Network Architecture consolidation towards NGN

Oscar González Soto
ITU Consultant Expert
Strategic Planning and Assessment

Content

• Key factors for the evolution towards NGN
 • Services and revenue motivations. Requirements

• Network architecture consolidation at transit, local and access levels
 • Topology and migration

• Network optimization based on planning methods and tools
 • Support to Design
Network Architecture towards NGN

Key Factors: Motivation

• **New services and revenue** increase with multimedia services:
 - Compensate voice revenue reduction and increase BB related business

• **Cost reductions** by sharing network infrastructure and systems
 - Savings are a function of network scenario, equipment modernization status and customers grow speed

• **Simplification of O&M**, thus lowering OPEX
 - Integrated operation platforms, maintenance and training

Network Architecture towards NGN

Key Factors: Operator Requirements (I)

• **Business continuity** required to maintain ongoing dominant services and customers that require carrier-grade service

• **Flexibility** to incorporate existing new services and react quickly to the ones that appear on real time (main advantage of IP mode)

• **Profitability** to allow feasible return on investments and in the best practices market values
Network Architecture towards NGN
Key Factors: Operator Requirements (II)

- **Survivability** to allow service assurance in case of failures and external unexpected events.

- **Quality of Service** to guarantee the Service Level Agreements for different traffic mixes, conditions and overload.

- **Interoperability across networks** to allow to carry end to end services for flows in different network domains.

Network Architecture towards NGN
Key Factors: Issues to care

- **Introduction of new services** based on profitability.

- **Interworking** with existing PSTN and other operator's networks.

- **QoS** for guaranteed services and critical business customers.

- **Tariff principles** as a function of market demand and consumption of network resources (Backward Cost Assignment).

- **Universal Service Obligations** for basic services and internet.
Network Architecture towards NGN
Content

• Key factors for the evolution towards NGN
 • Services and revenue motivations. Requirements

• Network architecture consolidation at transit, local and access levels
 • Topology and migration

• Network optimization based on planning methods and tools
 • Support to Design

Network Architecture towards NGN
Architecture Consolidation: Topology

Topological changes impact on infrastructure and are slower to implement than technology substitution

• Less network nodes and links due to the higher capacity of systems (one order of magnitude).

• Same capillarity at access level due to identical customer location

• Topological connectivity higher for high capacity nodes and paths for security

• High protection level and diversity paths/sources in all high capacity systems, both at functional and physical levels
Network Architecture towards NGN
Existing networks and architecture

- 5 different network types to handle telecom services
- TDM for fixed and mobile networks working in circuit mode with end to end reserved paths
- SS7 and IN network working with message switching mode
- Data network working with leased lines and packet mode with different and conventional IP protocols

Hierarchical topology with 4 to 5 layers, connectivity to the upper next layer and within each layer as a function of economical optimization

- Number of nodes as a function of O/D traffic and nodes capacity
- Service handling for media, signaling and control at all exchange nodes
- Carrier grade quality with well defined QoS criteria and standardized engineering rules
Network Architecture towards NGN
Architecture: NGN Layers

What changes from current scenario towards target network?
Network Architecture towards NGN
Architecture Consolidation: Topology

Structure Simplification

Network Architecture towards NGN
Architecture Consolidation: Access

Access dominated by physical infrastructure cost and deployment time

• Quick deployment of DSL and Multimedia Services

• FO closer to customer when implementing new outside plant or renovating existing one

• New Wireless technologies for low density customer scenarios

• Shorter LL length than classical network to be prepared for high bandwidth Multimedia services
Network Architecture towards NGN

Architecture Consolidation: Wireline Access

Typical historical Access Network structure

- **Lex** Local Exchange
- **MDF** Main Distribution Frame
- **FDF** Feeder Distribution Frame
- **SDF** Subscriber Distribution Frame

Network Architecture consolidation: O.G.S.

