INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.753

TELECOMMUNICATION (10/97)
STANDARDIZATION SECTOR
OF ITU

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATION

OSI management — Management functions

Information technology — Open Systems
Interconnection — Systems management:
Command sequencer for systems management

ITU-T Recommendation X.753

(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS
DATA NETWORKSAND OPEN SYSTEM COMMUNICATION

PUBLIC DATA NETWORKS
Services and facilities
Interfaces
Transmission, signalling and switching
Network aspects
Maintenance
Administrative arrangements
OPEN SYSTEM INTERCONNECTION
Model and notation
Service definitions
Connection-mode protocol specifications
Connectionless-mode protocol specifications
PICS proformas
Protocol Identification
Security Protocols
Layer Managed Objects
Conformance testing
INTERWORKING BETWEEN NETWORKS
General
Satellite data transmission systems
MESSAGE HANDLING SYSTEMS
DIRECTORY
OSI NETWORKING AND SYSTEM ASPECTS
Networking
Efficiency
Quality of service
Naming, Addressing and Registration
Abstract Syntax Notation One (ASN.1)
OSI MANAGEMENT
Systems Management framework and architecture
Management Communication Service and Protocol
Structure of Management Information
Management functions and ODMA functions
SECURITY
OSI APPLICATIONS
Commitment, Concurrency and Recovery
Transaction processing
Remote operations
OPEN DISTRIBUTED PROCESSING

X.1-X.19
X.20-X.49
X.50-X.89
X.90-X.149
X.150-X.179
X.180-X.199

X.200-X.209
X.210-X.219
X.220-X.229
X.230-X.239
X.240-X.259
X.260-X.269
X.270-X.279
X.280-X.289
X.290-X.299

X.300-X.349
X.350-X.399
X.400-X.499
X.500-X.599

X.600-X.629
X.630-X.639
X.640-X.649
X.650-X.679
X.680-X.699

X.700-X.709
X.710-X.719
X.720-X.729
X.730-X.799
X.800-X.849

X.850-X.859
X.860-X.879
X.880-X.899
X.900-X.999

For further details, please refer to ITU-T List of Recommendations.

INTERNATIONAL STANDARD 10164-21
ITU-T RECOMMENDATION X.753

INFORMATION TECHNOLOGY — OPEN SYSTEMS INTERCONNECTION —
SYSTEMS MANAGEMENT: COMMAND SEQUENCER
FOR SYSTEMS MANAGEMENT

Source

The ITU-T Recommendation X.753 was approved on the 24th of October 1997. The identical text is aso published as
I SO/IEC International Standard 10164-21.

ITU-T Rec. X.753 (1997 E) [

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on aworldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topicsfor study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected by
patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may
not represent the latest information and are therefore strongly urged to consult the TSB patent database.

O ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ii ITU-T Rec. X.753 (1997 E)

N o o b~

10
11

12
13

CONTENTS

Page
R o0 oL TP PP PR TSRS 1
NOIMELIVE FEFEIEICESee vttt et e b e bt bt ae et e se e e bt s bt e bt e ae e e e beseeebesbee e e e b e see et e s neeneeneenean 1
21 Identica Recommendations | International Standards...........cccooevererinennenienenesee e 1
2.2 Paired Recommendations | International Standards equivalent in technical content..........c.cccoeveveeene 2
DEfINITIONS. ...ttt et st e et e e be e be et e eabesheesheesbeesbeesseensesaeebe e beentesneesaeesaeeseenreenneans 3
3.1 Basic Reference Model defiNitioNS..........cooiiiiiiieiiriesnenee e e 3
3.2 Service convention defiNItiONS...........coi it et n e es 3
3.3 Management framework defiNitiONS...........coveiieiiie e 3
34 Systems management oVerview definitionS...........oooeiriieiiiere s 3
3.5 Common management information Service defiNitioNS............cccovveeeeieecese s 3
3.6 Additional dEfiNITIONSc.cccuiiiiceiecteece ettt ettt e e ee s e e sae e sbe e sre e be e reenresaneens 3
A DDIEVIBLIONS. ...ttt h et e bbbt eaeeh et e R e Rt Rt bt e Rtk eae et e e e b e bt eheebe e e eneeeen 4
CONVENTIONS ...ttt ettt et e et e b e et e et e saeesaeesbeebeeaseeaseeaeeebe e beesbeeabeessesaeesheesheesseeteeseesteesbeeteensesnsesnnesans 4
S0 (U (= .01 PSSR 4
IVLOOEL ...ttt ettt e e et e st e e be e beeaeesaeesaeesbeesbeeateeaseeteeebeesbeesbeensebeebeentesnsesseesaeenseenseenseans 5
25 R Vo (= e =S o o1 o) USSP 5
7.2 Triggering process and reporting FESUITS.c.civiirerierieereeete ettt sb e s seene 7
7.3 Management Of COMMANA SEOUENCETccoueiieieeieesieesteeteeteeteesteeseeteeteseeseesseesreesseensesnsesneessmenens &
7.4 Scheduling of the COMMEN SEOUENCETcoveiiirieeete ettt e s b e e bereene s 10
7.5 ACCESS COMEIOL ...ttt sttt et b e et b ekt ae et e e et e s et eb e s bt eh e e s e e e e bese e b e s bt stk eheebeeneene e e ennas 10
GENENIC AEFINITIONS.c.ticiecie ettt et e et e s e sbe e s te e sbeeseeaeeeaeeebeasbeenbesaeseesseesbeesteensesnsesnnesnns 10
LS00 R Y =g 7= o] o <o TS 10
I €= o1 ol oo 1) Tor= 1o gL SRR 16
SR I €= 0T Lo o [g ST 17
SEIVICES. .. e iteeite et et e ee st e et e st e e bt e bt et e eaeeeteesbe e beeateeasesaeesheesaeeaReeateeateeaeeeReeaReenteenteeateeteeateeheeeteeateeteereenreennenaes 17
L 250 A 1 1 oo [H o1 o o VTS 17
9.2 Initiation, Termination, Modification and Retrieval ServiCesS.........cocvviinereienenereee e 17
0.3 INOUTICAHON SEIVICES ...c.viieeiete ettt sttt sttt ettt e bt st e et seebe st e e ebesee eebeneebeseeneseeneas 17
0.4 ACHON SENVICES.... oottt sttt st s e et e s e s te e te s aeesbe e tesaeesbeeseeaeeeaeeseeaeesaeeseans sbeeneesbeesenneesaeas 19
FUNCEIONEL UNITS.....cviiiiiiiciiii s bbb s 21
Protocols and @DSIFACE SYNEAXcvecieieeiieiiiecieeir e e e et e e e e e e e seese e e saestesbeseesbestesne et eensensenseseenseneesenns 21
TN 0 = o Y 0 = PSR 21
O N 1] o101 =PTSRS 21
O Lo o= 1o =SSOSR 22
LT 1o =SS 23
11.6 Negotiation of fUNCLIONE] UNITS........cccciiviiiiiiieciiese e e s e e sresae e s s eesrenresnennens 23
Relationship With Other FUNCLIONS..........c.coiiie e e e e s esaenae e 23
CONFOIMEANCE......cuiiiiii bbb es shs bbb 23
13.1 General conformance Class rEQUITEIMENES.........cceuveeeeeeeieereeieseeseeseeseesses e seeseesteseessessessessessessessesssnens 24
13.2 Dependent conformance Class FEQUIFEMENES........cc.cieiierereres e se e se et sre e sse e e e esaeeenes 24
13.3 Conformance to support managed object defiNitioNS..........cccocerevererie v 24

ITU-T Rec. X.753 (1997 E) iii

Page

Annex A — Definition of Management INfOrmMation................uuuiiiiiiiiii e c—————— 25
A.1 Managed object class defiNitiONSccccoiiiii i e eeens 25
A.2 Package defiNitiONSuuuiiiiiii e e e e e e e e e e e ennnnn e e e e e e rneaeeaes 27
A.3 Behaviour definitioNS.........cooiiiiiiie et ee e e 2
A4 Attribute definitioNSeeeiiiiii e 3
A5 Notification definitioNSo e 3
A6 ACHON DEFINILIONS. . ..eiiiiiiiiiiie et e e s et e e s e net e e s——— 111 33
A.7 Name binding defiNitioNS........ccuuiiiiiiiiiiiiec e e — 33
F R T]\ o U= i1 o] o £ PP PPPRRT 3
Annex B — General RelationShip MOEL............ooiiiiiiiiiiiiie et e e 38
Annex C — Management Information Definitions for Event Discrimination Counting............ccccccvvvveereeeeeeeiececnnn o
(O R 11T o F= Vo [=To o] o [=Tox B o F= 1 44
(O - Vo] - Lo [44
(TG T AN 1 1] o 11 (= SRR PRRR 45
Annex D — cmisScript Management Support Object Classccocccvviiiiiiiieiece s e | 40
D 0 AN 1] 01U (=SOSR 46
D B2 B 1< 1011 (o] o PR 46
D2 T o =1 (@0 011 o] o) PSP 46
D 2 A Yy (O 14157 o SO 47
D 2T T o) [O 4 13 o o 47
DT o1 £ 1 (=T 1 01153] o OO 47
D I A o (=1 =Y =T @ 1 4T3 ol] | 48
D RS ST = gV ot PRI 48
DI I TV (@ B (=100 o] =1 (OO 48
Annex E — CMIP_CS managed ODJECE ClaSS..........uuuuiiiiiiiieiee i ee e e e e e e e s s e 54
s R o 0111 o L O S PP 54
Annex F — Systems Management Scripting Language (SMSL)........ccccciiiiiiiiiiiiieee et e e e e e e s 55
F.1 Mapping GDMO ONtO SMSLcciiiiiiieiieeie e e e s s e e e e e e e e e e e s s e s sesat e eeeeeeee s mmmmmmnnnns 55
F.2 SMSL BUIlt-in fUNCHIONS ...t e e e e e e e e e e st e e e e e e s mmmmmnnneen eees 55
F.3 Setfunctions fOr SMSL lIStScccuiiiiiiiiiiiii e e e e e s eeeeeeeeaaaneees 55
F.4 SMSL mathematiCal fUNCHIONS.........uuuiiiiiiiiiiee e e e e e e e s e e s e e e e e e e« — 56
F.5 SMSL process SYNCNIONIZALION.........uuuuiiiiiiiiieeeeeesiesiesiieeieeeeeereeeeeeesssssssnnesreeneeeeee s smmmmmmmmmmnn s 56
F.6 SMSL shared global ChannelS............cooiiiiiiiiiiei e e e 56
F.7 SMSL data types and ODJECESuueiiiiiiiiiie et e eemmm e 55
F.8 SIMSL VANADIES. ... ittt e e e e e e e e s s e e e e e e aee e e s e s aan s e e e e e eaeeeaeeeeaanannnn 57
F.O9 SMSL predefined CONSLANTSuuiiiiiiiiiee e e e s e e e e e e e e e e e e s vmmmeee e 53
F.10 SMSL StHNG EEIAIS ..ottt s ettt e+« — 58
F.LL SMSL ISES wuttitiiiiiiie ittt e e e e e e e e e e aaaaaeas 59
F.12 SMSL simple statements 59
F.13 SMSL OPEIALOISoeeeeiiiieiiititee ettt e e e e e e ettt ettt e e e e e e e s s e e e et e e e e e e e e e+ s 59
F.14 The SMSL core SCripting laNQUAGEccoiiuiiiiieiiiiie et o 62
ANNEX G — SMSL SUPPOIT FUNCLIONS.eeiiiiiiiiiee ittt et e st st 42241t 31
ANNEX H — MOGCS PrOTOIMEA ...eiiiiiiiiieiee ittt e ettt e e e st b bt e e e e e serneeeeseessabbeeeeeeanes 122
H.1 Statement of conformance to the basicSpawnerClass object Class...........ccccccviiiiiiiiiiinbe e,
H.2 Statement of conformance to the commandSequencer object Classcccccevviiiiieiiiie b,
H.3 Statement of conformance to the generalStringScript object Classcccccceveiiiiiiiiiiieeeed e,
H.4 Statement of conformance to the launchPad object Class..........ccccoocviiiiiiiiiii s 29.....
H.5 Statement of conformance to the asynchronousLaunchPad object Class.........ccccceevvvviiiiiiiniie e,
H.6 Statement of conformance to the synchronousLaunchPad object Class...........cccocvvviiiiiiiiniiis b,
H.7 Statement of conformance to the launchScript 0bject Class ..o Q...
H.8 Statement of conformance to the scriptReferencer object Class ... e
H.9 Statement of conformance to the thread object Classoovviiiiiiiiiiiii e, 143..

iv

ITU-T Rec. X.753 (1997 E)

44

H.10
H.11
H.12
H.13
H.14
H.15
H.16
H.17
H.18

Statement of conformance to the suspendableThread object Class.........oovvviviiniincincc e
Statement of conformance to the eventDiscriminationCounter object Classcccvvvvreeceeneccieceenn,

Statement of conformance to the cCmipCS ODJECE ClaSS........corviiriiririeer e
Statement of conformance to the cmisScript ObjECt ClaSS.......cucvveieiieiereere e

Statement of conformance to the getCmisScript object class.....
Statement of conformance to the setCmisScript object class.....
Statement of conformance to the actionCmisScript object class
Statement of conformance to the createCmisScript object class
Statement of conformance to the del eteCmisScript object class

ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — OPEN SYSTEMS INTERCONNECTION —

SYSTEMS MANAGEMENT: COMMAND SEQUENCER
FOR SYSTEMS MANAGEMENT

1 Scope

This Recommendation | International Standard defines a Systems Management Function which may be used by an
application process in a centralized or decentralized management environment to interact for the purpose of systems
management, as defined by CCITT Rec. X.700 | ISO/IEC 7498-4. This Recommendation | International Standard defines
the Command Sequencer which consists of generic definitions, services and functional units. This function is positioned
in the application layer of ITU-T Rec. X.200 | ISO/IEC 7498-1 and is defined according to the model provided by
SO 9545. The role of systems management functionsis described by ITU Rec. X.701 | ISO/IEC 10040.

This Recommendation | International Standard:

establishes user requirements for the Command Sequencer;

establishes models that relate the services provided by the function to user requirements;
defines the services provided by the function;

specifies the protocol that is necessary in order to provide the services;

defines the relationship between the services and SMI operations and notifications;
defines relationships with other systems management functions;

specifies conformance requirements;

defines a scripting language for use in the command sequencer environment.

This Recommendation | International Standard does not:

define the nature of any implementation intended to provide the Command Sequencer;
specify the manner in which management is accomplished by the use of the Command Sequencer;
define the nature of any instructions which result in the use of the Command Sequencer;

specify the services necessary for the establishment, normal, abnormal release of management
associations.

2 Nor mative refer ences

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition
of the Recommendations and Standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid
ITU-T Recommendations.

2.1 Identical Recommendations| I nternational Standards

ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:198#rmation technology — Open Systems
Interconnection — Basic Reference Model: The Basic Model.

ITU-T Recommendation X.210 (1993) | ISO/IEC 10731:198frmation technology — Open Systems
Interconnection — Basic Reference Model: Conventions for the definition of OSI services

ITU-T Rec. X.753 (1997 E) 1

| SO/IEC 10164-21 : 1998 (E)

2.2

CCITT Recommendation X.701 (1992) | ISO/IEC 10040:198f@rmation technology — Open Systems
Interconnection — Systems management overview

ITU-T Recommendation X.710 (1997) | ISO/IEC 9595:1988rmation technology — Open Systems
I nterconnection — Common management information service.

ITU-T Recommendation X.711 (1997) | ISO/IEC 9596-1:198&yrmation technology — Open Systems
I nterconnection — Common management information protocol: Specification.

CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2:1B%armation technology — Open Systems
I nterconnection — Structure of management information: Definition of management information.

CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4:18%8rmation technology — Open Systems
Interconnection — Structure of management information: Guidelines for the definition of managed objects

ITU-T Recommendation X.724 (1996) | ISO/IEC 10165-6:198fdy mation technology — Open Systems
I nterconnection — Structure of management information: Requirements and guidelines for implementation
conformance statement proformas associated with OS management .

ITU-T Recommendation X.725 (1995) | ISO/IEC 10165-7:198f6r mation technology — Open Systems
Interconnection — Structure of management information: General relationship .model

CCITT Recommendation X.730 (1992) | ISO/IEC 10164-1:18%8rmation technology — Open Systems
Interconnection — Systems management: Object management function

CCITT Recommendation X.731 (1992) | ISO/IEC 10164-2:18%8rmation technology — Open Systems
Interconnection — Systems management: State management function

CCITT Recommendation X.733 (1992) | ISO/IEC 10164-4:18%8rmation technology — Open Systems
Interconnection — Systems management: Alarm reporting function

CCITT Recommendation X.734 (1992) | ISO/IEC 10164-5:18%8rmation technology — Open Systems
Interconnection — Systems management: Event report management function

CCITT Recommendation X.735 (1992) | ISO/IEC 10164-6:18%8rmation technology — Open Systems
Interconnection — Systems management: Log control function

ITU-T Recommendation X.739 (1993) | ISO/IEC 10164-11:19%4rmation technology — Open Systems
Interconnection — Systems management: Metric objects and attributes

ITU-T Recommendation X.741 (1995) | ISO/IEC 10164-9:198f6r mation technology — Open Systems
Interconnection — Systems management: Objects and attributes for access control

ITU-T Recommendation X.746 (1995) | ISO/IEC 10164-15:19¢6rmation technology — Open Systems
Interconnection — Systems management: Scheduling function

Paired Recommendations | I nter national Standards equivalent in technical content

CCITT Recommendation X.209 (1988%pecification of basic encoding rules for Abstract Syntax
Notation One (ASN.1).

ISO/IEC 8825:1990]nformation technology — Open Systems Interconnection — Specification of Basic
Encoding Rules for Abstract Syntax Notation One (ASN.1).

ITU-T Recommendation X.291 (199503 conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Abstract test suite specification.

ISO/IEC 9646-2:1994|nformation technology — Open Systems Interconnection — Conformance testing
methodology and framework — Part 2: Abstract Test Suite specification

ITU-T Recommendation X.296 (199503 conformance testing methodology and framework for
protocol Recommendations for ITU-T applications — Implementation conformance statement

ISO/IEC 9646-7:1995, Information technology- Open Systems Interconnection — Conformance testing
methodology and framework — Part 7: Implementation Conformance Statements.

CCITT Recommendation X.700 (199R)anagement framework for Open Systems Interconnection (OS)
for CCITT Applications.

ISO/IEC 7498-4:1989,Information processing systems — Open Systems Interconnection — Basic
Reference Model — Part 4: Management framework

ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Basic Reference Model definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.200 |
ISO/IEC 7498-1.

a) open system;

b) systems management.

3.2 Service convention definitions

This Recommendation | International Standard makes use of the following term defined in ITU-T Rec. X.210 |
ISO/IEC 10731.

— primitive.

3.3 M anagement framework definitions

This Recommendation | International Standard makes use of the following terms defined in CCITT Rec. X.700 |
ISO/IEC 7498-4.

a) management information;

b) managed object.

34 Systems management over view definitions

This Recommendation | International Standard makes use of the following terms defined in CCITT Rec. X.701 | ISO/IEC
10040.

a) agentrole;

b) management support object;

c) managed object class;

d) manager role;

e) notification;

f) systems management functional unit;

g) system management operation.

35 Common management information service definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.710 |
ISO/IEC 9595.

a) attribute;

b) common management information services.

3.6 Additional definitions
The following terms are defined in this Recommendation | International Standard.

3.6.1 command sequencer: A management support object representing a resource which functions in a manager role
as a notification destination and as an initiator of operations determined by its launch scripts, with the ability to delegate
management activities.

3.6.2 launch script: A managed object representing the instructions to be performed by a command sequencer.

3.6.3 thread: A managed object representing the execution of a launch script. The execution results or errors from
launch script executions are returned by the thread.

ITU-T Rec. X.753 (1997 E) 3

| SO/IEC 10164-21 : 1998 (E)

3.64 suspendable thread: The suspendable thread is derived from the thread managed object class. These threads
are spawned by asynchronous launch pads. They can be suspended by means of suspend action directed at them and
resumed by means of a resume action directed at them.

3.65 launch pad: A management support object to which a trigger may be directed to initiate the execution of a
launch script. A launch pad serves as an Initial Vaue Managed Object (IVMO) for athread.

3.6.6 asynchronous launch pad: An asynchronous launch pad is derived from launch pad. It returns a trigger result
notification without waiting for results of execution of the launch scripts. Execution results or errors from launch script
executions are notified directly from the thread.

3.6.7 synchronous launch pad: A synchronous launch pad is derived from the launch pad. It returns trigger result
notification or processing error alarm after it gets all the execution results and errors from threads after the threads
complete their execution.

3.6.8 trigger activator: An initiator of script execution by causing a launch pad to spawn one or more threads. It
directs acommand to alaunch pad, in the form of scheduler, operations, notifications or local action.

3.6.9 command: An instruction for a management activity that is performed in the agent system in accordance with
contents of a launch script. A command is described with a scripting language. Currently, the system management
scripting language is defined in Annex F.

4 Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply:
ASN.1 Abstract Syntax Notation One
CMIS Common Management Information Service
Cs Command Sequencer
IVMO Initial Vaue Managed Object
osl Open Systems Interconnection
LP Launch Pad
SMSL Systems Management Scripting Language

5 Conventions

This Specification defines services for the command sequencer following the descriptive conventions defined in ITU-T
Rec. X.210 | ISO/IEC 1073L1. In clause 9, the definition of each service includes a table that lists the service parameters.
For a given service primitive, the presence of each parameter is described by one of the following values:

M The parameter is mandatory.

=) The value of the parameter is equal to the value of the parameter in the column to the left.

U The use of the parameter is a Service-user option.

- The parameter is not present in the interaction described by the primitive concerned.

C The parameter is conditional. The conditions are defined by the test which describes this parameter.
P The parameter is subject to the constraints imposed by ITU-T Rec. X.710 | ISO/IEC 9595.

NOTE - The parameters which are marked “P” in service tables of this Specification are mapped directly onto the corresponding
parameters of the CMIS service primitive, without changing the semantics or syntax of the parameters.

The font used for GDMO, ASN.1 and GRM in this Recommendation | International Standard is Courier. The BNF for
SMSL inF.14.11 isin Courier New. In Annexes F and G, SMSL function parameters have been italicized.

6 Requirements

The requirements to be satisfied are:
e User requirements:
— Allow the delegation of management activities.
— Reduce the amount of communication that must occur between manager and agents.

4 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

— Allow delegated manager systems to operate on agent systems even when communications between a
manager and the agent systems have been disrupted or are not possible.

— Provide flexible control of management activities.
— Provide a scripting language which can describe procedures to perform management operations.
— Allow delegated systems to execute CMIS operations in sequence.
» Operational requirements:
— Pre-scheduled or delayed execution of a systems management operation.
— Capabilities for modifying the request for pre-scheduled or delayed execution.

— Capabilities for initiating, suspending, resuming and terminating systems management operations
based on time management actions or the occurrence of events.

— Capabilities for reporting and recording the outcome of pre-scheduled or delayed execution.

— The ability to send notifications when state changes occur.

7 M od€

7.1 Model description

The model describes how triggered, pre-scheduled or delayed execution of system management operations can be
performed by the command sequencer. It describes the conceptual components, the relationship between these
components, a description of the states and possible state transitions.

Figure 1 is a schematic description of the command sequencer capability of a system.

The functionality of a command sequencer is modeled by the launch script, thread, and launch pad objects. It is an OSI
abstraction of pre-scheduled or delayed operation execution in open systems. A command sequencer may contain any
number of launch pads, for which the command sequencer serves as a service provider. Each launch pad may execute on
launch script at a time, or may execute multiple launch scripts at a time. On receiving a trigger from a trigger activator, a
launch pad initiates the execution of a launch script. In addition to the trigger id component, the trigger may specify a
launch script name (script id) and input arguments to the script as parameters within the execution parameter list
component.

There are two types of launch pads, asynchronous launch pad and synchronous launch pad. An asynchronous launch pa
returns a trigger result notification without waiting for results of execution of the launch scripts. Execution results or
errors from launch script executions are notified directly from the thfeaginchronous launch pad, on the other hand,
returns trigger result notification or processing error alarm after it gets all the execution results and errors from threads
when the threads complete their execution.

A launch script instance may contain any number of individual instructions. The execution parameter list component of
the trigger is a list of scripts (identified by their script ids) to be executed and the corresponding input parameters needed
to execute those scripts. A default execution parameter list may be specified for a launch pad to execute in case it receives
a trigger in which the trigger parameters are not specified. If the launch pad is not configured to execute a default
execution parameter list and the execution parameter list component is not supplied by the trigger and if the launch pad
receives a trigger attempting to activate it, a no script error code is returned in the error code field of the trigger result
notification. The launch pad has an available script list attribute which can be configured to identify scripts that can be
executed by it. If a execution parameter list component is present in the trigger, the launch pad verifies whether each
script id from the execution parameter component is present in its available script list attribute. Only those script
instances indicated by the script id which are present in the available script list attribute are executed. If nonepof the scri
ids are present in the available script list, the launch pad returns a script rejected error code in the trigger respit, and sc
execution does not take place.

Specialized scripting language object classes are derived from the launch script object class. Hence these instructions
may be specified as specialized script instances. Multiple sets of launch script instructions may be executed sequentially
or in parallel by threads, in accordangih the execution parameter data type. Several nested levels of sub-threading

may be necessary in order to execute script instances.

ITU-T Rec. X.753 (1997 E) 5

| SO/IEC 10164-21 : 1998 (E)

commandSequencer

A-Any number.

launchPad launchScript

Trigger Parameters

Trigger
Trigger Result

Notification/
Processing error alarm

| —¥Y

Execution Result .
Notification/ Instructions
Processing error alarm
(if synchronous

launch pad)

Script Id
Script Parameters

Execution Result
Notification/
Processing error alarm
(if asynchronous
launch pad)

— » Information Flow
—___p References

a) Typical case

commandSequencer

AAny number

launchPad

launchScript launchScript
Trigger Parameters

Trigger

<
<

Trigger Result
Notification/
Processing error alarm

P
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
1
v

Execution Result .
Notification/ Instructions
Processing error alarm
(if synchronous

launch pad)

I
]
«—f- (Padd Ypo---777 » Sub-thread »
————————————— Script Id

Execution Result ;

Nofification/ Script Parameters
Processing error alarm ——» Information flow

(if asynchronous -———p» References
launch pad)

Script Id
Script Parameters

b) Use of sub-thread

commandSequencer

,J;Any number.

launchPad

launchScript
Trigger Parameters

Trigger

<
<

| —¥Y

Trigger Result
Notification/

I Execution Result
Processing error alarm

Notification/ Instructions
Processing error alarm
(if synchronous

launch pad)

Script Id
Script Parameters

<

Execution Result

Notification/ L
Processing error alarm .

(if asynchronous ——» Information Flow

launch pad) -——-p» References

TISO8570-98/d01
¢) N:1 mapping between launch pads and a launch script

Figure 1 — Command sequencer model

In order to initiate the execution behaviour of launch script instances, a trigger shall be directed at the launch pad object

instance. Unparameterized triggers may activate the launch pad in cases where the launch pad has a default execution
parameter list.

6 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

The launch pad acts as an IVMO for a thread and supplies the execution parameter list to the executing parameters
attribute of the thread. The execution parameter list may be a single execution parameter, a sequence of execution
parameters or a set of execution parameters. The execution parameter is a sequence of script ids and script parameters.
The script id identifies the managed object instance name of the scripting object instance to be executed and the script
parameters supply the parameter values which are needed as inputs to the scripting object instance. If a sequence of
execution parameters is specified, the launch pad spawns a thread in order to execute the script instances and supplies the
script id and the script parameters (if required) from the execution parameters to the thread. On completion of the thread,
thisis repeated for the rest of the script ids in the list in sequence. If a set of execution parameters is specified, the launch
pad supplies the set of script ids and script parameters (if required) to threads and the corresponding scripts instances are
executed in paralel. The semantics of parameter passing between the launch pad and threads depend on the parameter
passing mechanism supported by the scripting language in which the script is written.

One thread is assigned the execution of one script instance. This thread may spawn other threads if necessary. This may
happen when one script instance invokes another script instances. When this happens, the thread executing a calling script
spawns a sub-thread, passing the script id and script parameters (if required) of the called script to the sub-thread. The
semantics of parameter passing between threads and sub-threads depend on the parameter passing mechanism supported
by the scripting language in which the script is written.

Asynchronous launch pads should spawn suspendable threads. A suspendable thread can be suspended and resumed by
means of suspend and resume actions respectively. Individual threads spawned by synchronous launch pads may not be
suspended and resumed. All threads related to execution of a script may be suspended or resumed in both cases.

A thread is complete after all its sub-threads have completed successfully or reported an error. Once this happens,
execution of alaunch script is complete; the corresponding launch pad then returns to an inactive (idle) state. A thread is
contained by the abject which spawned it. A thread may be contained by alaunch pad or another thread.

Multiple launch pads may reference a particular launch script. Multiple threads may reference that same launch script.
The existence of a script is independent of any references to it by launch pads or threads. Launch scripts are defined in
the specialized script classes derived from the launch script object class. The semantics and syntax of these scripts are
specified in the definition of the scripting language in which the scripts are written. The scripting language definition also
specifies a set of basic scripting functions which are necessary to provide control and processing ability to the launch
scripts.

The general string script managed object class should be used for writing scripts which are represented in the form of a
genera string. The script language name attribute indicates the name of that scripting language and the script content
attribute represents the script written in this scripting language in the form of a general string. Annexes F and G define a
specialized scripting language, System Management Scripting Language (SMSL), as the scripting language in which
scripts represented in the form of a general string should be written. It is possible to define other classes of scripts. Annex
D defines, cmisScript, a scripting language, in the form of managed objects which can be used to write scripts in the
CMIS environment.

7.2 Triggering process and reporting results

Triggers activators directed at the launch pad may be in various forms such as schedulers, operations, notifications and
local action. When a launch pad receives a trigger, it spawns one or more threads in order to execute a script. After all
threads related to a trigger are spawned, an asynchronous launch pad emits a trigger result notification which includes
sets of thread id and script id. Results of script execution are propagated by threads as execution result notifications
directly to the manager in the case of the asynchronous launch pad. After al threads related to a trigger are completed, a
synchronous launch pad synchronizes all the execution results or errors from threads and emits a trigger result
notification which includes sets of thread id, script id and execution results or errors to the manager.

The execution result type attribute of the script identifies the type of result expected from execution of the script and
should correspond to the execution result type attribute of the execution result. The errorCode field of the execution
result is set to the no error code when the execution is successful otherwise it is set to the appropriate error code.

An executing thread may terminate spontaneously either upon the completion of its execution or in abnormal conditions.
In the latter case, the thread indicates abnormal termination by issuing a processing error alarm notification.

ITU-T Rec. X.753 (1997 E) 7

| SO/IEC 10164-21 : 1998 (E)

The execution result and processing error alarm notifications are issued by the thread and forwarded to appropriate
notification destination(s). In the case of an asynchronous launch pad, these notifications are forwarded to external
notification destinations whereas in the case of a synchronous launch pad, these notifications are propagated to the launch
pad.

A manager may voluntarily terminate al launching processes by means of a delete operation to the corresponding

launch pad. On receiving a delete operation, if the thread-launchPad name binding includes “DELETE
DELETES-CONTAINED-OBJECTS” definition, all its threads which cause the execution of the script are terminated
and deleted. The launch pad is then deleted.

A manager may voluntarily terminate all executions related to a thread by means of a delete operation to the
corresponding thread. On receiving a delete operation, if the thread-thread name binding includes “DELETE
DELETES-CONTAINED-OBJECTS” definition, all its sub-threads related to the execution of the script are terminated
and deleted. The thread is then deleted.

In order to cause execution of all scripts being currently executed by a synchronous or asynchronous launch pad to be
terminated, a terminate action may be directed at the launch pad. All threads related to the execution of scripts are
terminated and deleted when a terminate action is received by the launch pad.

Launching of all threads being currently executed by a synchronous or asynchronous launch pad may be suspended by &
suspend action directed at the launch pad and subsequently resumed by a resume action.

Execution of scripts by suspendable threads spawned by an asynchronous launch pad, may be suspended by a susper
action directed at the thread and subsequently resumed by a resume action. The thread id, returned in the trigger result
notification should be supplied as a parameter to suspend and resume actions.

The launch pad has attributes to monitor a specific attribute of a specific object instance. If the value of the monitored
attribute is changed, a trigger is generated to cause execution of a specified script list.

If the monitored attribute is an Event Discrimination Counter (EDC) counter as defined in Annex C, the notifications
filtered by the EDC, trigger the launching of scripts by the launch pad.
7.3 M anagement of command sequencer

The attribute values of the launch pad, thread, launch script, and specialized scripting managed object instances are
retrieved and modified through Get and Set operations, respectively.

Tables 1 to 5 map the status attributes of the command sequencer, launch pad, thread and script managed objects to th
states defined in CCITT Rec. X.731 | ISO/IEC 10164-2.

NOTE - "—" means any value.
Table 1 — Status table of command sequencer
Status of command sequencer Administrative state Operational state
CS not operational - disabled
CS is operational unlocked enabled
CS is locked locked enabled
CS is shutting down shuttingDown enabled

When a command sequencer has a disabled operational state it isin a totally inoperable state and its launch pads are not
executing scripts. If it isin an enabled state, an event which consists of an operation being performed at the managed
object boundary may cause a transition from a locked administrative state to an unlocked state or vice versa. When the
command sequencer goes into a locked state, it causes its launch pads to suspend the execution of launch scripts.
Alternatively, when it goes into an unlocked administrative state, the launch pads are available to start or resume the
execution of launch scripts.

8 ITU-T Rec. X.753 (1997 E)

Table 2 — Status table of launch pad

I SO/IEC 10164-21 : 1998 (E)

Status of launch pad Admisrg;terative Operational state | Control status Usage state Av;i;uﬁ!ity
LPisnot operational - disabled - -
LP is operational unlocked enabled - Busy
LP is operational unlocked enabled - Idle -
LP is locked locked enabled - Idle -
LP is on duty - - - - Not Off duty
LP is off duty - - - - Off duty
LP is suspended - - Suspended - -
LP is resumed - - Empty - -

When alaunch pad has a disabled operational state, it isin atotally inoperable state and cannot execute scripts. If itisin

an enabled state, an event which consists of an operation being performed at the managed object boundary may cause it to

transition from a locked administrative state to an unlocked state or vice versa. When the launch pad goes into a locked

state, it suspends the execution of launch scripts. Alternatively, when it goes into an unlocked administrative state, the
launch pads are available to start or resume the execution of launch scripts. The launch pad is made inactive by an
internal control process according to a predetermined time schedule and its availability status value is off duty. A suspend
action causes the control status to change to suspended and a resume action changes it back to its default value, empty.

Table 3 — Status table of thread

Status of thread

Operational state

Thread not operational

Disabled

Thread operational

Enabled

Thethread isin an enabled state when it is performing a script execution and in a disabled state when it is not.

Table 4 — Status table of suspendable thread

Status of suspendable thread

Operational state

Control status

Suspendable thread not operational Disabled -
Suspendable thread operational Enabled -
Suspendable thread suspended - Suspended
Suspendable thread resumed - Empty

A suspend action causes the control status of the suspendable thread to change to suspended and a resume action changes

it back to its default value, empty.

Table 5 — Status table of launch script

Status of launch script

Administrative state

LS execution allowed

Unlocked

LS execution not allowed

Locked

ITU-T Rec. X.753 (1997 E)

9

| SO/IEC 10164-21 : 1998 (E)

An event which consists of an operation being performed at the managed object boundary may cause a script to transition
from alocked administrative state to an unlocked state or vice versa. When the launch script goes into a locked state, it
cannot be executed by a launch pad other than the ones which are currently executing it. Alternatively, when it goes into
an unlocked administrative state, the launch script is available for execution by other launch pads.

7.4 Scheduling of the command sequencer

An external scheduler scheduling package provides the capability of scheduling the activation of a command sequencer’s
launch pads by triggers. The launch pad’s availability status attribute will be changed to “off duty” or “not off duty” in
accordance with the scheduling characteristics specified by an external scheduler managed object. The semantics of the
external scheduler scheduling package are described in CCITT Rec. X.734 | ISO/IEC 10164-5 and CCITT Rec. X.735 |
ISO/IEC 10164-6 .

75 Access control

The command sequencer should be permitted access to all the managed object instances which are operated on by it
threads. Behaviour of the thread when an operation on an instance is denied should be defined in the script. For example,
if an operation is denied, an unauthorized access attempt error may be returned by a processing error alarm notification.

8 Generic definitions

8.1 Managed objects

This Specification defines a set of managed object classes. The inheritance structure of these managed object classes i
shown in Figure 2.

CCITT Rec. X.721 | ISO/IEC 10165-2: Top

LaunchScript BasicSpawnerClass ScriptReferencer Command Sequencer
generalizedStringScript LaunchPad Thread
Asynchronous Synchronous
Launch Pad LaunchPad Suspendable Thread

TISO8580-98/d02

NOTE - Uninstantiable object classes are underlined.

Figure 2 — Inheritance structure of resources of command sequencer
The containment structure of these managed object classes is shown in Figure 3.
811 Command sequencer

8.1.1.1 Overview

— A management support object representing a resource which acts in a manager role as an invoker of
operations determined by its launch scripts and as a notification destination.

— Acts as service provider for a launch pad.
— Contains one or more launch pads.

10 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

System
Command Sequencer Launch Script
Synchronous Launch Asynchronous Launch
Pad Pad
Thread Suspendable Thread
TISO8590-98/d03

Figure 3 — Containment structure of resources of command sequencer

8.1.1.2 Packages of the command sequencer management support object

The command sequencer management support object has the following mandatory package:
— command sequencer package.

8.1.1.3 Characteristics of the command sequencer

The command sequencer management support object class has the following attributes.

8.1.1.3.1 Command sequencer id

The value of this attribute defines an instance of the command sequencer management support object class.

8.1.1.3.2 Administrative state

This attribute represents the administrative capability of the command sequencer to perform its function. The following
administrative states are defined:

a) Unlocked — The launch pads of the command sequencer are permitted to start or resume execution of
launch scripts.

b) Locked — The launch pads of the command sequencer are not permitted to start execution of launch
scripts. If executions are in progress, they are suspended.

c) Shutting down — The command sequencer is shutting down and its launch pads will not be permitted to
perform any script executions.

8.1.1.3.3 Operational state
This attribute represents the operational capability of the command sequencer to perform its functions.

The following operational states are defined:
a) Enabled — The command sequencer is operational and ready for use.

b) Disabled — The command sequencer is not available for use.

8.1.1.4 Notifications of the command sequencer

The command sequencer support management object class has the following notifications:
— object creation, as defined in CCITT Rec. X.730 | ISO/IEC 10164-1.
— object deletion, as defined in CCITT Rec. X.730 | ISO/IEC 10164-1.
— state change, as defined in CCITT Rec. X.730 | ISO/IEC 10164-1.

