Third Workshop on Information Society Measurement in Latin America and the Caribbean, Panama, 23 November 2006

# THE IMPORTANCE OF MEASURING BUSINESS USE OF ICT

Martin Schaaper

Economic Analysis and Statistics Division, Directorate for Science, Technology and Industry



### Why measuring business use of ICT?

- Assess take up and diffusion
  - ... and compare with other countries
- How does the Internet change the way businesses run their operations
- Impacts on overall economic performance (productivity, growth, etc.)
  - ... and compare with other countries

Policymakers need this information to make sound decisions



# The state of ICT diffusion



# ICT diffusion among OECDand non-OECD countries

- Diffusion can be measured by activity and financial statistics.
- OECD has been collecting activity statistics on ICT use and e-commerce from member countries for several years and first published data in 2001 ("OECD Science, Technology and Industry Scoreboard: Towards a Knowledge-based economy").
- The most recent version of this publication has been the 2005 edition.



# Business use of the Internet, 2004, Percentage of businesses with 10 or more employees





#### Internet selling and purchasing, 2004, Percentage of businesses with 10 or more employees



#### Total e-commerce transaction value (including via the Internet), 2002 to 2004. As a percentage of total enterprise turnover



Business perceptions of the benefits of buying and selling over the Internet



Business perceptions of the benefits of buying and selling over the Internet

- Australian Bureau of Statistics data show that businesses which buy and sell over the Internet perceive benefits from doing so.
- The longer a business has been buying or selling over the Internet, the more likely it is to report benefits
  - first mover advantage?
  - survival of the fittest (those which are still selling are those which have succeeded and therefore are more likely to see benefits)?
  - or just getting better at it over time?



#### AUSTRALIA (ABS): BUSINESS PERCEPTIONS OF THE IMPACT OF RECEIVING ORDERS (SELLING) VIA THE INTERNET, 2000–01





# OECD case study work on the impacts of e-business



#### OECD case study work: Electronic Commerce Business Impact Project (EBIP)

- During 2001-2002, the OECD co-ordinated a case study project on the impacts of electronic commerce on business. The study involved nearly 220 firms across 11 countries and a common methodology was used across 14 broad sectors.
- Participants: Canada, France, Italy, Korea, Mexico, the Netherlands, Norway, Portugal, Spain, Sweden, the United Kingdom.
- The aim of the project was to improve understanding of impacts of electronic commerce on business.
- EBIP used common methodology for firm-level case studies to improve cross-country and cross-sector comparability.
- Previous case study information is anecdotal, fragmented, not comparable across sectors or countries.



# What is more important the 'commerce' factor or the 'e' factor?

- Successful e-commerce strategies led by commercial considerations.
- E-commerce part of larger business and economic transformations. Successful application and use are embedded in broader business strategies with major emphasis on both e-commerce and ICT skills.
- But e-commerce a major business innovation that most firms will have to adopt.



### Overall the Internet is having large impacts on how firms conduct business

Expected/actual e-commerce impacts by business function

Expected Effects Actual Impacts 70% 60% 50% 40% 30% 20% 10% 3 and survey ation services Negotiation Billing Payment Information Management Walket Development Catalogues and stock lists Information Capture Market Analysis Delivery Finance TRANSACTION TRANSACTION PRODUCTION PREPARATION **COMPLETION** SUPPORT



### .. Reshaping many business processes

Expected/actual e-com process impacts by business process



PRODUCT INNOVATION

INNOVATION

RELATIONAL INNOVATION



### .. With generally positive benefits: one-third of firms had positive impacts on turnover or profitability



OECD 👯 16 OCDE

# Analysing the impacts of ICT



# OECD Growth Project

- A two year study on the reasons for differences in underlying economic growth of OECD member nations during the 1990s.
- Final report released in 2001 "The New Economy: Beyond the Hype".
- General findings were that:
  - ICT is a key technology with the potential to transform economic and social activity.
  - But it is not the only factor, others are:
    - quality of human capital
    - providing more scope for entrepreneurs to explore business opportunities
    - support for innovation
    - getting the fundamentals right sound macro-economic management, openness to trade and investment, efficient markets, well functioning economic and social institutions.



# OECD Growth Project (continued)

### ICT plays three roles

- Through capital deepening, as ICT is an important asset in overall business investment.
- Through multi-factor productivity growth in the production of ICT goods and services (e.g. technological progress in semi-conductors).
- Through MFP growth thanks to the use of ICT, either through efficiency gains in individual firms, or through network/spillover effects from its use.



