Telecom Service Delivery Platforms in Next Generation Networks

Marco Carugi - Senior Expert, ZTE Corporation
ITU-T SG13 Vice-Chairman and Q.3/13 Rapporteur
Marco.Carugi@zte.com.cn
Outline

- Telecom SDP
- ITU-T NGN SDP developments
- Current status and evolution paths (SDPaaS)
An open service environment for the Telecom Infrastructure

- Reusable Telecom capabilities for reduced service development costs
 - Applying the development approach from IT industry to telecoms
- Open service environment for flexible and agile service creation, execution, management and deployment
 - “Rapid change” is key for satisfying the changing customer needs
 - New business opportunities via an environment integrating applications and telecom infrastructure

Telecom “Service Delivery Platform” (SDP)
A Telecom SDP for competing with Web Companies

Telecom Providers and Web reality

- Web apps: many, diverse, rich, high speed dev.
- « Web » is the platform of Web companies
- Telecom providers face the risk to become only ‘bit pipe’ providers (Over The TOP services)

New services are a strategic differentiator for Telecom Providers and a way to counter lower voice revenues

Legacy service delivery: inefficient, expensive

Telecom SDP as a new framework for service deployment

- Multi-party business model
- Multi service
- Web orientation, mashups
Increased business opportunities in a SDP ecosystem

- Personalisation
- On-Demand
- Self-Service
- Collaboration

End user created applications

3rd Party applications

NP/SP services

Common Telecom capabilities
SDP for convergent services (service examples)

Telecom Services
- MMS
- mNews
- UC
- IPTV

Internet/Mobile Internet
- diary
- blog
- video surf
- mBook
- map

Machine to Machine (M2M) Applications
- eHealth
- eTraffic
- agriculture monitoring
- City emergency
- Smart Grid

SDP for convergent services
- Telecom adaptors
- Internet/Web App adaptors
- M2M App adaptors
Position of SDP in Telecom Infrastructure

Applications
- Streaming
- Download
- Video Mail
- Location
- E-business
- Multimedia Messaging
- Mobile Payment

Service Delivery Platform

Enablers
- LCS
- Content Download
- WAP Gateway
- MMSC
- SMSC
- Streaming Server
- DRM

Underlying networks
- CDMA2000
- WCDMA
- Cable
- Fixed Broadband
- GPRS
- GSM
- PSTN
NGN SDP (NGN-SIDE)

ITU-T draft Rec. Y. NGN-SIDE-Req (Q.3/13)

Requirements for NGN Service Integration and Delivery Environment

- NGN-SIDE ecosystem
 - Business roles
- Functional overview
 - Layers and functional positioning within the NGN architecture
- General requirements
- NGN-SIDE capabilities
 - Description and requirements for each capability
- NGN-SIDE interface requirements
 - For Resource Interfaces, for Service Interfaces (UNI, NNI, ANI, SNI)
 - No reqts among different NGN-SIDE components
- Appendixes
 - Application scenarios (3rd party app., in-house app., M2M app.)
 - Survey of API standardisation (no survey of overall SDP activities)
 - Cloud computing service models and NGN-SIDE
 - Business deployment scenarios in the NGN-SIDE ecosystem
NGN-SIDE eco-system

NGN-SIDE aims to support a multi-fold business model and a comprehensive ecosystem for all stakeholders in the NGN value chain.