ITU-T Rec. X.753 (1997 E) 11

| SO/IEC 10164-21 : 1998 (E)

8.1.2 Thread

8.1.21 Overview
— A management object that models command execution and performs commands according to a script.
— Subclass of the basic spawner and script referencer managed object classes.
— Each thread is dedicated to a synchronous launch pad.
— This object class has a natification which notifies the result of the execution of the launch script.

8.1.2.2 Packages of the thread managed object class

The thread managed object class has the following mandatory packages:
— thread package;
— execution result package.

8.1.2.3 Characteristics of the thread managed object class

The thread class has the following attributes.

8.1.23.1 Thread Id

The value of this attribute identifies an instance of the thread management object class.

81232 Scriptld

This value of this attribute identifies an instance of the launch script managed object class which is being executed.

8.1.2.3.3 [Executing parameters

The script parameters component of this attribute is a list of parameter values supplied by a launch pad, which it needs to
perform a script execution. The script id component of this attribute indicates the script(s) that should be executed with
the corresponding parameters.

8.1.2.34 Operational state

This attribute represents the operational capability of the thread to perform its functions. The following operational states
are defined:

a) Enabled — The thread is operational and is performing a script execution.
b) Disabled — The thread is not operational.
8.1.2.4 Notifications of the thread managed object class

The thread managed object class has the following notifications, which it forwards to the launch pad managed object
class:

— execution result as defined in 8.2.1.
— processing error alarm as defined in CCITT X.733 | ISO/IEC 10164-4.

8.1.3 Suspendablethread

8.1.3.1 Overview
— Subclass of the thread managed object class.
— Spawned by an asynchronous launch pad.
— Can be suspended and resumed by means of suspend and resume actions.
8.1.3.2 Packages of the suspendable thread
The suspendable thread managed object class has the following mandatory package:
— suspend resume accepter.
8.1.3.3 Characteristics of the suspendable thread

The suspendable thread has the following attributes.

12 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

8.1.3.3.1 Control status

The control status attribute is defined in CCITT Rec. X.731 | ISO/IEC 10164-2. The default value is empty. If execution
is suspended, the control status changes to ‘suspended’ and if execution is resumed, the value changes to empty.

8.1.3.4 Actionsof the suspendable thread managed object class

The following actions can be directed at the suspendable thread managed object class:
— suspend;

— resume.
814 Launch script

8.1.4.1 Overview
— Management information that represents a series of instructions in specialized scripting languages.
— Each script should be independent.

8.1.4.2 Characteristics of the launch script

The launch script class has the following attributes.

81421 Scriptld

The value of this attribute identifies an instance of the launch script managed object class.

8.1.4.2.2 Execution result type

The value of this attribute identifies the expected type of execution result.

8.1.4.2.3 Administrative state

This is as defined in CCITT Rec. X.731 | ISO/IEC 10164-2.

8.1.4.3 Packagesof thelaunch script object class
The launch script managed object class has the following mandatory package:
— launch script package.

8.15 Basic spawner class

8.1.5.1 Overview

— Signifies capability of creation of new contained object instances with automatic name generation for these
new instances.

— Superclass of command sequence thread and launch pad object classes.
8.1.5.2 Packages of the basic spawner class
The basic spawner class has the following mandatory package:
— basic spawner package.
8.1.6 Launch pad
8.1.6.1 Overview
— Subclass of the basic spawner and script referencer managed object classes.
— Initiator of launch script execution on receiving a trigger.

— Acts as IVMO for a thread.

— Ascript is executed by the launch pad by means of one or more threads.

ITU-T Rec. X.753 (1997 E) 13

| SO/IEC 10164-21 : 1998 (E)

8.1.6.2 Packages of thelaunch pad managed object class

The mandatory packages of the launch pad managed object class are:
— launch pad package;
— trigger action accepter;
— parameter passer;
— trigger result package;
— trigger event accepter;
— terminate accepter;
— external scheduler;

- suspend resume acceptor.

8.1.6.3 Characteristicsof launch pad

The launch pad managed object class has the following attributes.

8.1.6.3.1 Availablescript list

This is a list of all the scripts which a launch pad is capable of executing. The launch pad executes only those scripts
which are present both in the execution parameter list component of trigger parameters of the trigger and in the available
script list attribute.

8.1.6.3.2 Default execution parameter list

This is a list of script ids and script parameters which are used for default execution when a launch pad is triggered with
no parameters.

8.1.6.3.3 Administrative state

This attribute represents the administrative capability of the launch pad to perform its function. The following
administrative states are defined:

a) Unlocked — The launch pad is permitted to start or resume execution of launch scripts.
b) Locked — The launch pad is not permitted to start execution of launch scripts. If executions are in progress,
they are suspended.

8.1.6.34 Operational state
This attribute represents the operational capability of the launch pad to perform its functions.
The following operational states are defined:

a) Enabled — The launch pad is operational and is available to execute a script.

b) Disabled — The launch pad is not operational and is unavailable for script executions.

8.1.6.35 Usagestate

This attribute represents the usage status of the launch pad. The following usage states are defined:
a) Busy - The launch pad is being used to execute a launch script.

b) Idle — The launch pad is not being used to execute a script.

8.1.6.3.6 Auvailability status

This status condition indicates whether the launch pad is available to perform its function. The following states are
defined:

a) Off Duty

The launch pad had been made inactive by an internal control process in accordance with a predetermined
time schedule.

b) Not Off Duty

The availability status attribute does not have the Off Duty value and hence has been made active.

14 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

8.1.6.3.7 Observed object instance
Thisisdefined in ITU-T Rec. X.739 | ISO/IEC 10164-11.

8.1.6.3.8 Observed attributeid
Thisisdefined in ITU-T Rec. X.739 | ISO/IEC 10164-11.

8.1.6.3.9 Control status

This attribute is defined in CCITT Rec. X.731 | ISO/IEC 10164-2. The default value is empty. If execution is suspended,
the control status changes to ‘suspended’ and if execution is resumed, the value changes to empty.

8.1.6.3.10 Launch padid

This attribute names an instance of the launch pad managed object class.

8.1.6.4 Notificationsof thelaunch pad managed object class

The launch pad managed object class has the following notifications, which can be forwarded to the appropriate
notification destination(s):

— trigger result as defined in 8.2.1.
— processing error alarm as defined in CCITT X.733 | ISO/IEC 10164-4.

8.1.7 Asynchronous launch pad

8.1.7.1 Overview
— Subclass of the launch pad managed object class.
— Suspendable threads are spawned by asynchronous launch pad.

— Sends out a trigger result notification as soon as all suspendable threads are spawned.
8.1.7.2 Packages of the asynchronous launch pad

8.1.7.3 Managed object class
The asynchronous launch pad managed object class has the following package:
— triggerAsynchronousResultPackage.

8.18 Synchronous launch pad

8181 Overview

— Subclass of the launch pad managed object class.

— Threads are spawned by the synchronous launch pad.

— Sends out a trigger result notification after synchronizing results as soon as all threads are complete.
8.1.8.2 Packages of the synchronouslaunch pad managed object class
The asynchronous launch pad managed object class has the following package:

— trigger synchronous result package.

8.1.9 General string script

8.1.9.1 Overview
— Subclass of the launch script object class.
— Scripts which can be represented in the form of a general string.
— ltis possible to add other specialized scripts as subclasses.
8.1.9.2 Characteristicsof general string scripting language

The general string scripting language managed object class has the following attributes.

ITU-T Rec. X.753 (1997 E) 15

| SO/IEC 10164-21 : 1998 (E)

8.19.21 Scripting language name

Thisis the name of the language which defines the syntactic and semantic properties of a script which is represented as a
genera string.

8.1.9.2.2 script content

This point to the script which is represented as a general string.

8.1.9.3 Packagesof general string scripting language

The general string scripting language managed object class has the following mandatory package:
— general string script package.

8.1.10 Script referencer

8.1.10.1 Overview
— Superclass for launch pad and thread managed object classes.
— Defines a reference relationship mapping between launch pad and launch script and thread and launch
script.

8.1.10.2 Packagesof script referencer

The script referencer has the following mandatory package:
— script referencer package.

8.2 Generic notifications

The following notifications are defined in this Specification.

821 Trigger result

This returns the result of a script execution and with the value of errorCode set to noError if it was successful or an
appropriate error code to indicate the nature of failure. The error code which can be returned in the errorCode field of the
executionResult notification are:

— no error, if execution was successful;
— no script error, if execution failed because script name was not specified,;
— script rejected error, if a script was not in the list of scripts which a launch pad is configured to execute;

— invalid parameter type error, if there is a type mismatch between the parameter type expected by the script
and that supplied by the script;

— invalid parameter value error, if the value supplied in the parameter is invalid, e.g. out of range;
— script syntax error, if the script execution failed due to a syntax error in the script;
— script execution failed error, if the script execution failed for reasons other than improper syntax;

— invalid parameter number, if the number of parameters supplied are inconsistent with the number of
parameters expected by the script;

— unauthorized access error, if access for one or more object instances to be used by the script, is denied.

8.2.2 Execution result

This returns the result of a script execution and with the value of errorCode set to noError if it was successful or an
appropriate error code to indicate the nature of failure. The error code which can be returned in the errorCode field of the
executionResult notification are:

— no error, if execution was successful;
— no script error, if execution failed because script name was not specified,;
— script rejected error, if a script was not in the list of scripts which a launch pad is configured to execute;

— invalid parameter type error, if there is a type mismatch between the parameter type expected by the script
and that supplied by the script;

— invalid parameter value error, if the value supplied parameter is invalid, e.g. out of range;
— script syntax error, if the script execution failed due to a syntax error in the script;

16 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

— script execution failed error, if the script execution failed for reasons other than improper syntax;

— invalid parameter number, if the number of parameters supplied are inconsistent with the number of
parameters expected by the scrip;

— unauthorized access error, if access for one or more object instances to be used by the script, is denied.

8.3 Generic actions

The following action types are defined within this Specification. These actions have been defined for the launch pad and
the suspendable thread managed object classes in this Specification.

831 Suspend action

The suspend action directed at a managed object causes that object to suspend execution of the script that it is currently
executing. The parameters carried by the suspend action are the trigger id to identify this action and either the thread id if
the action is directed at a thread or the launch pad id, if this action is directed at a launch pad.

8.3.2 Resume action

The resume action directed at a managed object causes that object to resume execution of the script which has beer
suspended by a previous suspend action. The parameters carried by the suspend action are the trigger id to identify this
action and either the thread id if the action is directed at a thread or the launch pad id, if this action is directechat a lau
pad.

8.3.3 Terminate action

The terminate action directed at a managed object causes unconditional termination of any script executions by that
object and any objects spawned by this object. The trigger id parameter is used to identify this action.

834 Trigger action

A trigger action causes initiation of script execution. It supplies the trigger id parameter which identifies this action and
its execution parameter list component consists of a sequence of script ids which indicate the scripts which should be
executed and script parameters which are needed in order to execute these scripts.

9 Services

9.1 I ntroduction

The command sequencer provides services to modify the operations of command sequencer and launch scripts. In
particular, the operations that can be applied to each instance of a command sequencer and launch scripts are:

— creation of command sequencer, launch pad and launch script instances;

— deletion of launch pad and launch script instances;

— modification of command sequencer, launch pad and launch script attributes;
— retrieval of command sequencer, launch pad and launch script attributes.

In addition to the above services to modify instances, this function provides notification services and action to trigger the
command execution.

9.2 Initiation, Termination, Modification and Retrieval Services

The PT-CREATE, PT-DELETE, PT-SET and PT-GET services may be used to create, delete, modify and retrieve
attribute values of command sequencer management support object and launch pad and launch script managed objec
instances.

9.3 Notification services

931 Execution result service definition

This subclause specifies the executionResultinfo report service which is defined in this Recommendation | International
Standard and maps it to the CMIS M-EVENT-REPORT service.

ITU-T Rec. X.753 (1997 E) 17

| SO/IEC 10164-21 : 1998 (E)

Table 6 — Execution result reporting parameters

Parameter name

Reg/Ind

Rsp/Cnf

Invoke identifier

P

Mode

P

Managed object class

Managed object instance

Event type

C9)

Event time

o

Event information

trigger id

script id

thread id

error code

execution result type

execution result

Current time

Event reply

UV|(DT|Do

Errors

Table 7 — Trigger result reporting parameters

Parameter name

Req/Ind

Rsp/Cnf

Invoke identifier

P

Mode

P

Managed object class

Managed object instance

Event type

C%)

Event time

Event information

trigger id

script id

thread id

script parameters

execution type

error code

execution result

Current time

Event reply

UV|(DT|Do

Errors

18 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

9.4 Action services

This subclause specifies the trigger and terminate action services which are defined in this Recommendation |
International Standard and maps them to the CMIS M-EVENT-ACTION service.

Table 8 — Trigger action service parameters

Parameter name Reg/Ind Rsp/Conf

Invoke identifier P P
Linked identifier - P
Mode P -
Base object class P -
Base object instance P -
Scope P -
Filter P -
Managed object class - P
Managed object instance - P
Access control P -
Synchronization P -
Action type M -
Action Information

trigger id M -

Attribute list -
Errors - P

Table 9 — Terminate action service parameters
Parameter name Reg/Ind Rsp/Conf

Invoke identifier P P
Linked identifier - P
Mode P -
Base object class P -
Base object instance P -
Scope P -
Filter P -
Managed object class - P
Managed object instance - P
Access control P -
Synchronization P -
Action type M -
Action Information

trigger id M -
Errors - P

ITU-T Rec. X.753 (1997 E) 19

| SO/IEC 10164-21 : 1998 (E)

Table 10 — Suspend action service parameters

Parameter name Reg/Ind Rsp/Conf

Invoke identifier P P
Linked identifier - P
Mode P -
Base object class P -
Base object instance P -
Scope P -
Filter P -
Managed object class - P
Managed object instance - P
Access control P -
Synchronization P —
Action type M -
Action Information

trigger id M -

thread id -

launch pad id U -
Errors - P

Table 11 — Resume action service parameters
Parameter name Reqg/Ind Rsp/Conf

Invoke identifier P P
Linked identifier - P
Mode P -
Base object class P -
Base object instance P -
Scope P -
Filter P -
Managed object class - P
Managed object instance - P
Access control P -
Synchronization P -
Action type M -
Action Information

trigger id M -

thread id -

launch pad id U -
Errors - P

20 ITU-T Rec. X.753 (1997 E)

10 Functional units

I SO/IEC 10164-21 : 1998 (E)

Three functional unit are defined in this Recommendation | International Standard for the management of command

Sequencers.
a) Execution functional unit

The execution functional unit requires the services of PT-CREATE, trigger action

execution result notification service and processing error alarm reporting service.

b) Monitoring functional unit

The monitoring functional unit requires the services of PT-GET.

c) Control functional unit

The control functional unit requires the services of terminate action, PT-DELETE.

11 Protocols and abstract syntax

111 Abstract syntax
11.1.1 Managed objects

11.1.1.1 Defined managed objects

Table 12 identifies the relationship between the managed objects defined in 8.1 and the managed object class

specification in Annex A.

Table 12 — Managed objects and reference labels

Managed object name Reference label
Basic spawner basicSpawnerClass
Suspendable thread suspendableThread
Thread thread
Asynchronous launch pad asynchronousL aunchPad
Synchronous launch pad synchronousL aunchPad
Launch pad launchPad
Launch script launchScript
Command sequencer commandSequencer
General string script general StringScript
Script Referencer scriptReferencer

11.2 Attributes

11.2.1 Attributes imported from the definition of management information

This Specification references the following management attributes, whose abstract syntax are specified in CCITT

Rec. X.721 | ISO/IEC 10165-2:
a) administrativeState,
b) usageState;
C) operational State;
d) controlStatus;
€) availabilityStatus.

It also references the following management attributes, whose abstract syntax are specified in ITU-T Rec. X.739 |

ISO/IEC 10164-11:
a) observedObjectinstance;
b) observedAttributeld.

ITU-T Rec. X.753 (1997 E) 21

| SO/IEC 10164-21 : 1998 (E)

11.2.2 Attributes defined in this Specification

This Specification defines the following management attributes, whose abstract syntax are specified in Annex A:
a) launchPadid;
b) commandSequencerld;
c) threadid,
d) scriptld;
€) triggerld;
f) executionResultType;
g) executingParameters,
h) scriptLanguageName;
i) scriptContent;
j) defaultExecutionParameterList;
k) availableScriptList.

11.2.3 Parameter to Attribute Mapping

Table 13 identifies the relationship between the service parameters defined in 8.1 and 8.2 and the attribute type
specificationsin Annex A.

Table 13 — Parameters and attribute names

Parameter name Attribute name
Launch pad id launchPadld
Command sequencer id commandSequencerld
Thread id threadld
Script id scriptld
Trigger id triggerld
Execution result type executionResultType
Executing parameters executingParameters
Script language name scriptLanguageName
Script content scriptContent
Default execution parameter list defaultExecutionParameterList
Available script list availableScriptList

114 Notifications

11.4.1 Referenced notifications
This Specification references the following events defined in CCITT Rec. X.730 | ISO/IEC 10164-1:
a) object creation naotification;
b) object deletion notification;
C) processing error alarm notification.
This Specification also references the following events defined in CCITT Rec. X.731 | ISO/IEC 10164-2:

— state change notification.

11.4.2 Notifications defined in this Specification

Table 14 identifies the relationship between the notifications defined in 9.3 and the notification type specifications in
Annex A.

22 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table 14 — Notifications

Event type Notification type

Trigger result triggerResultinfo

Execution result executionResultinfo

115 Actions

11.5.1 Actions defined in this Specification

Table 15 identifies the relationship between the actions defined in 9.4 and the notification type specifications in Annex A.

Table 15 — Actions

Action name Reference label
terminate terminate
suspend suspend
resume resume
trigger trigger

116 Negotiation of functional units
This Recommendation | International Standard assigns the following object identifier value:
{joint-iso-itu-t ms(9) function(2) part21(21) functionalUnitPackage(1)}

as a value of the ASN.1 type FunctionalUnitPackageld defined in CCITT Rec. X.701 | ISO/IEC 10040 to use for
negotiating the following functional units:

0 Execution functional unit

M Monitoring functional unit

2 Control functional unit

where the number identifies the bit positions in the BIT STRING assigned to the functional units, and the names
referencing the functional units are defined in clause 10.

Within the Systems management application context, the mechanism for negotiating the functional units is described by
CCITT Rec. X.701 | ISO/IEC 10040.

NOTE — The requirement to negotiate functional units is specified by the application context.

12 Relationship with other functions

The command sequencer uses the services defined in CCITT Rec. X.731 | ISO/IEC 10164-2 for the notification of state
changes, the services defined in CCITT Rec. X.730 | ISO/IEC 10164-1 for the creation and deletion of managed objects,
the retrieval of attributes and notification of attribute value changes.

The command sequencer uses the services defined in ITU-T Rec. X.741 | ISO/IEC 10164-9 to provide access control
capabilities to managed object instances which can be operated upon by threads.

13 Conformance

There are two conformance classes. general conformance class and dependent conformance class. A system claiming to
implement the elements of procedure for systems management services referenced by this Specification shall comply with
the requirements for either the general or the dependent conformance class as defined in the following subclauses. The
supplier of the implementation shall state the class to which the conformance is claimed.

ITU-T Rec. X.753 (1997 E) 23

| SO/IEC 10164-21 : 1998 (E)

131 General conformance class requirements

A system claiming general conformance shall support this function for al managed object classes that import the
management information defined in this Specification.

NOTE — This is applicable to all subclasses of the management support object classes defined in this Specification.

13.1.1 Static conformance

The system shall:

a) support the role of manager or agent or both, with respect to the control metrics functional unit and the
monitor metrics functional unit;

b) support the transfer syntax derived from the encoding rules specified in CCITT Rec. X.209 |
ISO/IEC 8825 and named {joint-iso-itu-t asn1(1) basicEncoding(1)}, for the purpose of generating and
interpreting the MAPDUS, defined by the abstract data types referenced in 11.4 and 11.5.

¢) when acting in the agent role, support one or more instances of at least one of the command sequencer,
launch pad, launch script, thread managed object classes or any of their subclasses.

13.1.2 Dynamic conformance

The system shall, in the role(s) for which conformance is claimed:
a) Support the elements of procedure defined in:

— CCITT Rec. X.730 | ISO/IEC 10164-1 for the PT-GET, PT-CREATE, PT-DELETE, PT-SET, object
creation reporting, object deletion reporting and attribute change reporting services;

— CCITT Rec. X.731 | ISO/IEC 10164-2 for the state change reporting service.
— CCITT Rec. X.733 | ISO/IEC 10164-4 for the processing error alarm reporting service.

b) Support the elements of procedure defined in this Specification for the following reporting and action
services:

— execution result notification;
— trigger action;

— terminate action;

— suspend action;

— resume action.

13.2 Dependent confor mance class requir ements

13.2.1 Static conformance

The system shall:

a) support the transfer syntax derived from the encoding rules specified in CCITT Rec. X.209 |
ISO/IEC 8825 and named {joint-iso-itu-t asnl1(1) basicEncoding(1)}, for the purpose of generating and
interpreting the MAPDUSs, defined by the abstract data types referenced in 11.1, as required by a
referencing specification;

b) support one or more instances of one of the command sequencer, launch pad, launch script, thread
managed object classes or any of their subclasses, when acting in the agent role.

13.2.2 Dynamic conformance

The system shall support the elements of procedure referenced by this Specification, as required by a referencing
specification.

133 Conformanceto support managed object definitions

The command sequencer objects supported by the open system shall comply with the behaviour specified in clause 8 and
the syntax specified in Annex A.

24 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Annex A

Definition of Management Information
(Thisannex forms an integral part of this Recommendation | International Standard)

Al Managed object class definitions

A.1l1 Basicobjects

basi cSpawner d ass MANAGED OBJECT CLASS

DERI VED FROM "CCI TT Rec. X. 721 | |1SQO'| EC 10165-2: 1992": t op;

CHARACTERI ZED BY basi cSpawner Package ;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) managedObj ect G ass(3) xx1(1)};

comrandSequencer MANAGED OBJECT CLASS
DERI VED FROM "CCI TT Rec. X. 721 | 1SQO'| EC 10165-2: 1992": t op;
CHARACTERI ZED BY

conmandSequencer Package PACKAGE

BEHAVI OUR conmandSequencer Behavi our BEHAVI OUR

DEFI NED AS "An instance of this class represents a resource acting in a manager
role as an invoker of operations determned by its launch scripts.";;

ATTRI BUTES
conmandSequencer | d GET,
"CClTT Rec. X. 731|1SO | EC 10164-2:1992": admi ni strativeState GET- REPLACE,
"CCITT Rec. X. 731|1SQ | EC 10164-2: 1992": operati onal State GET;
NOTI FI CATI ONS
"CCITT Rec. X. 730 | 1SOIEC 10164-1": objectCreation,
"CClTT Rec. X. 730 | I1SOIEC 10164-1": objectDel etion,
"CCITT Rec. X. 731 | I1SOIEC 10164-2": stateChange;;;
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21)
managedOhj ect d ass(3) xx2(2)};

general StringScri pt MANAGED OBJECT CLASS

DERI VED FROM | aunchScri pt;

CHARACTERI ZED BY general StringScri pt Package; ;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedObj ectd ass(3) xx3(3)};

asynchronousLaunchPad MANAGED OBJECT CLASS

DERI VED FROM | aunchPad;

CHARACTERI ZED BY tri gger AsynchronousResul t Package;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedObj ect d ass(3) xx4(4)};

synchronousLaunchPad MANAGED OBJECT CLASS

DERI VED FROM | aunchPad;

CHARACTERI ZED BY tri gger Synchr onousResul t Package;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedObj ect d ass(3) xx5(5)};

ITU-T Rec. X.753 (1997 E) 25

| SO/IEC 10164-21 : 1998 (E)

| aunchPad MANAGED OBJECT CLASS
DERI VED FROM basi cSpawner Cl ass, scri pt Ref erencer;
CHARACTERI ZED BY
| aunchPadPackage,
triggerActionAccepter,
par anet er Passer,
trigger Resul t Package,
tri gger Event Accepter,
t er m nat eAccept er,
"CClTT Rec. 721 | 1SOI EC 10165-2:1992": external Schedul er,
suspendResuneAccept er;
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedObj ectd ass(3) xx6(6)};

| aunchScri pt MANAGED OBJECT CLASS
DERI VED FROM "CCI TT Rec. X. 721 | 1SO'I EC 10165-2:1992": t op;
CHARACTERI ZED BY

| aunchScri pt Package PACKAGE

BEHAVI OUR | aunchScri pt Behavi our BEHAVI OUR

DEFI NED AS "Thi s managed object represents instructions to be carried out by a
conmand sequencer.";;

ATTRI BUTES
scriptld GET,
executi onResul t Type GET,

"CCTT Rec. X. 721 | 1SO/IEC 10165-2:1992": admi nistrativeState CGET-
REPLACE; ; ;

REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) managedObj ect G ass(3) xx7(7)};

-- The follow ng non-instantiabl e superclass sinplifies the description of the
-- relationship between a | aunch pad and its scripts, along with the description
-- of the relationship between threads and scripts. Both the | aunch pad and

-- thread classes include it in their inheritance hierarchies.

scri pt Ref erencer MANAGED OBJECT CLASS

DERI VED FROM "I TU-T Rec. X. 725 | ISQO I EC 10165-7": genericRel ati onshi pQbj ect;

CHARACTERI ZED BY scri pt Ref er encer Package;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) nmanagedObj ect G ass(3) xx8(8)};

thread MANAGED OBJECT CLASS

DERI VED FROM basi cSpawner d ass, scri pt Referencer;

CHARACTERI ZED BY t hr eadPackage, executi onResul t Package;
REA STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedObj ectd ass(3) xx9(9)};
suspendabl eThr ead MANAGED OBJECT CLASS

DERI VED FROM t hr ead;

CHARACTERI ZED BY suspendResuneAccept er;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedCbj ect O ass(3)
xx10(10)};

26 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

A2 Package definitions

A.21 Basicpackages
basi cSpawner Package PACKAGE
BEHAVI OUR spawner Behavi our ;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) package(4) xx1(1)};

general StringScri pt Package PACKAGE
BEHAVI OUR general StringScri pt Behavi our;
ATTRI BUTES scri pt LanguageName GET- REPLACE,
scri pt Cont ent GET- REPLACE;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) package(4) xx2(2)};

par amet er Passer PACKAGE
BEHAVI OUR
par anet er Passer Behavi our ;
ATTRI BUTES
"CClTT Rec. X. 721 | 1SO/IEC 10165-2:1992": admi nistrativeState,
"CClTT Rec. X. 721 | 1SO/IEC 10165-2:1992": operational State,
"CClTT Rec. X. 721 | 1SO/IEC 10165-2:1992": usageSt at e,
"CClTT Rec. X. 721 | 1SO/IEC 10165-2:1992": avail abilityStatus;
REA STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx3(3)};

execut i onResul t Package PACKAGE
BEHAVI OUR execut i onResul t Behavi our ; ;
NOT| FI CATI ON executi onResul t | nf o;
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx4(4)};

| aunchPadPackage PACKAGE
BEHAVI OUR | aunchPadBehavi our ;
ATTRI BUTES | aunchPadl d GET;
NOTI FI CATI ONS
"CCOTT Rec. X. 721 | 1SQ I EC 10165-2:1992": processi ngError Al arm
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx5(5)};

scri pt Ref er encer Package PACKAGE
BEHAVI OUR scri pt Ref er encer Behavi our ;
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx6(6)};

suspendResuneAccept er PACKAGE
BEHAVI OUR suspendResuneBehavi our ;
ATTRIBUTES "CCI TT Rec. X. 721 | 1SQO | EC 10165-2:1992": control Status CET;
ACTI ONS suspend, resune;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx7(7)};

ITU-T Rec. X.753 (1997 E)

27

| SO/IEC 10164-21 : 1998 (E)

t er m nat eAccept er PACKAGE
ACTI ONS term nate;
REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) package(4) xx8(8)};

t hr eadPackage PACKAGE
BEHAVI OUR t hr eadBehavi our,
si npl eScri pt Execut i onBehavi our ;
ATTRI BUTES scriptld GET,
threadl d GET,
executingParameters GET SET- BY- CREATE,
"CCTT Rec. X 731|1SQO | EC 10164-2:1992": operational State CET;
NOTI FI CATI ONS
"CClTT Rec. X. 734|1SO | EC 10164-5": processi ngErrorAl arm
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx9(9)};

triggerActionAccepter PACKAGE
BEHAVI OQUR spawner Behavi our,
triggerActi onAccept er Behavi our; ;
ATTRI BUTES def aul t Execut i onPar anet er Li st REPLACE W TH DEFAULT
CGET- REPLACE
SET BY CREATE
DEFAULT VALUE CSMbdul e. enpt yExecut i onPar anet er Li st ;
avai | abl eScri ptLi st REPLACE W TH DEFAULT
ADD- REMOVE
CGET- REPLACE
SET BY CREATE
DEFAULT VALUE CSMbdul e. enptyScri pt Li st;
ACTI ONS Tri gger;
REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) package(4) xx10(10)};

tri gger Event Accept er PACKAGE
BEHAVI OUR tri gger Event Accept er Behavi our;
ATTRI BUTES

"ITUT Rec. X 739 (1993)|1SO | EC 10164-11: 1994": observedObj ectl nstance GET-
REPLACE,

"ITUT Rec. X 739 (1993)|1SO | EC 10164-11: 1994": observedAttributeld CET-
REPLACE;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) package(4) xx11(11)};

trigger Asynchr onousResul t Package PACKAGE
BEHAVI OUR t ri gger Asynchr onousResul t Behavi our;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) package(4) xx12(12)};

trigger SynchronousResul t Package PACKAGE
BEHAVI OUR t ri gger Synchr onousResul t Behavi our ;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) package(4) xx13(13)};

28 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

trigger Resul t Package PACKAGE
BEHAVI OUR trigger Resul t Behavi our; ;
NOTI FI CATI ONtri gger Resul t | nf o;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) package(4) xx14(14)};

A3 Behaviour definitions
spawner Behavi our BEHAVI OUR

DEFI NED AS !Instances of this class are capable of causing the creation of new
obj ect instances. The newly created instances will be contained by this instance
and their nanes will be automatically generated. Until all created objects are
conplete, this object’s usage status will be "in use". If this object’s

adm nistrative state is "locked" such new objects cannot be created. If, due to

|l ocal resource limtations, this object is incapable of supporting nore contained
objects, its usage status will be "busy"

When an instance of this class causes the creation of new objects, it serves as an
I VMO during the creation by supplying values for the new object’s attributes based
on its own defaul t Executi onParaneterList attribute or any paraneters which were
supplied to it as part of the action or |ocal mechani smwhich triggered the
spawni ng of the new instance

An instance of this class may cause the creation of new object instances froma
single script id, froma set of script ids in any order or froma sequence of
script ids in the order specified in the list, i.e. after the first has been
created the second may not be created until after the first is conpleted, and so
on. The value of the created object’s scriptld attribute gets its value fromthe
corresponding el ement of this object’s script list.!;

execut i onResul t Behavi our BEHAVI OQUR

DEFI NED AS "I nstances of a class supporting this behaviour report internmediate and fina
results fromexecution of a thread."”;

tri gger Asynchr onousResul t Behavi our BEHAVI OUR

DEFI NED AS "As soon as all threads that nust be |aunched by one trigger is
| aunched, the launch pad issues the triggerResultlnfo notification.";

tri gger SynchronousResul t Behavi our BEHAVI OUR

DEFI NED AS "As soon as all threads that nust be | aunched by one trigger have
conpl eted, the launch pad issues the triggerResultlnfo notification which contains
execution results or errors.";

trigger Resul t Behavi our BEHAVI OUR

DEFI NED AS "The | aunch pad issues the triggerResultlnfo notification. ";

scri pt Ref er encer Behavi our BEHAVI OUR

DEFI NED AS "A script referencer is a non-instantiable object class which defines a
reference rel ationship mapping frominstances of the |aunch pad and the | aunch
scri pt managed object classes and frominstances of the thread and the |aunch
scri pt managed obj ect classes.";

suspendResuneBehavi our BEHAVI OUR

DEFI NED AS "Execution of a script by a thread may be suspended by a suspend action
directed at the thread or |aunch pad and subsequently resumed by a resune action.
Default value of control Status is enpty. If the suspend action is perforned, the
val ue changes to suspended. After the resunme action is perforned, the value changes
back to enmpty."

ITU-T Rec. X.753 (1997 E) 29

| SO/IEC 10164-21 : 1998 (E)

trigger Event Accept er Behavi our BEHAVI OUR

DEFI NED AS "The | aunch pad has attributes to nonitor a specific attribute in a
specific object instance. If the value of the nonitored attribute is changed, a
trigger to launch the scripts specified by the script ids specified by the default
execution paranmeter list attribute is generated. In the case that the nonitored
attribute is a counter of EDC (Event Discrimination Counter) defined in Annex C,
the notifications through the EDC trigger the | aunching of script execution by the
| aunch pad.";

triggerActi onAccept er Behavi our BEHAVI OUR

DEFI NED AS "When an instance of this class which is on duty receives a trigger,
froma trigger activator, if its scriptld attribute is not enpty, a new object is
created in which the script id and class of the new instance cone fromthe val ue of
this instance’'s scriptld attribute and any of its other attributes and any
paraneters carried by the trigger.";

t hr eadBehavi our BEHAVI OUR

DEFI NED AS "Wen an instance of an object of this class is created, it begins
execution of the command sequence specified through its attributes, using its
parameter list to supply any paraneters needed by the script. Wen execution of
this sequence is conplete, the object is deleted. If execution of the script causes
the creation of contained threads, this thread is not considered conplete until al
contained threads are conplete.”

par armet er Passer Behavi our BEHAVI OUR

DEFI NED AS "An instance of an object of this class passes a set of paraneters to an
i nstance of an object of another class.";

si npl eScri pt Execut i onBehavi our BEHAVI OUR
DEFI NED AS "A script is executed or interpreted by |local neans. Its execution
status mirrors the follow ng states:
- activated (spontaneous transition to next state: executing);

- executing (next state: tinmed out or conpleted);

timed out (spontaneous transition to next state: conpleted);

- conpl et ed.

