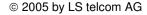


Radio Network Planning Tools Basics, Practical Examples & Demonstration on NGN Network Planning Part II

Roland Götz LS telcom AG


Regional Seminar on evolving network infrastructures to NGN and related Planning Strategies and Tools, for the CEE, CIS and Baltic States

Belgrade, Serbia and Montenegro, 20-24 June 2005

Case Study Wireless Local Loop / WiMAX Network

Case Study: WLL / WiMAX Network

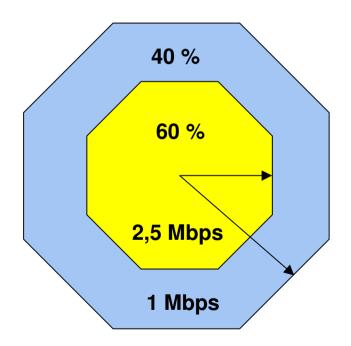
Project Description

- WLL Network to provide fast Internet
- 3,5 GHz band
- Two Scenarios
 - Scenario 1: Rural Area
 - Scenario 2: Urban Area
- Basic Business Model and Coverage Criteria

Project Steps

- Comparison of available Hardware
- Definition of the Planning Guideline
- Tool-based Network Design

Basic Requirements



Scenario 1: Rural Area

- Location: valley, rural area
- Outdoor coverage
- Data Rate
 - ► >1 Mbit/s

Scenario 2: Urban Area

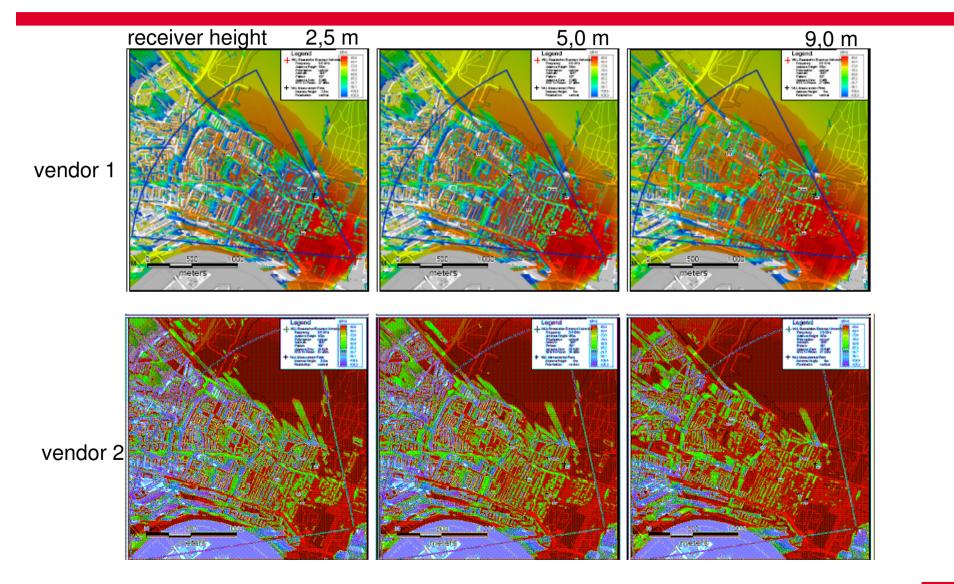
- Location: Top City
- Indoor coverage
- Data Rate
 - ▶ 2,5 Mbit/s (60%)
 - ▶ 1,0 Mbit/s (40%)

Hardware Comparison & Selection

Technical Data Base Stations

Vendor Vendor 1		Vendor 2	Vendor 3	
Multiple access scheme	CDMA (MC-SCDMA)	РРМА	256 FFT OFDM / TDMA	
Duplex Mode	TDD	TDD/FDD	HD- FDD/TDD	
Ausgangsleistung	max. 47 dBm (EIRP)	max. 27 dBm	max. 33 dBm	
Bandbreite	5 Mhz, 10 x 500 kHz sub-	1 MHz sub-channel spacing	3,5 / 7 / 14 MHz channel	
	channels		spacing	
Antennengewinn	max. 17 dBi	max. 18 dBi (15°-Antenne)	max. 12 dBi (60°-Antenne)	
Modulationsarten	QPSK / 8BPSK / 16 QAM	2 / 4 / 8 CPFSK	BPSK, QPSK, 6QAM,	
			640AM	
max. Kapazität pro Sektor (5 MHz)	4.2 Mbit/s (16 QAM)	4 Mbit/s	35 Mbit/s (64QAM)	
max. Sektoranzahl pro BS	3	24 BSRs	12	

