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Switching planning: 
 
 

• BOUNDARY (SERVICE AREA) OPTIMIZATION 
 
GRID MODEL 

 
Boundary optimization, i.e. finding exchange area boundaries in 
such a way that total network costs are minimized, is based on 
the following assumptions : 
 

• exchange locations are fixed ( temporarily ) ; 
 
• the backbone network cost of any subscriber, of a given 

traffic zone, K, belonging to a given exchange, E, is 
known  : C (  K,E)j

 
• the average cost, per subscriber, of exchange and 

building, is known for any given exchange, E :  C (E)b

 
• the cost of connecting a subscriber to any exchange can 

be calculated from 
- the distance subscriber to exchange,  DE

- the transmission plan 
- the available transmission media costs, 

 
and can be written as fEsE CDCD +)(⋅  

 
The cost of connecting a subscriber at location (x,y), belonging 
to traffic zone K, to an exchange E at ( )X E E,Y  can thus be 
expressed as 
 

C E C K E C E D C D Cj b E s E( ) ( ) ) ( )= + + ⋅, ( f+

E

     
 

where  D D x y XE E= ( , , ,Y )
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The decision to which exchange, E, a given subscriber grid 
element should belong can be made simply by comparison.  
E should be chosen so that C(E) is minimized. 
 
 So, for every grid element (i,j) the value C(E) is calculated 
for every exchange E , and the lowest C(E) then determines E.  
 
The only remaining problem is to find the distance from the 
exchange in  to the grid element  ( X E E,Y )
 

NODE MODEL 
 
Find the distance from an exchange to subscriber cluster in 
graph model. 
 
Shortest path problem and corresponding shortest-path 
algorithms. 
 

• LOCATION OPTIMIZATION 
 
GRID MODEL 

 
For any given exchange, E, the theoretically optimal location 
(XE,YE) has the property that the partial derivatives of the total 
network cost function, C, with regard to XE and YE are equal to 
zero.  
 
As C is dependent on all exchange coordinates, and we want to 
find the overall minimum of C, we must find a set of exchange 
coordinates (XE,YE) for E = 1,2,..., so that 
 

NEX1,2, =Efor 
0
0

K




=
=

E

E

YC
XC

∂∂
∂∂  

 
Different methods for solving this 2*E equation system could be 
employed depending upon the methods of measuring the 
distances in the network. 
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In the most complicated case we get a system of 2*NEX non-
linear equations.  
We can, however, expand ∂ ∂C X E  and ∂ ∂C YE  into a Taylor-series, 
Which leads to a system of 2*NEX linear equations in  and 

 , ∆  denoting improvement, which can easily be solved by 
standard methods. 

∆X F

∆YF

 
NODE MODEL 

 
If the network model is presented with nodes and links 
connecting these nodes to the local network cost function, C, is a 
discrete function over all node locations, i.e. it is not possible to 
use partial derivatives of C.  
 
 One possibility is to calculate the total network cost, C, for 
all combinations of exchange locations and to find the smallest 
C = Cmin . The exchange locations for Cmin are the optimal. 
 
It is obvious that it is not possible to use such a method in 
practice, except for some very small networks. 
 
Moreover, it is pointless to investigate many of the 
combinations of exchange locations. 
 
Two ways of solving the problem are possible : 
 

- to eliminate the obvious senseless combinations and to 
investigate the rest; there will still be too many left 
 
- to investigate some of the combinations, which could 
give the optimum exchange locations
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Routing planning: 
 

Subject of teletraffic engineering – reference in TTE Handbook. 
 
Tasks: 
 

- DIMENSIONING/OPTIMIZATION OF ROUTES 
 
- CALCULATION OF OVERFLOW TRAFFICS 
 
The task is to providing necessary equipment, e.g. circuits, 
channels, between the various exchanges/nodes in the network 
in such a way that the overall cost of the network is minimised, 
taking into account 
 
 the grade of service desired; 
 
 the properties of traffic offered; 
 
 the technical properties of the switching equipment; 
 
 the costs of the switching and transmission equipment. 
 