NOTE - Timeout value is implementation dependent.”;

generalStringScriptBehaviour BEHAVIOUR

DEFINED AS "The syntax and semantics of scripting language which can be represented
as general string. See Annexes F and G for details on one such language, SMSL.";

A4 Attribute definitions
availableScriptList ATTRIBUTE
WITH ATTRIBUTE SYNTAX CSModule.AvailableScriptList;
MATCHES FOR EQUALITY;
BEHAVIOUR
availableScriptListBehaviour BEHAVIOUR

DEFINED AS "A set of managed object instance names of the script instructions
which can be executed by a launch pad.";;

REGISTERED AS {joint-iso-itu-t ms(9) function(2) part21(21) attribute(7) xx1(1)};
commandSequencerld ATTRIBUTE
WITH ATTRIBUTE SYNTAX CSModule.CommandSequencerld;
MATCHES FOR EQUALITY;
BEHAVIOUR

30 ITU-T Rec. X.753 (1997 E)

ISO/IEC 10164-21 : 1998 (E)
comandSequencer | dBehavi our BEHAVI OUR
DEFI NED AS "The managed obj ect instance nane of the command sequencer.";;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) attribute(7) xx2(2)};

executi onResul t Type ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. Executi onResul t Type;
MATCHES FOR EQUALI TY;
BEHAVI OUR
execut i onResul t TypeBehavi our BEHAVI OUR
DEFI NED AS "This indicates the type of execution result.";;
REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) attribute(7) xx3(3)};

scri pt Content ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. Scri pt Cont ent ;
MATCHES FOR EQUALI TY;
BEHAVI OUR
scri pt Cont ent Behavi our BEHAVI OUR
DEFI NED AS "The contents of a launch script represented by a general string.";;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) attribute(7) xx4(4)};

scriptld ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. Scri ptld;
MATCHES FOR EQUALI TY;
BEHAVI OUR
scri pt 1 dBehavi our BEHAVI OUR
DEFI NED AS "The managed obj ect instance nane of the script to be executed.";;

REGQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx5(5)};

| aunchPadl d ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. LaunchPadl d;
MATCHES FOR EQUALI TY;
BEHAVI OUR
| aunchPadl dBehavi our BEHAVI OUR
DEFI NED AS "The managed obj ect instance nane of the |aunch pad."”;;
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx6(6)};

scri pt LanguageNane ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSMbdul e. Scri pt LanguageNane;
MATCHES FOR EQUALI TY;
BEHAVI OUR
scri pt LanguageNaneBehavi our BEHAVI QUR

DEFI NED AS "The managed object instance name of a l|aunch script

represented by a
general string.";;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx7(7)};

ITU-T Rec. X.753 (1997 E) 31

| SO/IEC 10164-21 : 1998 (E)

def aul t Executi onPar anet erLi st ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. Execut i onPar anet er Li st ;
MATCHES FOR EQUALI TY;
BEHAVI OUR
def aul t Execut i onPar anet er Li st Behavi our BEHAVI CUR

DEFI NED AS "A set of managed object instance nanes of the script instructions and

paraneter values (if required) as inputs to instances to be executed by
default.";;

REGQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx8(8)};

executi ngParaneters ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. Execut i onPar anet er ;
MATCHES FOR EQUALI TY;
BEHAVI OUR
execut i ngPar anet er sBehavi our BEHAVI OUR

DEFI NED AS "A set of nmanaged object instance nanes of the script instructions and
paraneter values (if required) as inputs to script executions.";;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx9(9)};

t hreadl d ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. Thr eadl d;
MATCHES FOR EQUALI TY;
BEHAVI OUR
t hr eadl dBehavi our BEHAVI OUR

DEFI NED AS "The managed object instance name of a thread executing script
instruction(s).";;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx10(10)};

triggerld ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSMbdul e. Tri ggerl d;
MATCHES FOR EQUALI TY;
BEHAVI OUR
triggerl dBehavi our BEHAVI OUR

DEFI NED AS "The managed object instance nane of a trigger initiating the execution
of a launch script.";;

REA STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx11(11)};

A5 Notification definitions
executionResultInfo NOTI FI CATI ON
W TH | NFORVATI ON SYNTAX CSModul e. Execut i onResul t | nf o;

REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) notification(10) xx1(1)};

triggerResul t1nfo NOTIFI CATI ON
W TH | NFORMATI ON SYNTAX CSMbdul e. Tri gger Resul t | nf o;

REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) notification(10) xx2(2)};

32 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

A.6 Action definitions
resume ACTI ON
BEHAVI OUR r esuneBehavi our BEHAVI OUR
DEFI NED AS "An action directed at a basi cSpawner d ass obj ect, causing

uncondi tional resunption of all script executions by the basi cSpawner C ass

object which were initiated by a particular trigger. The val ue of
control Status becones enpty as the result of a resunme action."”;;

W TH | NFORVATI ON SYNTAX CSModul e. Spawner Obj ect | d;
REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) action(9) xx1(1)};

suspend ACTI ON
BEHAVI OUR suspendBehavi our BEHAVI OUR
DEFI NED AS "An action directed at a basi cSpawner C ass obj ect, causing

uncondi tional suspension of all script executions by the

basi cSpawner Cl ass obj ect which were initiated by a particular tri gger The val ue

of controlStatus becomes ‘suspended’ as a result of a suspend action 5
WITH INFORMATION SYNTAX CSModule.SpawnerObjectld;
REGISTERED AS {joint-iso-itu-t ms(9) function(2) part21(21) action(9) xx2(2)};

terminate ACTION
BEHAVIOUR terminateBehaviour BEHAVIOUR

DEFINED AS "An action directed at a launch pad, causing unconditional termination of all
scripts by the launch pad, which was initiated by a particular trigger.";;

WITH INFORMATION SYNTAX CSModule.Triggerld;
REGISTERED AS {joint-iso-itu-t ms(9) function(2) part21(21) action(9) xx3(3)};

trigger ACTION
BEHAVIOUR triggerBehaviour BEHAVIOUR

DEFINED AS "An initiator of script execution by causing a launch pad to spawn one
or more threads.";;

WITH INFORMATION SYNTAX CSModule.TriggerParameters;
REGISTERED AS {joint-iso-itu-t ms(9) function(2) part21(21) action(9) xx4(4)};

A7 Name binding definitions
commandSequencer-system NAME BINDING
SUBORDINATE OBJECT CLASS commandSequencer AND SUBCLASSES;
NAMED BY SUPERIOR OBJECT CLASS system AND SUBCLASSES,;
WITH ATTRIBUTE commandSequencerld;
BEHAVIOUR csSystemContainmentBehaviour BEHAVIOUR
DEFINED AS "Superior object class is system and subordinate object
class is commandSequencer.";;
CREATE WITH-REFERENCE-OBJECT, WITH-AUTOMATIC-INSTANCE-NAMING;
DELETE ONLY-IF-NO-CONTAINED-OBJECTS;
REGISTERED AS {joint-iso-itu-t ms(9) function(2) part21(21) nameBinding(6) xx1(1)};
launchPad-commandSequencer NAME BINDING
SUBORDINATE OBJECT CLASS launchPad AND SUBCLASSES;
NAMED BY SUPERIOR OBJECT CLASS commandSequencer AND SUBCLASSES;
WITH ATTRIBUTE launchPadld;

ITU-T Rec. X.753 (1997 E)

33

| SO/IEC 10164-21 : 1998 (E)

BEHAVI OUR | pCsCont ai nnent Behavi our BEHAVI OUR

DEFI NED AS "Nam ng a conmmand sequence | aunch padwith respect to a comand
sequencer indicates that the comand sequencer is the service provider for the
I aunch pad.";;

CREATE W TH- AUTOVATI C- | NSTANCE- NAM NG,

DELETE DELETES- CONTAI NED- OBJECTS;

REGQ STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) nameBi ndi ng(6)
xx2(2)};

t hr ead- synchronousLaunchPad NAME Bl NDI NG
SUBORDI NATE OBJECT CLASS thread AND SUBCLASSES;
NAMED BY SUPERI OR OBJECT CLASS synchronousLaunchPad AND SUBCLASSES;
W TH ATTRI BUTE t hr eadl d;
BEHAVI OUR t hr eadSyncLpCont ai nnent Behavi our BEHAVI OUR

DEFI NED AS "The superior object class synchronousLaunchPad acts as an | VMO for the
subordi nate object class thread.";;

DELETE DELETES- CONTAI NED- OBJECTS;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21)
nameBi ndi ng(6) xx3(3)};

suspendabl eThr ead- asynchr onousLaunchPad NAME BI NDI NG
SUBORDI NATE OBJECT CLASS suspendabl eThread AND SUBCLASSES;
NAMED BY SUPERI OR OBJECT CLASS asynchronousLaunchPad AND SUBCLASSES;
W TH ATTRI BUTE t hr eadl d;
BEHAVI OUR t hr eadAsyncLpCont ai nment Behavi our BEHAVI OUR

DEFI NED AS "The superior object class asynchronousLaunchPad acts as an | VMO for
the subordi nate object class suspendable thread.";;

DELETE DELETES- CONTAI NED- OBJECTS;
REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21)
nameBi ndi ng(6) xx4(4)};

thread-t hread NAME Bl NDI NG
SUBCRDI NATE OBJECT CLASS thread AND SUBCLASSES;
NAMED BY SUPERI OR OBJECT CLASS thread AND SUBCLASSES;
W TH ATTRI BUTE t hr eadl d;
BEHAVI OUR t hr eadCont ai nment Behavi our BEHAVI OUR

DEFI NED AS "The superior object class thread acts as a spawner of the subordinate
object class thread.";;

DELETE DELETES- CONTAI NED- OBJECTS;
REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) naneBi ndi ng(6) xx5(5)};

suspendabl eThr ead- suspendabl eThr ead NAME BI NDI NG
SUBORDI NATE OBJECT CLASS suspendabl eThread AND SUBCLASSES;
NAMED BY SUPERI OR OBJECT CLASS suspendabl eThread AND SUBCLASSES;
W TH ATTRI BUTE t hr eadl d;
BEHAVI OUR suspendabl eThr eadCont ai nment Behavi our BEHAVI OUR

34 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

DEFI NED AS "The superior object class suspendable thread acts as a spawner of the
subordi nate object class suspendable thread.";;

DELETE DELETES- CONTAI NED- OBJECTS;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) naneBi ndi ng(6) xx6(6)};

| aunchScri pt - syst em NAVE Bl NDI NG
SUBORDI NATE OBJECT CLASS | aunchScri pt AND SUBCLASSES;
NAMED BY SUPERI OR OBJECT CLASS system AND SUBCLASSES;
W TH ATTRI BUTE scriptld;
BEHAVI OUR | sSyst entCont ai nment Behavi our BEHAVI OUR

DEFI NED AS "The superior object class is system and subordi nate object
class is launchScript.";;

CREATE W TH REFERENCE- OBJECT, W TH- AUTOVATI C- | NSTANCE- NAM NG
DELETE ONLY- | F- NO- CONTAI NED- OBJECTS;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) naneBindi ng(6) xx7(7)};

A8 ASN.1 definitions

CSModul e {joint-iso-itu-t ns(9) function(2) part21(21) asnlMdul e(2) 0}
DEFINITIONS | MPLICI T TAGS :: =

BEA N

-- EXPORTS everythi ng

| MPORTS

Si npl eNaneType

FROM Attri but e- ASNIMbdul e {joint-iso-itu-t ns(9) snmi(3) part2(2)
asnlhbdul e(2) 1 }

bj ect I nstance, Attribute, CM SSync, CM SFilter, MdifyQOperator, Scope,

BaseManagedObj ectld FROM CM P-1 {joint-iso-itu-t ns(9) cm p(l) nodul es(0)
protocol (3)}

AE-title FROM ACSE-1 {joint-iso-itu-t association-control (2) abstract-syntax(1)
apdus(0) version(1)};

cndSeqRel ati onshi pd asses OBJECT IDENTIFIER ::= {joint-iso-itu-t nms(9) function(2)
part21(21) relationshipd ass(11) }

cnmdSeqRel ati onshi pMappi ngs OBJECT I DENTIFIER ::= {joint-iso-itu-t nms(9) function(2)
part21(21) relationshipMapping(12)}

cmdSeqgRel ati onshi pRol es OBJECT IDENTIFIER ::= {joint-iso-itu-t ns(9) function(2)

part21(21) relationshipRol e(13)}

-- Range Constraints used for relationship class definitions

RangeFronOneToOne ::= INTEGER (1 .. 1)

RangeFr onZer oToMax ::= INTEGER (0 .. MAX)

ITU-T Rec. X.753 (1997 E) 35

| SO/IEC 10164-21 : 1998 (E)

-- Counter size constraint

MaxCount er Si ze ::= | NTEGER{unlinited(0)}-- size in octets

ExecutionResultinfo ::= SEQUENCE {triggerld Triggerld,
scriptld Scriptld,
threadl d Threadl d,
error Code Error Code,
executi onResul t Type ExecutionResul t Type,
executi onResult SET OF Attri bute}

TriggerResultlnfo ::= SEQUENCE {triggerld Triggerld,
CHO CE {singl eTriggerResult Resul t|nfoFroniThread,
sequenti al Tri gger Result SEQUENCE OF
Resul t | nf oFr oniThr ead,
paral | el Tri gger Result SET OF Resul t|nfoFroniThread}}

Resul t I nf oFronTThread :: = SEQUENCE{ executi onType ExecutionType,
error Code Er r or Code,
executi onResul t Type ExecutionResul t Type,
executi onResult SET OF Attri bute}

ExecutionType ::= CHO CE {si ngl eExecution Scri pt ThreadSet,
paral | el Execution SET OF Scri pt ThreadSet,
sequent i al Executi on SEQUENCE COF Scri pt ThreadSet}

Scri pt Thr eadSet SEQUENCE {scriptld Scriptld,

t hreadl d Thr eadl d}

Spawner Ghj ectld ::= SEQUENCE {triggerld Triggerld,
CHO CE { threadld Threadld,

| aunchPadl d LaunchPadl d}}

Executi onResul t Type ::= OBJECT | DENTI FI ER
ConmmandSequencerld ::= Objectlnstance
Scriptld ::= Objectlnstance

Threadld ::= bjectlnstance

Triggerld ::= Qbjectlnstance

LaunchPadl d ::= Objectlnstance

ScriptList ::= CHOCE {scriptld Scriptld,

sequenti al Scri ptLi st SEQUENCE OF Scriptld,
paral | el ScriptList SET OF Scri ptld}
Avai |l abl eScriptList ::= SET OF Scri ptList
enptyScriptList AvailableScriptList ::= {}
enpt yExecut i onPar anet er Li st ExecutionParaneterList ::= sequential ExecutionList:{}

TriggerParanmeters ::= SEQUENCE {triggerld Triggerld,
executi onParanet erLi st Executi onPar anet er Li st}

36 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Executi onParaneterList ::= CHO CE {executionParaneter ExecutionParaneter,
sequenti al Executi onLi st SEQUENCE OF
Execut i onPar anet er,
paral | el Executi onLi st SET OF

Executi onPar amet er}

ExecutionParaneter ::= SEQUENCE {scriptld Scriptld,
scri pt Paramet ers SEQUENCE OF Attri bute}

enpt yPar anet er Li st Executi onParaneterList ::= sequential ExecutionList:{ }

Error Code ::= SET OF | NTEGER {noError(0),
noScriptError(1),
scri pt Rej ectedError(2),
i nval i dPar anet er TypeError (3),
i nval i dPar anet er Val ueError (4),

scri pt SyntaxError(5),

scri pt Executi onFai |l edError(6),
i nval i dPar net er Nunber (7),

unaut hori zedAccessError(8)}

Scri pt LanguageNane ::= OBJECT | DENTI FI ER
ScriptContent ::= General String
Modi fi cationList ::= SET OF SEQUENCE{ nodi fyOperator [2] IMPLICIT

Modi f yOper at or DEFAULT repl ace,
attributeld Attributeld,

attri buteVal ue ANY DEFI NED BY
attributeld OPTI ONAL

-- absent for set ToDef aul t

END

ITU-T Rec. X.753 (1997 E) 37

I SO/IEC 10164-21 : 1998 (E)
Annex B

General Relationship Model
(Thisannex forms an integral part of this Recommendation | International Standard)

Thisfollowing isthe GRM for the command sequencer.

--The follow ng rel ationship classes support the conmand sequencer nodel

comrandSequencer - | aunchPadRel ati onshi pC assBehavi our
BEHAVI OUR DEFI NED AS

The relationship class is concerned with the relationship between a comrand
sequencer and its launch pads used to initiate the execution of scripts by
means of threads requiring the support services provided by the commuand
sequencer.

comandSequencer - LaunchPad- bi ndi ngBehavi our
BEHAVI OUR DEFI NED AS

This notification occurs upon the binding of a |aunch pad into the conmand
sequencer / |aunch pad rel ationship.

conmandSequencer - LaunchPad- unbi ndi ngBehavi our
BEHAVI OUR DEFI NED AS
!
This notification occurs when a |aunch pad is renpbved from the conmand

sequencer / launch pad relationship. A launch pad may be renoved fromthe
relationship only if its adnministrative state 1s |ocked.

conmandSequencer - | aunchPad- Rel at i onshi pC ass
RELATI ONSHI P CLASS

BEHAVI OUR commandSequencer - | aunchPadRel at i onshi pd assBehavi our,
commandSequencer - LaunchPad- bi ndi ngBehavi our,
conmandSequencer - LaunchPad- unbi ndi ngBehavi our ;
SUPPORTS
ESTABLI SH,
QUERY,
TERM NATE,
NOTI FY commandSequencer - LaunchPad- bi ndi ng,
NOTI FY comandSequencer - LaunchPad- unbi ndi ng;
ROLE commandSequencer Rol e
COWPATI BLE-W TH conmandSequencer
PERM TTED- ROLE- CARDI NALI TY CONSTRAI NT CASN1. RangeFr omOneToOne
REQUI RED- ROLE- CARDI NALI TY- CONSTRAI NT CASNL. RangeFr onOneToOne

38 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

PERM TTED- RELATI ONSHI P- CARDI NALI TY- CONSTRAI NT
CASNL. RangeFr omOneToOne
REG STERED AS { CSMbodul e. cndSeqRel ati onshi pRoles 1 }

ROLE | aunchPadRol e
COWPATI BLE- W TH | aunchPad
PERM TTED- ROLE- CARDI NALI TY- CONSTRAI NT CSMbdul e. RangeFr onZer oToMax
REQUI RED- ROLE- CARDI NALI TY- CONSTRAI NT CSModul e. RangeFr onZer oToMax
Bl ND- SUPPCRT
UNBI ND- SUPPORT
PERM TTED- RELATI ONSHI P- CARDI NALI TY- CONSTRAI NT CSModul e. RangeFr omOneToOne
REG STERED AS { CSModul e. cnmdSeqRel ati onshi pRol es 2 };
REG STERED AS { CSModul e. cmdSeqRel ati onshi pd asses 1 };

comandSequencer - LaunchPad- Rel at i onshi pMappi ng- Behavi our
BEHAVI OUR DEFI NED AS
!
Thi s rel ati onshi p mappi ng descri bes how the command sequencer to | aunch pad
rel ationship class may be represented using containment. In this
rel ati onshi p mappi ng, the conmand sequencer is the superior object for the
pur poses of nam ng, and | aunch pads are contained by it. Participation in

this relationship inplies that the launch pad and its spawn nay use the
services provided by the resource represented by the comand sequencer.

conmandSequencer - | aunchPad- Rel at i onshi pMappi ng
RELATI ONSHI P MAPPI NG

RELATI ONSHI P CLASS
conmandSequencer - | aunchPad- Rel at i onshi pd ass;

BEHAVI OUR commandSequencer - | aunchPad- Rel at i onshi pMappi ng- Behavi our ;

ROLE conmandSequencer Rol e

RELATED- CLASSES conmandSequencer
REPRESENTED BY NAM NG

| aunchPad- commandSequencer - NaneBi ndi ng
USI NG SUPERI OR,

ROLEI| aunchPadRol e

RELATED- CLASSES | aunchPad
REPRESENTED BY NAM NG

| aunchPad- commandSequencer - NaneBi ndi ng
USI NG SUBORDI NATE;

OPERATI ONS MAPPI NG
ESTABLI SH MAPS- TO- OPERATI ON
CREATE conmandSequencer OF commandSequencer Rol e
TERM NATE MAPS- TO- OPERATI ON

DELETE comandSequencer OF conmmandSequencer Rol e

ITU-T Rec. X.753 (1997 E) 39

| SO/IEC 10164-21 : 1998 (E)

NOTI FY commandSequencer - | aunchPad- bi ndi ng
MAPS- TO- OPERATI ON

NOTI FI CATION "CClI TT Rec. X. 721 | 1SQI EC 10165-2: 1992":
obj ectCreationNotification

OF commandSequencer Rol e
NOTI FY commandSequencer - | aunchPad- unbi ndi ng
MAPS- TO- OPERATI ON

NOTI FI CATION "CCI TT Rec. X. 721 | 1SO'| EC 10165-2: 1992":
obj ect Del etionNotification

OF commandSequencer Rol e
BIND MAPS- TO- OPERATI ON
CREATE | aunchPad OF | aunchPadRol e
UNBI ND MAPS- TO- OPERATI ON
DELETE | aunchPad
OF | aunchPadRol e
QUERY MAPS- TO- OPERATI ON
GET OF conmandSequencer Rol e
GET OF | aunchPadRol e;
REQ STERED AS { CSMWbdul e. cnmdSeqgRel ati onshi pMappi ngs 1}

scri pt Ref er enceRel ati onshi pCl assBehavi our
BEHAVI OUR DEFI NED AS
!

This relationship class describes the relationship existing between scripts
and an object which references themfor the purposes of identifying task(s)
to be carried out.

scri pt Ref erencer Rel ati onshi pCl ass
RELATI ONSHI P CLASS

BEHAVI OUR scri pt Ref erencer Rel ati onshi pd assBehavi our;
SUPPORTS

ESTABLI SH,
TERM NATE,
QUERY;

ROLE scri pt User Rol e
COVPATI BLE- W TH scri pt Ref er encer
PERM TTED- ROLE- CARDI NALI TY- CONSTRAI NT CSModul e. RangeFr omOneToOne
REQUI RED- ROLE- CARDI NALI TY CONSTRAI NT CSMbdul e. RangeFr omOneToOne
PERM TTED- RELATI ONSHI P- CARDI NALI TY- CONSTRAI NT
CSMWbdul e. RangeFr onZer oToMax
REQ STERED AS { CSMbdul e. cnmdSeqRel ati onshi pRol es 3}

ROLE scriptRol e
COWVPATI BLE-W TH | aunchScri pt
PERM TTED- ROLE- CARDI NALI TY- CONSTRAI NT CSModul e. RangeFr omOneToOne
REQUI RED- ROLE- CARDI NALI TY- CONSTRAI NT CSMbdul e. RangeFr omOneToOne

40 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

PERM TTED- RELATI ONSHI P- CARDI NALI TY- CONSTRAI NT
CShodul e. RangeFr onZer oToMax
REG STERED AS {CSModul e. cndSeqRel ati onshi pRol es 4}

REG STERED AS { CSModul e. cndSeqRel ati onshi pd asses 2}

| aunchPad- | aunchScri pt Rel ati onshi pMappi ngBehavi our BEHAVI OUR
DEFI NED AS

This rel ationshi p mappi ng descri bes the rel ationship between the | aunch pad and the
I aunch script. The launch pad initiates execution of the |aunch script and
references 1t for the purposes of execution.

| aunchPad- LaunchScri pt Mappi ng
RELATI ONSHI P MAPPI NG

RELATI ONSHI P CLASS scri pt Ref er enceRel at i onshi pC ass;
BEHAVI OUR | aunchPad- | aunchScri pt Mappi ngBehavi our ;
ROLE scri pt User Rol e
RELATED CLASSES | aunchPad
REPRESENTED BY ATTRI BUTE scri pt Li st
RCLE scriptRol e
RELATED CLASSES | aunchScri pt;
OPERATI ONS MAPPI NG
ESTABLI SH MAPS- TO- OPERATI ON
CREATE | aunchPad OF scri ptUserRol e
-- using SET-BY- CREATE of scriptlList --
REPLACE scriptList of scriptUserRole
-- which effectively adds a scriptld to scriptlList --
ADD scriptList of scriptUserRole,
TERM NATE MAPS- TO- OPERATI ON
DELETE | aunchPad OF scri pt User Rol e
REPLACE scriptList OF scriptUserRole
-- which effectively renobves a scriptlid fromscriptList --
REMOVE scriptList OF scriptUserRole,
QUERY MAPS- TO- OPERATI ON
CET scriptlList OF scriptUserRole;
REG STERED AS { CSModul e. cndSeqRel at i onshi pMappi ngs 2};
t hread- | aunchScri pt Rel ati onshi pMappi ngBehavi our BEHAVI OUR
DEFI NED AS
!
This relationship class describes the relationship between a thread and | aunch

script. The launch script is referenced by the thread by neans of the scriptld
attribute fromthe scriptlds in the scriptList.

t hr ead- | aunchScri pt Mappi ng
RELATI ONSHI P MAPPI NG

ITU-T Rec. X.753 (1997 E) 41

| SO/IEC 10164-21 : 1998 (E)

RELATI ONSHI P CLASS scri pt Ref er enceRel at i onshi pC ass;
BEHAVI OUR t hr ead- | aunchScri pt Rel ati onshi pMappi ngBehavi our ;
ROLE scri pt User Rol e
RELATED CLASSES t hread
REPRESENTED BY ATTRI BUTE scriptld
QUALI FI ED BY scri ptList
ROLE scriptRol e
RELATED CLASSES | aunchScri pt;
OPERATI ONS MAPPI NG
ESTABLI SH MAPS- TO- OPERATI ON
CREATE OF scri pt User Rol e,
TERM NATE NMAPS- TO- OPERATI ON
DELETE OF scri pt User Rol e,
QUERY MAPS- TO- OPERATI ON
GET scriptld OF scriptUserRol e;
REG STERED AS { CSModul e. cndSeqRel ati onshi pMappi ngs 3};

spawner - progeny- Rel ati onshi pd ass

RELATI ONSHI P CLASS
BEHAVI OUR spawner - pr ogenyRel at i onshi pd assBehavi our BEHAVI OUR
DEFI NED AS

When an instance of this class causes the creation of new objects, it serves
as an IVMO during the creation by supplying values for the new object’s
attributes based on its own defaul t ExecutionParaneterList attribute and any
parameters which were supplied to it as part of the action or |ocal

I nstances of this class are capable of causing the creati on of new object

i nstances. The newWy created instances will be contained by this instance,
and their nanes will be automatically generated. Until all created objects
are conplete, this object’s usage status will be "in use". If this object’s
adm nistrative state is "locked" such new objects cannot be created. If, due
to local resource limtations, this object is incapable of supporting nore
contai ned objects, its usage status will be "busy".

An instance of this class may cause the creation of new object instances
froma single scriptld, froma set of scriptlds in any order or froma
sequence of scriptlds in the order specified inthe list i.e. after the
first has been created the second may not be created until after the first
is conpleted, and so on. The value of the created object’s scriptld
attribute gets its value fromthe corresponding el ement of this object’s
scri ptList.

r
SUPPCRTS
ESTABLI SH

TERM NATE;

ROLE spawner Rol e COWPATI BLE- W TH basi cSpawner d ass
PERM TTED- ROLE- CARDI NALI TY- CONSTRAI NT CSMbdul e. RangeOneToOne
REQUI RED- ROLE- CARDI NALI TY- CONSTRAI NT CSModul e. RangeOneToOne

42 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

PERM TTED- RELATI ONSHI P- CARDI NALI TY- CONSTRAI NT
CSModul e. RangeOneToOne
REG STERED AS { CSMbdul e. cndSeqRol es 5}
ROLE progenyRol e COVWPATI BLE-W TH t hr ead
PERM TTED- ROLE- CARDI NALI TY- CONSTRAI NT CSModul e. RangeZer oToMax
REQUI RED- ROLE- CARDI NALI TY- CONSTRAI NT CSMbdul e. RangeZer oToMax

PERM TTED- RELATI ONSHI P- CARDI NALI TY- CONSTRAI NT
CSMWbdul e. RangeOneToOne

REQ STERED AS { CSMbdul e. cnmdSeqRol es 6}

REQ STERED AS { CSMWbdul e. cmdSeqgRel ati onshi pd asses 3};

ITU-T Rec. X.753 (1997 E) 43

| SO/IEC 10164-21 : 1998 (E)

Annex C

Management Information Definitionsfor Event Discrimination Counting
(This annex does not form an integral part of this Recommendation | International Standard)

The Event Discrimination Counter (EDC) class object counts the number of input events. Before counting up, the EDC
tests values of attributes related to the event or an object generating the event and discriminates the event.

C.l Managed object class
event Di scri m nati onCounter MANAGED OBJECT CLASS
DERI VED FROM "DM ": di scri mi nat or;
CHARACTERI ZED BY
edcPackage PACKAGE
BEHAVI OUR edcBehavi our BEHAVI OUR
DEFI NED AS

"If the result of discrimnation of a potential event report evaluates to TRUE and
the event discrimnation counter is in the Unl ocked and Enabl ed state and does not
exhibit the off-duty availability status, then the counter value of the counter
attribute is increnented."”;;

ATTRI BUTES
"CCITT Rec. 721 | 1SOIEC 10165-2:1992": counter GCET,
maxCount er Si ze CET;
NOTI FI CATI ONS
"CCITT Rec. 721 | 1SQO | EC10162:1992": processi ngError Al arm ; ;
CONDI TI ONAL PACKAGES

count er Al ar nPackage PRESENT | F "a counter is of finite size and a notification is
triggered by a capacity alarmthreshold.";

REQ STERED AS {joint-iso-itu-t ns(9) nms(9) function(2) part21(21)
managedObj ect G ass(3) xx11(11)};

Cc.2 Package
count er Al ar nPackage PACKAGCE
BEHAVI OUR
count er Al ar nBehavi our BEHAVI OUR

DEFI NED AS "Wen the counter value reaches the capacity alarmthreshol d(as a
per cent age of nmaxi mum counter size), the EDC(Event Discrimnation Counter)
generates an event indicating that a capacity threshold has been reached
or exceeded. In reporting the capacity threshold event, use is made of the
alarmreport defined in COOTT Rec. X 733 | ISOIEC 10164-4. Only the
follow ng paranmeters of the alarmreport shall be used and all paraneters
are mandatory when used for reporting counter capacity threshold al arns.

Managed Object Class - This paraneter shall identify the
counter class.

Managed Obj ect Instance - This paraneter shall identify the
i nstance of the counter that generated the event.

Al arm Type - This paraneter shall indicate that a processing

error alarm has occurred.

44 ITU-T Rec. X.753 (1997 E)

ISO/IEC 10164-21 : 1998 (E)
Event time - This paraneter carries the tine at
whi ch the capacity threshold event occurred.
Perceived Severity - Thisparaneter will indicate the severity
assigned to the capacity threshold event. Wen the 100%
counter full condition is reached, a severity value of critical
shall be assigned to this event.

Monitored Attributes - This paraneter shall carry the maxi num counter size
attribute of the EDC.

Probabl e Cause - This paranmeter shall carry the val ue congestion.
Threshold Info - This paraneter shall carry the capacity threshold

val ue (as percentage of total capacity) that was reached or exceeded in
generating this event.";;

ATTRI BUTES

"CClITT Rec. 721] 1SQIEC 10165-2:1992": capaci t yAl arniThr eshol d GET- REPLACE
ADD- REMOVE;

REGQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) package(4) xx15(15)};

C3 Attribute
maxCount er Si ze ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSMbdul e. MaxCount er Si ze;
MATCHES FOR EQUALI TY, ORDERI NG
BEHAVI OUR
maxSi zeOr der i ngBehavi our BEHAVI OUR
DEFI NED AS "This Attribute represent the |argest value of the counter. The
ordering in the same as for sequentially increasing positive integers except that

a value of zero is |argest and denotes infinite size.";;

REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) attribute(7) xx12(12)};

ITU-T Rec. X.753 (1997 E) 45

| SO/IEC 10164-21 : 1998 (E)

Annex D

cmisScript Management Support Object Class
(Thisannex forms an integral part of this Recommendation | International Standard)

The following is a script managed object class, CMIS script, which can be defined to handle the invocation of CMIS
operations.

D.1 Attributes

D.1.1 Attributesimported from the definition of management information

This Specification references the following management attributes, whose abstract syntax is specified in CCITT
Rec. X.721 | ISO/IEC 10165-2:

a) attributeldentifierList;
b) objectClass;
c) attributelist.

This Specification references the following management attributes, whose abstract syntax is specified in ITU-T
Rec. X.711 | ISO/IEC 9596-1:

a) synchronization;

b) scope;

c) filter;

d) baseManagedObjectid;
e) modificationList.

D.2 Definitions

D.21 cmisScript: A management support object, which directs the invocation of asingle CMIS operation.

Five types CMIS scripts are specified:

D.22 getCmisScript: A CMIS script that represents a GET operation.

D.23 set CmisScript: A CMIS script that represents a SET operation.

D.24 actionCmisScript: A CMIS script that represents an ACTION operation.

D.25 createCmisScript: A CMIS script that represents a CREATE operation.

D.26 deleteCmisScript: A CMIS script that represents a DELETE operation.

CMIS scripts are single-instruction scripts which give operational details to threads. For example, the script languages

may refer to appropriate command records in order to make a CMI S requests to an agent.

D.3 getCmisScript

D.3.1 Characteristics of getCmisScript

The following attributes are defined in the getCmisScript:
— baseManagedObjectid;
— synchronization;
— scope;
— filter;

— attributeldentifierList.

46 ITU-T Rec. X.753 (1997 E)

D.3.2 Packages of getCmisScript

getCmisScript has the following mandatory package:
— getCmisScriptPackage.

D4 setCmisScript

D.41 Characteristics of setCmisScript

setCmisScript has the following attributes definitions:
— baseManagedObjectid;
— synchronization;
— scope;
— filter;

— modificationList.

D.42 Packages of setCmisScript

The setCmisScript has the following mandatory package:

— setCmisScriptPackage.

D5 actionCmisScript

D.51 Characteristics of actionCmisScript

The actionCmisScript has the following attribute definitions:
— baseManagedObijectlid;
— synchronization;
— scope;

— filter.

D.5.2 Packages of the actionCmisScript

The action command record class has the following mandatory package:

— actionCmisScriptPackage.

D.6 createCmisScript

D.6.1 Characteristicsof createCmisScript

The action command record has the following attribute definitions:
— objectClass;

— attributeList.

D.6.2 Packages of createCmisScript

The create command record class has the following mandatory package:

— createCmisScriptPackage.

It has the following conditional packages:
— managedObjectinstancePackage;
— superiorObjectinstancePackage;

— referenceObjectinstancePackage.

I SO/IEC 10164-21 : 1998 (E)

ITU-T Rec. X.753 (1997 E)

47

| SO/IEC 10164-21 : 1998 (E)

D.7 deleteCmisScript

D.7.1 Characteristics of the deleteCmisScript

The deleteCmisScript has the following attribute definitions:
— baseManagedObjectid;
— synchronization;
— scope;
- filter.

D.7.2 Packages of the deleteCmisScript

The deleteCmisScript has the following mandatory package:
— deleteCmisScriptPackage.

D.8 Services

D.8.1 Getreporting service definition
This clause specifies the get reporting service, and maps it onto the CMIS M-EVENT-REPORT services.

D.8.2 Setreporting service definition
This clause specifies the set reporting service, and maps it onto the CMIS M-EVENT-REPORT services.

D.8.3 Action reporting service definition

This clause specifies the action reporting service, and maps it onto the CMIS M-EVENT-REPORT services.

D.8.4 Creation reporting service definition

This service allows an MIS-user, in agent role, to report the creation of a managed object. It is defined as both a
confirmed and as a non-confirmed service and mapped onto the CMIS M-EVENT-REPORT services. This service is
defined in CCITT Rec. X.730 | ISO/IEC 10164-1.

D.85 Deletion report service definition

This service allows an MIS-user, in agent role, to report the deletion of a managed object. It is defined as both a
confirmed and as a non-confirmed service and mapped onto the CMIS M-EVENT-REPORT services. This service is
defined in CCITT Rec. X.730 | ISO/IEC 10164-1.

D.9 GDMO template

D.9.1 Managed object definitions
cm sScript MANAGED OBJECT CLASS
DERI VED FROM | aunchScri pt;
CHARACTERI ZED BY cmi sScri pt Package PACKAGE
BEHAVI OUR
cm sScri pt Behavi our BEHAVI OUR
DEFI NED AS
|

An instance of this managed object class nmodels information necessary to
execute a single CM S operation.

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nmanagedCbj ect O ass(3)
xx12(12)};

get Cmi sScri pt MANAGED OBJECT CLASS
DERI VED FROM cni sScri pt;

CHARACTERI ZED BY get Cmi sScri pt Package PACKAGE
BEHAVI OUR

48 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

get Cnmi sScri pt Behavi our BEHAVI OUR
DEFI NED AS
!
An instance of this managed object class nodels information
necessary to execute a single CMS GET operati on.
b
ATTRI BUTES
baseManagedbj ect | d GET,
synchroni zati on GET- REPLACE,
scopeGET- REPLACE,
filter GET- REPLACE,
"CCITT Rec. X. 721 | 1SOIEC 10165-2:1992": attributeldentifierlList
GET- REPLACE ADD- REMOVE; ; ;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) managedObj ect O ass(3)
xx13(13)};

set Cmi sScri pt MANAGED OBJECT CLASS
DERI VED FROM cni sScri pt;
CHARACTERI ZED BY set Cmi sScri pt Package PACKAGE
BEHAVI OUR
set Cmi sScri pt Behavi our BEHAVI OUR
DEFI NED AS
I

An instance of this nmanaged object class nodels information necessary to
execute a single CMS SET operation.

LRI

ATTRI BUTES
baseManagedOhj ect 1 d GET,
synchroni zati on GET- REPLACE,
scope GET- REPLACE,
filter CGET- REPLACE,
nodi fi cati onLi st CET- REPLACE ADD- REMOVE; ; ;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedCbject O ass(3)
xx14(14)};

acti onCm sScri pt MANAGED OBJECT CLASS
DERI VED FROM cni sScri pt;
CHARACTERI ZED BY
acti onCmi sScri pt Package PACKAGE BEHAVI OUR
acti onCm sScri pt Behavi our BEHAVI OUR
DEFI NED AS
|

An instance of this managed object class nodels information necessary to
execute a single CMS ACTI ON operati on.

ITU-T Rec. X.753 (1997 E) 49

| SO/IEC 10164-21 : 1998 (E)

ATTRI BUTES
baseManagedbj ect | d GET,
synchroni zati on GET- REPLACE,
scope GET- REPLACE,
filter GET- REPLACE; ; ;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) managedObj ect O ass(3)
xx15(15)};

createCmi sScri pt MANAGED OBJECT CLASS
DERI VED FROM cmi sScri pt;
CHARACTERI ZED BY

creat eCmi sScri pt Package PACKAGE

BEHAVI OUR
creat eCmi sScri pt Behavi our BEHAVI OUR
DEFI NED AS
|

An instance of this managed object class nodels information necessary
to execute a single CM S CREATE operati on.

.
ATTRI BUTES
"CCOTT Rec. 721 | 1SQO|EC 10165-2:1992": objectC ass GCET,

"CCITT Rec. 721 | I1SOIEC 10165-2:1992": attributeli st GET- REPLACE ADD-
REMOVE; ; ;

CONDI Tl ONAL PACKAGES
managedObj ect | nst ancePackage
PRESENT | F "t he superiorObj ectl nstancePackage is not present.",
superi or Cbj ect | nst ancePackage
PRESENT | F "t he managed(bj ect | nst ance Package is not present.",
r ef erenceCbj ect | nst ancePackage
PRESENT | F "t he manager has the specified value.";

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedCbj ect O ass(3)
xx16(16)};

del et eCmi sScri pt MANAGED OBJECT CLASS
DERI VED FROM cmisScri pt;
CHARACTERI ZED BY

del et eCmi sScri pt Package PACKAGE
BEHAVI OUR

del et eCmi sScri pt Behavi our BEHAVI OUR
DEFI NED AS

!
An instance of this managed object class nodels information necessary to
execute a single CMS DELETE operati on.

ATTRI BUTES

baseManagedObj ect1d GET,

synchroni zati on GET- REPLACE,
scope GET- REPLACE,

filter GET- REPLACE; ; ;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedCbj ect O ass(3)
xx17(17)};

50 ITU-T Rec. X.753 (1997 E)

D.9.2

I SO/IEC 10164-21 : 1998 (E)

Package definitions

managedObj ect | nst ancePackage PACKAGE
ATTRI BUTES

managedObj ect | nst ance GET- REPLACE;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) package(4) xx16(16)};

superi or vj ect | nst ancePackage PACKAGE

ATTRI BUTES
superi or j ectl nstance GET- REPLACE;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) package(4) xx17(17)};

ref erencebj ect | nst ancePackage PACKAGE

ATTRI BUTES
ref erence(j ect | nstance GET- REPLACE;

REG STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) package(4) xx18(18)};

D.9.3

Attribute definitions

baseManagedhj ectld ATTRI BUTE

b

W TH ATTRI BUTE SYNTAX CSMbdul e. BaseManagedoj ect | d;
MATCHES FOR EQUALI TY;

BEHAVI OUR baseManagedObj ect | dBehavi our

BEHAVI OUR

DEFI NED AS

This is the identifier for the information on the CM S

operation to be executed.

LI

REG STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx13(13)

scope ATTRI BUTE

W TH ATTRI BUTE SYNTAX CSModul e. Scope;

MATCHES FOR EQUALI TY;
BEHAVI OUR
scopeBehavi our BEHAVI OUR
DEFI NED AS
!
This is the first phase in the selection of nanaged object(s) to whi ch the

CM S script operations should be directed. It indicates the nmanaged
object(s) to which a filter should be appli ed.

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7)

xx14(14)};

filter ATTRI BUTE

W TH ATTRI BUTE SYNTAX CSMbdul e. CM SFi l ter;

MATCHES FOR EQUALI TY;

ITU-T Rec. X.753 (1997 E) 51

| SO/IEC 10164-21 : 1998 (E)

BEHAVI QUR

filterBehaviour BEHAVI OUR
DEFI NED AS

!

This is the second phase in the selection of nanaged object(s) to which
the CM 'S script operations should be directed. A set of tests is applied to
each of the previously scoped nmanaged objects to extract a subset.

LRI

REGQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx15(15)
3

synchroni zati on ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSModul e. CM SSync;
MATCHES FOR EQUALI TY;
BEHAVI OUR
synchroni zat i onBehavi our BEHAVI OUR
DEFI NED AS
I

Thi s indicates the nmanner in which operations are to be synchroni zed across
managed obj ect instances when nultiple nanaged objects have been sel ected by
the scoping and filtering nechani sns.

REGQ STERED AS {joint-iso-itu-t nms(9) function(2) part21(21) attribute(7) xx16(16)
b

nodi fi cationLi st ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSMbdul e. Modi fi cati onLi st;
MATCHES FOR EQUALI TY;
BEHAVI OUR
nodi fi cati onLi st Behavi our BEHAVI OUR
DEFI NED AS
|

This represents the list of attributes to be nodified by the CM SSet scri pt
and contains the values to which these attri butes should be set.”;

REGISTERED AS {joint-iso-itu-t ms(9) function(2) part21(21) attribute(7) xx17(17)
%

superiorObjectinstance ATTRIBUTE

WITH ATTRIBUTE SYNTAX CSModule.ObjectInstance;

MATCHES FOR EQUALITY;

BEHAVIOUR

superiorObjectinstanceBehaviour BEHAVIOUR

DEFINED AS

!
This attribute identifies the existing managed object instance
which is supplied, the managedObjectinstance attribute shall not

be supplied.