NGN-SIDE provides an open environment in NGN, with integration of resources from different domains, including Telecom domain (e.g. Fixed and Mobile Networks), Internet domain, Broadcasting domain, Content Provider domain.
NGN-SIDE business deployment scenarios

NGN-SIDE users

- Application provider
- 3rd Party Application Developer
- Application provider
- 3rd Party Application Provider
- Application provider (In-House)
- Resource Provider (NGN capabilities)

NGN Provider

- Content provider
- Content Provider
- Service enabler provider
- 3rd Party Resource Provider
- Application provider
- 3rd Party Resource Provider

NGN-SIDE Resource providers

Actors

Business roles

In this example scenario the NGN provider acts as NGN SDP provider.
Main functionalities of NGN-SIDE

- **Integration of resources from different domains** over NGN (e.g. telecom domain (fixed and mobile networks), broadcast domain, internet domain, content provider domain etc.)
- **Adaptation, including abstraction and virtualization, of resources** from different domains
- **Resource brokering for mediation** among applications and resources
- **Application development environment** for application developers
- **Different service interfaces across ANI, UNI, SNI and NNI for exposure** of NGN-SIDE capabilities and access to resources in different domains
- **Mechanisms for support of diverse applications**, including cloud, machine to machine, and ubiquitous sensor network applications
- **Mechanisms for support of context-aware services**
- **Mechanisms for content management**
NGN-SIDE functional framework – current ITU-T draft
NGN-SIDE within the NGN architecture (Y.2012)
Telecom SDP standardization

Various SDOs/Forums/Consortia involved in the ongoing process
- Framework perspective
 - ITU-T: SG13 (NGN/Future Networks), SG16 (IPTV)
 - OMA: OMA Service (Provider) Environment, enablers, APIs
 - IEEE: NGSON (Next Generation Service Overlay Network)
 - ATIS: Service Oriented Networks (SON)
- Management perspective: TMF Service Delivery Framework
- IMS focus: 3GPP
- Others (Wholesale Application Community etc.)

Some challenges of the standardization process
- Process coordination among relevant SDOs
- A minimum set of standardized APIs to be adopted by each SDP
- Interoperability among different SDP implementations
Telecom SDPs today and Web (platform) attributes

Current Telecom SDPs status
- Emphasis on “control and management” - SDP (and IMS) are centralized environments
- Services are geographically-bound (with service interoperability issues between Telecom Providers)
- Function-centric service architectures
- Not so open
 - Proprietary control mechanisms, SDK, market is restricted
- Existence of multiple domain-specific SDPs (for mobile, IPTV, legacy and broadband services, Machine-to-Machine applications etc.)

The good attributes of Overlay SDPs (Web 2.0 platform)
- A single and distributed environment
- Services are global, always available
- Data-centric service architectures
- Open APIs for 3rd parties and social features
Some interesting evolution paths for an enhanced value Telecom SDP

- SOA and open APIs pave the way to open and decentralized (distributed) SDPs
- All services on demand: a Cloud-based SDP
- SDP offered as a Service of the Cloud (SDPaaS)
- Modular SDP architecture with common general purpose functional modules and device/service-specific functional modules
- Data enhanced SDP (e.g. via data mining capabilities)
- Interconnection/federation of SDPs for geographical pervasiveness
- Others (SDP as a Broker)
Cloud based service models

ITU-T FG Cloud definition proposals

► **Cloud Services**: products and solutions delivered and consumed on demand (utilizing IT Resources and capabilities of Platform) at any time, through any access network and using any connected devices

► **Cloud Computing**: an emerging IT development, deployment and delivery model, enabling on-demand delivery of products, services and solutions over any network and for any devices

Software as a Service (SaaS)
- Offers software applications as IP-based services
 - ✔ Lower CAPEX
 - ✔ Configurable
 - ✔ Multi-Tenant
 - ✔ Elasticity

Platform as a Service (PaaS)
- Offers service delivery platform as IP-based services
 - ✔ Enablers opened as APIs
 - ✔ Mash-up
 - ✔ SDK, Testing Environment
 - ✔ Managed Operations
 - ✔ Developer community

Infrastructure as a Service (IaaS)
- Offers storage, computing, connectivity as IP-based services
 - Massive, efficient, cheap way to offer infrastructure via hardware resource abstraction
Cloud Ecosystem (ITU-T FG Cloud)
SDPaaS functional overview
(extract from ITU-T FG Cloud Ecosystem draft)
Evolution from SDP to SDPaaS