Considering the traffic case from i j→  , there are 3 possibilities 
of routing the traffic, ie 

 
• all traffic is carried on the route from i to j - Direct 

routing 
 
• all traffic is carried through the tandem/transit 

exchange – transiting of traffic  
 

• part of the traffic is carried on the route i -> j , and 
the rest of the traffic overflows to the routes i T j→ →  
- High-usage route. 
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Dual homing (load sharing) routing is a case when 

exchanges could be connected to two different tandems.   
 

Overflowing traffic is divided with predefined coefficient α :  
α * Overflowing traffic      -   traffic to the first tandem 
• (1-α) * Overflowing traffic   -   traffic to the second tandem 

 
Coefficient α is defined through input file with routing data. 
 
Non-hierarchical routing as option to the hierarchical 

routing . 
 
The methods for non-hierarchical routing optimize routing 

and simultaneously optimally dimension link capacities. 
 
For each OD-pair a direct link and a number of two-link 

overflow paths are selected.  
 
The following types of routing are possible: 
• FSR/OOC (Fixed Sequential Routing with Originating 

Office Control). This is routing with crank-back, i.e. the call 
blocked in a transit node is transferred back to the originating 
one and continues to try consecutive paths. All the overflow 
paths are tried before call is rejected;  

• FSR/SOC (Fixed Sequential Routing with Successive 
Office Control). The call blocked in a transit node is rejected; 

• DAR (Dynamic Alternative Routing). Direct path is tried 
first, as usual. Then there is one, single currently active overflow 
path. If the direct path is blocked the call is offered to the 
current overflow path, and if this is also blocked the call is 
rejected and new overflow path is selected at random. 

 
In all cases Dynamic Circuit Reservation has to be used. 
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Transmission planning: 
 

Optimization of Ring/Mesh SDH/SONET transport 
network. 

 
In hybrid ring-mesh SDH network the network is 

structured into interconnected subnets that can have either ring 
or mesh topology.  

The ring structures provide models for protected SDH 
rings.  
 

For multi-ring structures it is possible to use the dual 
homing protection scheme.  
 

The mesh is a network structure of arbitrary topology 
(regular mesh etc.) that supports the following protection and 
restoration mechanisms: 

• path protection 
• link protection 
• path diversity  
 
The mesh can be also configured as unprotected.  

 
In the optimization methods are used heuristic algorithms 

based on the shortest path approach.  
 

Two types of nodes could be distinguished in the network: 
 

• traffic access nodes – these nodes represent the abstract 
traffic entry points (e.g. telephone exchange etc.) 

 
• transmission nodes – these nodes represent the actual SDH 
network nodes e.g. ADMs or DXCs.  
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ANNEX 
Example boundaries: 
 

0 0 0 0 0 0 0 0 0 81 326 81 0 0 0 

0 0 0 0 0 0 0 0 0 122 407 163 0 0 0 

0 0 0 0 0 0 0 0 0 81 366 204 0 0 0 

0 0 0 0 0 0 117 156 40 323 284 122 0 0 0 

0 0 0 0 0 0 195 391 236 323 323 326 41 43 43 

0 0 0 0 0 43 121 234 235 194 150 132 190 222 188 

0 0 0 0 0 175 218 38 208 326 310 240 283 317 317 

0 0 0 0 0 190 263 263 125 332 155 141 36 61 69 

0 0 0 0 76 381 264 224 0 133 142 84 74 77 87 

0 0 0 0 229 381 305 300 270 57 192 47 74 35 60 

0 0 0 17 140 267 341 271 203 0 112 51 55 61 88 

0 0 0 102 339 170 226 86 164 0 187 96 69 61 87 

0 0 0 106 203 204 427 192 204 0 201 192 190 51 83 

0 0 20 356 267 79 400 192 204 0 328 235 338 99 142 

0 0 88 212 356 267 253 97 85 0 178 200 338 99 142 

0 0 300 300 257 264 528 190 213 0 322 177 169 113 140 

0 0 300 344 300 131 276 189 213 0 402 215 234 112 112 

0 110 173 172 344 172 417 184 268 0 299 183 84 142 28 

0 115 376 290 133 155 417 261 304 0 392 56 142 56 0 

0 150 303 361 193 06 200 217 77 246 238 142 70 0 0 

 x 

x

1

11

11 

1
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Example locations: 
 
