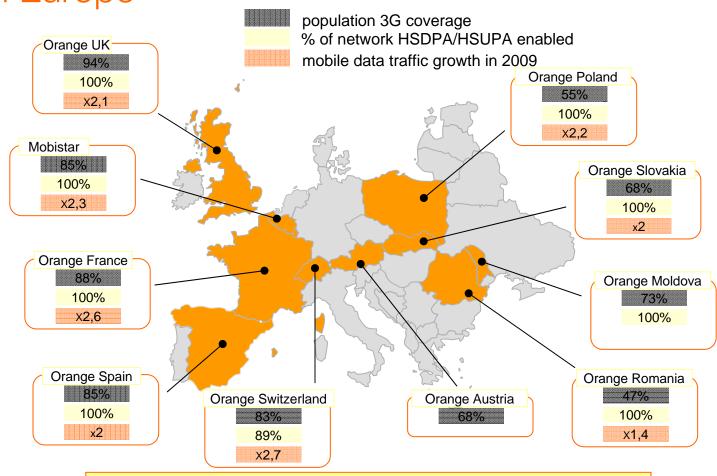


agenda


mobile broadband engine of traffic growth

IMT-Advanced: technical framework

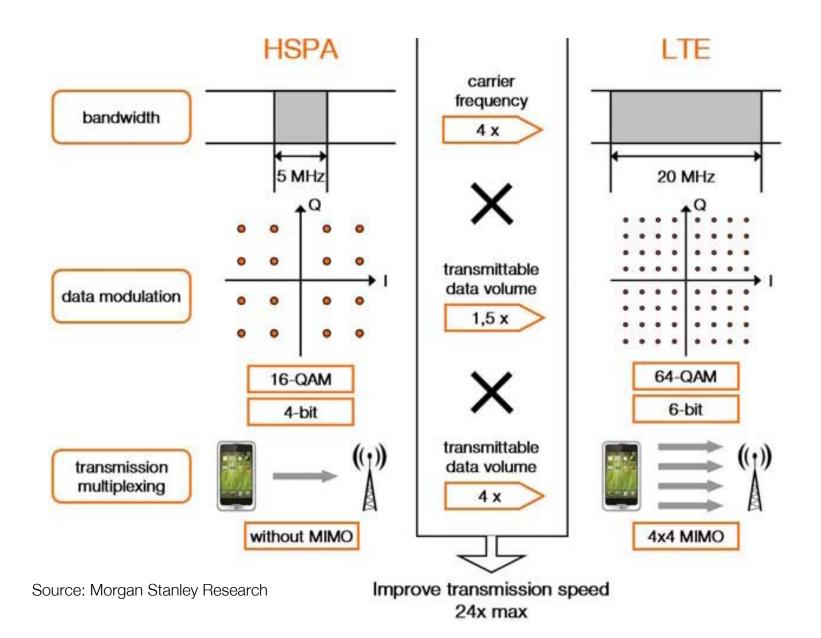
IMT-Advanced: new services for users

conclusions

France Telecom Orange is delivering successfully mobile broadband in Europe

consistent utilisation of a single technology family: GSM, EDGE, W-CDMA, HSDPA/HSUPA to be followed by LTE and LTE-Advanced

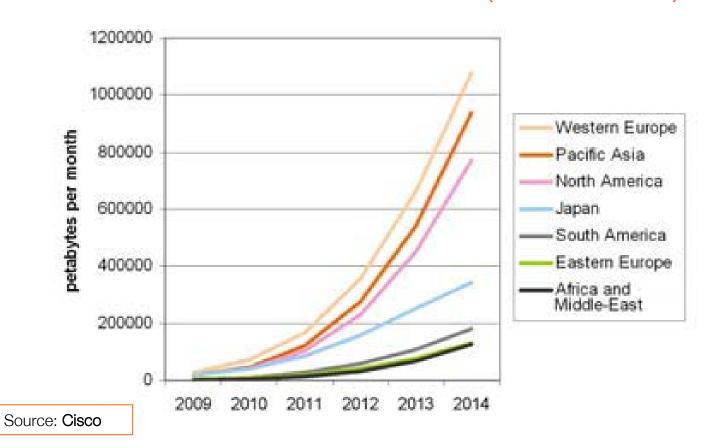
super-fast mobile broadband with LTE and LTE-Advanced