### **OECD** Growth Project (continued)

- Findings in respect of ICT considered both ICT production and consumption and were as follows:
  - Productivity in the ICT sector can improve economic productivity overall, but
  - ... successful economies were more likely to have rapid diffusion of ICT, particularly in service industries.
  - Deregulation of ICT industries encourages competition and greater investment in ICT.
  - Policies which build confidence an appropriate regulatory and legal environment and government leading by example – are important.



# OECD Growth Project (continued)

- In respect of ICT particularly, the policy recommendation from the final report was that:
  - "ICT is an enabling technology, that is transforming economic activity.
  - Governments should:
    - focus policy efforts on increasing the use of new technology
    - increase competition and continue with regulatory reform in the telecommunications industry to enhance the uptake of ICT
    - ensure sufficient competition in hardware and software to lower costs
    - build confidence in the use of ICT for business and consumers; and, make e-government a priority."



More recent analytical work on ICT by the OECD and others



# Much better evidence on the economic impacts of ICT at three levels of analysis

- through macro-economic evidence on the role of ICT investment in capital deepening
- through sectoral analysis showing the contribution of ICT-producing sectors and ICT-using services to productivity growth
- and through detailed firm-level analysis that has demonstrated the wide-ranging impacts of ICT in the economy, even in sectors where sectoral data suggested that little was happening – this result is thanks to work in 13 OECD countries.









# The data on ICT have improved

- Early 1990s: mainly private data, sometimes with poor coverage, sample bias, and unknown quality.
- Now:
  - Surveys on ICT use by households and businesses in most OECD countries, with considerable detail on uses and technologies.
  - Official estimates of ICT investment, including software.
  - Industry data for many countries.
  - Growing comparability of data.
  - Efforts to establish longitudinal (linked) databases in many countries.
- Greater prospects for empirical research on ICT.



#### Prices have fallen...

(producer price index for PCs and workstations, 1998=100)



OECD (26 OCDE

Source: BLS.

#### But countries have not invested to the same extent...

(ICT investment as % of non-residential investment)



OECD

OCDE

Source: OECD Database on Capital Services, March 2004.

# Why the differences in growth from ICT?

• Returns (& investment) in ICT depend on other factors:

- Skills, innovation, organisational changes.
- Not all firms succeed experimentation and selection play a role can successful firms gain market share?
- The scope for change depends on the business environment;
  impacts in the US seem larger, perhaps because of greater
  scope for innovation and organisational change.
- Competition matters:
  - Competition forces firms to enhance efficiency.
  - Firms that invest first/most in ICT are often new or foreign.
  - Competition reduces the costs of ICT & fosters diffusion.
- Structural factors share of services and of large firms.

OECD 👯 28 OCDE

# **Aggregate impacts of ICT investment**

- Mainly analysed through standard growth accounting approach, based on capital services:
  - Requires long time series of ICT investment.
  - For international comparisons use of hedonic deflators for all countries to enhance comparability of results.
- Official data on ICT investment are now available for 15-20 OECD countries.
- Still some measurement problems, e.g. as regards software investment.



#### The US and small EU countries have had a large contribution of ICT investment, France, Germany and Italy a small one (contribution to GDP growth, in percentage points)



Source: OECD Productivity Database, May 2004.

# Finding: ICT investment and diffusion mainly differ because of lack of demand

- Demand has been held back by a business environment that was not sufficiently geared towards effective use of ICT – e.g. regulatory barriers, lack of skills, difficulty to change organisational set-ups, lack of innovation, etc.
- Competition has not been equally strong in all countries costs of ICT and communications differ, as do pressures to improve performance.
- Demand has been held back by lack of security and trust.
- Structural factors also matter ICT is not suited to all markets, sectors, or business models.



# Sectoral approach to impacts of ICT

#### Focus on ICT production – what role does it play, does it explain US-EU differences:

- Requires definition of ICT production:
  - Developed by OECD (both ICT manufacturing and ICT services)
  - But not easily applicable for constant price series.
- Typically focus on some key components.
- Focus on ICT-using industries:
  - Sectors that use ICT most (or have the greatest potential for ICT use) might first observe productivity impacts – these are mainly services industries.
  - Definitions differ and are not used the same across studies.



# **ICT manufacturing is only important for some countries** (average annual contribution to labour productivity growth, in %)



# Productivity growth in ICT services (telecom and software) also plays a role

Annual average contribution to labour productivity growth, in %



#### **Countries with less product market regulation have seen a stronger pick-up in productivity in ICT-using services**



# Countries with strict employment protection legislation and product market regulation have invested less in ICT



# Countries with strong innovation in applications and software have invested more in ICT



# Countries with an abundance of high-skilled workers have invested more in ICT



# And countries with a rapid increase in investment in ICT have had more rapid MFP growth



# Problems with the industry approach

- Breakdown in ICT-producing and ICT-using industries is not always very satisfactory.
- Industry data are not always comparable, e.g. for ICT production and certain services.
- The impact of ICT on productivity is not formally analysed, ideally:
  - Regression analysis of impacts ICT use/ICT capital at the industry level.
  - Growth accounts at the industry level.
- Unfortunately, industry data on ICT investment are still lacking for many countries (no time series).



