

Seminario sobre los aspectos económicos y financieros de las telecomunicaciones Grupo Regional de la Comisión de Estudio 3 para América Latina y El Caribe (SG3RG-LAC)

Regional Seminar on the economic and financial aspects of telecommunications for Member Countries of the Study Group 3 Regional Group for Latin America and Caribbean (SG3RG-LAC)

Lima, Peru, 23-24 Junio/June 2009

Document 6

Cost of capital (WACC) assessment for the telecommunication sector: Brazilian methodology

Peru, June (2009)

Brazilian regulatory framework

•Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- WACC methodological aspects:
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

Wacc results 2007

•Preliminary results obtained from WACC

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- WACC methodological aspects:
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

WACC results 2007

•Preliminary results obtained from WACC

BRAZILIAN REGULATORY FRAMEWORK: REGULATION REQUIREMENTS

- To set fixed network tariffs (tariff public regime)
 It will be used in the Lric model context
- To set reference values
 - Mobile network prices (in a FAC model context)
 - Leased lines prices
- Tariff review

-To set new retail tariffs in a financial-economical balance requirements.

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- WACC methodological aspects:
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

Wacc results obtained in 2007

Some preliminary results obtained from WACC

ASSUMPTIONS ADOPTED FOR WACC CONSTRUCTION

Correct economical signaling to investors...

Important assumptions for the WACC construction...

- Compliance to regulations (LGT)
- Methodological accuracy
- Specialized suport (consultancy needed FGV/CPQD)
- Design transparency

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- WACC methodological aspects
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

Wacc results obtained in 2007

• Some preliminary results obtained from WACC

WACC METHODOLOGICAL ASPECTS

• Wheighted Average Cost of Capital - Wacc

$$WACC = \frac{E}{D+E}K_e + \frac{D}{D+E}(1-t)K_d$$

Minimum rate of return

- Methodologies defined (three main parts)
 - <u>Cost of Equity Capital (Ke)</u>
 * Global CAPM modified (added local risk factors)

<u>Cost of Debt Capital – (Kd)</u>
 * Risk free rate (brazilian treasury bond) + Credit risk premium (spread)

- Capital Structure - (D/D+E)

*empiracally estimated, looking for a optimal debt level, considered as a regulatory capital structure)

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- Methodological aspects adopted in Wacc assessment
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

Wacc results obtained in 2007

• Some preliminary results obtained from WACC

CAPM model

$$E(r_i) = r_f + \beta_i E(r_m - r_f)$$

- $-E(r_i)$: required return on equity (asset i);
- r_f : risk free rate;
- β_i : systematic risk associated with the firm's equity;
- $(r_m r_f)$: market risk premium
- Considered as one of the most important factor\Gentzoglanis:04
- The correct CAPM model choice becomes very relevant:
 - Representativity of investors
 - Market integration level

- If the local market is all integrated to the global market...
- Major Brazilian telecomunication shareholders could have...
- Justifiable to use a Global CAPM model...
- All local risks in this situation are diversifible;
- Brazilian telecomunication investors are subject to nondiversifiable local risks.

Global CAPM (Solnik version)

• Model description: One country k with a stock market globally integrated, the expected return on asset i is given by:

$$E(r_i^k) = r^k + \gamma_i^{GL} [E(r_m^{GL}) - r^{GL}]$$

Solnik (1974) showed that:

- Global specification (global market) model is less responsible to explaining the variance of asset returns than a CAPM with local specification (local market).
- There is another way of getting efficient estimates for the companies' beta

Global CAPM modified

• Model description

- Under the tradicional hypothesis of the CAPM, we can say that the following relations are valid:

Local Assets: $E(r_i^k) = r^k + \beta_i^k [E(r_m^k) - r^k]$ National Portfolios: $E(r_m^k) = r^k + \beta_k^{GL} [E(r_m^{GL}) - r^{GL}]$

• Replacing the second equation into the first, we get:

$$E(r_i^k) = r^k + \beta_i^k \beta_k^{GL} [E(r_m^{GL}) - r^{GL}]$$
More efficient
parameter (Gama)

• CAPM model for Brazilian Telecomunicações Sector:

$$K_{e} = r_{ex-RS}^{Br} + \beta_{Br}^{i} \times \beta^{Br} \times PRM^{GL}$$

• CAPM model for Brazilian Telecommunication sector:

$$K_{e} = r_{ex-RS}^{Br} + \beta_{Br}^{i} \times \beta^{Br} \times PRM^{GL}$$

Where:

$$r_{ex-RS}^{Br} = YTM_{BRL16} - (EMBI + Brazil)$$

 β_{Br}^{i} = Monthly asset returns from telecommunications shares traded in the Brazilian stock market vs. <u>MSCI Brazil</u> (company beta).

 β^{Br} = Monthly returns from MSCI Brazil vs. <u>MSCI ACWI</u> (Brazil beta)

 $PRM \stackrel{GL}{=}$ Monthly returns from <u>MSCI ACWI</u> - *Treasury-bill* (5 years)

AVERAGE BETA

• <u>Hamada Formula</u>: Estimated beta was unlevaraged by the observed level of debt and re-levaraged by the level of debt statiscally estimated, according to the following relation:

$$\beta^{U} = \frac{\beta^{L_{1}}}{\left[1 + (1 - T) \times \left(\frac{D}{E}\right)\right]}$$

$$\beta^{L_2} = \beta^U \times \left[1 + (1 - T) \times \left(\frac{D}{E}^* \right) \right]$$

• Where D/E is the debt observed, β^U is the unlevaraged beta, β^{L_2} is the re-levaraged beta and D^*/E is the efficient debt estimated.