Technical Data User Terminals


Vendor	Vendor 1	Vendor 2	Vendor 3
Output Power	31 dBm (EIRP)	27 dBm	20 dBm
Antenna Gain	6 dBi	max. 18 dBi /externe	max. 6 dBi (internal;
		Antenne	integrated)
Bandwidth	5Mhz, 10x500 kHz sub-	1 MHz sub-channel	3,5 MHz channel spacing
	channels	spacing	
Modulation	QPSK	2 / 4 / 8 CPFSK	BPSK, QPSK, 16QAM,
			64QAM
Capaity (max.)	2,2 Mbit/s (QPSK)	4 Mbit/s (8CPFSK)	13,1 Mbit/s (3,5 MHz,FDD)

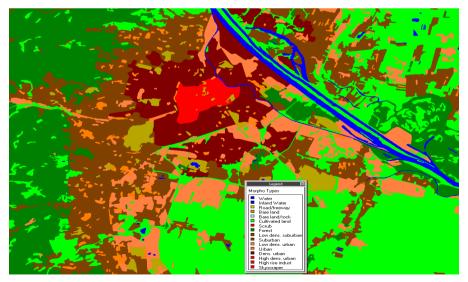
	Vendor valuation ratios		
			Sum
4	Analysis of the Technical Data (Data Sheet) for vendor:		150
	Base-Station and Terminal Output-Power	200	
4.2	Antenna Pattern , Gain, F/B Ratio	200	
4.3	Link Budget	100	
4.4	Carrier to Interference Ratio (C/I)	100	
4.5	Carrier to Noise Ratio (C/N)	100	
	Base-Station, Receiver Sensitivity	100	
	Throughput, Terminal per cell	200	
4.8	Type of Terminal	100	
4.9	Transmitting / Modulation System	100	
4.10	Availability	100	
4.11	Power Consumption	100	
4.12	Mechanical Size Base – Station / Terminal	100	
5	Coverage calculation for vendor:		150
5.2	Coverage plot for 2.5 m receiver height	500	
5.3	Coverage plot for 5 m receiver height	500	
5.4	Coverage plot for 9 m receiver height	500	
6	Analysis of Measurements field test for vendor:		700
6.3	Fieldstrength depending of the Distance and max. link distance	1500	
6.4	Throughput	2000	
6.5	Influence of Load	1500	
6.6	System Performance	1000	
	System - Stability	1000	
		1	

Hardware Comparison & Selection

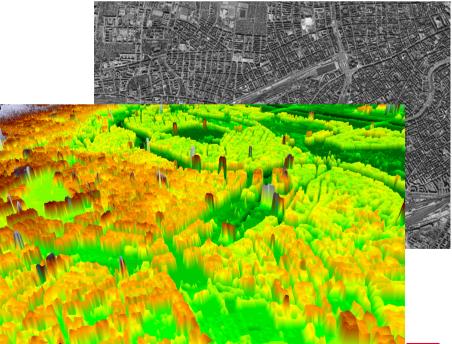
© 2005 by LS telcom AG

Results (for scenario 1 and scenario 2):