- there are now over a billion broadband customers across the world, for all technologies combined (mobile, fixed and cable)
- with HSPA and LTE, usage that was previously the sole preserve of fixed connections reaches the mobile world
- ➤ LTE creates a very large eco-system, offering an evolution path not only for GSM/UMTS operators but also for CDMA operators
- ➤ LTE opens the way for a pure-IP network architecture, spectral efficiency 3 to 5 times greater than the most sophisticated 3G networks, and theoretical speeds reaching between 173 Mbps and 326 Mbps, with a 20 MHz bandwidth, depending on the number of MIMO antennas used
- content, services and terminals (netbooks, tablets, smartphones) are genuinely building the appetite for the digital world

market moves on to LTE

market moves on to LTE


country	operator	trials	deployment / launch
Austria	T-Mobile		2011-2012
Austria	Mobilkom Austria		2011-2012
Austria	Hutchison 3		2011-2012
Austria	Orange		2011-2012
Finland	Elisa		to be confirmed
Finland	TeliaSonera		2010
Finland	DNA		to be confirmed
France	Orange		2011-2012
Germany	T-Mobile		2011
Germany	Vodafone	2009	2010-2011
Germany	O2 (Telefonica)	2010	to be confirmed
Ireland	Hutchison 3		2011
Italy	Telecom Italia	2009	to be confirmed
Norway	TeliaSonera	2009	déc-09
Norway	Telenor Norway	2009	to be confirmed
Portugal	TMN		to be confirmed
Spain	Telefonica		to be confirmed
Sweden	TeliaSonera	2009	déc-09
Sweden	Telenor /Tele2 (Net4 Mobility)	2009	2010
UK	O2 (Telefonica)	2009	To be confirmed

Source: GSA, Sofrecom (December 10, 2009)

- both FDD and TDD mode exist
- bandwidths: 1.4/3/5/10/15/20 MHz
- more deployment flexibilities for operators

- TeliaSonera is the first operator to commercially launch, in December 2009, a LTE network (Stockholm/ Sweden & Oslo/Norway)
- according to the Global Supplier Association, 59 operators in 28 countries are involved in deploying an LTE network
- twenty-two operators are expected to offer a commercial service by the end of 2010, including Verizon Wireless (USA), NTT DoCoMo (Japan), and China Mobile
- LTE TDD will be demonstrated in Expo2010 Shanghai China

mobile data traffic forecasts (2009-2014)

- mobile data traffic is expected to double every year through 2014, increasing 39 times between 2009 and 2014
- video should represent almost 66 % of the world's mobile data traffic by 2014

agenda

mobile broadband engine of traffic growth

IMT-Advanced: technical framework

(| IMT-Advanced: new services for users

4 conclusions

IMT-Advanced: current status at ITU

- two candidate Radio Interface Technologies (RIT) for IMT-Advanced were submitted to ITU-R in October 2009
 - LTE-Advanced (FDD&TDD) and
 - IEEE 802.16m
- LTE-Advanced is an evolution of LTE Release 8 that aims to meet the requirements defined by ITU-R for IMT-Advanced
 - IMT-Advanced requirements impose essentially two types of modifications to LTE:
 - the support of larger bandwidths (40 MHz)
 - higher cell-average and cell-edge spectral efficiencies
- evaluation of IMT-Advanced candidate RITs is performed by 14 independent evaluation groups (IEG)
 evaluation results will be provided to the WP5D in June 2010

IMT-Advanced: next steps at ITU

- ITU-R WP5D is developing regulatory framework for IMT-Advanced:
 - ITU-R Report [IMT Radio]
 - October 2010: evaluation and consensus building work to be finalised
 - ➤ ITU-R will not endorse the capability of a proponent to reach values found by IEG, but will only confirm IEEE and 3GPP evaluation work through IEG work
 - > only values from 3GPP and IEEE in the final report (values from IEGs could be annexed for information)
 - ITU-R Recommendation [IMT.RSPEC]
 - ➤ first half 2011: detailed specifications of IMT-Advanced technologies likely to be finalised
 - > it will not be a copy and paste of 3GPP or IEEE specifications
 - > ITU focuses on interoperability, intra-techno coexistence matters etc

evolution within a technological family – from HSPA to HSPA+ to LTE and LTE-Advanced