52 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) attribute(7) xx18(18)};

ref erencej ect | nst ance ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSMbdul e. Obj ect | nst ance;
MATCHES FOR EQUALI TY;
BEHAVI OUR
r ef erence(j ect | nst anceBehavi our BEHAVI OUR

DEFI NED AS

The managed obj ect instance nane of the sane class as the nanaged object to be
created. Attribute values associated with the reference object instance becone
default values for those not specified by the attribute list attribute.

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx19(19)};

ITU-T Rec. X.753 (1997 E) 53

| SO/IEC 10164-21 : 1998 (E)

Annex E

CMIP_CSmanaged object class
(This annex does not form an integral part of this Recommendation | International Standard)

The following is an example of how additional subclasses may be defined in order to contain attributes such as AE title.

E.l cmipCS

E.11 Overview
— Subclass of cmip protocol machine and command sequencer.

— Defines the calling AE title for the command sequencer.

E.1l2 Characteristics of the cmipCS managed object class

— aetitle.

E.13 Packages of cmipCS

The cmipCS managed object class has the following mandatory package:

— aetitle package.

E.14 GDMO definitions

cm pCS MANAGED OBJECT CLASS
DERI VED FROM commandSequencer ;
CHARACTERI ZED BY aeTi t | ePackage;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) nanagedCbj ect O ass(3)
xx18(18)};

aeTi t| ePackage PACKAGE
ATTRI BUTES
aetitle CGET;
REG STERED AS {joint-iso-itu-t ms(9) function(2) part21(21) package(4) xx19(19)};

E.15 Attribute definitions
aetitle ATTRI BUTE
W TH ATTRI BUTE SYNTAX CSMbdul e. AE-titl e;
MATCHES FOR EQUALI TY;
BEHAVI OUR
aeTi t| eBehavi our BEHAVI OUR
DEFI NED AS "An instance of this nmanaged object class defines the
calling AE title for the conmand sequencer";;

REQ STERED AS {joint-iso-itu-t ns(9) function(2) part21(21) attribute(7) xx20(20)};

54 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Annex F

Systems Management Scripting Language (SMSL)

(Thisannex forms an integral part of this Recommendation | International Standard)

This annex defines a genera string scripting language, SMSL, for writing procedures for execution in a command
sequencer environment.

SMSL has been provided with functions needed for this environment. To accomplish this, SMSL sacrifices some of the
completeness of languages such as C, csh, Perl, or awk while implementing some of the statements and functions that
make those languages so powerful and popular.

F.1 Mapping GDMO onto SMSL

SMSL has a virtual machine which is capable of interpreting GDMO as described in 1SO/IEC 10165-Series and
10164-Series, which has been mapped into the SMSL data types in accordance with the SMSL object model as described
in F.14.11. Scripts written in SMSL are interpreted and executed by the SMSL virtual machine. In the command
sequencer environment, the SMSL virtual machine acts in the manager role for systems management purposes. The
SMSL virtual machine should be able to interpret all the SMSL data types which are used by SMSL scripts, i.e. al the
types used in the script without the definitions of these types are known implicitly by the virtual machine, from the
viewpoint of the script writer. The SMSL virtual machine should be able to interpret al the SMSL instances which have
aready been instantiated, i.e. all the references to previously instantiated objects are known to the virtual machine, from
the viewpoint of the script writer.

F.2 SMSL Built-in functions

SMSL includes a number of built-in functions for creating and manipulating objects and general-purpose functions such
as mathematical, logical, and /O functions. Following is a summary of the SMSL built-in functions. The functions are
individually described below.

F.21 Functionsfor concurrency control

SMSL includes two built-in functions for enforcing concurrency control: lock() and unlock(). These functions are
typically used to linearize accesses to shared data structures and resources.

All SMSL processes attempting to linearize accesses to a resource must cooperate by requesting locks of a given lock
name. All resource accesses, including the set() and get() functions, are denied shared resource access without alock. Itis
the responsibility of each SMSL process to access a resource only when it holds the required lock.

F.3 Set functionsfor SMSL lists

SMSL includes the following functions for performing set operations on SMSL lists;
» difference() to return the list of different elements between lists;
* intersection() to return alist of elements common between lists;
e sort() toreturn alist in ascending or descending element order;
e subset() to verify that onelist is contained within another;
e union() to return alist that is a combination of lists;

e unique() to return alist of elementsthat appear in only onelist.

These functions process SMSL lists as sets of elements. Each member of a list is text string that ends with a space
character.

The NULL set [""] is the equivalent of the null or empty set (@) in set theory. The NULL set is treated by the SMSL set
functions as a proper set that contains no elements. The NULL string [] is a SMSL list element with no characters. The
SMSL set functions allow lists to contain NULL strings.

ITU-T Rec. X.753 (1997 E) 55

| SO/IEC 10164-21 : 1998 (E)

The SMSL concept of a set is not the unique list of ascending or descending elements familiar to set theory. In many
cases, the SMSL lists contain duplicate elements arranged in no particular order. A SMSL list can be transformed into an
ordered set using the unique() function to remove duplicates and the sort() function to arrange the elements in ascending
or descending order.

F.4 SM SL mathematical functions
SMSL supports a basic subset of mathematical functions. These functions are all similar to C-mathematical functions.

The SMSL mathematical functions include some run-time error checking for range and domain. Both conditions result in
arun-time error message that setsthe SMSL errno variable to an appropriate value.

Additionally, any nonnumeric values produced by printing the result of the function call, such as Nan or -Inf are
converted to 0.0 to prevent the return value from being interpreted by SMSL as a non-numeric character string. The
SMSL function also returns a run-time error message when it performs the conversion.

F.5 SM SL process synchronization

SMSL provides process synchronization within SMSL processes of a single command sequencer through condition
variable primitives used with SMSL locks. These primitives are similar to constructs provided for multithreaded
programming in the C-programming language on many non-threading operating systems.

F.6 SM SL shared global channels
SMSL supports the use of shared global channels for communication between a process and another process or file.

The SMSL alows one SMSL process to open a channel to an external process in a explicitly shared mode, which alows
any number of other SMSL processes to send data to, and receive data from, the channel.

The ability to share channels requires that SMSL also provide a mechanism for concurrent programming techniques.
SMSL provides these in the form of external synchronization primitives.

The primitives are preferable to building concurrency into the channel opening, reading, writing, and closing functions.
For example, having each SMSL process lock a shared channel explicitly prevents concurrent reading by one process and
writing by another. In addition, having the synchronization primitives separate from channels allows them to be used to
synchronize the use of any shared resource such as the agent’s internal symbol table or an external file.

The read(), readIn() and write() functions for shared channels will fail immediately (without blocking) if another SMSL
process is already blocked on the channel.

F.6.1 The effect of SM SL shar ed global channel mechanisms

The SMSL functions ensure that all operations on a channel are serialized, with all SMSL function calls appearing to be
atomic. The SMSL programmer can be assured that file channel reads and writes in different processes will take place
atomically. The locks provided in SMSL prevent unpredictable interleaving of sequences of SMSL read and write calls to
the channel.

The single exception to serialization on channels created using the popen() function is the allowance for a concurrent read
and write operation. A read can occur when a write is pending on the channel, and a write can occur when a read is
blocked or pending on the channel — thus, both a reader and a writer SMSL process can be blocked on a shared channel.

File channels opened using the fopen() function can never cause a SMSL read() or write() function to block. To enforce
serialization, the second reader process cannot be blocked, nor can the second writer process be blocked; hence, the
second SMSL read(), readIn() and write() function on a file channel will fail.

F.7 SM SL datatypesand objects

SMSL has four basic data types: integer, float, string, and list. The values of all four types simple types may be

manipulated as though they were character strings. Complex data types can be built up using struct and array constructs.
All ASN.1 syntax types are supported by SMSL.

56 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

F.7.1 Conversion between GDM O and ASN.1 typeand SMSL script-oriented type

Table F.1 shows the relationship between a GDMO and ASN.1 type and the corresponding SMSL type.

Table F.1 — Value conversion between ASN.1 and script-oriented type

Value type group GDMO and ASN.1 type script-oriented type
Integer group INTEGER, BOOLEAN integer
Float group REAL float
String General string string
Set group SEQUENCE, SET object type
Array expression SEQUENCE OF, SET OF list

Variables and values are interpreted as either strings or numbers, whichever is appropriate to the context.

A scalar (integer or float) isinterpreted as true in the Boolean sense if it is not the null string or 0. Booleans returned by
operators are 1 for true and 0 or *” (the null string) for false.

F.7.2 Numeric constants

Although the internal representation of an integer or floating-point constant is a string, these constants need not appear
inside quotation marks in SMSL scripts. Some examples of SMSL integer and floating point constants are:

x = 3; pi = 3.14159;

Table F.2 — Examples of SMSL data types

Daatype rep%;enalﬂtp;teion repri/lensﬂétion
integer 3 "3
float 4.5 "4.5"
string “abc” "abc"
list [1,3,5] "1\n3\n5"
NOTE - “\n” is the new-line character.

F.7.3 Complex data types

A dtruct is a collection of data types which can be grouped together for the purpose of representing complex ASN.1
structures such as ASN.1 SETs and SEQUENCES can be constructed using struct. Individua struct elements may be

accessed using the “.” operator.

Array expressions can be expressed using the list type in SMSL. The name binding is mapped to the value of the object
name.

F.8 SMSL variables

Variables of any type can be used as Ivalues — that is, they can be assigned to. As all data types are treated as string
internally, they all share a common name space. Therefore, you cannot use the same name for a scalar variable, a string
variable, and a list variable.

Case is significant. “FOQ”, “Foo”, and “foo” are all different names. Names must start with a letter or an underscore but
can contain digits and underscores (“_").

ITU-T Rec. X.753 (1997 E) 57

| SO/IEC 10164-21 : 1998 (E)

Some identifiers have predefined meanings. Reserved keywords — such as if and foreach — cannot be used as identifiers
Keywords are recognized as either all lowercase or all uppercase letters. In addition, predefined constants cannot be usec
as identifiers.

F.8.1 Default initialization of SMSL variables

SMSL does not make use of the concept of “declarations” for variables. The first appearance of an identifier serves to
add it to the list of global variables for a SMSL script. All variables are initialized with a null string value each time a
SMSL script is executed. This value does not change until the variable’s value is defined by some explicit operation, such
as assignment.

This default initialization to the empty string allows a variable to be treated as an initially empty list/string or asca numer
variable with a 0 value (since arithmetic operators treat the null string as equivalent to 0). However, reliance on this initia
value causes a SMSL run-time warning message at its first use (if run-time warnings are enabled). It is considered better
style to initially assign a value of “” or 0 to a list/string variable or numeric variable, respectively.

F.9 SM SL predefined constants

A number of identifiers are predefined as constants so that they can be used without needing declaration. These constant:
are read-only and should not be assigned to.

Table F.3 — SMSL predefined constants

Constant Definition
ALARM ALARM object state
OK OK object state
OFFLINE OFFLINE object state
VOID VOID object state
EOF End-of-file condition constant
true/TRUE/True yes'YES/Y es Boolean true value (1)
false/FAL SE/False no/NO/No Boolean false value (0)

F.10 SMSL stringliterals

String literals are delimited by double quotation marks. String literals can be multiline, causing the new-line characters to
become part of the string.

The backslash rules apply for escaping characters (such as the backslash or the quotation mark) and for making characters
such as new-line or tab. These are the only string literals currently supported in SMSL.

Table F.4 — SMSL string literals

Constant Definition
\t tab
\n new-line
\r return
\b backspace
AL \Z Ctrl-A ... Ctrl-Z

Control characters can be embedded in SMSL string constants using \A through to \Z to represent Ctrl-A through to
Ctrl-Z. A capitalized letter must always be used; lowercase letters other than those already defined (that is, t, n, r, or b)
are not valid as escapes and will generate a SMSL compilation warning.

58 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)
F.11 SMSL lists
List values are denoted by separating individual values with commas and by enclosing the list in square brackets:
[1,3,5]

The list is interpolated into a double-quoted string whose elements are separated by spaces. The list is represented
internally as:

“135"

F.12 SMSL simple statements

The most common simple statement is an expression evaluated for its side effects, which is called an expression

statement. The most common expression statement is an assignment operation or a function call. Every expression
statement must be terminated with a semicolon:

y=x+10; # assignment
set("value",50); # function call

s=trim(s,"\t"); # both assignment and function call
F.13 SMSL operators

F.13.1 Arithmetic operators

For arithmetic operators, an operand is considered a number if its first character is a digit or a minus sign (). Otherwise,
it is considered a string and converted to 0 for an empty string or 1 for a non-empty string.

The use of a non-number in an arithmetic context may result in a run-time warning.

Table F.5 — SMSL arithmetic operators

Operator Definition
+ addition
- subtraction
/ division
* multiplication
% modulus

F.13.2 Assignment operators
Following are the assignment operators for SMSL.

For example, at+=b is equivalent to a=atb.

Table F.6 — SMSL assignment operators

Operator Definition

= assignment

= self-concatenation for strings

+= self-addition

—= self-subtraction

/= self-division

= self-multiplication

%= self-modulus

ITU-T Rec. X.753 (1997 E) 59

| SO/IEC 10164-21 : 1998 (E)

Bitwise assignment:

&= self-bitwise AND

= self-bitwise OR

exclusive OR bitwise assignment

Shift assignment:

<<=

shift left assignment

>>=

shift right assignment

I ncrement/Decrement oper ator s

For example, at++ isequivalent to a=at1.

Table F.7 — SMSL increment/decrement operators

Operator Definition

++ increment

-- decrement

F.13.3 Bitwise operators
Following are the bitwise operators defined for SMSL.

For example, a&=b is equivalent to a=a&b.

Table F.8 — SMSL bitwise operators

Operator Definition
& bitwise AND
| bitwise OR
&= self-bitwise AND
= self-bitwise OR
n exclusive OR bitwise
= exclusive OR bitwise assignment

F.13.4 Logical operators

The SMSL logica operators assume for their operands that true is represented by 1 or a non-empty string. False is
represented by 0 or an empty string. However, when they return results, they always use 1 for true and O for false.

Table F.9 — SMSL logical operators

Operator Definition
&& logical AND
Il logical OR
! logical NOT

60 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

F.13.5 Relational operators

The relational operators perform numeric comparisons if both operands are numbers. Otherwise they perform string
comparisons (that is, lexical, dictionary ordering). A string is considered a number if it consists of only digits, the minus
sign, or aperiod. No white space is allowed. SMSL relational operators do not consider constants in exponential notation
(such as 2.3e+27) to be numbers.

F.13.6 Shift operators

The shift operators perform bit shifting within bytes.

Table F.10 — SMSL relational operators

Operator Definition
== equal to
1= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Table F.11 — SMSL shift operators

Operator Definition
<< shift left
<<= shift left assignment
>> shift right
>>= shift right assignment

F.13.7 String operators
SMSL has severa operators for string and list manipulation.
[sl, <2, ...]

The list operator builds a list by joining al elements in a comma-separated list in a double-quoted string of items
delimited by a space, which is SMSL’s representation for lists/arrays.

=~ (equal tilde)
The=~ operator is used in the expression strrgattern and returns:

e 1 if the regular expression pattern is contained in string;

* 0if the regular expression pattern is not contained in string.
If pattern is invalid, SMSL returns a run-time error message arr-tbperation returns 0 (pattern not contained).
I~ (tilde)
The !~ operator is used in the expression string !~ pattern and returns:

e 1 if the regular expression pattern is not contained in string;

e 0if the regular expression pattern is contained in string.

If pattern is invalid, SMSL returns a run-time error message and the !~ operation returns 0 (pattern contained).

ITU-T Rec. X.753 (1997 E) 61

| SO/IEC 10164-21 : 1998 (E)

F.13.8 SMSL operator precedence and associativity

The precedence and associativity of SMSL operators is almost identical to that of C and Perl. In addition to the standard
operators, there are new string operators — “.” and [x,y,...] — with their associated precedences.

In Table F.12, the operators are listed in ascending order of precedence:

Table F.12 — SMSL operator precedence and associativity

Operator precedence Associativity
= lowest right
+=, =, <<=, >>=, = right
*= |=, %= right
= &= right
I left
&& left
| left
n left
& left
I=, ==, =~, I~ left
<, <=, >, >= left
<<, >> left
+, — (binary) left
* |, % left
. (string concat) left
I, — ++, - right
0 left
[] highest left

F.14 The SMSL corescripting language

A SMSL script consists of a sequence of commands. All uninitialized user-created objects are assumed to start with a
NULL or 0 value until they are defined by some explicit operation such as assignment.

SMSL is, for the most part, a free-form language. That is, lines don’t have to start or end at or before a particular column;
they can just continue on the next line. White space is ignored except for the separation of tokens. Comments are
indicated by the # character and extend to the end of the line. For example, here is a comment about an assignment
statement:

X=Y,; # Assign the value of y to the variable x
F.14.1 SMSL compound statements

SMSL compound statements include loop statements and if statements. In SMSL, a sequence of statements can be treate
as one statement by enclosing it in braces {}. We will call this a statement block and denote it in the statement
descriptions as {BLOCK}

F.14.1.1 Exit
Format

exit
Description

The exit statement causes the SMSL program to immediately end and return control to the process that called it. The exit
statement must be terminated with a semicolon when used in a SMSL program.

62 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

F.14.1.2 Export
Format
export variable
export function function
Parameters
Description

The export statement makes a variable or function in a SMSL library available for export to another SMSL library or
program using the requires statement. Each export statement can specify a single variable or function.

Global variables and functions need not be declared before the export statement. The export statement does not require
that a variable be explicitly defined within a library, but it does require that it appear in a SMSL statement to create an
implicit definition.

Placement of the export statement

The export function function statement can appear before or after the actual function definition. The export variable
statement can appear before or after the first appearance of aglobal variable.

An export statement can appear inside afunction definition without any special significance.

Parameter definition
variable name of aSMSL variable that is available for export to another SMSL program
function name of a SMSL function that is available for export to another SMSL program
Errorsinvolving the export statement
The export statement can generate compiler errorsin the following instances:
» variableor function is not defined or used in the library;
» variableor functionisa SMSL built-in function;
» variableisalocal variable of a user-defined function in the library;
» variableor function is duplicated in another export statement;

» variable or function has been imported using the requires statement.

F.14.1.3 Foreach

Format
foreach [list] {BLOCK}
foreach unit variable [list] { BLOCK}

Description

The foreach loop iterates over list and sets variable to be each element of list, performing BLOCK for each element of list
in turn.

Parameter definition
list: A list that contains one or more elements that can be equated to variable.
BLOCK: One or more statements that are executed when variable has been equated to an element from list.
unit controls how list is split into individual el ements.
Valid Range:
» word assumes that the array elements are separated by white space (spaces, tabs, or \n);

» lineassumesthat array elements are separated by \n.
default if not specified: line

variable the name of the element that is equated to each element in list.

ITU-T Rec. X.753 (1997 E) 63

| SO/IEC 10164-21 : 1998 (E)

Examples
The following examples highlight the usage of the foreach statement.
Sum the Elementsin an Array
sum =0;
foreach elem ("1\n2\n3\n4\n5")
{
sum += elem;
}
List the Login ID of Each Account on the System
foreach user (cat ("/etc/passwd"))

{
printf(ntharg (item, 1, ":"), "\n");

NOTE - cat() and ntharg() are built-in SMSL functions.
Count the Number of Wordsin a String
words = 0;
foreach word w ("The cat sat on the mat.")

{

words++;

}
F.14.1.4 Function
Format
function name(argument_list) { BLOCK}
Description

The function statement provides user-defined functions within SMSL programs similar to those available in the
C-programming language. The function keyword is required in a user function definition. Two additional keywords, local
and return, are optional:

* local declaresvariables that will be used only within the function;

* return identifies function output that is returned to the caller.

Functions must be defined before their first use, and the correct argument_list must be passed in a function call. A
function call aways returns a character string representing a character string or numeric value. (All data types are
represented within SMSL as character strings.)

Parameter definition

name: Character label that is used to identify and call the function from within the SMSL program; name cannot be
identical to either of the following:

e aSMSL built-in function;
e aSMSL variable.

argument_list: Zero or more SMSL variables that are passed to the function as parameters when it is called for execution.
argument_list can be a NULL entry if no variables are passed to the function, a single argument, or several arguments
separated by commas.

64 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

BLOCK: One or more SMSL statements that define the action the function performs.

Arguments are passed-by-value to parameters (that is, local copies are created of the arguments’ data passed in), and thu
changing a parameter will not affect the value of the argument. Function parameters are local to a function and can have
names the same as global variables (or the same as parameters of other functions).

If a function definition appears in the middle of executable statements and control flow reaches that definition from
above, the definition is skipped as if it were a comment. The only way to enter the body of a function is to explicitly call
it. The function definitions serve merely to define a function and are not invoked until called. Hence, it is possible to
place executable code above, below, and between function definitions

F.14.1.5 Thereturn statement
There are three ways to exit a user-defined function:
e return with a return value;
e return without a return value (return vaki®ULL string);

« fall through to the bottom right brace (return omitted, no return value).
SMSL does not interpret falling through the bottom of a function as an error condition.

SMSL produces a compilation warning similar to that produced by C compilers when it encounters return statements
within a function some of which have return values and while others do not. Having multiple exit points in a function that
exit in different ways may indicate confusion over whether the function was defined to be perform an action or return a
value.

F.14.2 Defininglocal variables

User-defined function local variables are declared using the local keyword inside the body of the function. The local
keyword declares one or more variables specified in a comma-separated list that is terminated by a semicolon. These
names become local variables to the function. Following is an example of local variable definitions:

function ()

{

local x;

local a,b;

... Statements for the function execution.
}

Local variables cannot have the same name as a function parameter or another local variable in the same function. Local
variable names in one function do not affect those in another function. Local variables can have the same name as a
global variable and can “hide” a global name this way.

Local variable declarations are treated as expressions and can appear anywhere within the function that an expression is
valid. However, there is no concept of inner scopes in inner blocks and a local variable has scope extending from its point
of declaration to the end of the enclosing function (not the enclosing block).

Local variables are initialized tthe empty string every time the function is entered. They do not retain their values from
a previous call.

The maximum number of local variables and function parameters in user-defined functions (except for the main()
function) is implementation specific.

F.14.3 Entry point function

The SMSL entry point function is the main() function. If a SMSL program contains a user-defined function named main,
execution begins at the first statement in main(). The SMSL program terminates normally when main() returns. The
function you specify as the entry point is permitted to have the same properties as main().

The main() function or the entry point function must be defined in the top-level SMSL program and not in any imported
libraries. Functions imported from libraries are ignored when determining whether an entry point function is available.

ITU-T Rec. X.753 (1997 E) 65

| SO/IEC 10164-21 : 1998 (E)

F.14.3.1 Start of execution without an entry point function

If there is no main() function and no entry point function specified using the SMSL compiler -e option, execution begins
at the first executable statement that is not inside a function definition. A program without an entry function will normally
have function definitions at the top (they must be defined before their first use) and the main executable statements
afterwards. A typical example would be the following:

function max(x,y)
{
if(x >y)
{

return X;

else

returny;

}

m = max(1,2); # Execution starts here

printf("maximumis”, m, "\n");

Asindicated, program execution beginsimmediately after the function definition.
F.14.3.2 Limitations of user-defined functions

User-defined functions are subject to the following limitations:

Function Calls are Non-Recursive.

User-defined functions can make unlimited calls to other functions provided that there is no direct or
indirect recursion in the sequence of calls.

Pass by Value and Pass by Reference Supported.

— SMSL functions support argument passing by reference and argument pass-by value.
Parameter and local variable limits

The parameter and local variable limits for SMSL functions are not defined in this Specification. They are
implementation specific.

Function nesting not per mitted

SMSL does not permit function nesting — each function definition must be at global scope and cannot be defined inside
any other function.

F.144 |If

For mat

if (expression) {BLOCK}

if (expression) {BLOCK} else {BLOCK}

if (expression) {BLOCK} elsif (expression) {BLOCK} . . . else{ BLOCK}
Description

The if statement is straightforward. Because a statement BLOCK is always bounded by braces, there is no ambiguity
about which if, elsif, and else goes with.

66 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Examples
The following examples highlight the usage of if, elsif, and else:
Anif statement
if (x> 10)
{
x =10; # don't let x get bigger than 10
}
Parameter definition
expression: A SMSL statement whose evaluation returns either TRUE or FALSE.

BLOCK: One or more SMSL statements that are executed once in accordance with the evaluation of the if or elsif
expressions.

Description

The if statement is straightforward. Because a statement BLOCK is always bounded by braces, there is no ambiguity
about which if, elsif, and else goes with.

Examples

The following examples highlight the usage of if, elsif, and else.

An i f statenent

if (x > 10)
{
x = 10; # don't let x get bigger than 10
}
Anif . .. else Statement
if (x ==0)
{
do something
}
else
{
#x1=0
do something else
}
Anif. .. elsif. .. else Statement
if (x ==0)
{
do something
}
elsif (x == 1)
{

ITU-T Rec. X.753 (1997 E) 67

| SO/IEC 10164-21 : 1998 (E)

do sonet hing el se

}
el se
{
#x!1==08&& x!=1
do sonet hing el se
}
F.145 Last
Format
last
Description

The last statement causes SMSL execution to exit the innermost execution loop. The last statement must be terminated
with a semicolon when used in a SMSL program.

F.146 Next

Format

next
Description

The next statement immediately starts the next iteration of the innermost execution loop.

F.14.7 Requires
For mat

requires library
Description

The requires statement imports variables and functions identified in export statements from a previously created SMSL
library into the SMSL program. Each requires statement can specify asingle library name.

SMSL contains no explicit import statement; using the requires statement implies importation. The requires statement
searches for the binary containing the library and reads all its export statement information, importing the specified
variables and/or functionsinto the SMSL program.

Any number of requires statements can appear in a SMSL program. All libraries specified in requires statements must be
available to the compiler during compilation.

Requires statementsin imported libraries

The SMSL compiler will automatically resolve nested dependencies in imported libraries, but it will not automatically
load all the other exported functions and variables found in the library that satisfies the nested dependency. You must
explicitly import alibrary in order to guarantee access to all the exported variables and functions within it.

Parameter definition

library: Name of the library whose specified export variables and functions are to be imported into the SMSL program.
A requires statement can appear inside a function definition without special significance.

Variable and function availability among imported libraries

When a SMSL program imports variables and functions from more than one library, the imported variables and functions
from one library can set and use the imported variables and functions from the others, regardless of how the libraries are
loaded for compilation.

68 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Errorsinvolving the requires statement

The reqguires statement can generate compiler errorsin the following instances:

» A reference to an imported variable or function appears before the requires statement that imports it. You
must place arequires statement before the first use of the imported variable or function.

* Animported function has the same name as a function defined within the SMSL program.

» Thesame variable or function name is imported from two or more libraries.

F.14.8 Switch
Format
switch (variable)
{
casea {BLOCK}
case b: {BLOCK}

casep,q,r:{ BLOCK}

case n: {BLOCK}
default: { BLOCK}

}

Parameters
Description

The switch statement evaluates variable and based on its integer value executes a specific SMSL BLOCK. The case
labels correspond to the values of variable for which a specific SMSL BLOCK is available.

If the value of variable fals outside the range of the values in the case labels, execution continues with the BLOCK
corresponding to the default label. If no default label exists, execution will continue with the first statement following the
switch statement.

Parameter definition
variable SMSL: Variable name whose integer value specifies the SMSL statement BLOCK that will be executed.

ab, ...paqr ...nInteger values indicating the value of variable that will cause the corresponding BLOCK to be
executed.

BLOCK: One or more statements that are executed when the corresponding case value equals variable.
Description

The switch statement evaluates variable and based on its integer value executes a specific SMSL BLOCK. The case
labels correspond to the values of variable for which a specific SMSL BLOCK is available.

If the value of variable falls outside the range of the values in the case labels, execution continues with the BLOCK
corresponding to the default label. If no default label exists, execution will continue with the first statement following the
switch statement.

The SMSL switch statement behaves the same way as a long sequence of if-then-else-if statements. A case or default
clause is effectively arun-time statement that specifies a comparison against the value of variable:

» If the value of variable matches a case, execution moves inside the BLOCK for the case or default clause;
and after completing BLOCK, execution continues after the entire switch statement (that is, there is no
falling through to the next case clause).

» If the value of variable does not match a case, execution skips to the default clause; and if there is none,
execution moves to the statement following the switch statement.

ITU-T Rec. X.753 (1997 E) 69

| SO/IEC 10164-21 : 1998 (E)

Any statement within the switch statement case block that is not part of a case or default BLOCK executes only if al the
case labels above it failed to match variable (that is, it executes as part of the normal sequence of control flow).

The following are the properties of the SMSL switch statement:
» Case expressions can be dynamically evaluated expressions and constant expressions.
* Thecolon delimiter that separates the case label from the executable BLOCK isoptional in SMSL.

SMSL requires that the default label follow all case labels in the switch statement case block. It returns a
compilation error if one or more case labels follow default.

e SMSL does not return a compilation error for duplicate case labels in the switch statement. In SMSL, the
second of the duplicate case labels is unreachable.

« SMSL alows multiple cases that execute a common BLOCK to be specified as a comma separated list
within asingle case label. (Conversely, the stacked labels will not work in SMSL.)

» Execution of a SMSL BLOCK does not “fall through” to the next case label and BLOCK. Upon reaching
the closing right brace of a case or default BLOCK, execution moves to the end of the SMSL switch
statement.

« The SMSL switch statement uses the last statement to exit from a BLOCK. The last statement exits the
innermost switch statement or loop. However, because of the absence of “fadlithio SMSL, there is
little need to use the last statement in the switch statement.

* SMSL generates a compiler error upon detecting two default labels in a single switch statement.
* SMSL permits nested switch statements.

The case BLOCKS are evaluated at run-time in their order of appearance:
e case order for BLOCKsS;

» left-to-right for expressions in the comma-separated lists of multiple-case labels.

All expressions within a comma-separated list are evaluated before the case label. This evaluation occurs even if the first
expression is a match.

This sequence and method of evaluating the case label can be a dangerous pitfall if any expression in the list modifies
either variable for the current switch statement or a variable used in another case expression. Under SMSL, statements
within a switch statement that are not part of a BLOCK (free statements) can and will be executed if they are reached by
the flow of execution. The condition for control flow to reach these statements is that variable cannot match any of the
case labels that precede them within the switch statement. SMSL does not return a warning or error message when two
case labels evaluated against variable are nested one inside the other. Two examples of this situation are shown in the
following SMSL switch example:

switch(x) { case 1: { f1() # Function f1 Called case 2 : {f2();} # Function f2 Unreachable f3(); # Function f3 Called }
default: {case 4: {f4();}} # Function f4 called if x=4 }

Since case and default labels are run-time statements, the effect of one case label nested within another is that variable
must match the case value for the case BLOCK to execute. This means that variable must equal two different values! In
case 1 of the example, f2 will never be called because x cannot equal both 1 and 2.

In the default case of the example, f4 will be called if variable = 4 because there is no case 4 defined in the switch
statement. When variable = 4, the default BLOCK executes, containing the case 4 BLOCK call to function f4.

F.149 While

Format

while (expression) {BLOCK}
Parameters
Description

The while loop executes statements as long as expression evaluates to TRUE (non-zero).

70 ITU-T Rec. X.753 (1997 E)

ISO/IEC 10164-21 : 1998 (E)
Example
The following sample SMSL statements print the integers from 1 to 10.
x=1,
while (x <= 10)
{
printf (x, " ");

X++;

}
printf ("\n");
Parameter definition
expression A SMSL statement whose eval uation returns either TRUE or FALSE.
BLOCK: One or more SMSL statements that execute repeatedly as long as expression evaluates to TRUE.
Description
The while loop executes statements as long as expression evaluates to TRUE (non-zero).
Example
The following sample SMSL statements print the integers from 1 to 10.
x=1;
while (x <= 10)
{
printf (x," ");

X++;

}
printf("\n");
F.14.10 Object model

SMSL is based on a simple object-oriented model which makes it possible to do a mapping from systems management
environment described in GDMO (see CCITT Rec. X.733 | ISO/IEC 10164-4). An object is a construct with properties
that are variables or other object. Functions associated with an object are the object’'s methods.

A SMSL user can access the properties of an object with the following notation:
objectName.propertyName

This object can be either GDMO object or some locally defined object.

ITU-T Rec. X.753 (1997 E) 71

| SO/IEC 10164-21 : 1998 (E)

If this object is GDMO aobject, the mapping from GDMO propertiesto SMSL propertiesis shown in Table F.13.

Table F.13 — Mapping between GDMO and SMSL

GDMO property SMSL property
class-label name of object type
instance identifier(INTEGER, etc.) value of object instance variable
initial valuesin creating an instance parameters of “new” operation
managed object instance names ASN.1 value notation
ASN.1 type of ATTRIBUTES name of variables
label of ATTRIBUTE GROUPS name of array variable
label of ACTION name of method (function)
asynchronous NOTIFICATION handling onEvent(discriminatorConstruct) handler

A property can be defined by assigning it avalue as follows:
objectName.propertyName = value;
A method is afunction associated with an object. A function can be associated with an object as follows:
objectName.methodName = functionName

where object is an existing local object, method is the name assigned to the method, and functionName is the name of the
function.

Method in the context of the object can be called as follows:

objectName.methodName(parameters);

F.14.10.1 GDMO operation and action parameters
Operation and action parameters are passed to the action method as an object mapped by the rules described in the object
model. Return parameter values are returned from the action method (function) as an object mapped by these rules. The
description format is as follows:
outputObjectName = ObjectName.actionName(inputObjectName);
outputObjectName = ObjectName.operationName(inputObjectName);
F.14.10.2 “this” object reference
SMSL has a special keyword, “this”, that can be used to refer to the current object.
thigpropertyName]
F.14.10.3 Creating and deleting objects
new

An operator that lets you create an instance of a user-defined object type.

Creating an object type requires two steps:
1) Define the object type by writing a function.

2) Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its name, properties and methods. An object
can have a property that is itself another object.

72 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Format
objectName = new objectType (paraml [,param?] [,paramN])
objectName is the name of the new object instance.
objectType is function that defines an object type.

paraml..paramN are the property values for the object. These properties are parameters defined for the objectType
function.

An instance of a class can be deleted with “delete” operator.
delete objectName
objectName is the name of the existing object instance.

Moreover local object type can be defined by writing a function. Then a local instance of the object can be created with
“new” operator.

Object expression to represent name-binding
If two objects have a name-binding relationship, the following expression of that subordinate object is allowed:

superior Objectl nstance.subor dinateObj ectl nstance

F.14.104 WITH

A statement that establishes a default object for a set of statements. Within the set of statements, any property references
that do not specify an object are assumed to be for the default object.

Syntax
with (objectName){
statements

}

objectName specifies the default object to use for #i@ements. The parentheses are required aroobgctName.
statements is any block of statements.

F.14.10.5 Event handler
onEvent
Description
An event handling operator to describe the processing when a specified notification defined by GDMO occurs.
Syntax
onEventDiscriminator ConstructValue){
statements
}
Discriminator ConstructValue is DiscriminatorConstruct type valugiatements is any block of statements.
F.14.10.6 trigger Parameter Count

This SMSL virtual machine keeps track of the number of trigger parameters by means of this variable.

F.14.10.7 trigger Argument
Description

The triggerArgument accepts the list of trigger parameters which can be accessed from an SMSL script and returns the
identity of the launch pad which then executes the script. The argument list includes the trigger id and script id unless the
trigger is not parameterized.

Syntax

triggerArgumentdrgument_list), whereargument_list can have up ttrigger Parameter Count elements.

ITU-T Rec. X.753 (1997 E) 73

| SO/IEC 10164-21 : 1998 (E)

Example of SMSL script for management of EFD
This example describes how an EFD can be created and its operational state determined.

The parameters to the script to be triggered are the script id and the notification destination. The SMSL script to get the
operational state attribute of the EFD and return it as a notification to the destination is given below.

The trigger is specified with the following parameters:
— triggerld, theidentifier of thistrigger;
— scriptld theidentifier of the script to be executed;
— managerldtheidentifier of the destination to which event reports are to be forwarded.

The SMSL script for this exampleis given below:

#include “CMIP.CMIP-1.h"
#include “DMI.Attribute-ASN1Module.h”

managerk triggerArgument(triggerld, scriptld, managerld);

/* Instance creation as CMISFilter type */
CMISFilter counterValue _GT18 item (greaterOrEqual (Attribute-ASN1Module.Count, 10))

/*

* Creating instance of EFD with the following parameters.
* DiscrimnatorConstruct (counter > 10),

* administrativeState default value, destinationmanagerl
*

efd1= new eventForwardingDiscriminator(counterValue_GT10, managerl);
triggerResult efd1.operationalState; /* get operational state */
printf(“operational state of event forwarding discriminator %d \n”, triggerResult);

The destination manager is supplied as a trigger parameter. The trigger causes the launch pad to spawn threads in order t
execute all the script instructions in sequence. The launch pad passes appropriate parameters to threads. When creatin
efdl, for example, the launch pad passes the script id and the destination manager as parameters to the thread.

F.14.11 BNF for SMSL

(Conventions: "{}" is used for productions which may occur 0 or more times; "[]" is used for optional
productions.)