	9. Vendor valuation matrix					
		Vendor				
		Sum (max)	1	2	3	4
4	Analysis of the Technical Data					
4.X.1	Base-Station and Terminal Output-Power	200	150,00	130,00	80,00	180,00
4.X.2	Antenna Pattern , Gain, F/B Ratio	200	70,00	100,00	150,00	190,00
4.X.3	Link Budget	100	60,00	80,00	60,00	80,00
4.X.4	Carrier to Interference Ratio (C/I)	100	50,00	70,00	50,00	70,00
	Carrier to Noise Ratio (C/N)	100	60,00	70,00	60,00	70,00
4.X.6	Base-Station, Receiver Sensitivity	100	50,00	90,00	50,00	90,00
4.X.7	Throughput, Terminal per cell	200	150,00	80,00	130,00	130,00
4.X.8	Type of Terminal	100	60,00	80,00	60,00	80,00
4.X.9	Transmitting / Modulation System	100	50,00	80,00	40,00	80,00
	Availability	100	-	-	-	-
4.X.11	Power Consumption	100	60,00	60,00	60,00	40,00
4.X.12	Mechanical Size Base – Station / Terminal	100	60,00	60,00	60,00	60,00
5	Coverage calculation					
5.X.2	Coverage plot for 2.5 m receiver height	500	200,00	420,00	200,00	420,00
	Coverage plot for 5 m receiver height	500	250,00	440,00	250,00	440,00
5.X.4	Coverage plot for 9 m receiver height System Crash w	ith 500	300,00	450,00	300,00	450,00
	increasing cell lo					
6	Analysis of Measurements	7				
	Fieldstrength depending of the Distance and max. link	1500	800,00	->> 1000,00	700,00	1500,00
	Throughput Measurement Points probably no		1400,00	1400,00	1600,00	1500,00
6.X.5	Influence of Load in the main beam of the antenna	1000	1300,00	▶ 100,00	1300,00	1300,00
6.X.6	System Performance elevation pattern. (MP to close t	° 1000	600,00	600,00	500,00	950,00
6.X.7	System - Stability the BS)	1000	800,00	→ 100,00	800,00	990,00
	System became instable when					
	Sum: the number of connections in the	10000	6470	5410	6450	8620
	cell has been increased	10000	6470	5410	0450	0020


Planning Guideline

Planning Parameters


Rural Area

- Based on existing sites
- Antenna height: 20m above ground
- Receiver height: 2.5 / 5.0 / 9.0 m
- Digital Terrain Model, 50m resolution
- Digital Clutter Model, 50m resolution

Urban Area - Vienna

- "greenfield" planning, fictive sites
- Antenna height: 3m above rooftop
- Receiver height: 2.5 / 5.0 / 9.0 m
- Digital Elevation Model, 5m resolution
- Sat-Image, 1m resolution

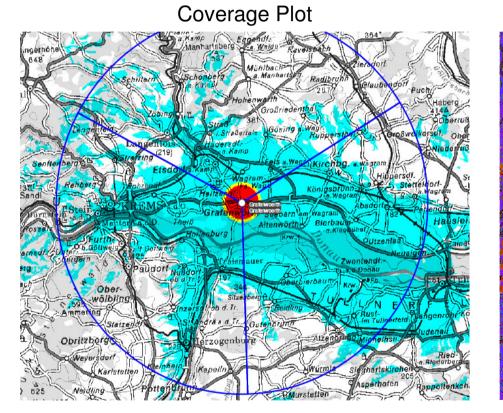
9

Planning Guideline

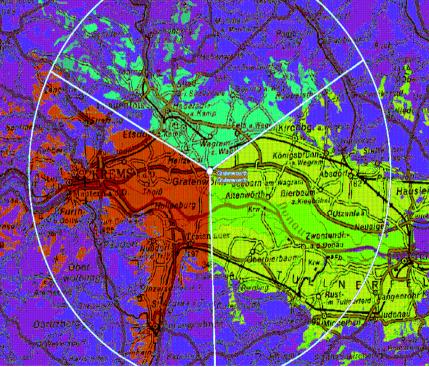
Based on the system data of the selected hardware, the link budgets for the different scenarios