- LTE-Advanced: a very large number of organisations, with some 373 companies, including equipment suppliers and network operators, are involved in the preparation of the 3GPP radio access technology
- the initial version of LTE-A corresponds to Release 10 of 3GPP
 - Study Item started in May 2008 and ended in March 2010
 - to meet the ITU requirements, a set of new features has been considered to be added to the LTE Rel-8 basis:
 - carrier aggregation: for higher bandwidth and spectrum usage flexibility
 - MIMO enhancements in uplink and downlink: for increased capacity and user throughputs
 - Coordinated Multipoint transmission and reception (CoMP): for better celledge performance
 - relaying: for cost-efficient coverage, and cell-edge performance enhancement

capacity and cell-edge user throughputs

		Ant. Config.	Rel. 8 LTE ^{*1}	LTE-Advanced*2	IMT-Advanced*3			
	DL	2-by-2	1.69	2.4	-			
Capacity		4-by-2	1.87	2.6	2.2			
[bps/Hz/cell]		4-by-4	2.67	3.7	-			
	UL	1-by-2	0.74	1.2	-			
		2-by-4	-	2.0	1.4			
0-11 - 1	DL 1	2-by-2	0.05	0.07	-			
Cell-edge user throughput		4-by-2	0.06	0.09	0.06			
[bps/Hz/cell/user]		4-by-4	0.08	0.12	-			
	UL	1-by-2	0.024	0.04	-			
		2-by-4	-	0.07	0.03			

Source: http://www.3gpp.org/IMG/pdf/2009 10 3gpp IMT.pdf

LTE-Advanced: 3GPP status

- during Summer 2009, 3GPP performed the self evaluation of the LTE-A performance to verify that the IMT-Advanced requirements were met
 - results from the self evaluation are captured in technical report TR36.912
 - conclusion is that LTE-A meets the ITU requirements in all four environments (Urban macro, Urban micro, Rural macro and Indoor hot spot), both for FDD and TDD
- specification work on Release 10
 - exact set of features to be standardised in Rel-10 was defined at the 3GPP RAN Plenary meeting in December 2009
 - carrier aggregation and SU-MIMO enhancements (UL and DL) will be specified, as well as (inband and outband) Type 1
 Relays
 - Enhanced MU-MIMO will also be specified in Rel-10

evaluation and coordination process

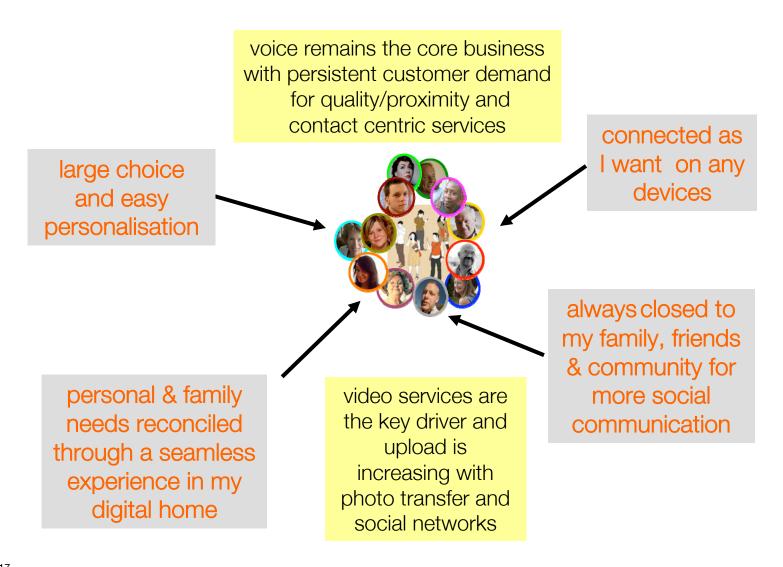
- coordination meetings to review the two radio technologies submitted to ITU-R as IMT-Advanced candidates:
 - 3GPP technology workshop, 17-18 December 2009
 - IEEE technology workshop, 13 January 2010
 - purpose : to facilitate communication between the proponents and the IEG and to facilitate the exchange of views among IEG
 - results of the experiments and analyses performed by the IEG correlate well with the results of the self-evaluations
- in February 2010, twelve preliminary evaluation reports were provided by the IEG for consideration by ITU-R WP 5D
- next coordination meetings are scheduled in Beijing:
 - IEEE on 17 May 2010
 - 3GPP on 18 May 2010
 - will provide opportunity to IEG to present their almost final results and discuss any problems