Tokens:

T ELLIPSIS Dot
T_EQ o=t
T_NE o=
T_REGEXP_EQ D=
T_REGEXP_NE Do
T_LEQ o=
T_GEQ Dot
T GT Do
TLT S
T_AND DT &&!
T OR S
T_NOT Do

74 ITU-T Rec. X.753 (1997 E)

T INC

T_DEC

T_PLUSEQ

T_M NUSEQ

T_MILEQ

T_DI VEQ

T_MODEQ

T_BI TANDEQ

T_BI TOREQ

T LEFT_SHIFT

T _RIGHT_SHI FT

T_RI GHT_SHI FT_ASSI GN
T_LEFT_SHI FT_ASSI GN
T_XOR ASSI GN

Keywords:
TIF
T_ELSE
T ELSIF
T_FOREACH
T _FOR
T_WORD
T LINE
T_NEXT
T_LAST
T WH LE
T_DO
T_UNTI L
TEXT
T_TRUE

"ot

n <<:u

naA—_n

"PfUTLET

"el se"| " ELSE"

"el sif"|"ELSElF"
"foreach"| " FOREACH"

“for"|"FOR'
"wor d" | " WORD'
“1ine"| " LI NE"
"next " | " NEXT"

"l ast"| " LAST"
“whi | "] "W LE"
"do" | " DO'
“until "] " UNTIL"
"exit"|"EXI T"

"t r ueu | " TRUE" | n Tr ueu | n yES" | " YES" | n YeS"

T_FALSE

"fal se"|"FALSE" | " Fal se" | “no" | "NO'| * No”

T_RETURN
T_LOCAL
T_FUNCTI ON
T_NATI VE
T_RPC

T VO D
T_REQUI RES
T_EXPORT

"return"|" RETURN"

"l ocal "| " LOCAL"
“function"|"FUNCTI ON'
"native"|" NATI VE"
"rpc"|"RPC

"voi d"
"requires"|"REQU RES"
"export"|" EXPORT"

I SO/IEC 10164-21 : 1998 (E)

ITU-T Rec. X.753 (1997 E) 75

| SO/IEC 10164-21 : 1998 (E)

T_CASE . "case"| " CASE"

T _SW TCH : "switch"|"SWTCH

T _DEFAULT : "defaul t"|" DEFAULT"
Rules:

program: stnts

stnts : { stm }
stnt @ expr ';’
return
if |
f oreach |
sw tch [
case |
def aul t [
whi | e |
do_until |
for_loop |
T_LAST ;" |
T_NEXT ' |
TEXT ;" |
function [
native_function |
rpc |
| ocal var _dec |
export |

requires

requires : T_REQU RES requires_nane ';’

library nane : T_STRING | T_I DENTIFIER

requires_nane : |ibrary_name

export : T_EXPORT [T_FUNCTION] export_name ’;’

export_name : T_I| DENTI FI ER

part : T_WORD

76 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

foreach : T FOREACH part sinple_id '(' expr ')’ "{’ stnts '}’

case_exprs : { case_expr ',’ } case_expr

case_expr : expr

case : T_CASE case_exprs optional _colon '{’ stms '}’

default : T_DEFAULT optional _colon "{’ stnts '}’

optional _colon : [':7]

switch : T_SWTCH (' expr ')’ '{’ stnms '}’

for_loop : T_FOR ' ('’ optional _expr ';’ optional_expr ';’ optional_expr ")’
{’ stmts '}’
do_until : T_DO'{" stmts *}" T_UNTIL (' expr ") ';’

while : TWHLE (" expr ') '{ stms '}’

void : [T_VvVAOD]

native_function :

T _NATIVE void T_FUNCTION function_nanme ' (' func_paramlist ")’ '’

rpc : T _RPC void T_FUNCTION function_nanme ' (' func_paramlist ")’ ';’

function : T_FUNCTION function_nanme ' (' func_paramlist ") '{' stms '}’

func_paramlist : paramli st

function_name : T_I DENTIFI ER

paramlist : [{ one_param’,’ } one_param]

one_param : T_I| DENTI FI ER |
T_ELLIPSI S

|l ocal _var_dec : T _LOCAL var _list ';’

ITU-T Rec. X.753 (1997 E) 7

| SO/IEC 10164-21 : 1998 (E)

var_list : { one_var ',’ } one_var

one_var : T_I DENTI FI ER

return : T_RETURN [expr] '’

if @ TAF (" expr)" "{ stmts '} opt_elsifs opt_else

opt _elsifs : { elsif }

elsif : TELSIF (' expr ')" '"{’ stnts '}’

opt _else : [else]

else : T ELSE '{' stms '}’

optional _expr : [expr]

expr : unary_expr
expr '+ expr
expr '-' expr
expr '*' expr
expr '/’ expr
expr % expr
expr T_EQ expr
expr T_NE expr
expr T_RECGEXP_NE expr
expr T_RECGEXP_EQ expr
expr T_LT expr
expr T_GI expr
expr T_LEQ expr
expr T_GEQ expr

expr T_AND expr
ternary_expr

expr T_OR expr

expr | expr

expr & expr

expr /N oexpr

expr T_LEFT_SHI FT expr
expr T_RIGHT_SHI FT expr

| val ue ' =" expr |

78 ITU-T Rec. X.753 (1997 E)

| val ue T_PLUSEQ expr |
T_M NUSEQ expr |
T_MILEQ expr |
T_DI VEQ expr |
T_BI TANDEQ expr [
T_BI TOREQ expr [
T_MODEQ expr |
T_LEFT_SH FT_ASSI GN expr [
T_XOR_ASSI GN expr [

T_RI GHT_SHI FT_ASSI GN expr |

| val ue
| val ue
| val ue
| val ue
| val ue
| val ue
| val ue
| val ue
| val ue
expr

expr

sinmple_id : T_I DENTI FI ER

ternary_expr expr '?° expr ':’ expr

Ivalue : sinple_id

unary_expr primary |

"-' unary_expr |
T_NOT unary_expr |
T_INC | val ue
T DEC | val ue

function_ call id : T_IDENTIFIER

primary @ sinple_id

T_INT

T _FLOAT [
T_STRI NG [
T_TRUE

T_FALSE [
(0
I value T_INC [
| val ue T_DEC [

'y

expr ')’ |

function_call _id ’ (' arglist

argli st [{ expr ', } expr]

Note that the definition of string should allow embedded \" within strings.

I SO/IEC 10164-21 : 1998 (E)

ITU-T Rec. X.753 (1997 E) 79

| SO/IEC 10164-21 : 1998 (E)

T_ I DENTI FI ER : [A-Za-z_J[A-Za-z_0-9]*
T_STRING S A R

T_FLOAT © [0-9]*"."[0-9] +

T INT : [0-9]+

/* Operator tokens and their precedences*/

%ight '=" T PLUSEQ T MNUSEQ T MILEQ T DIVEQ T _MODEQ T_BITANDEQ T_BI TOREQ
T _LEFT_SHI FT_ASSI GN T_RI GHT_SHI FT_ASSI GN T_XOR_ASSI GN

Weft 27 7

Weft T_OR

%eft T_AND

Weft |’

Weft '~

Weft ' &

%eft T_EQ T_NE T_REGEXP_EQ T_REGEXP_NE
%eft T LT T.GT T_LEQ T_GEQ
%eft T_LEFT_SH FT T_RI GHT_SHI FT

%Beft "+ -’

Weft "* /" "%

Weft .’

% i ght T_UNARY T_NOT T_INC T_DEC
Weft "(’

Weft "[’

80 ITU-T Rec. X.753 (1997 E)

Annex G

SM SL support functions

I SO/IEC 10164-21 : 1998 (E)

(Thisannex forms an integral part of this Recommendation | International Standard)

acos()
Return the arccosine of the argument.
Format
acos(cosine)
Parameter
Parameter Definition
cosine cosine argument
valid range: -1 = cosine<=1
Description

The acos() function returns the arccosine of cosine; that is, the length in radians of the arc whose cosineis cosine.

The output range for the acos() function is 0 < acos() < p. The acos() function return value is accurate to six decimal

places.
asctime()
Return the date and time as a character string.
Format
asctime(clock,format)
Parameters
Parameter Definition
clock A reference to the clock or timer whose value should be converted to a character string.
clock is most commonly time().
format Optional format specification for the asctime() output string. The following field specifiers are valid:

%a abbreviated weekday

%A full weekday

%Db abbreviated month

%B full month

%c local date and time representation

%d decimal day of the month (from 01 to 31)

%E combined Emperor/Era name and year

%H decimal hour in 24-hour mode (from 00 to 23)
%I decimal hour in 12-hour mode (from 01 to 12)
%j decimal day of the year (from 001 to 366)
%m decimal month (from 01 to 12)

%M decimal minute (from 00 to 59)

%n new-line character

%N Emperor/Era name

%0 Emperor/Era year

%p equivalent of AM/PM

ITU-T Rec. X.753 (1997 E)

81

| SO/IEC 10164-21 : 1998 (E)

display
s. For

Parameters
(concluded)
Parameter Definition
format Optional format specification for the asctime() output string. The following field specifiers are valid:

%S decimal second (from 00 to 61)
%t tab character
%U decimal week of the year: Sunday isthe first day of the week; all days preceding the first Sunday of the
year arein week 0 (from 00 to 53)
%w decimal day of the week: Sunday isthe first day of the week (from 00 to 06)
%W decimal week of the year: Monday is the first day of the week; all days preceding the first Monday of
the year are in week 0 (from 00 to 53)
%x local date representation
%X local time representation
%y decimal year without century (from 00 to 99)
%Y decimal year with century
%Z time zone name (if time zone name exists)
%% % character
Field specifiers may be expressed as:
[— | O]field_specifier.p
where
— left-justify the field (right-justification is the default)
0 right-justify the field and pad with zeros on the left
.p minimum number of digits to display for decimal fields or the maximum number of characters to
for alphabetic fields. For decimal fields, empty character positions are filled with leading zer
character fields, excess characters are truncated on the right.
Default if not specified: 24-character string with the format:
Sun Sep 16 01:03:52 1973

Description:

The asctime() function returns the date/time of clock as a character string. It is equivalent to the C- library asctime()

function.

If format is given, asctime() returns the date/time string in the specified format. The field specifiers used in format are
equivaent to those used in the C-library strftime() function.

asin()

Return the arcsine of the argument.

Format

asin(sine)

Parameter

Parameter

Definition

sine

Valid range: - sine< 1

Description

The asin() function returns the arcsine of sine; that is, the length in radians of the arc whose sine is sine. The output range
for the asin() function isr2 < asin()< 2.

atan()

Return the arctangent of the argument.

82 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Format
atan(tangent)
Parameter
Parameter Definition
tangent Valid range:—o < tangent < co
Description

The atan() function returns the arctangent of tangent; that is, the length in radians of the arc whose tangent istangent.

The output range for the atan() function is¥2 < atan()< 1v2.

cat()
Return the content of afile asasingle text string.
Format
cat(filename)
Parameters
Parameter Definition
filename Name of the file whose contents are to be returned
Description

The cat() function returns the contents of file filename as a single string or the NULL string on error. New-lines are
preserved so that the foreach statement can be used to process the returned string as alist of the linesin filename.

Example
The following SMSL statements list the names of userslisted in the UNIX system password file.
people = cat("/etc/passwd”);
foreach person (people)
{
name = ntharg(person, 1, ":");

printf("name of person is.:%s’, name, "\n");

}

ceil()

Return the smallest integer that is not less than the argument.
Format

ceil(argument)
Parameter

Parameter Definition
argument Numeric argument whose least integer upper bound is to be determined

Description

The ceil() function returns the smallest integer that is not less than argument; that is, the least integer upper bound for
argument.

ITU-T Rec. X.753 (1997 E) 83

| SO/IEC 10164-21 : 1998 (E)

The ceil() function and the floor() function together bracket argument such that the following are true:
— If argument is an integer: ceigrgument) = argument = floor(argument).

— If argument is not an integer: flooafgument) < argument < ceil@argument) and
ceil(argument) = floor(argument) + 1.

chan_exists()

Verify that a process or file channel exists.

Format
chan_existsthannel)
Parameter
Parameter Definition
channel The process or file I/O channel name (shared channels) or number (local channels) that is being verified
Description

The chan_exists() function returns 1 if the local or shared channel exists and 0 if it does not.

The chan_exists() function return value can be used with condition variables for synchronizing one SMSL process to wait
until another has opened a channel using either the popen() or fopen() function.

close()
Close a file or process channel.
Format
closeghannel flags)
Parameters
Parameter Definition
channel The process or file [/O channel name (shared channels) or number (local channels) that is to be closed
flags Optional bit flags used to control close execution. The following bits are used:
Bit 1 = 1 indicates that any system process associated with the channel (that is, the SMSL fopen() or
popen() function) should be killed while closing the channel.
Bit 2 = 1 indicates that the channel should be closed even if another SMSL process is blocked waiting for a
read(), readin(), or write() function. Bit 2 applies only to global channels and isignored by local channels.
Default if not specified: Bits 1 and 2 are both zero.
Description

The close() function closes a channel to a process or command previously created by a fopen() or popen() call.
When flags is not specified, the default is zero.

When bit 1= 0, the close() function does not kill any processes spawned as a result of the fopen() or popen(); and these
processes are allowed to continue. This feature of close() allows you to open a channel to a SMSL process, send
additional data, and close the channel while allowing the process to complete.

When bit 2= 1, the close() function will close the channel even if another SMSL process is blocked pending an I/O
request on that channel. When blocking occurs, close() causes the blocked function to wake and receive an error return
and errno from the process to which the channel was opened.

The close() function returns the NULL string if the closure was successful and —1 with the SMSL variable errno set if the
closure was unsuccessful. The close() function fails when bit02and channel is a global channel with at least one
blocked SMSL process.

84 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Example

close the channel represented by variable chan

close(chan);
concat()

Concatenate two strings.
Format

concat(stringl, string2)
Description

The concat function causes the concatenation of two strings.
For example, concat(“ab”,”cd”) returns “abcd”.
cond_signal()
Signal a process that is blocked on a condition wait.
Format
cond_signalfondition_variable,all)

Parameters

Parameter Definition

condition_variable Name of the variable that will unblock a process blocked by the cond_wait() function

all Non-NULL value that directs the cond_signal() function to unblock all SMSL processes that are blocked
waiting for condition_variable

Description

The cond_signal() function can signal another SMSL process that is currently blocked for a cond_wait() function on
condition_variable. If all is specified and is not the NULL string, the cond_signal() function will wake all
SMSL processes that are blocked on condition_variable. If no processes are blocked on condition_variable, the
cond_signal() function has no effect. The cond_signal() function can never block and always returns the NULL string.

cond_wait()
Block a process until a condition signal is received.
Format
cond_wait€ondition_variable,lockname,timeout)
Parameters
Parameter Definition

condition_variable Name of the variable that will end the cond wait() condition. condition_variable is issued by the
cond_signal() function.

lockname The name of the lock the cond_wait() function should attempt to acquire when it receives the correct
unblocking condition_variable in the cond_signal() function. If lockname is the NULL string, the
cond_wait() function will not attempt to acquire alock after receiving condition_variable.

timeout Number of seconds to wait for the receipt of condition_variable before unblocking and releasing lockname.
Valid range:

timeout > 0 specifies the timeout value in seconds;

timeout < 0 specifies an infinite timeout; only the receipt of condition_variable can unblock the process;
timeout = 0 is not permitted and will resultin a SMSL run-time error message.

Default if not specified: Infinite timeout.

ITU-T Rec. X.753 (1997 E) 85

| SO/IEC 10164-21 : 1998 (E)

Description

The cond_wait() function blocks the current SMSL process until either condition_variable is received or until timeout
expires. If the SMSL process holds lockname when the cond_wait() function is issued, the cond_wait() function releases
the lock. When the cond_wait() function receives condition variable, the cond wait() function immediately attempts to
acquire lockname.

If the cond_wait() function returns a 1, it will always hold an exclusive lock on lockname. If the cond_wait() function
fails, it will not hold any form of lock on lockname when it returns. If atimeout occurs, the cond_wait() function returns a
failure value of “0,” sets the SMSL errno to E_SMSL_TIMEOUT and will not hold any lockazkname.

condition_variable

lockname

condition_variable is the name of the condition variable that the cond_wait() function waits to have signaled by
the cond_signal() function. Condition variable names have global scope analogous to locks and shared
channels.

None of these different global scopes interfere with one another. You can use the same name without conflict
for a lock, a shared channel, and a condition variable.

On entry to the cond_wait() function, the process releases thioliciame and blocks waiting to be signalled.
lockname should usually be an exclusive lock held by this process; otherwise, run-time error messages may
occur (although the cond_wait() function will still try to go ahead and wait for a signal anyway). The
cond_wait() function will always block waiting for the cond_signal() function or for timeout.

When another SMSL process performs a cond_signal() function that wakes this SMSL process, the cond_wait()
function call will attempt to gain an exclusive lock (if a lock is requested; thatl@kifame is not the empty
string) and either return immediately with the lock or join the queue waiting for an exclusive lockname.

It is common style to suppliockname since condition variables are almost always shielded by locks. In the
cond_wait() function]ockname must be supplied as the NULL string rather than omitted to force the SMSL
coder to consider whether a lock is needed. The regigackdame will reduce the number of errors caused by
not using a lock when one is needed.

timeout
timeout behaviour is unchanged regardless of whether the cond_wait() function is waiting for a cond_signal()
function or waiting to acquirkockname. If condition_variable or lockname is destroyed before the cond_wait()
function is complete, the cond_wait() function returns O and sets the SMSL errno value but will not hold any
lock onlockname.
lockname can be the NULL string, in which casendition variable is considered to have no associated lock;
and the cond_wait() function will return success immediately upon being signaled without waiting for any lock.
cos()
Return the cosine of the argument.
For mat
cosfadians)
Parameter
Parameter Definition
radians Arc length in radians whose cosineis to be determined
Valid range: —o < radians < o
Description

The cos() function returns the cosine of radians.

The output range for the cos() function ks<-cos()< 1.

86

ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

cosh()
Return the hyperbolic cosine of the argument.
Format
cosh(argument)
Parameter
Parameter Definition
argument Numeric value whose hyperbolic cosineis to be determined
Valid range: <o < argument < oo
Description

The cosh() function returns the hyperbolic cosine of argument. The hyperbolic cosine is defined by the expression:
cosh(x) = (ex +e —x)/2

where e is the base for the natural logarithms=(8.71828 . . .). The output range for the cosh() function is
1< cosh()< .

date()
Return the date and time as a 24-character string.
Format

date()

Description
The date() function returns the current date and time as a 24-character string in the format:
Sun Sep 16 01:03:52 1973

The date() function is equivalent to the C-library ctime(3) function. The date() function is also equivalent to the
SMSL statement:

asctime(time());

Example
The following examples highlight the usage of the date() function.
Assign the Current Date and Time to a Variable:
today= date();
debugger ()
Suspend process pending an attach command from the SMSL debugger.
Format
debugger()
Description

The SMSL debugger() function suspends the current SMSL process waiting for an attach command from the
SMSL debugger. The debugger() function complements options within the SMSL debugger that suspend
SMSL processes. The debugger() function offers a low-level methodpgfisg a SMSL process for daging before it

begins.

Although modifying SMSL source code to debug a particular script may not be convenient, the debugger() function
provides a general method whereby all SMSL code can be debugged.

ITU-T Rec. X.753 (1997 E) 87

| SO/IEC 10164-21 : 1998 (E)

The only way to restart a SMSL function suspended through the debugger() function is through the SMSL debugger. If
the SMSL processis aready being processed by the SMSL debugger, a call to the debugger() function call has no effect.
The debugger() function always returns the NULL string.

destroy()
Destroy a SMSL object.
Format
destroy(object, description)
Parameters
Parameter Definition
object The aphanumeric identifier for the object. object is assigned when the object is created.
description Optional text string that can be used to explain why the object was destroyed. The text string must be
enclosed in double quotation marks.
Description

The destroy() function deletes the application instance object. The destroy() function returns TRUE on success, and
FALSE on error.

Example

destroy object whose nameisin variable <name>
destroy(name);

Default if not specified: NULL string

difference()
Return the list of elements that are unique to a specified SMSL list.
Format
difference(listd list2,list3,list4 . . . listn)
Parameters
Parameter Definition
listl SMSL list whose elements are being compared against the elements of all other specified lists
list2...listn One or optionally more lists whose elements are compared against list1
Description

The difference() function returnsa SMSL list with all elements of listl that are not in any of thelistslist2 . . . listn. If listl
isthe NULL list, theresult isthe NULL list.

listl may contain duplicates. Duplicates in listl appear in the return list in same order and number as they appeared
in listl, provided that they were not removed by matches with the other lists in the difference() function.

All elements that are returned from listl remain in the same order in the return list. If the return list is not the NULL set,
the returned set is delimited by new-line characters; that is, al set elements end with a new-line character.

execute()
Execute a command of a specified type.
Format

execute(type,command,instance)

88 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Parameters
Parameter Definition
type Command processor that should interpret and execute command
Valid range: The built-in command types OS or SMSL or avalid user-defined command type.
command Syntax of the submitted command
instance The application instance against which command should execute
Default if not specified: The application instance that is the nearest ancestor of command.
Description

The execute() function executes a command of any type and returns any output that it produces to stdout or stderr. The
status of command is saved in the SMSL variable exit_status.

Example
SQL datais returned into the buffer "data’
data = execute("SQL", "select * from user_objects");
exists()
Verify the existence of a SMSL object.
Format
exists(object,inherit)
Parameters
Parameter Definition
object The aphanumeric identifier for the object whose existence is being verified. Object is assigned when the
object is created.
inherit Boolean expression controls whether exists will search the entire inheritance hierarchy to verify the
existence of object:
If inherit = TRUE, do not search the inheritance hierarchy.
If inherit = FALSE and if object is not areference to an absolute object, search the inheritance hierarchy.
Description

The exists() function returns TRUE if object exists; FALSE otherwise. The exists() function is useful in application
discovery procedures that determine whether a discovered instance has previously been discovered and instantiated in the
object hierarchy.

Example

Check if we have created the user before
if (exists(name))

printf(“%f”,name);

printf("User name does not exist");

exp()
Return the base of the natural logarithms e raised to a power.

ITU-T Rec. X.753 (1997 E) 89

| SO/IEC 10164-21 : 1998 (E)

Format
exp(exponent)
Parameter
Parameter Definition
exponent Numeric value to which the natural base eisraised
Description

The exp() function returns the val ue e®Ponent \where e is the base of the natural logarithms (e = 2.71828 . . .).

fabs()
Return the absolute value of an argument.
Format
fabs(argument)
Parameter
Parameter Definition
argument Floating point value whose absolute value is to be determined
Description

The fabs() function returns the absolute value of argument; that is:

e argument if argument = 0;

e —argument if argument < 0.

file()

Return file information.

Format

file(filename,dummy)

Parameters

Parameter

Definition

filename

Name of the file whose last modification date is to be returned

dummy

Dummy variable that specifies expanded file information in the form:

modtime atime ctime mode size numlinks type

modtime is the last modification date expressed as the number of seconds since midnight, January 1, 1970.
atimeisthe last access time expressed as the number of seconds since midnight, January 1, 1970.
ctimeisthe last change of status expressed as the number of seconds since midnight, January 1, 1970.
mode is the file permissions expressed as an octal integer.

sizeisthe length of the file expressed as a number of characters.

numlinks the number of linksto the file within the file system.

typeisacharacter string indicating thefile type:

FILE ordinary user datafile

DIR directory

SPECIAL character specia file

BLOCK block specid file

FIFO pipeor

FIFO LINK symbolic link

SOCKET socket (not available on al platforms)

UNKNOWN unknown file type, possibly a LINK or SOCKET on platforms where the UNIX stat()
function cannot determine the type; that is, where S ISLINK or S_ISSOCK are undefined.

90 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Description

The file() function returns the last modification time of file filename as the number of seconds since midnight, January 1,
1970. If the file does not exigt, the file() function returns the NULL string. This function is useful for testing the existence
of afile.

NOTE 1 - The file() function return values depend on the operating system and in some cases the file system. Some
non-UNIX platforms may not return all return values or may return one or more meaningless return values. For a specific
platform, the file() function will generally return the same information as the C-programming language stat() function.

The user does not need permission to read the file but does require search permission on each directory in the path name
leading to filename. If the user does not have such permission, the file() function fails and returns the NULL string.

The value of dummy isignored, but its presence causes the file() function to return amore detailed string of information.

Examples
The following examples highlight the usage of the file() function.
Print Last Modification Date of the UNIX System Password File
printf(“%s”,asctime(file("/etc/passwd™)));
modification time
Test for the Existence of a File

if (file("some_file"))

{
printf("File exits!");
}
else
{
printf("File does not exist.");
}
floor ()
Return the largest integer that is not larger than the argument.
Format
floor(argument)
Parameter
Parameter Definition
argument Numeric argument whose greatest integer lower bound is to be determined
Description

The floor() function returns the largest integer that is not greateratigament; that is, the greatest integer lower bound
for argument.

The floor() function and the ceil() function together brackgument such that the following are true:

If argument is an integer: ceiérgument) = argument = floor(argument)

If argument is not an integer: flooafgument) < argument < ceil(argument) and ceilérgument) = floor(argument) + 1
fmod()

Return the floating point remainder of a division operation.

ITU-T Rec. X.753 (1997 E) 91

| SO/IEC 10164-21 : 1998 (E)

Format
fmod(dividend,divisor)
Parameters
Parameter Definition
dividend The floating point value whose remainder will be returned after being divided by divisor
divisor The floating point value that will divide dividend
Description

The fmod() function returns the floating point remainder of the division (dividend)/(divisor).

fopen()
Open aSMSL channel to afile.
Format
fopen(filename, mode)
Parameters
Parameter Definition
filename Name of the file to which the SMSL channel should be opened
mode The file access mode. Valid ranges:

r Open for read
w Truncate to zero length for write or create file for write
a Open for append to end of file or create for write
rb Open binary file for read
wb Truncate binary file to zero length for write or create binary file for write
ab Openbinary file for append at end of file or create binary file for write
r+ Open for read and write (update)
w+ Truncate to zero length for read and write or create for read and write
at Openfor read and write at end of file or create file for read and write
r+b Open binary file for read and write (update)
w+b Truncate binary file to zero length for read and write or create binary file for read and write
atb Open binary file for read and write at end of file or create binary file for read and write

Description

The fopen() function opens a channel to filename that provides the access to filename from within a SMSL process.
The read(), write(), get_chan_info(), share(), and close() functions apply to channels that have been opened to files.

When supported by the underlying operating system, the fopen() function performs security checks to determine whether
the user name of the calling process has permission for the request.

If the fopen() function is successful, it returns the SMSL channel number to filename. A failure to open filename, such as
an operating system problem or invalid mode, sets the SMSL errno value and causes the fopen() function returns the
NULL string without attempting to open the file.

Support for binary file access

The fopen() function permits binary modes with a b character though there is no way within a SMSL process to write any
form of binary data other than character strings.

Flush afile after each SMSL file operation

The SMSL functions ensure that a file is flushed after every operation so that the well-known bug of doing a
write-then-read or read-then-write without an intervening fseek rewind or fflush does not occur in SMSL file operations.

92 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

fseek()
Set the file position indicator.
Format
fseek(channel ,offset,whence)
Parameters
Parameter Definition
channel Thefile 1/0O channel returned when the file was opened by the fopen() function
offset Number of bytesto be added to whence to obtain the file position
whence Standard point within afile to which offset is added to obtain the new file position
Valid range: One of the following integer values:
0 SEEK_SET, the beginning of thefile
1 SEEK_CURR, the current file position
2 SEEK _END, theend of thefile
Description

The fseek() function sets the filename position indicator to the whence position plus offset bytes. If whence isinvalid, the
fseek() function defaults to whence = 0 and raises arun-time error but completes the file seek operation.

NOTE 2 — Issuing the fseek() function against binary files with when@e(SEEK_END) is not meaningfully supported on all
platforms.

The fseek() function returns O for success and —1 for failure. For an invalid channel, that is, for a pipe channel instead of a
file channel, the fseek() function returns —1, raises a run-time error and sets the SMSL errno variable.

fseek and append filemode

Using the fseek() function to change the file position indicator in a file opened in append mode; that is, modesta, ab or a
will not prevent writes to the end of the file using the write() function.

Example

SMSL contains no equivalent to the C-rewind() function, but the following fseek() function example is the equivalent of
the C-function rewinahannel):

fseek(channel,0,0);

ftell()

Return the file position indicator.
Format

ftell(channel)
Parameter

Parameter Definition
channel Thefile 1/0O channel returned when the file was opened by the fopen() function

Description

The ftell() function returns the file position indicator as the integer number of bytes from the beginning of the file. For an
invalid channel, that is, a pipe channel instead of a file channel, the ftell() function returns —1, raises a run-timd error, a
sets the SMSL errno variable.

The typical result of both the C and SMSL versions of the ftell() function is the number of characters written to or read
from a file, except on those platforms that perform CR/LF U new-line conversions on text files. However, the value of the
ftell() function after executing an fseek() function to the end of file is usually the total number of characters in the file.

ITU-T Rec. X.753 (1997 E) 93

| SO/IEC 10164-21 : 1998 (E)

Thefollowing SMSL functions change the file position indicator:

fopen();
« fseek();
« read();

e readin();
o write().

The get_chan_info() function does not change the file position indicator. The close() function makes channel invalid.
full_discovery()
Verify that the processis currently in afull discovery cycle.
Format
full_discovery()
Description

The full_discovery() function returns TRUE if the SMSL script containing it is an application discovery script and it is
currently in afull discovery cycle. Otherwise, the full_discovery() function returns FAL SE.

A full discovery cycle is done after the agent’s process cache is refreshed. This flag therefore indicates whether the
process cache has been refreshed since the last time the script was executed.

Example

The following example tests whether the SMSL script is in a full discovery cycle and exits the script if it is not.
If we are not in a full discovery cycle
we can exit immediately

if ('full_discovery())

{
exit;
}
get()
Return the current value of a variable.
Format
getfvariable)
Parameter
Parameter Definition
variable Name of the variable whose current value will be returned
Description

The get() function returns the current value of variableardfable is a relative name and does not exist in the context of
the SMSL script, the get() function successively searches each ancestor’s contesdriattié is found or until the
search fails in the context of the computer.

Example
The following example returns the current status of RDB database Dev.

get ("/RDB/Dev/status");

94 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

get_chan_info()

Return status information from a SMSL file or process channel.

Format
get_chan_info(channel,flags)
Parameters
Parameter Definition
channel Channel name (shared channels) or number (local channels) whose status should be reported or "
indicating al channels should be reported (subject to flags control)
flags Integer value representing two binary flags that controls the output of global and local channel information
asfollows:
1 global channelsonly
2 local channelsonly
3 both global and local channels
Default if not specified: 1
Description

The get_chan_info() function returns channel information a string with the format

name status details type scope read _pid read _namewrite pid write_name

Specifying:
get_chan_info("");

causes the get_chan_info() function to return descriptions for al globa shared channels. The descriptions are formatted
as anew-line separated list, one line per channel.

Field definition
name One of the following:
* scope=SHARED - Channel name.
* scopelLOCAL — Local channel number.

» scope" — All shared and local channels.

status OPEN or CLOSED
details One of the following:
» fopen() channel — File name that is opened or NONE if no file name is open;
« popen() channel — Process ID of the external operating system process to which the channel is attached; or
» -1 if the process has terminated.
type PIPE or FILE
scope SHARED or LOCAL
read_pid One of the following:
» Process ID of the SMSL process waiting to read from the channel.
e —1if no process is waiting.
read_name One of the following:
* Name of the process waiting to read from the channel.
* NONE if no process is waiting.

 UNAVAILABLE if there is a process but the name is not available.

ITU-T Rec. X.753 (1997 E) 95

| SO/IEC 10164-21 : 1998 (E)

write_pid One of the following:

» Process|D of the SMSL process waiting to write to the channel.

e —1if no process is waiting.
write_name One of the following:

* Name of the process waiting to write to the channel.

* NONE if no process is waiting.

* UNAVAILABLE if there is a process but the name is not available.
Specifying

get_chan_info(

flags);

causes the get_chan_info() function to return all the local or global channels for the current SMSL process as controlled
by the value of flags. Note that the following get_chan_info() functions are equivalent, for both return the list of global
channels:

get_chan_info("");
get_chan_info("",1);

The get_chan_info() function produces a run-time warning if flags is non-numeric or not greater than zero, but the SMSL
variable errno is not set to any value. The SMSL interpreter ignores flags without error if channel is not the empty string.

The get_chan_info() function returns all the fields for each channel even if they do not apply to the particular channel.

The get_chan_info() function returns the NULL string if:
» there are no global shared and/or local channels for the given value of flags;

* jtreceives a bad channel number or name.

In this case, the get_chan_info() function also sets the SMSL errno variable.

getenv()
Return the string value of a SMSL environment variable.
Format
getenvyariable)
Parameter
Parameter Definition
variable Name of the object whose value isto be returned
Description

The getenv() function returns the string value of variable in the environment of the SMSL script. The variable value can
be returned from any of the following places:

* the parameter’s defined environment variables;
» the application’s defined environment variables;
» the computer’s defined environment;

» the environment of the Agent at the start of its execution.

The getenv() function searches the environment tables in stated order and returns the value of the first matching variable.
The getenv() function returns the NULL string if variable is not defined and sets the SMSL errno variable to a non-zero
value. If the getenv() function is successful, it returns the value of variable and sets the SMSL errno variable to zero.
Hence, you can use errno to distinguish an undefined variable from one that is set to the NULL string.

96 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Example
This SMSL example presents a function that tests whether an environment variable exists.

functionis_environment_var_defined(name)

{
getenv(name); # Throw away return value of getenv
return (errno == 0); # errno is only zero if name is defined
}
get_vars()
Return the list of variables for a SMSL object.
Format
get_vars(object,showchildren)
Parameters
Parameter Definition
object Optional name of the object whose variables are to be listed
Default if not specified: Current object
showchildren Optional flag whose non-zero value indicates get_vars() should also list the subobjects of object.
Default if not specified: 0
Description

The get_vars() function returns alist of the variables of object or for the current object if object is omitted. The get_vars()
function returnsthe NULL string if object does not exist.

Thelist of object variablesis sorted in ascending alphabetical order.

grep()
Return the lines from atext block that match a regular expression.
Format
grep(regular_expression,text,v)
Parameters
Parameter Definition

regular_expression Character sequence that defines the pattern that the grep function searches for in text. regular_expression
conforms to the regular expressions defined in the UNIX ed(1) command and the UNIX regexp(5)
description. Following is a brief summary of several regular expression characters:

~ beginning of line \< beginning of a word $ end of line \> end of a word . match any single character *
match zero or more repetitions of the preceding [] match any of the characters contained within [*] match
any characters except those contained within.

text Text to be searched for matches to regular_expression. text can be a text string enclosed in double
quotation marks, or one or more SMSL commands that produce text as output.

Y The character v reverses the output of the grep() function, causing the grep() function to output al linesin
text that do not contain a match for regular_expression. Thisflag is similar to the UNIX grep -v flag.

Description
The grep() function returns alist of the linesin text that match regular_expression.

If a character other than v is submitted as the grep() function reverse matching flag, the SMSL interpreter returns a
run-time error message.

ITU-T Rec. X.753 (1997 E) 97

| SO/IEC 10164-21 : 1998 (E)

Example
search for "martin” substring in /etc/passwd
al_lines=cat("/etc/passwd");
#fill abuffer with passwd

matching_lines=grep("martin",all_lines);

history()
Return history information from the history database.
Format
hi story(parameter ,format,number)
Parameters
Parameter Definition
parameter Name of the object whose history should be returned. The expression ““ indicates the current parameter.
parameter can be:
the absolute path, such as "/APP/INST/PARAM" a relative path, such ap
or "../DIFFERENTINST/PARAM".
parameter can be " or "." for the current parameter’s history.
Default if not specified: Current parameter
format Optional character string inside double quotation marks that specifies the foreaahdfistory() function
entry. Valid Values:
n return the number of available data points as the first value in the return list t include the time stamp of
each entry in the return list v include the value of each history entry in the return list
Default if not specified: ntv
number Optional numeric value that limits the number of entries the history function will return.
Default if not specified: 50
Description

The history() function accesses the parameter history database and returns a list containing the number of data points
available followed by a number of entries.

The history() function returns the empty string, produces a run-time error, and sets the SMSL errno variable if a bad
format character is provided.

Because of the defaults provided in the history() function, the following function specifications are equivalent:
history(parameter)
history(parameter,”ntv",50)

History output format

The history() function will return any of the following formats, depending on which format flags are set:
e number_entries\nif thenflagis set;
e value\n, time\n, or valuetime\n if the v, t, and vt flags are set.

The history() function separates the values of an entry with spaces and successive entries with new-line characters.

Y ou can use the nthline(list1) function to get the number of points from the head of the list and also to extract the entries.
Entries can be split if necessary into time and data values using the ntharg() function. The entries will be single values if
either thet or v flag is absent.

index()

Return the starting position of one string within another.
Format

index(text,string)

98 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Parameters
Parameter Definition
text Text to be searched for the occurrence of string. text can be a text string enclosed in double quotation
marks, or one or more SMSL commands that produce text as output.
string One or more characters enclosed in double quotation marks that are to be located within text
Description

The index() function returns the position in text at which string begins, or O if string does not occur in text. The first
positionin text is position 1.

int()
Return the largest integer that is not greater than the argument.
Format
int(number)
Parameter
Parameter Definition
number Numeric value or numeric variable
Description

Theint() function returns the largest integer that is not greater than number.

internal()
Process a command interna to the Agent.
Format
internal (command)
Parameter
Parameter Definition
command Text string that is the command the Agent should process.
Description

The internal() function causes the Agent to process the string command internally and in a platform-specific manner. The
internal () function returns the command output if successful. If unsuccessful or if the command is not supported on the
specific platform, the internal() function returns the NULL string and sets the SMSL variable errno
to E_SMSL_NOT_SUPPORTED.

The internal () function is designed to be used for user and process monitoring and resource inquires that can be handled
inside the Agent. In these cases, the internal() function is much more efficient than invoking a separate command that
requires acall to the SMSL interpreter or some other command processor.

inter section()

Return alist containing elements that are common to dl specified lists.

Format
intersection(listl,list2,list3list4 . . . listn)
Parameters
Parameter Definition
listl...listn Two or more SMSL lists that are being evaluated for common elements

ITU-T Rec. X.753 (1997 E) 99

| SO/IEC 10164-21 : 1998 (E)

Description
Theintersection() function returnsa SMSL list containing the elements that appear in al thelistslistl . . . listn.

The returned list is not well-defined and will contain duplicates if duplicates were present in al lists in the same number
and order. The elementsin the list returned by the intersection function appear in the same order asthey werein listl.

If any lists are the NULL list, the return valueis the NULL list; otherwise al entriesin the returned list are terminated by
anew-line character.

isnumber ()
Verify that astring is avalid numeric representation.
Format
isnumber(string)
Parameter
Parameter Definition
string String that is to be evaluated as meeting the criteria for a numeric expression
Description

The isnumber() function returns a Boolean value of 1 if variable is a string that is considered valid as a number or “0” if it
is not.

A valid number has only digits, periods, or minus signs for every character in variable. White space or any other invalid
character anywhere in the string causes the isnumber() function to return 0. The isnumber() function returns O for the
NULL string.

is var()
Verify that a SMSL object variable exists.
Format
is_varbject)
Parameter
Parameter Definition
object Name of the object that isto be verified as avariable
Description

The is_var() function returns TRUE if object exists and is a variable. The is_var() function returns FALSE if:
e object does not exist;
» object exists but is not a variable (that is, it is an application instance or a parameter).

length()
Return the number of characters in a string.

Format
lengthfext)

Parameter

Parameter Definition
text Text to be counted for character length. text can be atext string enclosed in double quotation marks, or one
or more SMSL commands that produce text as output.

100 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Description
The length() function returns the length in characters of text, including new lines.
lines()
Return the number of linesin a string.
Format
lines(text)

Parameter

Parameter Definition

text Text to be counted for number of lines (that is, new-line characters). text can be the name of atext file, a
text string enclosed in double quotation marks, or one or more SMSL commands that produce text as
output.

Description

The lines() function returns the number of new-line characters in text. The lines() function is useful for returning the
length of alist because the itemsin alist are delimited by new lines.

lock()
Acquire a SMSL process lock.
Format
lock(lockname, mode,timeout)
Parameters
Parameter Definition
lockname Name of the lock that should be acquired
mode Optional control permitted under the lock.
Valid range:
S shared
r reader
w writer
X exclusive
Default if not specified: x
If the first letter of modeisnot s, r, w, or x arun-time error occurs and mode defaults to x (exclusive).
timeout Optional integer value that specifies the number of seconds before the lock request expires.
Valid range:
timeout > 0 is the integer number of seconds the lock request is valid.
timeout = 0 means non-blocking lock request
timeout < 0 meansinfinite timeout period (that is, wait until the lock is released)
Default if not specified: Infinite timeout
Description

The lock() function requests a lock with name lockname. The mode of the request specifies either shared (reader) or
exclusive (writer) access under the lock. The optional timeout specifies the number of seconds the request isvalid.