Network Architecture towards NGN

Architecture Consolidation: Access evolution

- **LEX** Local Exchange
- **GW** Gateway
- **MDF** Main Distribution Frame
- **DLC** Digital Loop Carrier
- **SDF** Subscriber Distribution Frame
- **FO** Fiber Optic

Network Architecture towards NGN
Architecture Consolidation: Local

Dominated by functions migration investment and interoperability

- Move from joint switching and control to separated control and media GW
- Introduce Multimedia Services at all areas
- Optimize number, location of nodes and interfaces among existing and new network
- Requires longer time and higher investments due to variety of geo-scenarios and geographical distribution

November 2005
ITU/BDT Network Architecture consolidation - O.G.S.
Lecture - 1.3.5 - slide 17
Network Architecture towards NGN
Architecture Consolidation: Core

Dominated by high capacity and protection level

- Overlay deployment for full coverage in all regions
- Quick deployment needed for homogeneous end to end connections
- Strong requirements for high quality, protection and survivability
- Importance of the optimization for location and interconnection
Network Architecture towards NGN
Architecture Consolidation: Core

Softswitches/MGCs located in few sites
IP links
Long distance
Packet mode network
Trunking gateway in each local site
LEX Layer
Regional layer
Local Exchanges
Remote Units

Network Architecture towards NGN
Architecture Consolidation: Combined Segments

Where to start and how to co-ordinate migration?

Network “consolidation”
Cost Optimisation of the network
- Reducing nodes and increase their capacity
- Deployment of ADSL and multiservice access

Network expansion
NGN solution:
- Cap and Grow; this means keeping the existing PSTN network as it is, and grow demand with NGN equipment

Network replacement
Replacement of out-phased (end of life) TDM equipment
- gradual replacement: this means coexistence of the two technologies
- full accelerated replacement with a short transition period

Need to optimize overall network evolution: technically and economically
Network Architecture towards NGN
Architecture Consolidation: Combined Segments (I)

Network Architecture towards NGN
Architecture Consolidation: Combined Segments (II)
Network Architecture towards NGN

Architecture Consolidation: Combined Segments

Overall impact of evolution on network CAPEX and OPEX

CAPEX
- TDM and NGN CAPEX are close
- NGN CAPEX in the first years driven by geographic coverage
- Access systems represent a large part of CAPEX
 - similar values in TDM and NGN

OPEX
- OPEX in NGN trends to be lower
- Migration scenarios will have a mix of TDM OPEX (installed base) and NGN OPEX (substitution and growth)
- Significant impact of manpower cost due to convergence in operations

Key factors for the evaluation: Geo-scenarios, Network grow rates, Aging of equipment, New services

Network Architecture towards NGN

Cost drivers and trends

- Network physical infrastructure as a function of location and density (costs proportion around 70% in the access segment)
- Volume of customers per category
- Bandwidth demand per origin/destination
- Packet processing rates for control related functions
- Variety of applications/services and related platforms
- Content storage and location within the network
- Leasing of physical or communication resources

Fundamental importance of economies of scale by volume and convergence at network resources, service platforms and OSS
Network Architecture towards NGN

Architecture Consolidation: Scenario evaluation

- **Net Present Value (NPV)** for the overall migration project is the best global evaluator.

A large variety of country scenarios and transition strategies generate major differences in the economical results. Planning to be performed per country and operator.

Network Architecture towards NGN Content

- **Key factors** for the evolution towards NGN
 - Services and revenue motivations. Requirements
 - Network architecture consolidation at transit, local and access levels
 - Topology and migration
 - Network optimization based on planning methods and tools
 - Support to Network Design
Network Architecture towards NGN

Support tools: Design and Optimization (I)

Required functionality for Technical design tools

- Service demands characterization and traffics for VoIP and NGN multiservice flows
- Conceptual Network Design and Capacity Planning
- Comparison of different network structures
- Routing flows for most typical cases including OSPF, shortest path, widest path and weighted cost functions.
- Optimizing locations and connections of network gateways
- Cost, Performance and Reliability Analysis
- Estimation of investment costs for the rollout and the extension of the investigated multi-service network

Network Architecture towards NGN

Support tools: Design and Optimization (II)

Required functionality for Technical design tools

- Estimation of end-to-end delays
- Technical Site and System Planning
- Allocation of the IP or MPLS links
- Formation of virtual networks
- Routing over ATM links or PDH/SDH systems or tunneling via other IP links
- Sub-networking and addressing
- Configuring the network elements (IP router)
Network Architecture towards NGN
Support tools: Design and Optimization

Network Architecture towards NGN
Summary of Key Factors

- Plan **business and services first**, later the network with proven solutions.

- Implement **pilot cases** before network migration due to the many new technical issues

- **Differentiation** to competitors on new services and quality

- Design financial performance with **best business practices**: compare and optimize NPV.