- Decouple the functions of each subsystem of a SDP
- Distribute the construction and deployment of each SDP subsystem
- Make the services of each SDP subsystem into a resource pool
- Implement the essential distributed Services and cloud management

SDP as a Cloud service

- Web offers today include service marketplaces and SDP in the cloud (developer support, SDP capabilities as a service, API-based mashups)
- **Key requirements of Telecom SDP in the cloud**
 - platform exposure in the cloud
 - developer support and governance with respect to 3rd parties
 - service discovery and agile service composition and provision
ZTE SDP product achievements

Around the world more than 50 sites, serving 100,000,000 subscribers

- SFR France
- Telenor Montenegro
- China (China Unicom, China Telecom)
- Argentina Telecom
- Etisalat Egypt
- ETC Ethiopia
- Smart Indonesia
The biggest SDP - China Unicom Guangdong Branch

- The largest SDP platform in China with 35 M users, 1000 CP/SP, 2000 active applications, 41 M subscription data, 174 M $ revenue per year.
- The most complex SDP project with integration with a lot of service engines and systems (see table)
- Fast engineering deployment in 4 months
- Attentive customized service helps quick service deployment
- Statistical analysis & report system helps operator master service operations status in real-time

<table>
<thead>
<tr>
<th>System</th>
<th>Protocol</th>
<th>Vendor Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMSC</td>
<td>SMPP</td>
<td>ZTE</td>
</tr>
<tr>
<td>MMSC</td>
<td>MM7</td>
<td>Comverse, Huawei</td>
</tr>
<tr>
<td>WAP GW</td>
<td>PAP</td>
<td>Huawei</td>
</tr>
<tr>
<td>LBS</td>
<td>Le/LIF</td>
<td>Moto</td>
</tr>
<tr>
<td>SMS Gateway</td>
<td>ISMAP</td>
<td>ZTE</td>
</tr>
<tr>
<td>SMS PUSH Platform</td>
<td>SGIP</td>
<td>ZTE</td>
</tr>
<tr>
<td>OTA</td>
<td>ISMAP</td>
<td>Jingpeng</td>
</tr>
<tr>
<td>CRBT</td>
<td>ISMAP</td>
<td>Jingpeng</td>
</tr>
<tr>
<td>IN/Prepaid</td>
<td>SMPP+</td>
<td>ZTE/Huawei</td>
</tr>
<tr>
<td>OCS</td>
<td>Diameter CC</td>
<td>ZTE</td>
</tr>
<tr>
<td>MSC/VLR/HLR/A UC</td>
<td>CAP</td>
<td>Ericsson</td>
</tr>
<tr>
<td>GGSN</td>
<td>Diameter</td>
<td>Nokia-Siemens</td>
</tr>
</tbody>
</table>

Statistical analysis & report system helps operator master service operations status in real-time.
ZTE SDP in Etisalat Egypt (ready for launch)

- ZTE SDP is helping Etisalat Egypt to deliver service applications like business advertisement and promotion information message by SMS, MMS, WAP PUSH, USSD and VSMS (1000 TPS as target).
ZTE SDP roadmap

- **SDP1.0**
 - VAS platform solution with open telecom enablers and integrated management platform

- **SDP2.0**
 - Phase 1
 - SOA framework with W/S encapsulation and exposure for convergent networks
 - Phase 2
 - Telecom and IT enablers; Service Orchestraton; REST interfaces

- **SDP3.0**
 - Distributed deployments; Cloud services; SDPaaS
 - [Coupled with ZTE developments in Cloud technology]

today
ZTE Convergent Service Network (CSN) platform

Application Layer
- AE (Application & Application Engine)
- CSN Node

Control Layer
- CSN Node

Service Layer
- SE (Service Enablers)
- BE (Business Enablers)
- IMS
- NonIMS
- Web/P2P
- CDN
- IPTV

Underlying networks
- Access Network
- Access Network
- Access Network
Thank you for your attention