The default behaviour of lock() function is to request an exclusive lock with an infinite timeout period. The lock()
function returns 1 for success and O for failure.

Locksand SMSL

Lock names are global to the Agent; thus:
o al SMSL processes share the same table of locks;
» different SMSL processes can share parameter lock names to perform concurrent actions.

ITU-T Rec. X.753 (1997 E) 101

| SO/IEC 10164-21 : 1998 (E)

There is no way to enforce lock naming scope. It is recommended that lock names in SMSL programs be uniquely
encoded using the name of the application. This practice will avoid potentia clashes with other SMSL programs.

Shared lock requests

Shared lock requests for a lock that is currently in share mode are granted — unless there is a waiting write request. Giving
priority to a waiting write request prevents the lock mechanism from starving write processes.

Requestsfor locks already held
It is possible to request a lock that you already hold although it is not good style:
* requesting a lock that you already hold is ignored;

* requesting a shared lock on a lock you already hold with exclusive access is also ignored.

Requesting an upgrade to exclusive access of a lock currently held as shared succeeds and upgrades the lock provide:
you are the only process that is using the shared lock. If you are not the only process using the lock, the lock() function
immediately returns 0 in non-blocking mode (regardless of the value of timeout because blocking would cause immediate
deadlock by waiting for yourself!).

Rather than using this upgrade feature, it is recommended that you call the unlock() function to release the shared lock
before attempting to acquire the new exclusive lock. Lock tracing is possible using the SMSLDebug variable.
SMSLDebug can be useful in debugging multiprocess lock interactions.

Failure of thelock function
The lock() function can fail if:

¢ anon-blocking request fails;

e timeout is exceeded before the lock is granted.
The lock() function can fail for an infinite timeout if:

e aspecial-case upgrade request is granted;

« the system has performed some external deadlock correction.

loge()
Return the natural logarithm of the argument.
Format
loge@rgument)
Parameter
Parameter Definition
argument Numeric value whose natural logarithm is to be determined.
Valid range: argument > 0
Description
The loge() function returns the logarithm of argument with respect to the natural logarithm=@s&1828 . . . The

output range for the loge() function i< loge() < co.
1og10()

Return the logarithm to base 10 of the argument.
Format

log10(@rgument)

102 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Parameter
Parameter Definition
argument Numeric value whose base 10 logarithm is to be determined.
Valid range: argumern 0
Description

The 1og10() function returns the logarithm of argument with respect to base 10.

The output range for the log10() function is < 10g10() < co.

ntharg()
Return a formatted list containing fields from a text string.
Format
nthargext,arguments,delimiters,separator)
Parameters
Parameter Definition
text Text to be separated into fields by the ntharg() functiext. can be a text string enclosed in dou
guotation marks, or one or more SMSL commands that produce text as output.
arguments Integer list specifying the field numbers ntharg() should look faaich line of text. Fields are specified
follows:
xy field x and field y x-y all fields from x to y inclusive -x all fields from 1 to x inclusive x- all fields frg
to the new-line character inclusive
delimiters One or more characters that ntharg() should treat as field separators when examining text.
Default if not specified: space andtdk)
separator Optional character that should be placed between each field of ntharg() output
Default if not specified: new-line character ()
Description

The ntharg() function returns the arguments in text.

ble

as

m X

The ntharg() function normally interprets each line in text as a white space-separated (space or tab) list of fields. If
delimiters is given, it specifies the list of characters that ntharg() should treat as field separators. The ntharg() function
normally returns selected fields as a new-line delimited list. If separator is given, it specifies the delimiter to be placed
between items in the returned list.

NOTE 3 — The difference between the ntharg() function and the nthargf() function is as follows:

Example

The following example prints the login name and home directory of each user listed in the UNIX system password file.

foreach user (cat("/etc/passwd"))

{

printf(ntharg(user,"1,6",":","\t"),"\n");

ITU-T Rec. X.753 (1997 E) 103

The ntharg() function treats each delimiter that followsoa-delimiter character as the end of a field. The
ntharg() function interprets two or more adjacent delimiters as a single delimiter.

The nthargf() function treats each delimiter as the end of a field. The nthargf() function interprets two or more
adjacent delimiters as delimiting one or more NULL strings whose content can be requested and returned.

| SO/IEC 10164-21 : 1998 (E)

Linction

nthargf()
Return aformatted string containing fields from atext string.
Format
nthargf (text,arguments,delimiter s,separator)
Parameters
Parameter Definition
text Text to be separated into fields by the nthargf() functiert can be a text string enclosed in double
guotation marks, or one or more SMSL commands that produce text as output.
arguments Integer list specifying the field numbers nthargf() should look faach line of text. Fields are specified| as
follows:
xy field x and field y x-y all fields from x to y inclusive -x all fields from 1 to x inclusive x- all fields frgm x
to the new-line character inclusive
delimiters One or more characters that nthargf() should treat as field separators when examining text.
The nthargf() function treats each occurrence of delimiters as delimiting a field. The nthargf() f
interprets two or more adjacent delimiters as delimiting one or more NULL fields.
Default if not specified: space and)
separator Optional character that should be placed between each field of nthargf() output
Default if not specified: new-line character ()
Description

The nthargf() function returns the argumentsin text.

The nthargf() function normally interprets each line in text as a white space-separated (space or tab) list of fields. If
delimitersis given, it specifies the list of characters that nthargf() should treat as field separators. The nthargf() function
normally returns selected fields as a new-line delimited list. If separator is given, it specifies the delimiter to be placed
between items in the returned list.

NOTE 4 — The difference between the nthargf() function and the ntharg() function is as follows:

The nthargf() function treats each delimiter as the end of a field. The nthargf() function interprets two or more
adjacent delimiters as delimiting one or more NULL strings whose content can be requested and returned.

The ntharg() function treats each delimiter that followsoa-delimiter character as the end of a field. The
ntharg() function interprets two or more adjacent delimiters as a single delimiter.

m X

nthling()
Return specified lines from atext string.
Format
nthline(text,lines,separator)
Parameters
Parameter Definition
text Text to be separated into lines by the nthline() functiert can be a text string enclosed in double
guotation marks, or one or more SMSL commands that produce text as output.
lines Integer list specifying the line numbers nthline() should look for in text. Lines are specified as follows:
xy line x and line y x-y all lines from x to y inclusive -x all lines from 1 to x inclusive x- all lines fr
to EOF character inclusive
separator Optional character that should be placed between each field of nthline() output
Default if not specified: new-line character ()
Description

The nthling() function returns the lines of text separated by new-line characters. If you specify a separator, the nthling()
function will use separator to separate lines.

104 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

NOTE 5 — The difference between the nthlinef() and nthline() functions is as follows:
e The nthlinef() function treats each new-line character as a line.

e The nthline() function treats only a non-empty line (that is, a line with a non-new-line characeedipg a
new-line character) as a line.

Example
Thefollowing SMSL script prints the top five processes executing on a UNIX system.
print the top five processes
printf(“%s”, nthline(system("ps -eaf"),"2-6"));
nthlinef()
Return specified lines from a text string.
Format
nthlinef(text,lines,separator)

Parameters

Parameter Definition

text Text to be separated into lines by the nthlinef() functiexi.can be a text string enclosed in double quates,
or one or more SMSL commands that produce text as output.

lines Integer list specifying the line numbers nthlinef() should look for in text. Lines are specified as follows:

xy line x and line yx-y all lines from x to y inclusive x-all lines from 1 to x inclusives- all lines from x|
to EOF character inclusive

separator Optional character that should be placed between each field of nthlinef() output
Default if not specified: new-line character ()

nthlinef()
Return specified lines from a text string.
Format
nthlinef(text,lines,separator)
Parameters
Parameter Definition
text Text to be separated into lines by the nthlinef() functiexi.can be a text string enclosed in double quagtes,
or one or more SMSL commands that produce text as output.
lines List specifying the line numbers nthlinef() should look for in text. Lines are specified as follows:
xy line x and line y, x-y all lines from x to y inclusive, -x all lines from 1 to x inclusive, x- all lines from x
to EOF character inclusive Integer
separator Optional character that should be placed between each field of nthlinef() output
Default if not specified: new-line character ()
Description

The nthlinef() function returns the lines of text separated by new-line characters. If you specify a separator, the nthlinef()
function will use separator to separate lines.

NOTE 6 — The difference between the nthlinef() and nthline() functions is as follows:
* The nthlinef() function treats each new-line character as a line.

e The nthline() function treats only a non-empty line (that is, a line with a non-new-line characeedipg a
new-line character) as a line.

It is recommended that you use nthlinef() function to be consistent with other SMSL functions.

ITU-T Rec. X.753 (1997 E) 105

| SO/IEC 10164-21 : 1998 (E)

Example
The following SMSL script prints the top five processes executing on a UNIX system.
print the top five processes

printf(“*%s”,nthlinef(system("ps -eaf"),"2-6"));

popen()
Open a SMSL channel to a process.
Format
popentype,command,instance)
Parameters
Parameter Definition
type Command processor that should interpret and execute command
Valid range: The built-in command types OS or SMSL, or avalid user-defined command type
command Syntax of the submitted command
instance The application instance against which command should execute
Default if not specified: The application instance that is the nearest ancestor of command.
Description

The popen() function spawns a process to execute a command of a defined type and returns a channel number which car
then be used to read the command’s output or write messages to the command.

The popen() function returns —1 on error.

pow()
Raise a number to a power.
Format
pow(base,exponent)
Parameters
Parameter Definition
base Numeric value that isto multiplied by itself exponent number of times
exponent Numeric value that indicates the number of times base should be multiplied by itself.
exponent must be positive if base =0, and exponent must be an integer if base < 0.
Description

The pow() function returns the value of base raised to the power exponent, or base exponent.
The output range for the pow() function i® < pow() < co.

printf()

Print text formatted to the C-library printf() routine specification.
For mat

printf(format)

106 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Parameter

Parameter Definition

format Text, variable names, and control characters that specify the content and format of output to the computer or
task output window.

format permits the following conversion characters:

%(d signed decimal (identical to %i)

%i signed decimal (identical to %d)

%u unsigned decimal

%0 unsigned octal

%x unsigned hexadecimal using abcedf

%X unsigned decimal using ABCDEF

%c unsigned character

%s character string

%e double precision form drddde+ddd where each d isadigit and r is the radix character

%E double precision form drdddE+ddd where each d is a digit and r is the radix character
%f decimal notation form dddrddd where each d is a digit and r is the radix character

%g print in the style of %e if the exponent after conversion is less than —4, else print in style %f
%G print in the style of %E with the precision specifying the number of significant digits
%N Group digits into threes and separate with commas beginning at the right of the string
%% print a % character

format does not support the standard C-pointer conversion characters %p and %n.
format permits the following flags:

left-justify and pad on the right with spaces

+ display plus sign when value is grater than zero

0 pad with zeros if no other padding is specified

alters the meaning of a conversion:

appends 0x or 0X to the %x and %X conversions

always appends the radix character to the %e, %E, %f, %g,

and %G conversions

retains trailing zeros in the %g and %G conversions

The# flag does not affect the %c, %d, %s, or %i conversions

Description

The printf() function displays output to the computer or task output window using formatting similar to the standard
C-printf() function.

A bad format or one that is valid for the C language but not for the printf() function resultsin a SMSL run-time error that
setsthe SMSL errno variable.

The printf() function return value is always the null string.

C conventions not supported by the SMSL printf function

The printf() function does not support the C convention of using the asterisk (*) as a field width or precision indicator.
The printf() function does not support the %p and %n conversion characters.

The length modifiersh, I (éll), and L are not valid and are ignored by the printf function.

The printf() function format conversions are passed directly to the C-library printf() routine on each platform. The output
for obscure formatting features may differ across platforms.

Conversion differences between the C printf routineand SMSL printf function

The format conversions have the same meaning between standard C and SMSL, but the concept of variable types differs
between the two.

SMSL supports only string types for its variables, and thus string arguments to the printf() function are converted in a
manner appropriate for the format conversion:

» Integra formats such as %d convert the string to signed integers.
* Non-integer numeric formats such as %f convert to floating point values.

ITU-T Rec. X.753 (1997 E) 107

| SO/IEC 10164-21 : 1998 (E)

* %oc prints the ASCII eguivalent of its integer argument or for non-numeric arguments the first character of
its argument. (Applying %c to “65” will print ‘A’ and to “AB” will print ‘A’.)

* %s causes no conversion.
* %% requires no argument.
The %N Format Conversion

The printf() function provides one non-standard C extension — the %N conversion. The %N conversion preprocesses a
numeric string so that commas separate each group of three digits beginning at the right side of the string.

For example, the %N conversion causes the following conversions:
12340 1,234 1234571 12,345 1234561 123,456

The %N conversions ignores initial minus signs and blanks while searching for the first sequence of digits so that %N can
be applied to negative values. If no digits are found after the skipped characters, the printed argument is unchanged.

The %N conversion only modifies the first sequence of digits. For example, the %N conversion changes floating point
numbers like 1234.1234 to become 1,234.1234 without changing to the digit sequence to the right of the decimal point.

As part of the %N conversion, the printf() function performs a %s conversion using the field width and precision
specifiers supplied in format. The printf() function prints the string resulting from the combined %N and %s conversions.
Because of the embedded %s conversion, field width and precision under %N conversion have the same effect as with
%s.

NOTE 7 — Currently, no localization is supported by %N, and so the formatting achieved by %N does not change in different

locales.

proc_exists()
Verify that a process exists.

Format
proc_exists(pid)

Parameter

Parameter Definition
pid Process identifier number of the process whose existence is being verified
Description

The proc_exists() function returns TRUE if the process with process identifier pid exists; FALSE if it does not.
process()

Return alist of processes from the Agent process cache.

Format
process(regular_expression)
Parameter
Parameter Definition

regular_expression Character sequence that defines the pattern the process() function searches for in the Agent progess cache.
regular_expression conforms to the regular expressions defined in the UNIX ed(1) command desdription
and the UNIX regexp(5) description. Following is a brief summary of several regular expression
characters:

A beginning of line

\< beginning of a word

$ end of line

\> end of a word . match any single character

* match zero or more repetitions of the preceding

[match any of the characters contained within

[*] match any characters except those contained within

108 ITU-T Rec. X.753 (1997 E)

Description

I SO/IEC 10164-21 : 1998 (E)

The process() function returns the list of processes in the Agent's process cache that match the regular expression
regular_expression. Each entry in the list is a string formatted as follows:

pid ppid user status size cputirc@mmand_name command_line

NOTE 8 — Some platforms do not support all the return values. For a specific platform, the process() function generally returns the
same information as the ps command. The process() function returns the NULL string if no processes match regular_expression.

Example

The following SMSL commands list all ORACLE database process daemons.
find ORACLE database daemons

ora_procs = process(“ora_");

printf (“%d", ora_procs);

Parameter
Parameter Definition
pid Process identifier number
ppid Parent process identifier number
user User name to which the process belongs
status Process status within the system. Valid range:
0 Non-existent
S Sleeping
W Waiting
R Running
| Intermediate
Z Terminated
T Stopped
X Growing
size Process core image size (in blocks)
cputime Integer number of CPU seconds consumed by the process
command_name First word of the command line that started the process
command_line Complete command line that started the process. Note that the command line may have been modified
during process execution.

random()
Return a random number.
Format
randomgmaximum)
Parameter
Parameter Definition
maximum Valid range: maximum >0
Default if not specified: maximum = 232 — 1 (from the underlying C function)
Description

The random() function is equivalent to the standard C-library random() function.

If maximum is zero or negative, the random() function will return a run-time error message. Optional upper bound for the
values returned by random:

read()

0 < randonf) £ maximum 4

Read from a SMSL file or process channel.

ITU-T Rec. X.753 (1997 E) 109

| SO/IEC 10164-21 : 1998 (E)

Format
read(channel ,size)
Parameters
Parameter Definition
channel The process |/O channel number from which the read() function is to read data
size Integer value controlling the amount of data that the read() function will read from channel. Valid Range:
size> O instructs the read() function to read at |east size bytes and return
size = 0 instructs the read() function to return as soon as it has read something from the channel
size = -1 instructs the read() function to read all data available from the channel and return
Default if not specified: size 0
Description

The read() function returns the data it reads from channel. The read() function returns the value EOF (that is, the
NULL string) on an end-of-file or error condition.

Channels are created by calling the fopen() or popen() function.

NOTE 9 — The read function can block for a process channel created using the popen() function but not for a file channel created
using the fopen() function.

To enforce serialization for shared channels, no two reader processes (that is, read() or readin() functions) can be blocked
on the same channel. The second reader process that attempts to block on the shared channel will fail, returning the
NULL string and setting the SMSL variable errnoto E_ SMSL_BUSY_CHANNEL.

Another possible shared channel failure can be caused by a close() function being executed against a channel that also has
a blocked reader process. The close() function will cause the reader process to return the NULL string and set errno to
E_SMSL_UNBLOCKED_BY_CLOSE.

Example

The following SMSL example opens a channel to the UNIX operating system, executes a UNIX |s command, then reads
and prints the directory entries returned by the Is command.

chan = popen ("OS", "Is");
while ((data=read (chan)) ! = EOF)

{
printf(“%s”, data);
}
close ¢han);
readin()
Read a line of data from a SMSL file or process channel.
Format
readln¢hannel)
Parameter
Parameter Definition
channel The process /O channel number from which the readin function is to read data
Description

The readin() function reads the next line of data from channel and returns it. The readin() function returns the value
EOF (NULL) on end-of-file or error.

Channels are created by calling the fopen() or popen() function. Note The readIn() function can block for a pipe channel
created using the popen() function but not for a file channel created using the fopen() function.

110 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

To enforce serialization for shared channels, no two reader processes (that is, read() or readin() functions) can be blocked
on the same channel. The second reader process that attempts to block on the shared channel will fail, returning the
NULL string and setting the SMSL variableerrnoto E. SMSL_BUSY_CHANNEL.

Another possible shared channel failure can be caused by a close() function being executed against a channel that also has
a blocked reader process. The close() function will cause the reader process to return the NULL string and set errno to
E_ SMSL_UNBLOCKED_BY_CLOSE.

Limitation

The readln() function has a line limitation of 4K when executed against files opened with the fopen() function. The
readin() function may truncate lines longer than 4K. This limitation does not apply to channels opened using the popen()
function.

rindex()
Return the last occurrence of one text string within another.
Format
rindex(text,string)
Parameter
Parameter Definition
text Text to be examined for occurrences of string. text can be atext string enclosed in double quotation marks,
or one or more SMSL commands that produce text as output.
string One or more characters whose last occurrence is being identified within text
Description

The rindex() function returns the position of the last occurrence of string in text or O if string does not occur in text.
Positions in string are numbered starting from one.

set()
Assign avalueto avariable.
Format
set(variable value)
Parameters
Parameter Definition
variable The name of avariablein the Agent object hierarchy to which valueis assigned
value The numeric or string value that is assigned to variable
Description

The set() function sets the value of variable to be value. If variable is arelative name and does not exist in the context of
the SMSL script, the set() function successively searches each ancestor’s context until variable is found or until the search
fails in the context of the computer.

The set() function returns value if the assignment is successful, the NULL string if it is not.

Example
The following SMSL statement sets the value of RDB database Dev parameter MyParam to 10.
set("/RDB/Dev/IMyParam/value”,10);
sharg()
Convert a local channel into a shared global channel.
Format

share¢hannel,name)

ITU-T Rec. X.753 (1997 E) 111

| SO/IEC 10164-21 : 1998 (E)

Parameters
Parameter Definition
channel Process /O channel number that was returned when the channel was opened using the fopen() or popen()
function
name Character string used to identify the shared channel in the table of global channels
It is recommended that you specify a non-numeric name to avoid conflicts with numbers used internally for
local channels. Using a number for name does not actually cause the share() function to fail but will raise a
SMSL run-time warning. The share() function will dutifully place the specified numeric name in the global
table, leading to potential conflicts with local channelsin close(), read(), write(), and readin() functions.
Description

The share() function is the main function for using shared channels. The share() function propagates an existing local
channel into the table of global channels as name. Channels opened by either the popen() or fopen() functions can be
shared.

If the share() function is successful, it returns 0. The loca channel is no longer available in the process that opened it and
does not require aclose() function. In fact, the close() function will return an error since it will not find the local channel.

The share() function will fail, returning —1 and setting the SMSL errno variable if:
» the local channel does not exist;
» the global channel name already exists in the global channel table.
Upon failure, the local channel is unchanged and still available. No global channel is added.

A global channel is referred to by name when passed to the read(), readin(), write(), and close() functions. These
functions will first search the local channel table containing only channel numbers and then the global channel table.

sin()
Return the sine of the argument.
Format
sin(radians)
Parameter
Parameter Definition
radians Arc length in radians whose sine is to be determined
Valid range: —o < radians < o
Description

The sin() function returns the sine of radians. The output range for the sin() function s < 1.
sinh()

Return the hyperbolic sine of the argument.

Format
sinh(@rgument)
Parameter
Parameter Definition
argument Numeric value whose hyperbolic sine is to be determined
Valid range: —o < argument < oo

112 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Description
The sinh() function returns the hyperbolic sine of argument. The hyperbolic sine is defined by the expression:
sinh(x) = (eX — e%)/2

where e is the base for the natural logarithms (e = 2.71828 . . .). The output range for the sinh() function is —o < sinh()
< 0.

sleep()

Suspend process execution for a number of seconds.
Format

sleep(seconds)

Parameter

Parameter Definition

seconds Integer specifying the number of seconds the process should be suspended. Valid range:
seconds> 0 is the number of seconds the process will sleep
secondx 0 the timer expires immediately

Description

The sleep() function suspends a SMSL process for the specified number of seconds. While suspended, the SMSL process

consumes ho CPU resources and is not interpreted until awakened by the expiration of the seconds timer.
NOTE 10 — The sleep() function only suspends the process that calls it. All other SMSL processes continue normal exe

The sleep() function returns a run-time warning if seconds is non-numeric, in which case the timer defaults to zero.
sort()

Sort alist of numeric or alphabetic values.
Format

sort(list,mode,position)

Parameters

cution.

Parameter Definition

list SMSL list whose elements are to be sorted

mode Optional character string specifying the sort order. Character string must be enclosed in double
marks. Valid Range:

"n" ascending numeric order;

"nr" descending numeric order;

" ascending alphabetic order;

"r" descending alphabetic order

Default if not specified: ““ (ascending alphabetic)

Juotation

position Optional integer that specifies the character position within each element of list where sorting is to
The first character of each list element is character 1.

If the length of every element within list is less than position, the effect is the same as if all the ele
list were NULL elements.

position does not truncate elements; it only ignores the first (position —1) characters for pur
comparison.

begin
ments of

oses of

Default if not specified: 1

Description

The sort() function returns a sorted version of list that is ordered according to mode.

ITU-T Rec. X.753 (1997 E) 113

| SO/IEC 10164-21 : 1998 (E)

The sort() function does not merge duplicate entries in list: the returned list has the same number of members as list. The
order in which duplicates are returned is not defined because it is not defined for the C-library gsort() function. This fact
isrelevant for the following cases:

* numeric sorting of strings with identical numeric prefix values but different non-numeric suffixes,

e any sorting mode in which position is larger than more than one element within list (the sort() function
regards all such elements as duplicate NULL elements).

If list isthe NULL list, the sort function returns the NULL list. For a non-empty list, the sort() function always returns a
well-defined list with the last line properly terminated by a new-line character.

NOTE 11 — List need not be terminated by a new-line character. Numeric sorting is based on floating point values; non-numeric
list entries are converted according to the system’s standard C-library function atof().

sprintf()

Return the specified format as a character string to a destination.
Format

sprintf(format)

Parameter

Parameter Definition

format Text, variable names, and control characters that specify the content and format of the character string
output to the computer or task output window

Format permits the following conversion characters:

%d signed decimal (identical to %i)

%i signed decimal (identical to %d)

%u unsigned decimal %o unsigned octal

%x unsigned hexadecimal using abcedf

%X unsigned decimal using ABCDEF

%c unsigned character %s character string

%e double-precision form drdd#eédd where each d is a digit and r is the radix character
%E double-precision form drdddBdd where each d is a digit and r is the radix character
%f decimal notation form dddrddd where each d is a digit and r is the radix character
%g print in the style of %e if the exponent after conversion is less than —4, else print in style %f
%G print in the style of %E with the precision specifying the number of significant digits
%N group digits into threes and separate with commas beginning at the right of the string
%% print a % character

format does not support the standard C-pointer conversion characters %p and %n.

format permits the following flags:
— left-justify and pad on the right with spaces
+ display plus sign when value is greater than zero
0 pad with zeros if no other padding is specified
alters the meaning of a conversion:
appends 0x or 0X to the %x and %X conversions
always appends the radix character to the %e, %E, %f, %g, and %G conversions
retains trailing zeros in the %g and %G conversions
The# flag does not affect the %c, %d, %s, or %i conversions.

Description

The sprintf() function isidentical to the printf() function except that it returns the created string rather than outputting it.
If thereis an error in format, sprintf setsthe SMSL errno variable and returns the NULL string.

The formats, conversions, and values of errno for the various errors are identical to those described for the printf()
function.

114 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

C programmers should be careful to use the SMSL style:
destination=sprintf(format)
rather than the C style:
sprintf(destination,format)

The latter style will often cause a compilation warning about a null-effect statement.

C conventions not supported by the SMSL sprintf function

The sprintf() function does not support the C convention of using the asterisk (*) as a field width or precision indicator.
The sprintf() function does not support the %p and %n conversion characters.

The length modifiersh, | (ell), and L are not valid and are ignored by the sprintf() function.

The sprintf() function format conversions are passed directly to the C-library sprintf() routine on each platform. The
output for obscure formatting features may differ across platforms.

Conversion differences between the C-sprintf routine and SMSL sprintf function

The format conversions have the same meaning between standard C and SMSL, but the concept of variable types differs
between the two.

SMSL supports only string types for its variables, and thus string arguments to the sprintf() function are converted in a
manner appropriate for the format conversion:

» Integral formats such as %d convert the string to signed integers.
* Non-integer numeric formats such as %f convert to floating point values.

* %oc prints the ASCII equivalent of its integer argument, or for non-numeric arguments, the first character
of its argument. (Applying %c to “65” will print ‘A’ and to “AB” will print ‘A’.)

i %s causes no conversion.

* %% requires no argument.

sart()
Return the square root of the argument.
Format
sqrt@rgument)
Parameter
Parameter Definition
argument Numeric value whose mathematical square root is returned
Valid range: —o < argument < oo
Description

The sqrt() function returns the square root of the positive integer or real value argument.

srandom()
Initialize the random number generator with a seed value.
Format
srandomgeed)
Parameter
Parameter Definition
seed Numeric value used as a starting point for pseudorandom number generation by the random() function

ITU-T Rec. X.753 (1997 E) 115

| SO/IEC 10164-21 : 1998 (E)

Description

The srandom() function sets the random number seed for the random() function. seed is passed directly to the UNIX C
srandom() function.

The SMSL srandom() function always returns the NULL string.

subset()
Verify that one SMSL list is a subset of another.
Format
subset(set,subset)
Parameters
Parameter Definition
set SMSL list, that isthe set in the set-subset verification
subset SMSL list, that is the subset in the set-subset verification
Description

The subset() function returns a Boolean value of 0 or 1 indicating whether subset is a proper or improper subset of set. If
subset is the NULL set, the subset() function returns 1 (TRUE). If set is the NULL set and subset is not, the subset()
function returns O (FALSE).

The subset() function ignores duplicates and returns 1 only if al elements of subset are also present in set.

Example

The subset() function can be used to determine whether a particular element is present in a set and thus provides
“is_member” functionality such as the following:

if (subset(my_set,"blue"))
{

SMSL set "my_set" contains element "blue”

}

It is not necessary to place a new line at the end of the “blue” string because it is inserted by the subset() function. The
example statements are treated as a subset() function acting on a set with one element.

substr()
Return a specified portion of a string of characters.
Format
substr{ext,start,length)
Parameters
Parameter Definition
text Text from which a substring of characters is to be returned. text can be a text string enclosed in double
guotation marks, or one or more SMSL commands that produce text as output.
start The character position within text that is to be the first character of the substring. The first character in text
is character position 1.
length The total number of characters from text to be returned in the substring
Description

The substr() function returns the substring of text of length characters that starts at gtasition

116 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

system()
Submit a command to the computer operating system.
Format
system(command,instance)
Parameters
Parameter Definition
command Syntax of the submitted operating system command. command can contain output redirection, pipes, wild
cards, and so on.
instance Optional application instance against which command should execute
Default if not specified: The application instance that is the nearest ancestor of command
Description

The system() function returns any output produced by submitting command to the system-dependent command execution
subsystem.

tail()
Return the last lines from a text block.
Format
tail(text,lines)
Parameters
Parameter Definition
text Text whose last lines are to be returned by tail(). text can be a text string enclosed in double quotation
marks, or one or more SMSL commands that produce text as output.
lines Number of lines of text to be returned, starting from the last line of text
Description

Thetail() function returns the last lines number of lines of text.

tan()
Return the tangent of the argument.
Format
tan(radians)
Parameter
Parameter Definition
radians Arc length in radians whose tangent is to be determined
Valid range: —o < radians < o
Description

The tan() function returns the tangent of radians. The output range for the tan() function is —o < tan() < c. The tan()
function is undefined when radians = p(2n+1)/2 where nis an integer.

ITU-T Rec. X.753 (1997 E) 117

| SO/IEC 10164-21 : 1998 (E)

tanh()
Return the hyperbolic tangent of the argument.
Format
tanh(argument)
Parameter
Parameter Definition
argument Numeric value whose hyperbolic tangent is to be determined
Valid range: —o < argument < oo
Description

The tanh() function returns the hyperbolic tangent of argument. The hyperbolic tangent is defined by the expression:
tanh(x) = (e x—e —x)/(e * e —x)

where e is the base for the natural logarithms 271828 . . .). The output range for the tanh() function is dnh()
<1.

time()

Return the number of seconds since 00:00:00 GMT January 1, 1970.
Format

time()
Description

The time() function returns the current time as the number of seconds that have elapsed since 00:00:00 GMT,
Jan 01, 1970.

tmpnam()

Return a unique name for temporary file creation.
Format

tmpnam()
Description

The tmpnam() function returns a name that is guaranteed to be unique and can be used to pass to the fopen function for
creating temporary files.

The semantics of the tmpnam() function are similar to that of the C tmpnam() routine — notably, a restricted number of

unique names are returned by the tmpnam() routine as defined by the C-constant TMP_MAX. All SMSL processes on a
given Agent share the same set of names, and there can be a danger of mixing names. If the size of TMP_MAX is a
concern, add a suffix to the returned file name.

Example

The following example shows how to use the tmpnam() function to generate a temporary file name. The SMSL function
adds a suffix to the returned name to further guarantee its uniqueness.

name=tmpnam() . ".dave"; fgr fopen(name, "w");
tolower ()
Convert text to all lowercase characters.
Format

tolowertext)

118 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Parameter
Parameter Definition
text Text that isto be returned as lowercase | etters. text can be atext string enclosed in double quotation marks,
or one or more SMSL commands that produce text as output.
Description

The tolower() function returns a copy of text with all uppercase letters converted to lowercase letters.
toupper ()

Convert text to all uppercase characters.
Format

toupper(text)

Parameter

Parameter Definition

text Text that isto be returned as uppercase letters. text can be atext string enclosed in double quotation marks,
or one or more SMSL commands that produce text as output.

Description

The toupper() function returns a copy of text with all lowercase letters converted to uppercase letters.

trim()
Remove unwanted characters from text.
Format
trim(text,unwanted)
Parameters
Parameter Definition
text Text to be returned without specified characters. text can be a text string enclosed in double quotation
marks, or one or more SMSL commands that produce text as output.
unwanted One or more characters that are to be removed from the copy of text output by the trim function.
Description

The trim() function returns a copy of text with all occurrences of the characters in unwanted removed.
union()

Return alist that is the union of individual lists.
Format

union(list1,list2,list3 list4 . . . listn)

Parameters

Parameter Definition

listn SMSL list containing elements that shall be united and returned in a single well-defined list. Only the first
two input lists, listl and list2, are required; all others are optional.

ITU-T Rec. X.753 (1997 E) 119

| SO/IEC 10164-21 : 1998 (E)

Description

The union() function returns a SMSL list that contains the elements from al listn merged together. Unlike the difference()
and intersection() functions, the list returned by the union function is a well-defined set without any duplicates. The
union() function adds a new line to the end of every non-empty list that is missing one. If the return vaue is not the
NULL list, the returned set is always terminated by a new line so that all set elements end with a new-line character.

unique()
Remove the duplicate elements from alist.
Format
unique(list)
Parameter
Parameter Definition
list SMSL list containing elements that shall be returned in a single well-definegi€) list
Description

The unique() function returns a well-defined SMSL list with al duplicates removed. All elements that remain in the
return value appear in the same order as they did in list. If list isthe NULL list, the unique() function returns the NULL
list; otherwise the unique() function returns a list that is terminated by a new-line character so that all list elementsin the
list end with a new-line character.

unlock()
Release a SMSL process lock.
Format
unlock(lockname)
Parameter
Parameter Definition
lockname Name of the lock that should be released
Description

The unlock() function releases lockname that was granted to this process by a previous call to the lock() function. The
unlock() function returns 1 for success and O for failure. If no lock is named lockname or if it is not currently owned by
this process, then the unlock() function reports a run-time error, setsthe SMSL errno variable, and returns 0.

NOTE 12 — All locks held by a process are automatically released when the process exits in a manner similar to executing the
unlock function. It is recommended that you release locks explicitly using the unlock() function rather than implicitlzeusing t
process exit. If this process is the only one holding the lock and processes are queued for it, the first waiting prakeseds aw

and granted use of the lock. If the first process is a shared request, then any other processes that are queued fok aighared lo

also granted shared access to the lock (except for processes that are behind a writer request on the queue for this lock).
write()
Writeto a SMSL process or file channel.
Format

write(chan,text)

120 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Parameters
Parameter Definition
chan Process 1/0O channel number to whtekt is written
text Text to be written to channehan. text can be a text string enclosed in double quotation marks, or g
more SMSL commands that produce text as output.
Description

ne or

The write() function writes text to channel chan. The write() function returns the number of characters written or —1 on

error.

If text cannot be written immediately, the write() function call blocks until it can either write the whole of text or the

channel terminates.

NOTE 13 — The write() function can block for a process channel created using the popen() function but not for a file channel
created using the fopen() function.

To enforce serialization for shared channels, no two reader processes (that is, the read() or readin() functions) can be
blocked on the same channel. The second reader process that attempts to block on the shared channel will fail, returning
the NULL string and setting the SMSL variable errnoto E_ SMSL_BUSY_CHANNEL.

Another possible shared channel failure can be caused by a close() function being executed against a channel that also has
a blocked reader process. The close() function will cause the reader process to return the NULL string and set errno to
E SMSL_UNBLOCKED_ BY_CLOSE.

ITU-T Rec. X.753 (1997 E)

121

| SO/IEC 10164-21 : 1998 (E)

Annex H

MOCS proforma
(Thisannex forms an integral part of this Recommendation | International Standard)

This annex contains MOCS proforma for the subset of object classes defined in [X721] that is used for SDH
management.

The following common notations, defined in Recommendation X.724 are used for the status columns:

m Mandatory
o Optiona

¢ Conditional
X Prohibited

— Not applicable or out of scope
Note that “c”, “m”, “0” and “x” are prefixed by a “c:” when nested under a conditional or optional item of the same table.

Note that “0” may be suffixed by “n” (where “n” is a unique number) for mutually exclusive or selectable options among
a set of status values.

In the status column, the static requirements are stated as follows:

m For characteristics contained in mandatory packages or in conditional packages if the GDMO condition is
always true.

o For characteristics of conditional packages with GDMO conditions that indicate static optionality, e.g. “if
an instance supports it”.

cn For all other conditions, where “n” is a unique integer and “cn” is a reference to a conditional status
expression as defined in ITU-T Rec. X.291 | ISO/IEC 9646-2 and ITU-T Rec. X.296 | ISO/IEC 9646-7.
Each condition denoted by “cn” is relative to the containing table.

x For characteristics explicitly prohibited by the definition.
— For characteristics that are not mentioned by the definition.

The following common notations, defined in ITU-T Rec. X.724 | ISO/IEC 10165-6 and Rec. X.296 | ISO/IEC 9646-7 are
used for the support answer columns:

Y Implemented
N Not implemented

— No answer required

The following abbreviations are used:
smi2AttributelD { joint-iso-itu-t ms(9) smi(3) part2(2) attribute(7) }
smi2MObjectClass { joint-iso-itu-t ms(9) smi(3) part2(2) managedObjectClass(3) }
smi2Notification { joint-iso-itu-t ms(9) smi(3) part2(2) notification(10) }

H.1 Statement of conformance to the basicSpawner Class abject class

Table H.1 — MOCS — Managed object class support

] S Support of all Isthe actual class the same asthe
Index d I}/I&artlg%e(:a?gj ﬁ:tb o vaue offg:)cha;dentlfl o mandatory managed object class to which
P features conformanceis claimed? (Y/N)

1 basicSpawnerClass | {joint-iso-itu-t ms(9) function(2)
part21(21)
managedObj ectClass(3) xx1(1)}

122 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

If the answer to the actual class question in the managed object class support Table H.1 is no, the supplier of the
implementation shall fill in the actual class support in Table H.2.

Table H.2 — MOCS - Actual class support

Actual managed object class Value of object identifier for - .)
Index template label actual class Additional information
1
2

H.1.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.3.

Table H.3 — MOCS - Package support

Index Package template label Vaue ?groggitagj?ﬁﬁ e gﬁg%ﬁurg Status | Support iﬁf%?irﬂ;?gln
1 allomorphicPackage {'smi2Package 17} cl
2 packagesPackage {'smi2Package 16} m
c1: if not (H-1/1b) then m else —

H.1.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.4. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.4 — MOCS-Attribute support

Set by create Get Replace

Index tenégfgtzulfbel Value ?;rogijt?icé&?:ntifier gﬁgigﬂg Status | Support | Status | Support | Status | Support

1 |alomorphs {smi2Attributel D 50} X cl X

2 | nameBinding {'smi2Attributel D 63} - m X

3 | objectClass {smi2AttributelD 65} - m X

4 | packages {smi2AttributelD 66} - m X

Table H.4 (concluded)
Add Remove Set to default

Index| Status| Suppoft Status Support Stajus Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X
c1: if not (H-1/1b) then m else —

ITU-T Rec. X.753 (1997 E) 123

I SO/IEC 10164-21 : 1998 (E)
H.1.3 Attributegroups
There are no attribute groups defined for the managed object class.

H.1.4 Actions

There are no actions defined for this object class.

H.1.5 Notifications

There are no netifications defined for this object class.

H.1.6 Parameters

There are no parameters defined for this object class.

H.2 Statement of conformance to the commandSequencer object class

Table H.5 — MOCS — Managed object class support

Managed object S Support of all Isthe actual class the same asthe
Index | classtemplate |abel vaue offg?gca;dmtlfler mandatory managed object class to which
features conformanceis claimed? (Y/N)

1 commandSequencer | {joint-iso-itu-t ms(9) function(2)
part21(21)
managedObj ectClass(3) xx2(2)}

If the answer to the actual class question in the managed object class support Table H.5 is no, the supplier of the
implementation shall fill in the actual class support in Table H.6.

