3 compiler and execution environment
 • A test platform for a specific device under test

Limitations
- The SUT and platform adapter (TRI interface) is proprietary
- The production of the TRI adapter is expensive (20 k€ - 30 k€) per ATS
- With each release change of the TTCN-3 Compiler the platform adapters must be adapted
- If the test equipment is not supported any more from the company which is developed the adapters the ATS can not be used with new releases
- Limited number of tests platforms
- For the ATS validation are three SUT needed which causes a delay from 1-3 Year until a validated ATS is on the market
TTCN3 Tests System and Interfaces

TCI = TTCN-3 Control Interface
TRI = TTCN-3 Runtime Interface

Testing experience of A1 Telekom Austria

Protocol Test Equipment

Tester used by A1 Telekom Austria

- CATAPULT & Testingtech TTCN-3 compiler
- NAVTEL
- Tektronic K1297
- Tektronic Spectra 2
- ARcatech Harmony
- Empirix Hammer

Testing experience of A1 Telekom Austria
ACQUA is a dual channel analysis system for diagnosis of acoustic and/or electric transmission paths up to 24 kHz.

Applications
- Quality control Conformance tests
- Speech quality measurement and optimization (algorithms and systems)
- Speech quality evaluations of - standard terminals (analog, digital) - mobile phones (UMTS, GSM, CDMA, TDMA ...)
- cordless phones (DECT, CAT-iq™ ...)
- hands-free and conference terminals (office, vehicle ...)
- multimedia terminals (VoIP-Systems ...)
- network components (echo canceller, DCME, speech codecs ...)
Malden

- Terminal development
- SIP phone test bed
- UMA performance and handover analysis
- Enterprise SLA validation
- Echo canceller analysis
- Jitter Buffer Tests
- Train communications
- DTMF Analysis
- Regression testing
- Conference bridge testing
- Speech quality optimisation in all networks
- Speech quality / load evaluation
- Drive Test
- Codec evaluation
- Electro-Acoustic conformance
- Network element development
- Wireless handset comparison
- Vendor selection
- Echo simulation
- Competitive analysis of cellular networks
- DSP performance measurement

IXIA

- Key Features
 - ITU-T T.38 support
 - Predefined test scenarios for automating functionality, interoperability, and conformance testing
 - Protocol flow functions shaped as visual blocks, no programming or other script language is needed.
 - Simulate multiple IAFDs and fax gateways
 - T.30/T.38 Fax Protocol Analysis
 - T.30 signal trace extracted from T.38 packet trace
The user applications (fax & modem) are mostly distorted due to:

- end-to-end delay bigger than 100 ms
- problems with not correct implemented Echo Cancellers and Jitter Buffers in the GW
- not interoperable H.248 and SDP procedures within the network
- T.38 is not sensible on the delay, but during the TDM-IP Transit Scenario with more TDM–IP segments T.38 does not work.
- Not time synchronized network elements
Conclusion

- The conformity of the products from some vendors could be not supported. The time for "go in service" will be for such products much longer.
- The fax & modem transmissions are mostly distorted due to end-to-end delay bigger than 100 ms and problems with not correct implemented Echo Cancellers and Jitter Buffers
- Not interoperable H.248 and SDP procedures within the network
- The testing of the NGN is mostly complicated caused due to different interfaces
- To ensure the end-to-end functionality, a combination of conformance tests and internal E2E tests with different interfaces must be executed

Testing experience of A1 Telekom Austria