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian wacc model

- Assumptions adopted for WACC construction
- Methodological aspects adopted in Wacc assessment
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

WACC results 2007

• Preliminary results obtained from WACC

COST OF DEBT CAPITAL (Kd)

• Interested rate a company is paying on all of its debt, such as loans and bonds.

•<u>Model</u>: $K_d =$ Local Risk + Credit Risk Free Rate + Premium

•<u>Local Risk Free Rate</u>: it was used a long term Brazilian treasury bond with duration equivalent to asset companies .

•<u>Credit Risk Premium</u>: it was used historically data of debentures issued by companies and the "rating" evolution issued by S&P.

It's calculated according to the following formula:

$$K_d^{R\$} = \{1 + [(1 + r^{Br})^{1/252} - 1] \times \% \text{ CDI}\}^{252} - 1$$

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- Wacc methodological aspects:
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

WACC results 2007

• Preliminary results obtained from WACC

THEORETICAL MODEL FOR CAPITAL STRUCTURE ESTIMATION

- Different types of financing employed by a firm to acquire resources necessary for its operations and growth
- Theorical model
- Some findings in WACC consulting process:
 - Capital structure policy (minimize WACC)
 - Efficient operator in WACC construction process.
- The optimal financing decisions from operators

THEORETICAL MODEL FOR CAPITAL STRUCTURE ESTIMATION

Medium indebtedness Test of each 2 sub-groups

✓ <u>Objective</u>

Testing the equality of the level of indebtedness among the operators (mobile and fixed companies)

✓ <u>Results</u>

• There is no statistical evidence that debt levels between mobile and fixed companies are different:

- Accounting data from mobile and fixed companies

- A unique debt level of operators

THEORETICAL MODEL FOR CAPITAL STRUCTURE ESTIMATION - PROXY

Indicators to estimate the theoretical model

Factors	Formula	Reference
BOOK VALUE =	<u>Total Gross Debt</u> Total Assets	Brito & Lima (2004)
TANGIBILITY =	Net Assets Total Assets	Titman & Wessels e Perobelli & Famá (2002)
PROFITABILITY =	<u>EBIT</u> Total Assets	Rajan & Zingales (1995), Gomes & Leal (2001) e Perobelli & Famá (2002)
RISK =	<u>Standard Deviation (</u> EBIT) Average (EBIT)	Brito & Lima (2004)
GROWTH =	Total Assets - Equity + Market Value of Share Total Assets	es Rajan & Zingales (1995) e Gomes & Leal
SIZE =	Ln (Net Operating Income)	Rajan & Zingales (1995)

THEORETICAL MODEL FOR CAPITAL STRUCTURE ESTIMATION

• Econometric model adopted (*Pooled Time Series and Cross-Section*)

 $\mathbf{BV} = \alpha + \gamma_{Tang} \mathbf{Tang} + \gamma_{Proft} \mathbf{Proft} + \gamma_{Size} \mathbf{Size} + \gamma_{Risk} \mathbf{Risk} + \gamma_{Growth} \mathbf{Growth} + \eta$

- OLS regression to estimate the coefficients
- Quarterly data from the latest 5 years

THEORETICAL MODEL FOR CAPITAL STRUCTURE ESTIMATION

- Get all company coefficients
- Estimate the ratio of debt capital based on the latest companies' balance sheet

$$\left(\frac{\hat{D}}{D+E}\right)_{k} = \hat{\alpha} + \hat{\gamma}_{\text{Tang}} \cdot Tang_{k} + \hat{\gamma}_{\text{Proft}} \cdot Proft_{k} + \hat{\gamma}_{\text{Size}} \cdot Size_{k} + \hat{\gamma}_{\text{Risk}} \cdot Risk_{k} + \hat{\gamma}_{\text{Growth}} \cdot Growth_{k}$$

- Ratio of debt capital used as capital structure in WACC model
- Arithmetical mean of "K" companies ratios of debt capital

$$\left(\frac{D}{D+E}\right)_{Optimal} = \frac{\sum_{k=1}^{K} \left(\frac{\hat{D}}{D+E}\right)_{k}}{K}$$

Brazilian regulatory framework

• Regulation requirements for the use of WACC

Theoretical premisses of the Brazilian WACC model

- Assumptions adopted for WACC construction
- WACC methodological aspects:
 - Cost of equity capital
 - Cost of debt capital
 - Capital structure

Wacc results 2007

Preliminary results obtained from WACC

PRELIMINARY RESULTS FOR WACC CALCULATION

Mobile	Final
Diale France Rate (DE)	0 100/
	9,18%
Credit Risk Premium (spread)	127%
Cost of Debt Capital	12,36%
Debt Capital Ratio	31%
Mobile beta (β)	1,12
Brasil Beta (β)	1,93
Market Risk Premium (PRM)	3,83%
Cost of Equity Capital	15,46%
Equity Capital Ratio	69%
Tax Rate	34%
WACC (mobile companies)	13,19%
WACC (fixed companies)	11,06%

THANK YOU FOR YOUR ATTENTION