Table H.6 — MOCS - Actual class support

Actual managed object class Vaue of object identifier - . -
Index template label for actual class Additional information
1
2

H.21 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.7.

Table H.7 — MOCS - Package support

Value of object identifier Constraints Additiona
Index Package template label for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

c1: if not (H-5/1b) then m else —
c2: if H-7/1 then m else —

H.2.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.8. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

124 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.8 — MOCS — Attribute support

Set by create Get Replace
Index taﬁgltgtgﬂtaebel Value ?gfgﬁ%&??tiﬁa gﬁg%;?'urgss Status | Support | Status | Support | Status | Support
1 |administrativeState {'smi2Attributel D 31} m m m
2 |alomorphs {'smi2Attributel D 50} X cl X
3 | commandSequencerld| {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx2(2)}
4 | nameBinding {smi2AttributelD 63} - m X
5 | objectClass {smi2AttributelD 65} - m X
6 | operationalState {smi2AttributelD 35} - m X
7 | packages {smi2AttributelD 66} - c2 X
Table H.8 (concluded)
Add Remove Set to default
Index| Status| Suppoft Status Support Stajus Support Additional information
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
cl: if not (H-5/1b) then m else —
c2: if H-7/2 then m else —

H.2.3 Attributegroups

There are no attribute groups defined for the managed object class.
H.24 Actions

There are no actions defined for this object class.

H.25 Notifications

The supplier of the implementation shall state whether or not the notifications specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.9. The
supplier of the implementation shall indicate support in terms of the confirmed and non-confirmed modes.

ITU-T Rec. X.753 (1997 E) 125

| SO/IEC 10164-21 : 1998 (E)

Table H.9 — MOCS - Notification support

Support
x| Noittiontpe | Velue bt ertirfor | Corsrne | saus | contirmen| oo | ioicren

1 objectCreation {smi2Natification 6} m

2 objectDeletion {smi2Notification 7} m

3 stateChange {'smi2Natification 14} m

Table H.9 (continued)
Index| Subindex | Notification field name label Valugfo;tgibéﬁft:gg/%rglfler Constraints Status | Support Additiond
associated with field and values information

1 |11 additionalInformation {smi2Attributel D 6} o]
111 identifier - c:m
11.2 significance - cm
1.13 information - c:m
1.2 additionalText {smi2AttributelD 7} 0
1.3 attributeList {smi2AttributelD 9} o]
13.1 attributeld - cm
1.31.1 globalForm - c:0.]]
1.3.1.2 localForm - c:0.1
1.3.2 attributeValue - cm
14 correlatedNotifications {smi2AttributelD 12} o]
141 correlatedNotifications - c:m
142 sourceObjectinst - c:0
1421 distinguishedName - c:0.p
1421.1 AttributeType - cm
14212 AttributeValue - c:m
1422 nonSpecificForm - c:0.2
1.4.2.3 localDistinguishedName - C:0.p
14231 AttributeType - cm
1.4.2.3.2 AttributeValue - c:m
15 notificationldentifier {smi2AttributelD 16} 0
1.6 sourcelndicator {smi2AttributelD 26} o]

2 (21 additionallnformation {smi2AttributelD 6} o]
211 identifier - c:m
2.1.2 significance - cm
2.13 information - c:m
2.2 additionalText {smi2AttributeID 7} 0
2.3 attributeList {smi2AttributelD 9} o]
2.3.1 attributeld - cm
2311 globalForm - c:0.3
2.3.1.2 localForm - c:0.3
2.3.2 attributeValue - cm
2.4 correlatedNotifications {smi2AttributelD 12} o]
24.1 correlatedNotifications - c:m
2.4.2 sourceObjectinst - c:0
2421 distinguishedName - c:o.4
24211 AttributeType - cm
24212 AttributeValue - c:m
2.4.2.2 nonSpecificForm - c0.4
2423 localDistinguishedName - c.o.4

126 ITU-T Rec. X.753 (1997 E)

Table H.9 (concluded)

I SO/IEC 10164-21 : 1998 (E)

Vaue of object identifier . -
Index| Subindex | Notification field name label of attribute type %)Qﬁurg Status | Support iﬁf%?mgt?gl n
associated with field
24231 AttributeType - c:m
24232 AttributeValue - cm
25 notificationldentifier {smi2AttributelD 16} o]
2.6 sourcelndicator {smi2AttributelD 26} o]

3 |31 additionallnformation {smi2AttributelD 6} o]
3.11 identifier - cm
3.1.2 significance - c:m
3.1.3 information - cm
3.2 additionalText {smi2AttributelD 7} o]
3.3 attributeldentifierList {smi2AttributelD 8} 0
3.3.1 globalForm - c:0.5
3.3.2 localForm - c:0.5
3.4 correlatedNotifications {smi2AttributelD 12} o]
3.4.1 correlatedNotifications - cm
3.4.2 sourceObjectinst - c.0
3.4.2.1 distinguishedName - c:0.6
34211 AttributeType — cm
3.4.2.1.2 AttributeValue - cm
3.4.2.2 nonSpecificForm — c:0.4
3.4.2.3 localDistinguishedName - c:0.p
34231 AttributeType — cm
3.4.2.3.2 AttributeValue - cm
3.5 notificationldentifier {smi2AttributelD 16} o]
3.6 sourcelndicator {smi2AttributelD 26} o]
3.7 stateChangeDefinition {smi2AttributelD 28} m
3.7.1 attributelD - m
3.711 globalForm — C:0.7
3.7.1.2 localForm - c:0.7
3.7.2 oldAttributeValue - 0
3.7.3 newAttributeValue - m

H.26 Parameters

There are no parameters defined for this object class.

H.3 Statement of conformanceto the generalStringScript object class
Table H.10 — MOCS — Managed object class support
] i Support of all Isthe actual class the same asthe
Index Mar:éargi]edl a?glgcg eclzlass vaue offglrajcelca;dentlfler mandatory managed object class to which
P features conformance is claimed? (Y/N)

1 genera StringScript | {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)

xx3(3)}

If the answer to the actual class question in the managed object class support Table H.10 is no, the supplier of the
implementation shall fill in the actual class support in Table H.11.

ITU-T Rec. X.753 (1997 E) 127

| SO/IEC 10164-21 : 1998 (E)

Table H.11 — MOCS - Actual class support

Actual managed object class Vaue of object identifier - . -
Index template label for actual class Additional information
1
2
H.3.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.12.

Table H.12 — MOCS - Package support

Value of object identifier for | Constraints and Additiona
Index Package template label package values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-10/1b) then m else —

H.3.2

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.13. The

Attributes

supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.13 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |administrativeState {'smi2Attributel D 31} m m m
2 |alomorphs {'smi2Attributel D 50} X cl X
3 | executionResultType | {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
4 | nameBinding {smi2AttributelD 63} - m X
5 | objectClass {smi2AttributelD 65} - m X
6 | packages {smi2AttributelD 66} - m X
7 | scriptContent {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx4(4)}
8 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
9 | scripttanguageNamge {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx7(7)}
128 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.13 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X
cl: if not (H-10/1b) then m else —

H.3.4 Attributegroups
There are no attribute groups defined for the managed object class.

H.3.5 Actions

There are no actions defined for this object class.

H.3.6 Notifications

There are no notifications defined for this object class.

H.3.7 Parameters

There are no parameters defined for this object class.

H.4 Statement of conformance to the launchPad object class

Table H.14 — MOCS - Managed object class support

. i Support of all Isthe actua class the same as the
Index d li/lmar:g%ec:;g F;é o Value ofngjcelcta;dentlfler mandatory managed object class to which
P features conformanceis claimed? (Y/N)
1 launchPad {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
XX6(6)}

If the answer to the actual class question in the managed object class support Table H.14 is no, the supplier of the
implementation shall fill in the actual class support in Table H.15.

Table H.15 — MOCS — Actual class support

Actual managed object class Value of object identifier - . -
Index template label for actual class Additional information
1
2

ITU-T Rec. X.753 (1997 E) 129

| SO/IEC 10164-21 : 1998 (E)

H.41 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.16.

Table H.16 — MOCS - Package support

Index Package template |abel Vaue ?groggitagj?ﬁﬁ e gﬁg%ﬁurg Status | Support iﬁf%?irﬂgt?gln
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m
cl: if not (H-14/1b) then m else —

H.4.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.17. The

supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.17 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support

1 |administrativeState {'smi2Attributel D 31} - X X
2 | allomorphs {smi2AttributelD 50} X cl X
3 | availabilityStatus {smi2AttributelD 33} - X X
4 | controlStatus {smi2AttributelD 34} - m X
5 | launchPadld {joint-iso-itu-t ms(9) - m X

function(2) part21(21)

attribute(7) xx6(6)}

6 | nameBinding {smi2AttributelD 63} - m X
7 | objectClass {smi2AttributelD 65} - m X
8 | observedAttributeld {joint-iso-itu-t ms(9) m m m

function(2) part11(11)

attribute(7) xx15(15)}
9 | observedObjectinstan¢e {joint-iso-itu-t ms(9 m m m

function(2) part11(11)

attribute(7) xx16(16)}
10 | operationalState {smi2AttributelD 35} - X X
11 | packages {smi2AttributelD 66} - m X
12 | schedulerName {smi2AttributelD 67} - m X
13 | usageState {smi2AttributelD 39} - X X

130 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.17 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X

13 X X X
cl: if not (H-14/1b) then m else —

H.4.3 Attributegroups

There are no attribute groups defined for the managed object class.

H.44 Actions

The supplier of the implementation shall state whether or not the actions specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.18.

Table H.18 — MOCS — Action support

Value of object identifier Constraints Additional

Index Action type template | abel for action type andvalues | Staus | Support| ol Hon

1 | resume {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx1(1)}

2 | suspend {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx2(2)}

3 | terminate {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx3(3)}

ITU-T Rec. X.753 (1997 E) 131

| SO/IEC 10164-21 : 1998 (E)

Table H.19 — MOCS — Action support

Index | Subindex Action field name |abel gﬁg%ﬁurg Status Support Additional information

1 11 SpawnerObjectld m
111 triggerld m
1111 distinguishedName c.0.l
11111 AttributeType cm
11112 AttributeValue cm
1112 nonSpecificForm co.l
1113 local DistinguishedName c.0.l
11131 AttributeType cm
11132 AttributeValue cm
112 CHOICE m
1121 threadld c.0.2
11211 distinguishedName c.0.3
112111 AttributeType cm
112112 AttributeValue cm
11212 nonSpecificForm c.0.3
11213 |ocal DistinguishedName c.0.3
112131 AttributeType cm
112132 AttributeValue cm
1122 launchPadld c.0.2
11221 distinguishedName c.0.4
112211 AttributeType cm
112212 AttributeValue cm
11222 nonSpecificForm c.04
11223 |ocal DistinguishedName c.0.4
112231 AttributeType cm
112232 AttributeValue cm

2 2.1 SpawnerObjectld m
211 triggerld m
2111 distinguishedName c.0.5
21111 AttributeType cm
21112 AttributeValue cm
2112 nonSpecificForm c.0.5
2.1.1.3 local DistinguishedName c.0.5
21131 AttributeType cm
21132 AttributeValue cm
212 CHOICE m
2121 threadld c.0.6
21211 distinguishedName c.0.7
212111 AttributeType cm
212112 AttributeValue cm
21212 nonSpecificForm c.0.7
21213 |ocal DistinguishedName c.0.7
212131 AttributeType cm
212132 AttributeValue cm
2122 launchPadld c.0.6
21221 distinguishedName c.0.8
212211 AttributeType cm
212212 AttributeValue cm
21222 nonSpecificForm c.0.8
21223 |ocal DistinguishedName c.0.8
212231 AttributeType cm
212232 AttributeValue cm

3 3.1 Triggerld m
311 distinguishedName c.0.9
3111 AttributeType cm
3112 AttributeVaue cm
312 nonSpecificForm c.0.9
313 local DistinguishedName c.0.9
3131 AttributeType cm
3132 AttributeVaue cm

132 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

H.4.5 Notifications

There are no notifications defined for this object class.

H.4.6 Parameters

There are no parameters defined for this object class.

H.5 Statement of confor mance to the asynchronousl aunchPad object class

Table H.20 — MOCS — Managed object class support

. i Support of all Isthe actua class the same as the
Index o ';Assart]gr%edl a?tgl ﬁactt) o vaue Offgifjcelcats;dmt'f' e mandatory managed object class to which
P features conformance is claimed? (Y/N)
1 asynchronousLaunchPad | {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
Xx4(4)}

If the answer to the actual class question in the managed object class support Table H.20 is no, the supplier of the
implementation shall fill in the actual class support in Table H.21.

Table H.21 — MOCS - Actual class support

Actual managed object class Value of object identifier for . . .

Index template label actual class Additional information
1
2

H.5.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.22.

Table H.22 — MOCS - Package support

Index Package template label Vaue ?groggi(l:(tagj:mﬁ e gﬁgft/;?'u'gss Status | Support iﬁf%c:irﬂ;?gln
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-20/1b) then m else —

H.5.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.23. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

H.53 Attributegroups

There are no attribute groups defined for the managed object class.

ITU-T Rec. X.753 (1997 E) 133

| SO/IEC 10164-21 : 1998 (E)

Table H.23 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |administrativeState {'smi2Attributel D 31} - X X
2 |allomorphs {smi2AttributelD 50} X cl X
3 |availabilityStatus {smi2AttributelD 33} - X X
4 |controlStatus {smi2AttributelD 34} - m X
5 |launchPadld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx6(6)}
6 [nameBinding {smi2AttributelD 63} - m X
7 |objectClass {smi2AttributelD 65} - m X
8 |observedAttributeld {joint-iso-itu-t ms(9) m m m
function(2) part11(11)
attribute(7) xx15(15)}
9 |observedObjectinstance {joint-iso-itu-t ms(9 m m m
function(2) part11(11)
attribute(7) xx16(16)}
10 |operationalState {smi2AttributelD 35} - X X
11 |packages {smi2AttributelD 66} - m X
12 |schedulerName {smi2AttributelD 67} - m X
13 |usageState {smi2AttributelD 39} - X X
Table H.23 (concluded)
Add Remove Set to default
Index| Status| Suppoft Status Support Stajus Support Additional information
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X

cl: if not (H-20/1b) then m else —

134

ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

H.54 Actions

The supplier of the implementation shall state whether or not the actions specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.24.

Table H.24 — MOCS — Action support

. Value of object identifier Constraints Additional
Index Action type template |abel for actJi on type and values Staus | Support information
1 | resume {joint-iso-itu-t ms(9) m

function(2) part21(21)
action(9) xx1(1)}

2 | suspend {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx2(2)}

3 | terminate {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx3(3)}

Table H.25 — MOCS - Action support

Index | Subindex Action field name label gﬁg%;?'urgss Status Support Additional information

1 11 SpawnerObjectld m
111 triggerld m
1111 distinguishedName coo.l
11111 AttributeType cm
11112 AttributeValue cm
1112 nonSpecificForm co.l
1113 local DistinguishedName coo.l
11131 AttributeType cm
11132 AttributeValue cm
112 CHOICE m
1121 threadld c.0.2
11211 distinguishedName c.0.3
112111 AttributeType cm
112112 AttributeValue cm
11212 nonSpecificForm c:0.3
11213 local DistinguishedName c.0.3
112131 AttributeType cm
112132 AttributeValue cm
1122 launchPadld c.0.2
11221 distinguishedName c.04
112211 AttributeType cm
112212 AttributeValue cm
11222 nonSpecificForm c.0.4
11223 local DistinguishedName c.04
112231 AttributeType cm
112232 AttributeValue cm

2 21 SpawnerObjectld m
211 triggerld m
2111 distinguishedName c:0.5
21111 AttributeType cm
21112 AttributeValue cm
2112 nonSpecificForm c.0.5

ITU-T Rec. X.753 (1997 E) 135

| SO/IEC 10164-21 : 1998 (E)

Table H.25 (concluded)

Index | Subindex Action field name |abel gﬁg%ﬁurg Status Support Additional information
2113 local DistinguishedName c.0.5
21131 AttributeType cm
21132 AttributeValue cm
212 CHOICE m
2121 threadld c.0.6
21211 distinguishedName c.0.7
212111 AttributeType cm
212112 AttributeValue cm
21212 nonSpecificForm c.o.7
21213 local DistinguishedName c.0.7
212131 AttributeType cm
212132 AttributeValue cm
2122 launchPadld c.0.6
21221 distinguishedName c.0.8
212211 AttributeType cm
212212 AttributeValue cm
21222 nonSpecificForm c.0.8
21223 |ocal DistinguishedName c.0.8
212231 AttributeType cm
212232 AttributeValue cm

3 31 Triggerld m
311 distinguishedName c.0.9
3111 AttributeType cm
3112 AttributeVaue cm
312 nonSpecificForm c.0.9
313 local DistinguishedName c.0.9
3131 AttributeType cm
3132 AttributeValue cm

H.5.6 Notifications

There are no netifications defined for this object class.

H.5.7 Parameters

There are no parameters defined for this object class.

H.6 Statement of conformance to the synchronousL aunchPad object class

Table H.26 — MOCS — Managed object class support

Managed object Value of object identifier Support of all Isthe actua class the same as the
Index class template label for class mandatory managed object classto which
features conformanceis claimed? (Y/N)

1 synchronousLaunchPad | {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx5(5)}

If the answer to the actual class question in the managed object class support Table H.26 is no, the supplier of the
implementation shall fill in the actual class support in Table H.27.

136 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.27 — MOCS — Actual class support

Actual managed object class Value of object identifier for - .)
Index template label actual class Additional information
1
2
H.6.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.28.

Table H.28 — MOCS - Package support

Index Package template |abel Vaue ?;Pgﬁagj?tiﬁ & gﬁg%;?'urgss Status | Support iﬁf%?mgt?gln
1 |alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-26/1b) then m else —

H.6.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.29. The

supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.29 — MOCS - Attribute support

Set by create Get Replace
Attribute Vaue of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |administrativeState {'smi2Attributel D 31} - X X
2 | allomorphs {smi2AttributelD 50} X cl X
3 | availabilityStatus {smi2AttributelD 33} - X X
4 | controlStatus {smi2AttributelD 34} - m X
5 | launchPadld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx6(6)}
6 | nameBinding {smi2AttributelD 63} - m X
objectClass {smi2AttributelD 65} - m X
8 | observedAttributeld {joint-iso-itu-t ms(9) m m m
function(2) part11(11)
attribute(7) xx15(15)}
9 | observedObjectinstan¢e {joint-iso-itu-t ms(9 m m m
function(2) part11(11)
attribute(7) xx16(16)}
10 | operationalState {smi2AttributelD 35} - X X
11 | packages {smi2AttributelD 66} - m X
12 | schedulerName {smi2AttributelD 67} - m X
13 | usageState {smi2AttributelD 39} - X X

ITU-T Rec. X.753 (1997 E)

137

| SO/IEC 10164-21 : 1998 (E)

Table H.29 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X

13 X X X
cl: if not (H-26/1b) then m else —

H.6.3 Attributegroups
There are no attribute groups defined for the managed object class.
H.6.4 Actions

The supplier of the implementation shall state whether or not the actions specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.30.

Table H.30 — MOCS - Action support

Additional
information

Value of object identifier Constraints

Index Action type template |abel for action type and values

Status | Support

1 | resume {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx1(1)}

2 | suspend {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx2(2)}

3 | terminate {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx3(3)}

138 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.31 — MOCS — Action support

Index | Subindex Action field name |abel gﬁg%;?'urgss Status Support Additional information

1 |11 SpawnerObjectld m
111 triggerld m
1111 distinguishedName c.o.l
11111 AttributeType cm
11112 AttributeValue cm
1112 nonSpecificForm co.l
1.1.1.3 local DistinguishedName c.o.l
11131 AttributeType cm
11132 AttributeValue cm
112 CHOICE m
1121 threadld c.0.2
11211 distinguishedName c.0.3
112111 AttributeType cm
112112 AttributeValue cm
11212 nonSpecificForm c.0.3
11213 local DistinguishedName c.0.3
112131 AttributeType cm
112132 AttributeValue cm
1122 launchPadld c.0.2
11221 distinguishedName c.0.4
112211 AttributeType cm
112212 AttributeValue cm
11222 nonSpecificForm c.04
11223 local DistinguishedName c.0.4
112231 AttributeType cm
112232 AttributeValue cm

2 |21 SpawnerObjectld m
211 triggerld m
2111 distinguishedName c.0.5
21111 AttributeType cm
21112 AttributeValue cm
2112 nonSpecificForm c.0.5
2113 local DistinguishedName c.0.5
21131 AttributeType cm
21132 AttributeValue cm
212 CHOICE m
2121 threadld c.0.6
21211 distinguishedName c.0.7
212111 AttributeType cm
212112 AttributeValue cm
21212 nonSpecificForm c.0.7
21213 |ocal DistinguishedName c.0.7
212131 AttributeType cm
212132 AttributeValue cm
2122 launchPadld c.0.6
21221 distinguishedName c.0.8
212211 AttributeType cm
212212 AttributeValue cm
21222 nonSpecificForm c.0.8
21223 local DistinguishedName c.0.8
212231 AttributeType cm
212232 AttributeValue cm

3 |31 Triggerld m
311 distinguishedName c.0.9
3111 AttributeType cm
3112 AttributeValue cm
312 nonSpecificForm c.0.9
313 local DistinguishedName c.0.9
3131 AttributeType cm
3132 AttributeValue cm

ITU-T Rec. X.753 (1997 E)

139

| SO/IEC 10164-21 : 1998 (E)
H.6.5 Notifications

There are no netifications defined for this object class.

H.6.6 Parameters

There are no parameters defined for this object class.

H.7 Statement of conformance to the launchScript object class

Table H.32 — MOCS — Managed object class support

] S Isthe actual class the same asthe
Index | L | VA e e | AR Ot s 0w
P y conformanceis claimed? (Y/N)
1 launchScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx7(7)}

If the answer to the actual class question in the managed object class support Table H.32 is no, the supplier of the
implementation shall fill in the actual class support in Table H.33.

Table H.33 — MOCS — Actual class support

Actual managed object class Vaue of object identifier - . -
Index template label for actual class Additional information
1
2

H.7.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.34.

Table H.34 — MOCS - Package support

Value of object identifier Constraints Additional
Index Package template label for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

cl: if not (H-32/1b) then m else —
c2: if H-34/1 then m else —

H.7.2 Attributes
The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a

managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.35. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

140 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.35 — MOCS — Attribute support

Set by create Get Replace
Index ter/:pt)}gtzult':\abel Value ?éroat?[jt(raicglif:ntifier (éﬁgir—irg Status | Support | Status | Support | Status | Support
1 | administrativeState {'smi2Attributel D 31} m m m
2 | alomorphs {'smi2Attributel D 50} X cl X
3 | executionResultType {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
4 | nameBinding {smi2AttributelD 63} - m X
5 | objectClass {smi2AttributelD 65} - m X
6 | packages {smi2AttributelD 66} - c2 X
7 | scriptid {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
Table H.35 (concluded)
Add Remove Set to default
Index| Status| Suppoft Status Support Stajus Support Additional information
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
cl: if not (H-32/1b) then m else —
c2: if H.34/2 then m else —

H.7.3 Attributegroups

There are no attribute groups defined for the managed object class.
H.74 Actions

There are no actions defined for this object class.

H.7.5 Notifications

There are no notifications defined for this object class.

H.7.6 Parameters

There are no parameters defined for this object class.

ITU-T Rec. X.753 (1997 E) 141

ISO/IEC 10164-21 : 1998 (E)
H.8 Statement of conformance to the scriptReferencer object class

Table H.36 — MOCS — Managed object class support

. i Support of all Isthe actual class the same asthe
Index o I;/Issar:g%edl a?tgl ﬁackt) o value offglrajcelca;dmtlfler mandatory managed object class to which
P features conformance is claimed? (Y/N)
1 scriptReferencer {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx8(8)}

If the answer to the actual class question in the managed object class support Table H.36 is no, the supplier of the
implementation shall fill in the actual class support in Table H.37.

Table H.37 — MOCS — Actual class support

Actual managed object class Value of object identifier - . -
Index template label for actual class Additional information
1
2

H.8.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.38.

Table H.38 — MOCS - Package support

Index Package template label Vaue ?grogg:(tagj?ﬁﬁ e gﬁg%;?'u'gss Status | Support iﬁf?)c:irﬂ;?gln
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-36/1b) then m else —

H.8.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.39. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.39 — MOCS - Attribute support

Set by create Get Replace
Index t aﬁgltgtgﬂtaebel Value ?gfgﬁ%&??tiﬁ e gﬁg%;?'urgss Status | Support | Status | Support | Status | Support
1 |alomorphs {'smi2Attributel D 50} X cl X
2 | nameBinding {smi2Attributel D 63} - m X
3 | objectClass {smi2AttributelD 65} - m X
4 | packages {smi2AttributelD 66} - m X

142 ITU-T Rec. X.753 (1997 E)

Table H.39 (concluded)

I SO/IEC 10164-21 : 1998 (E)

Add Remove Set to default
Index| Status | Support | Status | Support | Status | Support Additional information
1 X X X
2 X X X
3 X X X
4 X X X
cl: if not (H-36/1b) then m else —

H.8.3

Attribute groups

There are no attribute groups defined for the managed object class.

H.8.4

Actions

There are no actions defined for this object class.

H.8.5

Notifications

There are no notifications defined for this object class.

H.8.6

Parameters

There are no parameters defined for this object class.

H.9 Statement of conformance to the thread object class
Table H.40 — MOCS — Managed object class support
. i Support of all Isthe actua class the same as the
Index d Massa':éﬁe(f ;21 Ie:g o Value offglrajcelca;dmtlfler mandatory managed object class to which
P features conformance is claimed? (Y/N)
1 thread {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx9(9)}

If the answer to the actual class question in the managed object class support Table H.40 is no, the supplier of the
implementation shall fill in the actual class support in Table H.41.

Table H.41 — MOCS - Actual class support

Actual managed object class Value of object identifier - . .
Index template label for actual class Additional information
1
2
H.9.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.42.

ITU-T Rec. X.753 (1997 E)

143

| SO/IEC 10164-21 : 1998 (E)

Table H.42 — MOCS - Package support

Index Package template label Vaue ?groggi(l:(tagj:mﬁ e gﬁgft/;?'u'gss Status | Support iﬁf%c:irﬂ;?gln
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-40/1b) then m else —

H.9.2 Attributes
The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a

managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.43. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.43 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |alomorphs {'smi2Attributel D 50} X cl X
2 | executingParameters {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx9(9)}
3 | nameBinding {smi2AttributelD 63} - m X
4 | objectClass {smi2AttributelD 65} - m X
5 | operationalState {smi2AttributelD 35} - m X
6 | packages {smi2AttributelD 66} - m X
7 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
8 |threadld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx10(10)}
Table H.43 (concluded)
Add Remove Set to default
Index| Status| Support Status Support Stajus Support Additional information
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
cl: if not (H-40/1b) then m else —

144 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

H.9.3 Attributegroups

There are no attribute groups defined for the managed object class.

H.94 Actions

There are no actions defined for this object class.

H.9.5 Notifications

The supplier of the implementation shall state whether or not the notifications specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.44. The

supplier of the implementation shall indicate support in terms of the confirmed and non-confirmed modes.

Table H.44 — MOCS — Naotification support

Support
x| NI | Ve s e | oy | s | confimed| N | et
1 | processingErrorAlarm {'smi2Notification 10} m
Table H.44 (continued)
Vaue of object identifier . -
Index| Subindex | Notification field name label of attrillautetype %)Qﬁurg Status | Support iﬁf((j)cr“r:qlgtrilgln
associated with field
1 (11 additionalInformation {'smi2Attributel D 6} o]
111 identifier - cm
1.1.2 significance - c:m
1.1.3 information - cm
1.2 additionalText {smi2AttributelD 7} o]
1.3 backedUpStatus {smi2AttributelD 11} 0
1.4 backUpObject {smi2AttributelD 40} o]
14.1 objectName - c:0.1
1411 distinguishedName - c:0.p
14.1.1.1 AttributeType - cm
141.1.2 AttributeValue - c:m
1.4.1.2 nonSpecificForm - c:0.2
1413 localDistinguishedName - c:0.p
1.4.13.1 AttributeType - cm
1.41.3.2 AttributeValue - c:m
1.4.2 noObject - co.l
15 correlatedNotifications {smi2AttributelD 12} o]
15.1 correlatedNotifications - cm
152 sourceObjectinst - c.0
1521 distinguishedName - c:0.8
15211 AttributeType - c:m
15.2.1.2 AttributeValue - cm
1522 nonSpecificForm — C:0.3
1523 localDistinguishedName - c:0.3
15231 AttributeType - c:m
15.2.3.2 AttributeValue - cm
1.6 monitoredAttributes {smi2AttributelD 15} o]
1.6.1 attributeld - cm
1.6.1.1 globalForm - c:0.4
1.6.1.2 localForm - c:0.4
1.6.2 attributeValue - cm
1.7 notificationldentifier {smi2AttributelD 16} 0

ITU-T Rec. X.753 (1997 E)

145

| SO/IEC 10164-21 : 1998 (E)

Table H.44 (concluded)

Vaue of object identifier . -
Index| Subindex | Notification field name label of attrillaute type %)Qﬁurg Status | Support iﬁf%?mgt?gl n
associated with field
18 perceivedSeverity {smi2AttributelD 17} m
19 probableCause {'smi2Attributel D 18} m
19.1 globalValue - c:0.5
1.9.2 localValue - c:0.5
1.10 proposedRepairActions {smi2AttributelD 19} o]
1.10.1 OBJECT IDENTIFIER - c:0.6
1.10.2 INTEGER - c:0.6
1.11 specificProblems {smi2AttributelD 27} o]
1.11.1 OBJECT IDENTIFIER - c.0.7
1.11.2 INTEGER - c:0.7
1.12 stateChangeDefinition {smi2AttributelD 28} o]
1.12.1 attributelD - cm
1.12.1.1 globalForm - c:0.8
1.12.1.2 localForm - c:0.8
1.12.2 oldAttributeValue - c:0
1.12.3 newAttributeValue - cm
1.13 thresholdinfo {smi2AttributelD 29} o]
1.13.1 triggeredThreshold - c:m
1.13.1.1 globalForm - c:0.9
1.13.1.2 localForm - c:0.9
1.13.2 observedValue - c:m
1.13.2.1 integer - c:0.10
1.13.2.2 real — c:0.10
1.13.3 thresholdLevel - c:0
1.13.3.1 up — c:0.1]
1.13.3.1.1 high - cm
1.133.1.11 integer - c:0.12
1.13.3.1.1.2 real - c:0.1p
1.13.3.1.2 low — co
1.13.3.1.2.1 integer - c:0.13
1.13.3.1.2.2 real — c:0.18
1.13.3.2 down - c:0.11]
1.13.3.2.1 high - c:m
1.13.3.2.1.1 integer - c:0.14
1.13.3.2.1.2 real — c:0.14
1.13.3.2.2 low - cm
1.13.3.2.21 integer - c:0.15
1.13.3.2.2.2 real - c:0.1p
1.13.4 armTime - co
1.14 trendIndication {smi2AttributelD 30} o]
H.9.6 Parameters

There are no parameters defined for this object class.

H.10 Statement of conformanceto the suspendableThread object class
Table H.45 — MOCS — Managed object class support
. — - Support of all Isthe actual classthe same asthe
Index lMar;agedI :tbl ﬁactt) o value OffOFJ elct identifier mandatory managed object class to which
classtempide or class features conformanceis claimed? (Y/N)
1 suspendableThread {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx10(10)}
146 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

If the answer to the actual class question in the managed object class support Table H.45 is no, the supplier of the
implementation shall fill in the actual class support in Table H.46.

Table H.46 — MOCS — Actual class support

Actual managed object class Value of object identifier - . .
Index template label for actual class Additional information
1
2

H.10.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.47.

Table H.47 — MOCS - Package support

Value of object identifier Constraints Additional
Index Package template label for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-45/1b) then m else —

H.10.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.48. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.48 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |alomorphs {'smi2Attributel D 50} X cl X
2 | controlStatus {smi2Attributel D 34} - m X
3 | executingParameters {joint-iso-itu-t ms(9 - m X
function(2) part21(21)
attribute(7) xx9(9)}
4 | nameBinding {smi2AttributelD 63} - m X
5 | objectClass {smi2AttributelD 65} - m X
6 | operationalState {smi2AttributelD 35} - m X
7 | packages {smi2AttributelD 66} - m X
8 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
9 |threadld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx10(10)}

ITU-T Rec. X.753 (1997 E) 147

| SO/IEC 10164-21 : 1998 (E)

Table H.48 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X
cl: if not (H-45/1b) then m else —

H.10.3 Attributegroups

There are no attribute groups defined for the managed object class.

H.10.4 Actions

The supplier of the implementation shall state whether or not the actions specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.49.

Table H.49 — MOCS — Action support

Value of object identifier Constraints Additional

Index Action type template | abel for action type andvalues | Staus | Support| ol Hon

1 |resume {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx1(1)}

2 | suspend {joint-iso-itu-t ms(9) m
function(2) part21(21)
action(9) xx2(2)}

H.10.5 Notifications

The supplier of the implementation shall state whether or not the notifications specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.51. The
supplier of the implementation shall indicate support in terms of the confirmed and non-confirmed modes.

148 ITU-T Rec. X.753 (1997 E)

Table H.50 — MOCS — Action support

I SO/IEC 10164-21 : 1998 (E)

Index | Subindex Action field name |abel (;ggigla'urlt; Status Support Additional information

1 11 SpawnerObjectld m
111 triggerld m
1111 distinguishedName co.l
11111 AttributeType cm
11112 AttributeValue cm
1112 nonSpecificForm co.l
1113 local DistinguishedName co.l
11131 AttributeType cm
11132 AttributeValue cm
112 CHOICE m
1121 threadld c.0.2
11211 distinguishedName c.0.3
112111 AttributeType cm
112112 AttributeValue cm
11212 nonSpecificForm c.0.3
11213 |ocal DistinguishedName c.0.3
112131 AttributeType cm
112132 AttributeValue cm
1122 launchPadld c.0.2
11221 distinguishedName c.0.4
112211 AttributeType cm
112212 AttributeValue cm
11222 nonSpecificForm c.o04
11223 |ocal DistinguishedName c.0.4
112231 AttributeType cm
112232 AttributeValue cm

2 21 SpawnerObjectld m
211 triggerld m
2111 distinguishedName c.0.5
21111 AttributeType cm
21112 AttributeValue cm
2112 nonSpecificForm c.0.5
2113 local DistinguishedName c.0.5
21131 AttributeType cm
21132 AttributeValue cm
212 CHOICE m
2121 threadld c:0.6
21211 distinguishedName c.0.7
212111 AttributeType cm
212112 AttributeValue cm
21212 nonSpecificForm c.0.7
21213 |ocal DistinguishedName c.0.7
212131 AttributeType cm
212132 AttributeValue cm
2122 launchPadld c:0.6
21221 distinguishedName c.0.8
212211 AttributeType cm
212212 AttributeValue cm
21222 nonSpecificForm c.0.8
21223 |ocal DistinguishedName c.0.8
212231 AttributeType cm
212232 AttributeValue cm

ITU-T Rec. X.753 (1997 E)

149

| SO/IEC 10164-21 : 1998 (E)

Table H.51 — MOCS — Notification support

Support
x| NI | Ve s el | oy | s | confimed| N | et
1 | processingErrorAlarm {'smi2Notification 10} m
Table H.51 (continued)
Index| Subindex | Natification field name label Valugfo;tgibéﬁft:gg/%rglfler Constraints Status | Support Additiond
associated with field and values information
1 |11 additional Information {smi2Attributel D 6} o]
111 identifier - c:m
1.1.2 significance - cm
1.1.3 information - c:m
1.2 additionalText {smi2AttributelD 7} 0
1.3 backedUpStatus {smi2AttributelD 11} o]
1.4 backUpObiject {smi2AttributelD 40} o]
14.1 objectName - c:0.1
14.1.1 distinguishedName - c:0.p
14111 AttributeType - c:m
14112 AttributeValue — c:m
1.41.2 nonSpecificForm — C:0.4
1413 localDistinguishedName - c:0.p
14131 AttributeType - c:m
14132 AttributeValue — c:m
1.4.2 noObject - co.1l
15 correlatedNotifications {smi2AttributelD 12} o]
15.1 correlatedNotifications - cm
15.2 sourceObjectinst - c:0
1521 distinguishedName - c:0.B
15211 AttributeType - cm
1521.2 AttributeValue - c:m
15.2.2 nonSpecificForm - €:0.3
1523 localDistinguishedName - c:0.3
15231 AttributeType - cm
15.23.2 AttributeValue - c:m
1.6 monitoredAttributes {smi2AttributelD 15} o]
1.6.1 attributeld - cm
1.6.1.1 globalForm - c:0.4
1.6.1.2 localForm - c:0.4
1.6.2 attributeValue — cm
1.7 notificationldentifier {smi2AttributelD 16} 0
1.8 perceivedSeverity {smi2AttributelD 17} m
1.9 probableCause {smi2AttributelD 18} m
1.9.1 globalvalue - c:0.5
1.9.2 localValue - c:0.5
1.10 proposedRepairActions {smi2AttributelD 19} o]
1.10.1 OBJECT IDENTIFIER — C:0.6
1.10.2 INTEGER — c:0.6
1.11 specificProblems {smi2AttributelD 27} o]
1.11.1 OBJECT IDENTIFIER — c:0.7
1.11.2 INTEGER — c:0.7
150 ITU-T Rec. X.753 (1997 E)

Table H.51 (concluded)

I SO/IEC 10164-21 : 1998 (E)

Value of object identifier ' .
Index| Subindex | Notification field name label of attrillaute type %)Qﬁurg Status | Support iﬁf%?mgt?gl n
associated with field
112 stateChangeDefinition {smi2Attributel D 28} o]
1121 attributel D - cm
1.12.1.1 globalForm - c:0.8
1.12.1.2 localForm - c.0.8
1.12.2 oldAttributeValue - c:0
1.12.3 newAttributeValue - cm
1.13 thresholdinfo {smi2AttributelD 29} o]
1.13.1 triggeredThreshold - c:m
1.13.1.1 globalForm - c:0.9
1.13.1.2 localForm - c:0.9
1.13.2 observedValue - c:m
1.13.2.1 integer - c:0.10
1.13.2.2 real — c:0.10
1.13.3 thresholdLevel - c.o
1.13.3.1 up — c:0.1]
1.13.3.1.1 high - cm
1.133.1.11 integer - c:0.12
1.13.3.1.1.2 real - c.0.1p
1.13.3.1.2 low — (ox{0]
1.13.3.1.2.1 integer - c:0.13
1.13.3.1.2.2 real — c:0.18
1.13.3.2 down - c.0.11
1.13.3.2.1 high - c:m
1.13.3.2.1.1 integer - c:0.14
1.13.3.2.1.2 real — c:0.14
1.13.3.2.2 low - cm
1.13.3.2.21 integer - c:0.15
1.13.3.2.2.2 real - c.0.1b
1.13.4 armTime - co
1.14 trendIndication {smi2AttributelD 30} o]

H.10.6 Parameters

There are no parameters defined for this object class.