A firm-level perspective on ICT OECD project involving researchers and statisticians in 13 countries







# Large variety of methods and data

- Data based on combination (linking) of sources:
  - Economic performance often from production surveys;
  - ICT from investment surveys, specialised ICT and ecommerce surveys, innovation surveys (US from computer network use survey).
  - Additional data, e.g. on organisation, skills & innovation.
- Methods include:
  - Labour productivity regressions.
  - Estimates of production functions.
- Variety of methods and data can help strengthen evidence.
- The studies point to many important interactions.



#### Example 1

#### **Hollenstein: What determines ICT uptake by firms?**

- Study for Switzerland, shows that ICT is linked to other firm-level factors.
- Firms that adopt ICT:
  - Anticipate benefits from improved customer-orientation and lower costs.
  - Have overcome problems in financing and skills.
  - Have a high capacity to absorb new knowledge (linked to human capital and innovation).
  - Are faced with strong competition and in markets with a high level of uptake of ICT.
  - Also introduce new forms of work organisation.



#### Example 2

#### Gretton, et. al: The impacts of ICT in Australia

- The use of ICT raised aggregate multi-factor productivity by about 0.2% points over and above impacts of ICT capital.
- Impacts are largest in finance and insurance.
- Impacts taper off over time they are largest a few years after adoption.
- Complementary factors play a large role in explaining firm's success with ICT human capital, experience with innovation, use of advanced business practices and intensity of organisational restructuring.
- Early users of ICT are large firms with skilled managers.
- Firms with high openness to trade use more ICT.



# Estimated contribution of ICT to MFP growth in Australia (% points)



Source: Gretton, et al. 2004.

### Example 3 Hempell, et al. : The link between ICT and innovation

- Comparative study with comparable data for Germany and the Netherlands from innovation surveys.
- Key question: do firms that engage in complementary innovation benefit more from investment in ICT?
- In both countries, returns to ICT investment are much higher when accompanied by innovation.
- Continuous innovation leads to higher returns than occasional innovation efforts.
- This is also the case in the services sector.



### Example 4

### Maliranta and Rouvinen: The impacts of ICT in Finland

- The additional productivity of ICT-equipped workers ranges from 8 to 18% (after controlling for many other factors).
- This effect is higher in young (new) firms and in the ICTproducing sector.
- Manufacturing firms benefit mostly from internal networks (e.g. local area networks), whereas service firms benefit most from external networks (e.g. the Internet).
- Organisational factors are important, as suggested by the greater productivity effects in new firms.
- Selection also plays a role not all firms succeed having a dynamic business sector is important.



#### **Example 5**

#### **Clayton, et al.: Impacts of e-commerce in the UK**

- Computer networks for trading have positive impacts on productivity.
- E-buying has positive impacts on output growth, whereas E-selling has negative impacts.
- This is likely due to pricing effects e-buyers can source more competitively, e-sellers may loose out.
- In some industries, e-commerce seems to have contributed to lower prices, perhaps due to greater price transparency and more rapid reactions of suppliers.



# UK: Productivity analysis and IT

#### Investment + Employees + Transactions + Communications

Purpose of analysis is to understand different effects



# UK: Productivity analysis and IT

Significant results – IT investment

- Hardware and software capital show significant productivity gains, both levels and yearly changes
- Gains attributable to IT capital across service sectors higher than those in manufacturing
- Returns to IT capital across high and low user sectors, and for large and small firms
- IT capital reinforces productivity effects of other capital investment, and of skills
- Returns to IT investment 'explains' productivity advantage of US multinationals in UK, concentrated in high IT using sectors



# UK: Productivity analysis and IT

#### Significant results – IT use

- Employee use adds significantly to productivity, over and above effects of hardware and software capital,
  - after controlling for sector, size, ownership etc
- Manufacturing firms achieve an extra 2.2% output for each additional 10% employees using computers
- For employees using internet the extra is 2.9%
- Productivity effect greater for more recently created firms

Productivity effects associated with communications use
 UK firm level productivity results can be found in full at
 http://www.statistics.gov.uk/cci/article.asp?ID=1235 (Web link to ONS summary article)
 and are broadly consistent with firm level results for Chinese manufacturing at
 http://www.mo.rcast.u-tokyo.ac.jp/index-eng.html (analysis by Kazu Motohashi)