- rural, outdoor
- urban, indoor

have been generated


Linkbilanz	3.5 GHz / 2.5 Mbit/s / Indoor		
Downlink		Uplink	
Sender (WLL Basisstation)		Sender (WLL Terminal)	
Max. Sendeleistung	1600,0 mW	Max. Sendeleistung	316,0 mW
Anzahl parallel genutzter Codes	200,0	Anzahl parallel genutzter Codes	30,0
Max Sendeleistung pro Code	8,0 mW	Max Sendeleistung pro Code	10,5 mW
Max. Sendeleistung pro Code in dBm	9,0 dBm	Max. Sendeleistung pro Code in dBm	10,2 dBm
Kabelverluste	2,0 dB	Kabelverluste	0,0 dB
Antenna Gain	17,0 dBi	Antenna Gain	6,0 dBi
EIRP pro Code	24,0 dBm	EIRP pro Code	16,2 dBm
Empfänger (WLL Terminal)		Empfänger (WLL Basisstation)	
Rauschdichte Thermisches Rauschen	-174,0 dBm/Hz	Rauschdichte Thermisches Rauschen	-174,0 dBm/Hz
Rauschzahl Empfänger	5,0 dB	Rauschzahl Empfänger	5,0 dB
Rauschdichte Empfänger	-169,0 dB/Hz	Rauschdichte Empfänger	-169,0 dB/Hz
Effektive Bandbreite pro Subcarrier	400,0 kHz	Effektive Bandbreite pro Subcarrier	400,0 kHz
Rauschleistung am Empfänger	-113,0 dBm	Rauschleistung am Empfänger	-113,0 dBm
Noise Rise (50% Zelllast)	3,0 dB	Noise Rise (50% Zelllast)	3,0 dB
Interferenzleistung am Empfänger	-113,0 dBm	Interferenzleistung am Empfänger	-113,0 dBm
Rauschen + Interferenz Empfänger	-110,0 dBm	Rauschen + Interferenz am Empfänger	-110,0 dBm
Spreizfaktor	32	Spreizfaktor	32
Processing Gain	15,1 dB	Processing Gain	15,1 dB
benötigtes Eb/N0	6,0 dB	benötigtes Eb/N0	6,0 dB
Min. Empfangspegel	-119,0 dBm	Min. Empfangspegel	-119,0 dBm
Antennengewinn	6,0 dBi	Antennengewinn	17,0 dBi
Kabelverluste	0.0 dB	Kabelverluste	2,0 dB
Max. Funkfelddämpfung (50%)	149,1 dB	Max. Funkfelddämpfung (50%)	150,3 dB
Zuschlag Versorgungswahrsch. 95 %	12,0 dB	Zuschlag Versorgungswahrsch. 95 %	12,0 dB
Reflektionsdämpfung	9,0 dB	Reflektionsdämpfung	9,0 dB
Gebäudedämpfung	20,0 dB	Gebäudedämpfung	20,0 dB
Designwert Funkfelddämfpung (95 %)	108,1 dB	Designwert Funkfelddämfpung (95 %)	109,3 dB
Maximale Linklänge	1,733 km	Maximale Linklänge	1,990 km

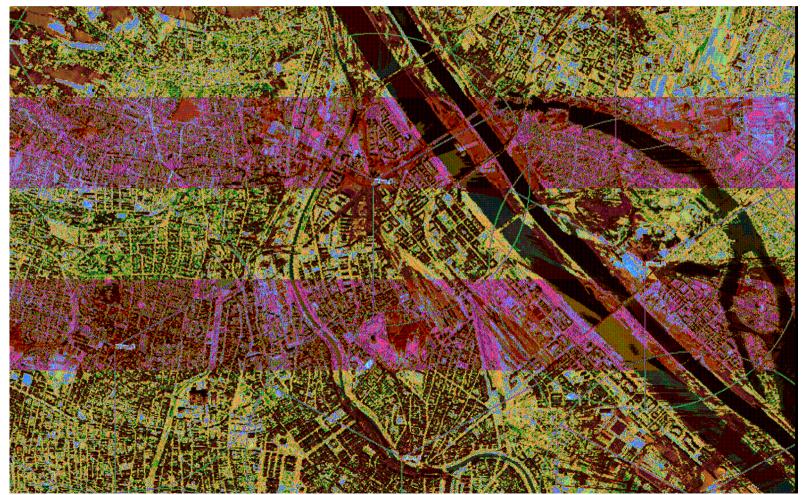
Vendor	Vendor 1	Vendor 2	Vendor 3	
Indoor 2,5 Mbit/s	1480 m	140 m	1120 m	
Indoor 1,0 Mbit/s	1890 m	170 m	1360 m	
Outdoor 2,5 Mbit/s	18400 m	2600 m	19600 m	