H.11 Statement of conformanceto the eventDiscriminationCounter object class
Table H.52 — MOCS — Managed object class support
] T Support of all Isthe actua class the same as the
Index o ';Assa??fdl ;gj ﬁ:kt) o Value Offglfjgcats;dm"f'er mandatory managed object class to which
P features conformance is claimed? (Y/N)

1 eventDiscriminationCounter

{joint-iso-itu-t ms(9) ms(9)

function(2) part21(21)
managedObjectClass(3) xx11(11)}

If the answer to the actual class question in the managed object class support Table H.52 is no, the supplier of the
implementation shall fill in the actual class support in Table H.53.

ITU-T Rec. X.753 (1997 E) 151

| SO/IEC 10164-21 : 1998 (E)

Table H.53 — MOCS - Actual class support

Actual managed object class Vaue of object identifier - . -
Index template label for actual class Additional information
1
2

H.11.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are

supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.54.

Table H.54 — MOCS - Package support

Value of object identifier Constraints Additional
Index Package template |abel for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | availabilityStatusPackage {'smi2Package 22} c2
3 | counterAlarmPackage {joint-iso-itu-t ms(9) c3
function(2) part21(21)
package(4) xx15(15)}
4 | dailyScheduling {'smi2Package 25} o]
5 |duration {'smi2Package 26} c4
6 | external Scheduler {'smi2Package 27} o]
7 | packagesPackage {'smi2Package 16} c5
8 | weeklyScheduling {'smi2Package 29} o]
cl: if not (H-52/1b) then m else —
c2: if “any of the scheduling packages, (duration, weekly scheduling, external) are present” then m else —
c3: if “a counter is of finite size and a notification is triggered by a capacity alarm threshold” then m else —
c4: if “the discriminator function is scheduled to start at a specified time and stop at either a specified time or| function
continuously” then m else —
c5: if H-54/1 or H-54/2 or H-54/3 or H-54/4 or H-54/5 or H-54/6 or H-54/8 then m else —

H.11.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.55. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

H.11.3 Attributegroups

There are no attribute groups defined for the managed object class.
H.11.4 Actions

There are no actions defined for this object class.

H.11.5 Notifications

The supplier of the implementation shall state whether or not the notifications specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.56. The
supplier of the implementation shall indicate support in terms of the confirmed and non-confirmed modes.

152 ITU-T Rec. X.753 (1997 E)

Table H.55 — MOCS - Attribute support

I SO/IEC 10164-21 : 1998 (E)

Set by create Get Replace
Index terﬁptltgtzulfbel Value ?;rogt?%l:?:mmer (;ﬁgigla’urg Status | Support | Status | Support | Status | Support
1 | administrativeState {'smi2Attributel D 31} m m m
2 | alomorphs {'smi2Attributel D 50} X cl X
3 |availahilityStatus {'smi2Attributel D 33} - c2 X
4 | capacityAlarmThreshold {smi2AttributelD 52} c3 c3 c3
5 | counter {smi2AttributelD 88} - m X
6 | discriminatorConstruct {smi2AttributelD 56} m m m
7 | discriminatorld {smi2AttributeID 1} - m X
8 | intervalsOfDay {smi2AttributelD 57} 0 0 0
9 | maxCounterSize {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx12(12)}
10 | nameBinding {smi2AttributelD 63} - m X
11 | objectClass {smi2AttributelD 65} - m X
12 | operationalState {smi2AttributelD 35] - m X
13 | packages {smi2AttributelD 66} - c4 X
14 | schedulerName {smi2AttributelD 67] - o] X
15 | startTime {smi2AttributelD 68} c5 c5 c5
16 | stopTime {smi2AttributelD 69} c5 c5 c5
17 | weekMask {smi2AttributelD 71} o o] o]
Table H.55 (concluded)
Add Remove Set to default
Index| Status| Support Status Support Stajus Support Additional information
1 X X X
2 X X X
3 X X X
4 c3 c3 X
5 X X X
6 X X m
7 X X X
8 o] o] o]
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X X
16 X X c5
17 o] o] o]
cl: if not (H-52/1b) then m else —

0 o o o
a B w N

. if H-54/2 then m else —
. if H-54/3 then m else —

if H-54/7 then m else —

. if H-54/5 then m else —

ITU-T Rec. X.753 (1997 E)

153

| SO/IEC 10164-21 : 1998 (E)

Table H.56 — MOCS — Notification support

Support
Notification type Vaue of object identifier Constraints . Non- Additional
Index template label for notification type and values Status | Confirmed confirmed | information
1 | attributeVaueChange {'smi2Natification 1} m
2 | objectCreation {smi2Noatification 6} m
3 | objectDeletion {'smi2Natification 7} m
4 | processingErrorAlarm {'smi2Noatification 10} m
5 | stateChange {'smi2Notification 14} m
Table H.56 (continued)
Value of object identifier . -
Index| Subindex Notification field name label of attribute type Constraints Status | Support Additiona
associated with field and values information
1 |11 additional Information {'smi2Attributel D 6} o
111 identifier - cm
1.1.2 significance - cm
1.1.3 information - cm
1.2 additionalText {smi2AttributelD 7} o
1.3 attributeldentifierList {smi2AttributelD 8} o]
1.3.1 globalForm - co.l
1.3.2 localForm - c.o.l
14 attributeValueChangeDefinition {smi2AttributelD 10} m
141 attributelD - m
14.1.1 globalForm - c:0.2
1412 localForm - C:0.2
1.4.2 oldAttributeValue - o}
143 newAttributeValue - m
15 correlatedNotifications {smi2AttributelD 12} o]
15.1 correlatedNotifications - cm
15.2 sourceObjectinst - c:o
1521 distinguishedName - c:0.B
15211 AttributeType - cm
1521.2 AttributeValue - c:m
15.2.2 nonSpecificForm - €:0.3
1523 localDistinguishedName - co.3
15231 AttributeType - cm
15232 AttributeValue - c:m
1.6 notificationldentifier {smi2AttributelD 16} 0
1.7 sourcelndicator {smi2AttributelD 26} o]
154 ITU-T Rec. X.753 (1997 E)

Table H.56 (continued)

I SO/IEC 10164-21 : 1998 (E)

Value of object identifier . -
Index| Subindex Notification field name label of attribute type g?g%;?'urgss Status | Support iﬁf%?mgt?gl n
associated with field

2 |21 additionalInformation {'smi2Attributel D 6} o]
211 identifier - cm
212 significance - c:m
2.1.3 information - cm
2.2 additionalText {smi2AttributelD 7} o]
2.3 attributeList {smi2AttributelD 9} 0
231 attributeld - cm
231.1 globalForm - c:0.4
2.3.1.2 localForm — c:0.4
232 attributeValue - cm
2.4 correlatedNotifications {smi2AttributelD 12} o]
241 correlatedNotifications - cm
2.4.2 sourceObjectinst - c.0
2421 distinguishedName - c:0.b
24211 AttributeType - c:m
24212 AttributeValue - cm
2422 nonSpecificForm - c:0.9
2423 localDistinguishedName - c:0.p
24231 AttributeType - c:m
24232 AttributeValue - cm
2.5 notificationldentifier {smi2AttributelD 16} o]
2.6 sourcelndicator {smi2AttributelD 26} o]

3 |31 additionallnformation {smi2AttributelD 6} o]
3.11 identifier - cm
3.1.2 significance - c:m
3.1.3 information - cm
3.2 additionalText {smi2AttributelD 7} o]
3.3 attributeList {smi2AttributelD 9} 0
3.31 attributeld - c:m
3.3.1.1 globalForm - C:0.6
3.3.1.2 localForm — C:0.6]
3.3.2 attributeValue - cm
3.4 correlatedNotifications {smi2AttributelD 12} o]
3.4.1 correlatedNotifications - cm
3.4.2 sourceObjectinst - c.0
3421 distinguishedName - c:o.f
34211 AttributeType - cm
3.4.2.1.2 AttributeValue - cm
3.4.2.2 nonSpecificForm - C:0.7
3.4.23 localDistinguishedName - c:o.Jf
3.4.23.1 AttributeType - cm
3.4.2.3.2 AttributeValue - cm
3.5 notificationldentifier {smi2AttributelD 16} o]
3.6 sourcelndicator {smi2AttributelD 26} o]

4 |41 additionallnformation {smi2AttributelD 6} 0
41.1 identifier - cm
4.1.2 significance - c:m
4.1.3 information - cm
4.2 additionalText {smi2AttributelD 7} o]
4.3 backedUpStatus {smi2AttributelD 11} 0
4.4 backUpObject {smi2AttributelD 40} o]
44.1 objectName - c:0.8
44.1.1 distinguishedName - c:0.p
44111 AttributeType - cm

ITU-T Rec. X.753 (1997 E)

155

| SO/IEC 10164-21 : 1998 (E)

Table H.56 (continued)

Value of object identifier . -
Index| Subindex Notification field name label of attribute type g?g%;?'urgss Status | Support iﬁf%?mgt?gl n
associated with field
44112 AttributeValue — c:m
44.1.2 nonSpecificForm - c:0.4
44.1.3 localDistinguishedName — c:0.p
44.1.3.1 AttributeType - cm
4.4.1.3.2 AttributeValue - c:m
4.4.2 noObject - c:0.8
4.5 correlatedNotifications {smi2AttributelD 12} o]
45.1 correlatedNotifications - cm
45.2 sourceObjectinst - c.0
4521 distinguishedName - c:0.10
45211 AttributeType - c:m
4521.2 AttributeValue - cm
45.2.2 nonSpecificForm - c:0.10
45.2.3 localDistinguishedName - c:0.10
45231 AttributeType - c:m
45.2.3.2 AttributeValue - cm
4.6 monitoredAttributes {smi2AttributelD 15} o]
46.1 attributeld - cm
46.1.1 globalForm - c.0.11
46.1.2 localForm - c0.11
4.6.2 attributeValue - c:m
4.7 notificationldentifier {smi2AttributelD 16} 0
4.8 perceivedSeverity {smi2AttributelD 17} m
4.9 probableCause {smi2AttributelD 18} m
49.1 globalValue - c:0.17
49.2 localValue - c:0.12
4.10 proposedRepairActions {smi2AttributelD 19} o]
4.10.1 OBJECT IDENTIFIER - c:0.13
4.10.2 INTEGER — c:0.13
411 specificProblems {smi2AttributelD 27} o]
4111 OBJECT IDENTIFIER - c:0.14
4.11.2 INTEGER - c:0.14
412 stateChangeDefinition {smi2AttributelD 28} o]
4121 attributelD - cm
412.1.1 globalForm - c:0.15
4.12.1.2 localForm - c:0.1%
4.12.2 oldAttributeValue - c:0
4.12.3 newAttributeValue - cm
4.13 thresholdinfo {smi2AttributelD 29} o]
4.13.1 triggeredThreshold - c:m
413.1.1 globalForm - c:0.16
4.13.1.2 localForm - c:0.16
4.13.2 observedValue - c:m
4.13.2.1 integer - c.0.17
4.13.2.2 real - c:0.17
4.13.3 thresholdLevel - c:0
4.13.3.1 up - c:0.18
4.133.11 high - cm
4.13.3.1.1.1 integer - c:0.19
4133.1.1.2 real - c:0.1p
4.13.3.1.2 low — c:0
4.133.1.2.1 integer - c:0.20
4.13.3.1.2.2 real — c:0.2D
156 ITU-T Rec. X.753 (1997 E)

Table H.56 (concluded)

I SO/IEC 10164-21 : 1998 (E)

Value of object identifier . -
Index| Subindex Notification field name label of attribute type g?g%;?'urgss Status | Support iﬁf%?mgt?gl n
associated with field

41332 down - c:0.18

4.13.3.2.1 high - cm

4.13.3.2.1.1 integer - c:0.21

4.13.3.2.1.2 real - c:0.2[L

4.13.3.2.2 low — cm

4.133.2.2.1 integer - c:0.22

4.13.3.2.2.2 real - c:0.2p

4134 armTime - c:0

4.14 trendindication {smi2AttributelD 30} o]

5 [5.1 additionallnformation {smi2AttributelD 6} o]
5.1.1 identifier — cm
5.1.2 significance - cm
5.1.3 information — cm
5.2 additionalText {smi2AttributelD 7} 0
5.3 attributeldentifierList {smi2AttributelD 8} o]
5.3.1 globalForm - €:0.23
5.3.2 localForm — C:0.23
5.4 correlatedNotifications {smi2AttributelD 12} o]
5.4.1 correlatedNotifications - cm
5.4.2 sourceObjectinst - c:0
5421 distinguishedName — c.0.24
54211 AttributeType - cm
54.2.1.2 AttributeValue - c:m
5.4.2.2 nonSpecificForm - c.0.24
54.23 localDistinguishedName — c:0.24
5.4.2.3.1 AttributeType - cm
5.4.2.3.2 AttributeValue - c:m
5.5 notificationldentifier {smi2AttributelD 16} 0
5.6 sourcelndicator {smi2AttributelD 26} o]
5.7 stateChangeDefinition {smi2AttributelD 28} m
5.7.1 attributelD - m
57.1.1 globalForm - c:0.2%
5.7.1.2 localForm — C:0.25
5.7.2 oldAttributeValue - o]
5.7.3 newAttributeValue - m

H.11.6 Parameters

There are no parameters defined for this object class.

H.12 Statement of conformanceto the cmipCS object class
Table H.57 — MOCS — Managed object class support
. L Support of all Isthe actua class the same as the
Index d li/lmar:g%ec:;g F;é o Value ofngjcelcta;dentlfler mandatory managed object class to which
P features conformanceis claimed? (Y/N)
1 cmipCS {joint-iso-itu-t ms(9) function(2)

part21(21) managedObjectClass(3)

xx18(18)}

ITU-T Rec. X.753 (1997 E) 157

| SO/IEC 10164-21 : 1998 (E)

If the answer to the actual class question in the managed object class support Table H.57 is no, the supplier of the
implementation shall fill in the actual class support in Table H.58.

Table H.58 — MOCS — Actual class support

Actual managed object class Value of object identifier - . -
Index template label for actual class Additional information
1
2

H.12.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.59.

Table H.59 — MOCS - Package support

Value of object identifier Constraints Additional
Index Package template label for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} m

cl: if not (H-57/1b) then m else —

H.12.2 Attributes
The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a

managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.60. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.60 — MOCS — Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |administrativeState {'smi2Attributel D 31} m m m
2 |aditle {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx20(20)}
3 | allomorphs {smi2AttributelD 50} X cl X
4 | commandSequencefld {joint-iso-itu-t ms(9 - m X
function(2) part21(21)
attribute(7) xx2(2)}
5 | nameBinding {smi2AttributelD 63} - m X
6 | objectClass {smi2AttributelD 65} - m X
7 | operationalState {smi2AttributelD 35} - m X
8 | packages {smi2AttributelD 66} - m X

158 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.60 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

XXX [X|X[X]|X
XXX [X|X[X]|X

OIN|O|O|B[W[IN
XX [X|X[X|X|X]|X

X X
if not (H-57/1b) then m else —

=

c

H.12.3 Attributegroups

There are no attribute groups defined for the managed object class.
H.124 Actions

There are no actions defined for this object class.

H.12.5 Notifications

The supplier of the implementation shall state whether or not the notifications specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.61. The
supplier of the implementation shall indicate support in terms of the confirmed and non-confirmed modes.

Table H.61 — MOCS - Notification support

Support
| Nemeonbe | Vaueo s el | Qo | saus | conimed| N | et
1 | objectCreation {'smi2Natification 6} m
2 | objectDeletion {'smi2Notification 7} m
3 | stateChange {'smi2Notification 14} m
Table H.61 (continued)
Index| Subindex | Natification field name label Valugfo;tgibéﬁft:gg/%rglfler Constraints Status | Support Additiond
associated with field and values information
1 |11 additional Information {smi2Attributel D 6} o]
111 identifier - c:m
1.1.2 significance - cm
1.1.3 information - c:m
1.2 additionalText {smi2AttributelD 7} 0
1.3 attributeL.ist {smi2AttributelD 9} o]
13.1 attributeld — c:m
1311 globalForm - c:0.]]
1.3.1.2 localForm — c:0.1]
1.3.2 attributeValue - cm
1.4 correlatedNotifications {smi2AttributelD 12} o]
14.1 correlatedNotifications - cm
1.4.2 sourceObjectinst - c:0
1421 distinguishedName - c:0.p
14211 AttributeType - cm
1.421.2 AttributeValue - c:m
1.4.2.2 nonSpecificForm - c:0.2

ITU-T Rec. X.753 (1997 E)

159

| SO/IEC 10164-21 : 1998 (E)

Table H.61 (concluded)

Value of object identifier . -
Index| Subindex | Natification field name label of attribute type %Siglaurg Status | Support iﬁf%?mgt?gln
associated with field
1423 local DistinguishedName - c:.0.2
14231 AttributeType - c:m
1.4.2.3.2 AttributeValue - cm
15 notificationldentifier {smi2AttributelD 16} o]
1.6 sourcelndicator {smi2AttributelD 26} o]

2 |21 additionallnformation {smi2AttributelD 6} 0
211 identifier - cm
212 significance - c:m
2.1.3 information - cm
2.2 additionalText {smi2AttributelD 7} o]
2.3 attributeList {smi2AttributelD 9} 0
231 attributeld - cm
231.1 globalForm - c:0.3
2.3.1.2 localForm - c:0.3
232 attributeValue - cm
2.4 correlatedNotifications {smi2AttributelD 12} o]
241 correlatedNotifications - cm
2.4.2 sourceObjectinst - c.0
2421 distinguishedName - c.o.f
24211 AttributeType - c:m
24212 AttributeValue - cm
2422 nonSpecificForm — c.04
2423 localDistinguishedName - c.of
24231 AttributeType - c:m
24232 AttributeValue - cm
2.5 notificationldentifier {smi2AttributelD 16} o]
2.6 sourcelndicator {smi2AttributelD 26} o]

3 |31 additionallnformation {smi2AttributelD 6} o]
3.11 identifier - cm
3.1.2 significance - c:m
3.1.3 information - cm
3.2 additionalText {smi2AttributelD 7} o]
3.3 attributeldentifierList {smi2AttributelD 8} 0
3.3.1 globalForm - c:0.5
3.3.2 localForm - c:0.5
3.4 correlatedNotifications {smi2AttributelD 12} o]
3.4.1 correlatedNotifications - cm
3.4.2 sourceObjectinst - c.0
3421 distinguishedName - c:0.6
34211 AttributeType — cm
3.4.2.1.2 AttributeValue - cm
3.4.2.2 nonSpecificForm — c:0.4
3.4.23 localDistinguishedName - c:0.p
3.4.23.1 AttributeType — cm
3.4.2.3.2 AttributeValue - cm
3.5 notificationldentifier {smi2AttributelD 16} o]
3.6 sourcelndicator {smi2AttributelD 26} o]
3.7 stateChangeDefinition {smi2AttributelD 28} m
3.7.1 attributelD - m
3.71.1 globalForm — C:0.7
3.7.1.2 localForm - c:0.7
3.7.2 oldAttributeValue - 0
3.7.3 newAttributeValue - m

160 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

H.12.6 Parameters

There are no parameters defined for this object class.

H.13 Statement of conformanceto the cmisScript object class

Table H.62 — MOCS — Managed object class support

. Support of all Isthe actual classthe same asthe
Index Mar:agedl a?blgcg eclzlass Value of object identifier for class mandatory managed object class to which
empiate features conformanceis claimed? (Y/N)
1 cmisScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx12(12)}

If the answer to the actual class question in the managed object class support Table H.62 is no, the supplier of the
implementation shall fill in the actual class support in Table H.63.

Table H.63 — MOCS — Actual class support

Actual managed object class Vaue of object identifier - . -
Index template label for actual class Additional information
1
2

H.13.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.64.

Table H.64 — MOCS - Package support

Value of object identifier Constraints Additional
Index Package template label for package and values Status | Support information
1 | allomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

cl: if not (H-62/1b) then m else —
c2: if H-64/1 then m else —

H.13.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.65. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.65 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 | administrativeState {smi2Attributel D 31} m m m
2 | alomorphs {'smi2Attributel D 50} X cl X
3 | executionResultType | {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
4 | nameBinding {smi2AttributelD 63} - m
5 | objectClass {smi2AttributelD 65} - m
6 | packages {smi2AttributelD 66} - c2 X
7 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}

ITU-T Rec. X.753 (1997 E) 161

| SO/IEC 10164-21 : 1998 (E)

Table H.65 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X
cl: if not(H-62/1b) then m else —
c2: if H-64/2 then m else —

H.13.3 Attributegroups

There are no attribute groups defined for the managed object class.

H.13.4 Actions

There are no actions defined for this object class.

H.13.5 Notifications

There are no notifications defined for this object class.

H.13.6 Parameters

There are no parameters defined for this object class.

H.14 Statement of conformanceto the getCmisScript object class

Table H.66 — MOCS — Managed object class support

] S Support of all Isthe actual class the same asthe
Index d I}/I&artlg%e(:a?gj ﬁ:tb o vaue Offg?ﬁca;dmt'f' e mandatory managed object classto which
P features conformanceis claimed? (Y/N)
1 getCmisScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx13(13)}

If the answer to the actual class question in the managed object class support Table H.66 is no, the supplier of the
implementation shall fill in the actual class support in Table H.67.

Table H.67 — MOCS — Actual class support

Actual managed object class Value of object identifier - . .
Index template label for actual class Additional information
1
2

162 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

H.14.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.68.

Table H.68 — MOCS - Package support

Vaue of object identifier Constraints Additional
Index Package template | abel for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

cl: if not (H-66/1b) then m else —
c2: if H-68/1 then m else —

H.14.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.69. The

supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.69 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 |administrativeState {'smi2Attributel D 31} m m m
2 |alomorphs {'smi2Attributel D 50} X cl X
3 | attributeldentifierList {'smi2Attributel D 8} m m m
4 | baseManagedObjectid {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx13(13)}
5 | executionResultType {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
6 | filter {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx15(15)}
7 | nameBinding {smi2AttributelD 63} - m X
8 | objectClass {smi2AttributelD 65} - m X
9 | packages {smi2AttributelD 66} - c2 X
10 | scope {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx14(14)}
11 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
12 | synchronization {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx16(16)}

ITU-T Rec. X.753 (1997 E)

163

| SO/IEC 10164-21 : 1998 (E)

Table H.69 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 m m X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X
cl: if not (H-66/1b) then m else —
c2: if H-68/2 then m else —

H.14.3 Attribute groups

There are no attribute groups defined for the managed object class.

H.14.4 Actions

There are no actions defined for this object class.

H.14.5 Notifications

There are no notifications defined for this object class.

H.14.6 Parameters

There are no parameters defined for this object class.

H.15 Statement of conformanceto the setCmisScript object class

Table H.70 — MOCS — Managed object class support

] S Support of all Isthe actual class the same asthe
Index d I}/I&artlg%e(:a?gj ﬁ:tb o vaue Offg?ﬁca;dmt'f' e mandatory managed object class to which
P features conformanceis claimed? (Y/N)
1 setCmisScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx14(14)}

If the answer to the actual class question in the managed object class support Table H.70 is no, the supplier of the
implementation shall fill in the actual class support in Table H.71.

164 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.71 — MOCS - Actual class support

Actual managed object class Value of object identifier for - .)
Index template label actual class Additional information
1
2

H.15.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.72.

Table H.72 — MOCS - Package support

Value of object identifier Constraints Additiona
Index Package template label for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

cl: if not (H-70/1b) then m else —
c2: if H-72/1 then m else —

H.15.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.73. The

supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.73 — MOCS - Attribute support

Set by create

Get

Replace

Index

Attribute
template label

Vaue of object identifier
for attribute

Constraints
and values

Status

Support

Status

Support

Status

Support

administrativeState

{'smi2Attributel D 31}

N

allomorphs

{'smi2Attributel D 50}

cl

baseM anagedObjectld

{joint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx13(13)}

x |X|[3

executionResultType

{joint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx3(3)}

filter

{joint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx15(15)}

modificationList

{joint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx17(17)}

nameBinding

{smi2AttributelD 63}

objectClass

{smi2AttributelD 65}

|00

packages

{smi2AttributelD 66}

scope

{ioint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx14(14)}

11

scriptld

{joint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx5(5)}

12

synchronization

{joint-iso-itu-t ms(9)
function(2) part21(21)
attribute(7) xx16(16)}

ITU-T Rec. X.753 (1997 E)

165

| SO/IEC 10164-21 : 1998 (E)

Table H.73 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 m m X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X

12 X X X
cl: if not (H-70/1b) then m else —
c2: if H-72/2 then m else —

H.15.3 Attributegroups

There are no attribute groups defined for the managed object class.

H.15.4 Actions

There are no actions defined for this object class.

H.15.5 Notifications

There are no netifications defined for this object class.

H.15.6 Parameters

There are no parameters defined for this object class.

H.16 Statement of conformanceto the actionCmisScript object class

Table H.74 — MOCS — Managed object class support

. — - Support of all Isthe actual classthe same asthe
Index o ';Assart]gr%edl a?tgl ﬁactt) o value offglrajcelca;dmtlfler mandatory managed object class to which
P features conformance is claimed? (Y/N)

1 actionCmisScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx15(15)}

If the answer to the actual class question in the managed object class support Table H.74 is no, the supplier of the
implementation shall fill in the actual class support in Table H.75.

166 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

Table H.75 — MOCS — Actual class support

Actual managed object class Vaue of object identifier - . -
Index template label for actual class Additional information
1
2

H.16.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.76.

Table H.76 — MOCS - Package support

Value of object identifier Constraints Additional
Index Package template |abel for package and values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

cl: if not (H-74/1b) then m else —
c2: if H-76/1 then m else —

H.16.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Support” and “Additional information” columns in Table H.77. The

supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.77 — MOCS - Attribute support

Set by create Get Replace
Attribute Vaue of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 | administrativeState {'smi2Attributel D 31} m m m
2 | alomorphs {'smi2Attributel D 50} X cl X
3 | baseManagedObjectld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx13(13)}
4 | executionResultType {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
5 |[filter {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx15(15)}
6 | nameBinding {smi2AttributelD 63} - m X
7 | objectClass {smi2AttributelD 65} - m X
8 | packages {smi2AttributelD 66} - c2 X
9 |scope {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx14(14)}
10 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
11 | synchronization {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx16(16)}

ITU-T Rec. X.753 (1997 E)

167

| SO/IEC 10164-21 : 1998 (E)

Table H.77 (concluded)

Add Remove Set to default

Index| Status | Support | Status | Support | Status | Support Additional information

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X

7 X X X

8 X X X

9 X X X

10 X X X

11 X X X
cl: if not (H-74/1b) then m else —
c2: if H-76/2 then m else —

H.16.3 Attributegroups

There are no attribute groups defined for the managed object class.

H.16.4 Actions

There are no actions defined for this object class.

H.16.5 Notifications

There are no notifications defined for this object class.

H.16.6 Parameters

There are no parameters defined for this object class.

H.17 Statement of conformanceto the createCmisScript object class

Table H.78 — MOCS — Managed object class support

. — - Support of all Isthe actual classthe same asthe
Index o ';Assart]gr%edl a?tgl ﬁactt) o Value offglrajcelca;dmtlfler mandatory managed object class to which
P features conformance is claimed? (Y/N)
1 createCmisScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx16(16)}

If the answer to the actual class question in the managed object class support Table H.78 is no, the supplier of the
implementation shall fill in the actual class support in Table H.79.

Table H.79 — MOCS — Actual class support

Actua managed object class Vaue of object identifier

template label for actual class Additional information

Index

168 ITU-T Rec. X.753 (1997 E)

I SO/IEC 10164-21 : 1998 (E)

H.17.1 Packages

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Support” and “Additional information” columns in Table H.80.

Table H.80 — MOCS - Package support

Value of object identifier Constraints Additiona
Index Package template label for package and values Status | Support information

1 | alomorphicPackage {'smi2Package 17} cl
2 | managedObjectlnstancePackage {joint-iso-itu-t ms(9) c2

function(2) part21(21)

package(4) xx16(16)}
3 | packagesPackage {'smi2Package 16} c3
4 | referenceObjectl nstancePackage {joint-iso-itu-t ms(9) c4

function(2) part21(21)

package(4) xx18(18)}
5 | superiourObjectnstancePackage {joint-iso-itu-t ms(9) c5

function(2) part21(21)

package(4) xx17(17)}

cl:
c2:
c3:
c4:
c5:

if not (H-78/1b) then m else —

if “the superiourObjectinstancePackage is not present” then m else —
if H-80/1 or H-80/2 or H-80/4 or H-80/5 then m else —

if “the manager has the specified value” then m else —

if “the managedObjectinstance Package is not present” then m else —

H.17.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, irt $apport” and “Additional informatioh columns in Table H.81. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.81 — MOCS - Attribute support

Set by create Get Replace
Attribute Value of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 | administrativeState {'smi2Attributel D 31} m m m
2 |alomorphs {'smi2Attributel D 50} X cl X
3 | attributeList {'smi2Attributel D 9} m m m
4 | executionResultType {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
5 | managedObjectinstange {smi2AttributelD 61} c2 c2 c2
6 | nameBinding {smi2AttributelD 63} - m X
7 | objectClass {smi2AttributelD 65} - m X
8 | packages {smi2AttributelD 66} - c3
9 | referenceObjectinstance {joint-iso-itu-t ms(9 c4 c4 c4
function(2) part21(21)
attribute(7) xx19(19)}
10 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
11 | superiourObjectinstange {joint-iso-itu-t ms(9 c5 c5 c5
function(2) part21(21)
attribute(7) xx18(18)}

ITU-T Rec. X.753 (1997 E)

169

| SO/IEC 10164-21 : 1998 (E)

Table H.81 (concluded)

Add Remove Set to default
Index| Status | Support | Status | Support | Status | Support Additional information
X

[EY
x
x

OO |N|O|O|~[wWwN

x> |x|x|[x|x|x|3|[x

=
o

X [x|x|x|x|[x|x]|x|3]|x
X [x> |x[x|x]|x]|x]|x

[EnY
[
x

O
=

. if not (H-78/1b) then m else —
: if H-80/2 then m else —
. if H-80/3 then m else —
if H-80/4 then m else —
: if H-80/5 then m else —

0 o o o
a B w N

H.17.3 Attribute groups

There are no attribute groups defined for the managed object class.

H.17.4 Actions

There are no actions defined for this object class.

H.17.5 Notifications

There are no netifications defined for this object class.

H.17.6 Parameters

There are no parameters defined for this object class.

H.18 Statement of conformanceto the deleteCmisScript object class

Table H.82 — MOCS — Managed object class support

] S Support of all Isthe actual class the same asthe
Index d I}/I&artlg%e(:a?gj ﬁ:tb o vaue Offg?ﬁca;dmt'f' e mandatory managed object class to which
P features conformanceis claimed? (Y/N)

1 deleteCmisScript {joint-iso-itu-t ms(9) function(2)
part21(21) managedObjectClass(3)
xx17(17)}

If the answer to the actual class question in the managed object class support Table H.82 is no, the supplier of the
implementation shall fill in the actual class support in Table H.83.

Table H.83 — MOCS — Actual class support

Actual managed object class Value of object identifier - . -
Index template label for actual class Additional information
1
2

170 ITU-T Rec. X.753 (1997 E)

H.18.1 Packages

I SO/IEC 10164-21 : 1998 (E)

The supplier of the implementation shall state whether or not the conditional packages specified by this class are
supported by an instance of this class, in the “Supgahd “Additional informatiohcolumnsin Table H.84.

Table H.84 — MOCS - Package support

Value of object identifier | Constraints and Additional
Index Package template label for package values Status | Support information
1 | alomorphicPackage {'smi2Package 17} cl
2 | packagesPackage {'smi2Package 16} c2

cl: if not (H-82/1b) then m else —
c2: if H-84/1 then m else —

H.18.2 Attributes

The supplier of the implementation shall state whether or not the attributes specified by all packages instantiated in a
managed object of this class are supported, in the “Supaiodt “Additional informatioh columns in Table H.85. The
supplier of the implementation shall indicate support for each of the operations for each attribute supported.

Table H.85 — MOCS - Attribute support

Set by create Get Replace
Attribute Vaue of object identifier | Constraints
Index template label for attribute and values Status | Support | Status | Support | Status | Support
1 | administrativeState {'smi2Attributel D 31} m m m
2 | alomorphs {'smi2Attributel D 50} X cl X
3 | baseManagedObjectld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx13(13)}
4 | executionResultType {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx3(3)}
5 |[filter {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx15(15)}
6 | nameBinding {smi2AttributelD 63} - m X
7 | objectClass {smi2AttributelD 65} - m X
8 | packages {smi2AttributelD 66} - c2 X
9 |scope {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx14(14)}
10 | scriptld {joint-iso-itu-t ms(9) - m X
function(2) part21(21)
attribute(7) xx5(5)}
11 | synchronization {joint-iso-itu-t ms(9) m m m
function(2) part21(21)
attribute(7) xx16(16)}

ITU-T Rec. X.753 (1997 E)

171

| SO/IEC 10164-21 : 1998 (E)

Table H.85 (concluded)

Add Remove Set to default
Index| Status | Support | Status | Support | Status | Support Additional information
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X

cl: if not (H-82/1b) then m else —
c2: if H-84/2 then m else —

H.18.3 Attribute groups

There are no attribute groups defined for the managed object class.
H.184 Actions

There are no actions defined for this object class.

H.185 Notifications

There are no notifications defined for this object class.

H.18.6 Parameters

There are no parameters defined for this object class.

172 ITU-T Rec. X.753 (1997 E)

SeriesA
SeriesB
SeriesC
SeriesD
SeriesE
SeriesF
Series G
SeriesH
Series|

SeriesJ
SeriesK
SeriesL
SeriesM

SeriesN
SeriesO
SeriesP
SeriesQ
SeriesR
Series S
Series T
SeriesU
SeriesV
Series X
Series Y
SeriesZ

I TU-T RECOMMENDATIONS SERIES

Organization of the work of the ITU-T

Means of expression: definitions, symbols, classification

General telecommunication statistics

General tariff principles

Overall network operation, telephone service, service operation and human factors
Non-telephone tel ecommunication services

Transmission systems and media, digital systems and networks

Audiovisual and multimedia systems

Integrated services digital network

Transmission of television, sound programme and other multimedia signals
Protection against interference

Construction, installation and protection of cables and other elements of outside plant

TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Maintenance: international sound programme and television transmission circuits
Specifications of measuring equipment

Telephone transmission quality, telephone installations, local line networks
Switching and signalling

Telegraph transmission

Telegraph services terminal equipment

Terminals for telematic services

Telegraph switching

Data communication over the telephone network

Data networks and open system communication

Global information infrastructure

Programming languages

	ITU-T Rec. X.753 (10/97) INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION - SYSTEMS MANAGEMENT: COMMAND SEQUENCER FOR SYSTE
	Source
	FOREWORD
	CONTENTS
	INFORMATION TECHNOLOGY - OPEN SYSTEMS INTERCONNECTION - SYSTEMS MANAGEMENT: COMMAND SEQUENCER FOR SYSTEMS MANAGEMENT
	1 Scope
	2 Normative references
	2.1 Identical Recommendations | International Standards
	2.2 Paired Recommendations | International Standards equivalent in technical content

	3 Definitions
	3.1 Basic Reference Model definitions
	3.2 Service convention definitions
	3.3 Management framework definitions
	3.4 Systems management overview definitions
	3.5 Common management information service definitions
	3.6 Additional definitions

	4 Abbreviations
	5 Conventions
	6 Requirements
	7 Model
	7.1 Model description
	7.2 Triggering process and reporting results
	7.3 Management of command sequencer
	7.4 Scheduling of the command sequencer
	7.5 Access control

	8 Generic definitions
	8.1 Managed objects
	8.2 Generic notifications
	8.3 Generic actions

	9 Services
	9.1 Introduction
	9.2 Initiation, Termination, Modification and Retrieval Services
	9.3 Notification services
	9.4 Action services

	10 Functional units
	11 Protocols and abstract syntax
	11.1 Abstract syntax
	11.2 Attributes
	11.4 Notifications
	11.5 Actions
	11.6 Negotiation of functional units

	12 Relationship with other functions
	13 Conformance
	13.1 General conformance class requirements
	13.2 Dependent conformance class requirements
	13.3 Conformance to support managed object definitions

	Annex A - Definition of Management Information
	A.1 Managed object class definitions
	A.2 Package definitions
	A.3 Behaviour definitions
	A.4 Attribute definitions
	A.5 Notification definitions
	A.6 Action definitions
	A.7 Name binding definitions
	A.8 ASN.1 definitions
	Annex B - General Relationship Model
	Annex C - Management Information Definitions for Event Discrimination Counting
	C.1 Managed object class
	C.2 Package
	C.3 Attribute
	Annex D - cmisScript Management Support Object Class
	D.1 Attributes
	D.2 Definitions
	D.3 getCmisScript
	D.4 setCmisScript
	D.5 actionCmisScript
	D.6 createCmisScript
	D.7 deleteCmisScript
	D.8 Services
	D.9 GDMO template
	Annex E - CMIP_CS managed object class
	E.1 cmipCS
	Annex F - Systems Management Scripting Language [SMSL]
	F.1 Mapping GDMO onto SMSL
	F.2 SMSL Built-in functions
	F.3 Set functions for SMSL lists
	F.4 SMSL mathematical functions
	F.5 SMSL process synchronization
	F.6 SMSL shared global channels
	F.7 SMSL data types and objects
	F.8 SMSL variables
	F.9 SMSL predefined constants
	F.10 SMSL string literals
	F.11 SMSL lists
	F.12 SMSL simple statements
	F.13 SMSL operators
	F.14 The SMSL core scripting language
	Annex G - SMSL support functions
	Annex H - MOCS proforma
	H.1 Statement of conformance to the basicSpawnerClass object class
	H.2 Statement of conformance to the commandSequencer object class
	H.3 Statement of conformance to the generalStringScript object class
	H.4 Statement of conformance to the launchPad object class
	H.5 Statement of conformance to the asynchronousLaunchPad object class
	H.6 Statement of conformance to the synchronousLaunchPad object class
	H.7 Statement of conformance to the launchScript object class
	H.8 Statement of conformance to the scriptReferencer object class
	H.9 Statement of conformance to the thread object class
	H.10 Statement of conformance to the suspendableThread object class
	H.11 Statement of conformance to the eventDiscriminationCounter object class
	H.12 Statement of conformance to the cmipCS object class
	H.13 Statement of conformance to the cmisScript object class
	H.14 Statement of conformance to the getCmisScript object class
	H.15 Statement of conformance to the setCmisScript object class
	H.16 Statement of conformance to the actionCmisScript object class
	H.17 Statement of conformance to the createCmisScript object class
	H.18 Statement of conformance to the deleteCmisScript object class