UK: Productivity and broadband

#### Significant results – broadband use

No clear link from broadband *availability* to productivity, but:

- Investment in IT higher in regions / sectors with broadband available, especially for UK firms in non-IT intensive industries.
- Early adopters of broadband experienced high initial telecommunication costs but these have declined over time
- Broadband users more likely to have multiple e-business links.
- Multiple links plus broadband improve labour productivity.
- Firms with a high broadband equipped labour share have significantly higher productivity
   Full results in OECD paper DSTI ICCP IIS(2006)9 Shikeb Farooqui and Raffaella Sadun



#### Example 6

#### Atrostic et al. : Impacts of computer networks in the United States, Japan and Denmark

- Computer networks have positive impacts on productivity in all three countries.
- In the US manufacturing sector, plants using computer networks have 5-11% higher productivity than plants not using networks.
- In Japan, both interfirm and intrafirm networks are linked to strong firm performance.



# The firm-level studies all show that ICT use can contribute to improved firm performance

- Positive impacts of ICT on labour productivity (and MFP, where measured) or market shares in all countries:
  - But these are conditional on other factors and firm characteristics (skills, innovation, organisational change).
  - Not all firms succeed selection plays a role.
  - ICT is only part of a broader strategy to improve firm performance.
- Networking technologies are particularly important.
- The impacts of ICT are also found in the service sector (despite lack of evidence at the industry level).

OECD 🌾 54 OCDE

# Why the difference between firm-level and aggregate evidence on ICT's impacts?

- Aggregate impacts ICT in some countries may still be disguised by other factors.
- Lags the US invested earlier and more aggregate impacts in other countries might still come.
- US firm-level impacts may be larger because of scope for reorganisation and complementary innovation.
- Successful US firms may be able to gain more market share (e.g. Walmart) – more re-allocation.
- Spill-over effects? Perhaps already some of this in the US (and Australia), not much in other OECD countries.



# Conclusions

- Better data have enabled a wide range of empirical research on ICT and its economic impacts.
- This research has had important policy implications:
  - It has shown that ICT plays an important role in economic growth.
  - ICT is no panacea, and linked to many other factors only focusing on ICT diffusion is not sufficient.
  - Countries have not equally benefited from ICT there is scope for learning and improvements in the policy environment.
- There is scope for much more analysis, in particular with firm-level data, and in the context of international comparisons.



### Policy implications from work on ICT and growth

- Fostering a business environment for effective use of ICT
  - Competition matters for ICT uptake and effective use.
  - Regulatory burdens may limit investment and experimentation.
  - Enable firms to make the necessary organisational changes.
  - New skills are needed, requiring changes to education and training systems.
  - Need for coherent innovation policies.
  - Management matters ICT is no panacea.



# **Policy implications (continued)**

### Competition in ICT goods and services

- Evidence of the benefits of competition is convincing and liberalisation should be pursued.
- Crucial for broadband development.
- Regulators must be vigilant for anti-competitive behaviour.
- Technology continues to develop policy frameworks and regulations should be technology neutral.



# **Policy implications (continued)**

#### Boost Security and Trust

- Uncertainty remains regarding the security of electronic commerce.
- Attention is required to security of information systems and networks, authentication, protection of privacy and consumer protection.
- Cross-border issues and enforcement.
- E-government can help build confidence and is important to improve government efficiency and the delivery of public services.



# **Policy implications (continued)**

### • Unleash growth in the services sector

- particularly important because of the potential benefits
- policies to reduce regulation and reduce barriers to entry
- Harness the potential of innovation and technology diffusion
  - ICT linked to, and assists, innovation
  - ICT fosters networking and knowledge transfer.



# **Measurement issues**

#### Better measurement has clarified the picture

- Quality-adjusted price indices have helped demonstrate the impact of ICT on growth.
- Software was included in 1993 SNA as an asset.
- Measures of R&D are being improved:
  - New (2002) edition of OECD Frascati Manual.
  - R&D may be included in new SNA.
- Measures of innovation are being improved.
- There is more attention at statistical offices for analysis at the firm level -linking existing data sources can help.
- Data on ICT demand are improving with adoption of OECD standards.
   OECD (61 OCDE

#### However, some measurement problems remain

- Skills data (apart from formal education statistics) are poor.
- Organisational factors are difficult to capture.
- Software investment is not yet fully picked up in national accounts.
- Deflators for ICT production differ considerably.
- Measurement of services output is poorly in some areas e.g. finance, health, education.
- Cross-country firm-level studies are still scarce, although much work is underway. OECD is trying to act as forum for exchange of best practices.



# THANK YOU!

www.oecd.org/sti/measuring-infoeconomy

martin.schaaper@oecd.org