Network Design

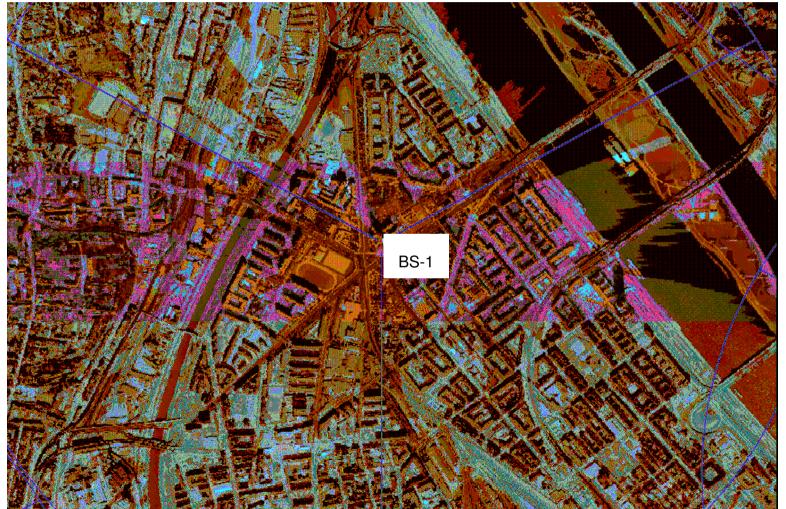
Rural Area

Best Server

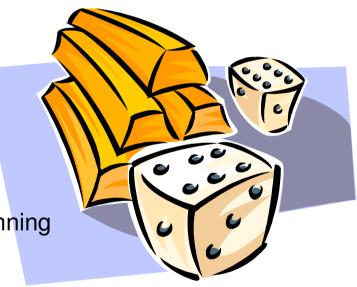
blue: outdoor 1Mbit/s yellow: indoor 1Mbit/s red: indoor 2,5 Mbit/s


 $\ensuremath{\textcircled{}^{\odot}}$ 2005 by LS telcom AG

Network Design


Urban Area – Top City

Network Design


Zoom In

Results

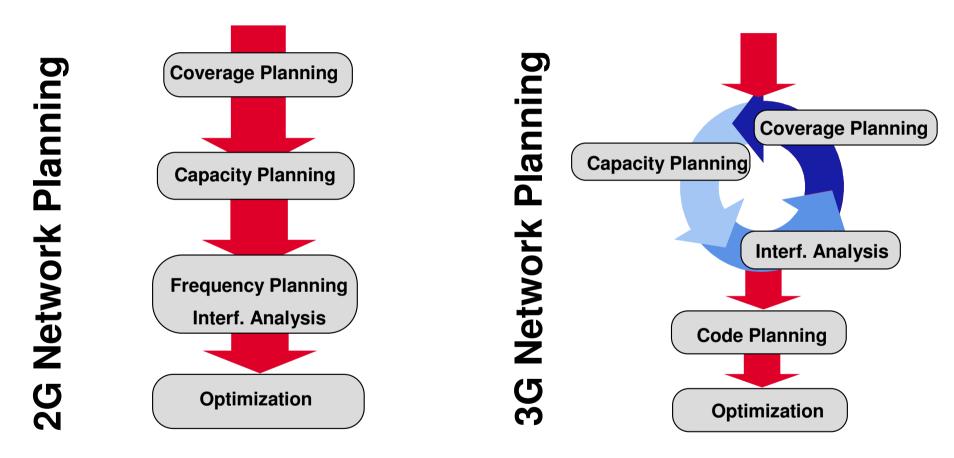
- 2 scenarios have been defined
- For each scenario the following tasks have been done:
 - Definition of the planning guideline
 - Link budgets
 - Terrain data sets
 - Calculations algorithms
 - Planning procedure
 - Selection of the hardware
 - Network design
 - Creation of input data for business case planning
 - Number of base stations
 - Covered area
 - Necessary bandwidth
 - Services to be offered

Case Study

3G Mobile Network Planning

Goal is to explain:

- What are the network design challenges coming up with the next generation networks?
- Differences between 2G and 3G network planning
- Impact on network design
- Impact on 3G Roll-Out Philosophie


Let's have a closer look to tasks and methods of 3G cellular networked planning compared to the well-understood procedures for recent 2G networks

3G Mobile Network Planning

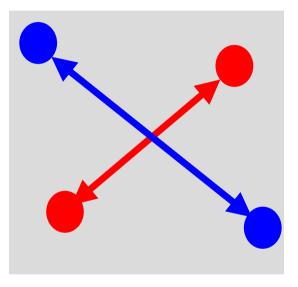
Steps are **independent** from each other. If the traffic load exceeds a cell's capacity, an other transceiver can be added to the cell. Coverage -, capacity planning and interference analysis are **not independent**. -> Dynamic Cell Areas

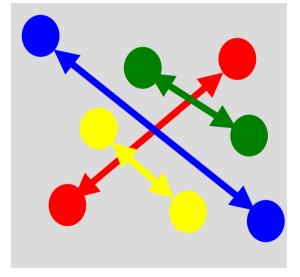
3G Mobile Network Planning

- Especially for GSM-dominant countries 3G/UMTS is a completely new technology
- There are major differences like
 - cell breathing effects (compared to GSM networks)
 - mixed traffic scenarios (packet and circuit switched)
 - mix of services (bit rates, etc.)