agenda

mobile broadband engine of traffic growth

IMT-Advanced: technical framework

IMT-Advanced: new services for users


conclusions

my mobile also becomes a domestic device

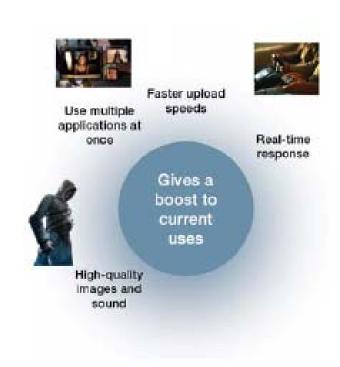
- large acceptance of technological advances by the consumers
- the usages that will ensure the success of the IMT-Advanced services already exist e.g. communication, entertainment, time management ...
- the same kind of usage at home or on the move, regardless of the location
- very high mobile broadband is one mean by which many services can be enriched and popularised
- video and image quality will improve existing services
- symmetry of data flow enables interactivity

market/customer main trends

new mobile services and applications for the users

- deliver very high-definition images instantly anywhere in the world
- alerts enabled doctors to call their patients in the event of a risk and treat them remotely

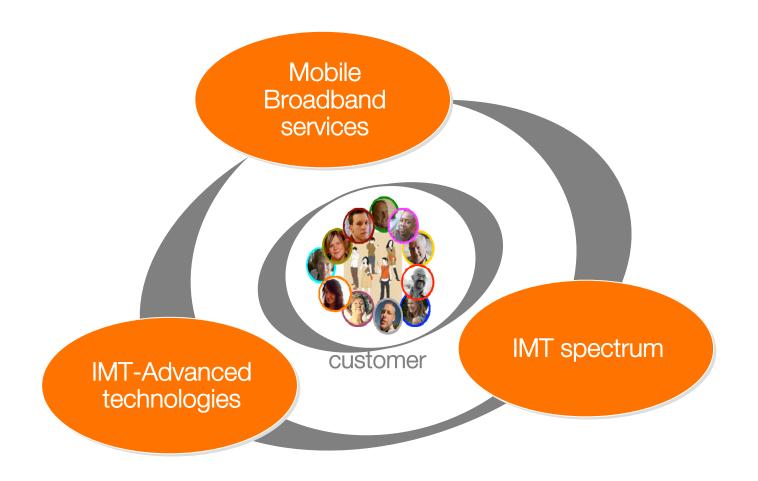
- distance learning as if in a real classroom
- strong M-payment uptake
- social networking: file transfers will explode


dreaming about it? it will be possible with IMT-Advanced!

what if it were possible to act at a distance using one's own avatars in virtual business meetings?

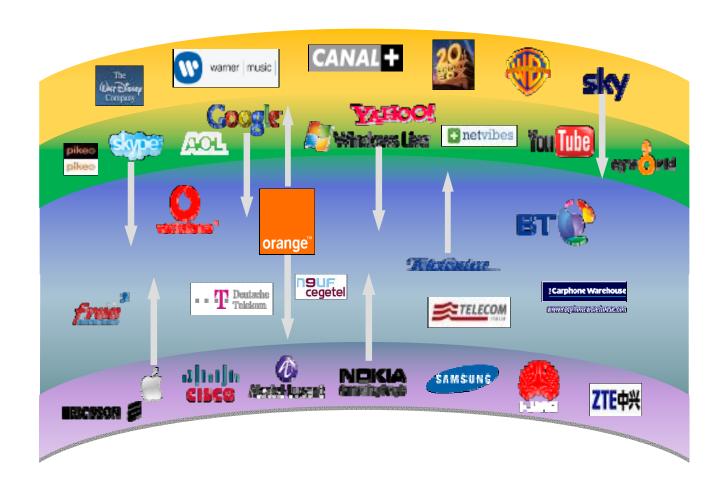
IMT-Advanced will make it possible to satisfy increasingly bandwidth-consuming new usages and to plan for them!

agenda



mobile broadband engine of traffic growth

IMT-Advanced: technical framework


| IMT-Advanced: new services for users

conclusions

3D image quality, increased file transfer capacity with no limits on file size, the addition of interactive functions, and the development of user-friendly technologies with ever greater multi-tasking capabilities

all value chain players compete to capture customer relationship and audience

conclusions

- mobile broadband penetration worldwide is increasing spectacularly with new IMT service offerings and global explosion in mobile data traffic
- mobile industry is constantly developing more efficient radiocommunication technologies to respond consumers expectations
- enhancements are still enabling operators to further increase their capability and capacity within available spectrum, however more resources will be required in the future

increasing bandwidth is a highly promising way of driving innovation in fields as diverse as e-Health, real-time video learning, smart transport and cloud gaming

thank you