 

0 0 81 326 81 0 0 0 

0 0 122 407 163 0 0 0 

0 0 81 366 204 0 0 0 

156 40 323 284 122 0 0 0 

391 236 323 323 326 41 43 43 

234 235 194 150 132 190 222 188 

38 208 326 310 240 283 317 317 

R1 
 
R2 
 
R3 
 
R4 
 
R5 
 
R6 
 
R7 

 
 
 
R1 = 81 + 326 + 81 = 488                            S1 = R1 = 488 
 
R2 = 122 + 407 + 163 =  692                        S2 = S1 + R2 = 1180 
 
R3 = 81 + 366 + 204 =  651                          S3 = S2 + R3 = 1183 
 
R4 = 156 + 40 + 323 + 284 + 122 = 925       S4 = S3 + R4 = 2756  
 
R5 = 391 + 236 + 323 + 323 + 326 + 41 + 43 +43 = 1726 
       S5 = S4 + R5 = 4482 
 
R6 = 234 +235 +194 +150 + 132 + 190 + 222 + 188 = 1545 
       S6 = S5 + R6 = 6027 
 
R7 = 38 + 208 + 326 + 310 + 240 + 283 + 317 + 317 = 2039 
       S7 = S6 + R7 = 8066 
 
STOT = S7              
 
SY = STOT /2 = 8066/2 = 4033 
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Shortest path problem 
 
 
 
  Given the lengths of cable runs, the problem is to determine the 
“shortest path” between any two nodes. This problem is often encountered 
in different other ways. Instead of dealing with length of cable runs, we can 
assign cost of link to every cable run; then the problem is to determine the 
minimum cost path between two nodes. 
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Figure 1 
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 This problem can be tackled as a linear mathematical program, but 
it is more efficient to use other algorithms. The simplest method is due to 
Dantzig and the procedure is as follows: 
 
a) Label the source node as “0”. 
 
b) Examine the adjacent nodes and label, each one with its distance 
from the source node. 
 
c) Examine nodes adjacent to those already labelled. When a node 

has links to two or more labelled nodes, its distance from each 
node is added to the label of that node. The smallest sum is 
chosen and used as the label for the new node. 

 
d) Repeat (C) until either the destination node is reached (if the 

shortest route to only one node is required) or until all nodes 
have been labelled (if the shortest routes to all nodes are 
required). 

 
 Let us try to find the shortest path from node “A” to node “J” for 
the network of Figure 1. In Figure 2, all steps to determine the shortest 
path are illustrated. We label the source node “A” with 0. 
 

A(0)

C(10)

B(6)

D(11)

E(12)

D(20)

E(17)

F(15)

H(24)

I(21)

G(17)

H(19)

J(26)

H(16)

I(19)

J(21)

J(30)

 
 

Shortest path procedure 
Figure 2 

 
 
 The adjacent nodes to A are B and C. For those nodes we find the 
distances by adding the label of A with the distance of nodes from A. 
Thus, we get for B  0+ 6 = 6, and for C  0+10 = 10.  
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 These figures are used as labels for B and C respectively. The next 
step is to find the adjacent nodes to B and C and then the labels to these 
nodes. For B, we have the node D with the label 11 = (6+5) and the node 
E with the label 12 = (6+6). For C, we have the node D with the label 20 
= (10+10). But the node D is also reached through B. Now we keep the 
smallest distance, which is 11, via B and eliminate D(20). We continue 
this procedure until the remaining nodes (E, F), adjacent to C, are 
examined. We keep F(15) and eliminate F(17). Continuing this way, we 
stop the procedure when the examination of node(s) we are concerned 
with is reached. In Figure 1, the shortest path from A to J is drawn with 
coarse line. 
 
 Consider now all partially paths contained in the path from A to J-
(ABEHJ). These are: (AB), (ABE), (ABEH), (BE), (BEH), (BEHJ), (EH), 
(EHJ), (HJ). If we examine these partial paths, we can verify that they are 
optimal paths. For example, from B to J, the optimal path is (BEHJ). We 
can ascertain the fact that every optimal path consists of partially optimal 
paths. 
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