 The separation of coverage planning, capacity planning and interference analysis will no longer work in 3G systems

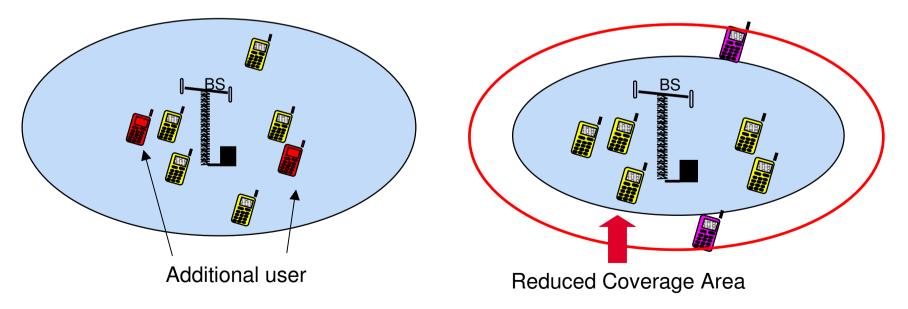
New Challenges for Radio Network Planning Engineers




Cell Breathing

Party Scenario

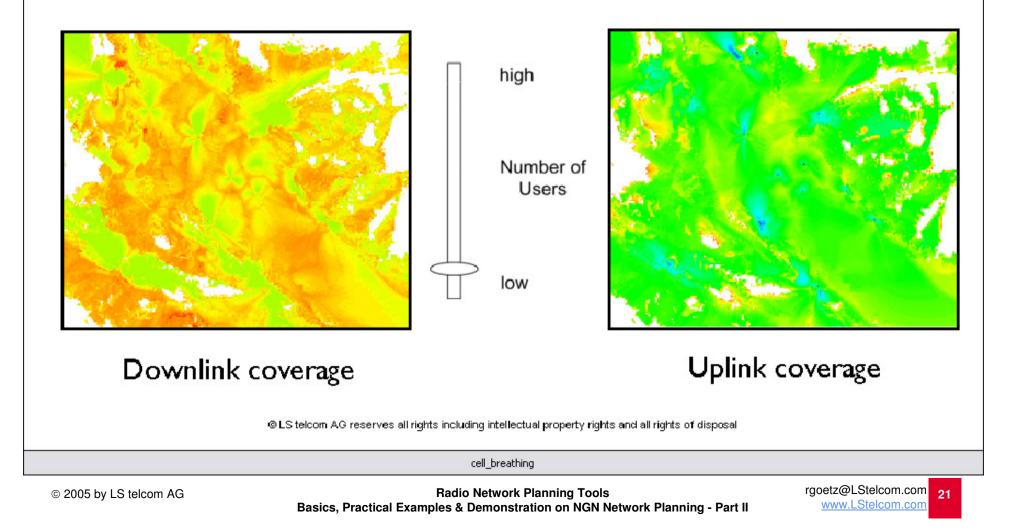
- 2 couples in one room
- Noise level low
- Interference level low
- conversation possible


- 2 additional couples enter the room
- Noise level goes up
- Interference level goes up

- Noise level too high for red and blue couples
- Distance to far
- Conversation no longer possible

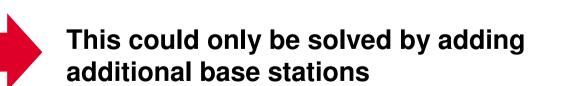
Cell Breathing

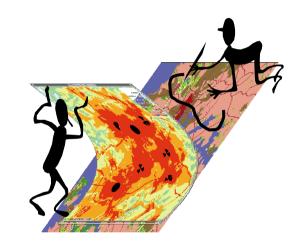
- More users inside a cell increase interference signal (noise)
- Power control has to increase the transmit power to fulfill the E_b/N_0 requirements
- Users far apart from the BS who cannot increase their power anymore
- Their connection will be lost
- When the cell load increases the coverage area shrinks and vice versa
- The cell is breathing



UMTS Network Planning

Coverage for the 144kbps service




© 2005 by LS telcom AG

Radio Network Planning Tools Basics, Practical Examples & Demonstration on NGN Network Planning - Part II

Cell Breathing

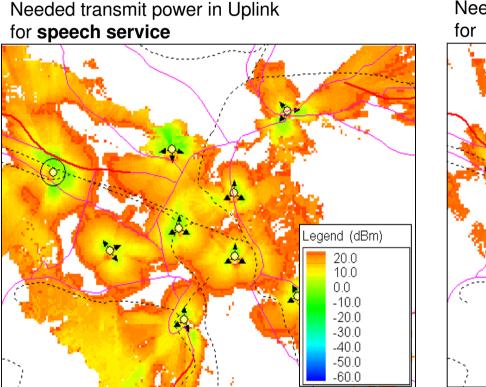
- Capacity enhancements have to be considered from the beginning
- It won't be possible to add another frequency /TRX
- That means at the beginning:
 - smaller cell sizes than necessary
 - More base stations than necessary
 - Higher invest
- If the traffic estimation was too low
 - Cell areas will shrink
 - Coverage holes in the network will appear

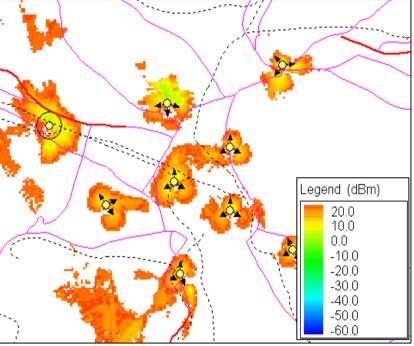
The Impact of Service Mixes

- One of the key features of 3G Systems is its inherent flexibility regarding data rates and service types
- there exist lots of services and they are very different from each other
 - in their data rates
 - in their traffic types
 - in their and QoS demands
- In 2G there was only one service, therefore co-interference caused by other services simply did not exist.
- 3G networks cannot be optimized per service but only per service mix as a 3G base station serve all users and their specific services within its cell simultaneously

A cell will no longer have one coverage area,

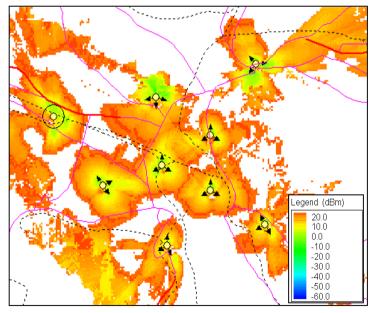
a cell will have one coverage area for each service


Based on which service/coverage area should the network be dimensioned?

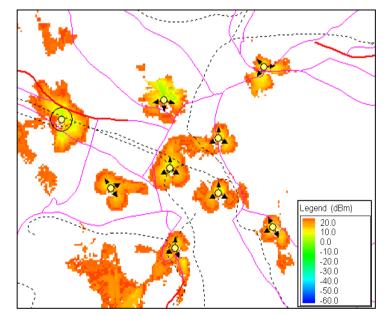

Coverage Areas for Different Services

Comparison Uplink Coverage Speech / 64 kBit/s

Needed transmit power in Uplink for **64 kBit/s data**


Services with a high data rate use a lower spreading factor. Therefore they operate with a small processing gain, and need in general a higher transmit power to achieve the required Eb/No. This will lead to smaller service areas compared to speech service

Coverage Area for one Service

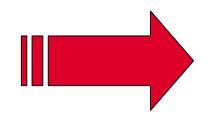


- Coverage area for a specific service is not constant
- Even then, when the load on this specific service is constant
- The coverage area is also dependant on the traffic of other services in the cell

Comparison Coverage 64 kBit with and without speech subscribers

Needed transmit power for data service 64 kBit/s **No additional speech users** are in the network

Needed transmit power for data service 64 kBit/s **Additional speech users** are in the network



Many planning jobs from 2G networks re-appear in 3G networks also, but often more complicated (e.g. neighbor planning) or simultaneously (e.g. coverage and capacity analysis)

New problems (like service mix or re-use of existing 2G sites) add to this, rendering the network design a very challenging process.

Consequences:

- forecasting of traffic and user behaviour is more important
- reaction times from operations to planning need to be optimised

"Operative Planning"

Thank you for your attention !

For more information:

Roland Götz

Phone: +49 (0) 7227 9535 700 Email: RGoetz@LStelcom.com Web: www.LStelcom.com