
INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.680
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 2
(06/99)

SERIES X: DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OSI networking and system aspects – Abstract Syntax
Notation One (ASN.1)

Information technology – Abstract Syntax
Notation One (ASN.1): Specification of basic
notation

Amendment 2: ASN.1 semantic model

ITU-T Recommendation X.680 – Amendment 2
(Previously CCITT Recommendation)

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

For further details, please refer to ITU-T List of Recommendations.

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.399

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems Management framework and architecture X.700–X.709

Management Communication Service and Protocol X.710–X.719

Structure of Management Information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, Concurrency and Recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) i

INTERNATIONAL STANDARD 8824-1

ITU-T RECOMMENDATION X.680

INFORMATION TECHNOLOGY – ABSTRACT SYNTAX NOTATION ONE (ASN.1):
SPECIFICATION OF BASIC NOTATION

AMENDMENT 2
ASN.1 semantic model

Summary

Amendment 2 to ITU-T Rec. X.680 | ISO/IEC 8824-1 is expected to be mainly of use to tool builders. It is meant to
ensure that they interpret the ASN.1 standard identically as far as mapping values to types is concerned. It specifies:

a) what is legal ASN.1 and what is not;

b) the precise value that any value reference name identifies; and

c) the precise set of values that any type or value set reference name identifies.

Source

Amendment 2 to the ITU-T Recommendation X.680 was approved on 18 June 1999. The identical text is also published
as ISO/IEC 8824-1.

ii ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommuni-
cations. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is
responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to
standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the
use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability
of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation
development process.

As of the date of approval of this Recommendation, the ITU had not received notice of intellectual property, protected
by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this
may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

 ITU 2000

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) iii

CONTENTS

Page

1) Subclause 3.8 .. 1

2) New subclause 5.9 .. 1
5.9 Value references and the typing of values... 1

3) New subclause 13.6 .. 1

4) New subclause 13.7 .. 2

5) Subclause 15.2 .. 2

6) Subclause 36.7 .. 2

7) Subclause 48.3.2 ... 2

8) Subclause 48.5.2 ... 2

9) Subclause 48.8.2 ... 2

10) New Annex F.. 3

Annex F – Rules for Type and Value Compatibility ... 3
F.1 The need for the value mapping concept (Tutorial introduction).. 3
F.2 Value mappings... 5
F.3 Identical type definitions ... 6
F.4 Specification of value mappings ... 7
F.5 Additional value mappings defined for the character string types .. 8
F.6 Specific type and value compatibility requirements.. 9
F.7 Examples ... 9

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 1

INTERNATIONAL STANDARD

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY – ABSTRACT SYNTAX NOTATION ONE (ASN.1):
SPECIFICATION OF BASIC NOTATION

AMENDMENT 2
ASN.1 semantic model

1) Subclause 3.8

Add the definitions 3.8.39 bis and 3.8.71 bis to subclause 3.8 and replace the definition of governing; governor with the
new 3.8.39 below:

3.8.39 governing; governor (type): A type definition or reference which affects the interpretation of a part of the
ASN.1 syntax, requiring that part of the ASN.1 syntax to reference values in the governor type.

3.8.39 bis identical type definitions: Two instances of the ASN.1 "Type" production (see clause 16) are defined as
identical type definitions if, after performing the transformations specified in Annex F, they are identical ordered lists of
ASN.1 items (see clause 11).

3.8.71 bis value mapping: A 1-1 relationship between values in two types that enables a reference to one of those
values to be used as a reference to the other value. This can, for example, be used in specifying subtypes and default
values (see Annex F).

Append to clause 3.8.50:

, and which governs the subtype notation.

2) New subclause 5.9

Add a new subclause 5.9 as follows:

5.9 Value references and the typing of values

5.9.1 ASN.1 defines a value assignment notation which enables a name to be given to a value of a specified type.
This name can be used wherever a reference to that value is needed. Annex F describes and specifies the value mapping
mechanism which allows a value reference name for a value of one type to identify a value of a second type. Thus, a
reference to the first value can be used where a reference to a value in the second type is required.

5.9.2 In the body of the ASN.1 standards, normal English text is used to specify legality (or otherwise) of constructs
where more than one type is involved, but where the two types must be "compatible". For example, the type used in
defining a value reference is required to be "compatible with" the governor type when the value reference is used. The
normative Annex F uses the value mapping concept to give a precise statement about whether any given ASN.1
construct is legal or not.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

2 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

3) New subclause 13.6

Add a new subclause 13.6 as follows:

13.6 Where a "DefinedType" is used as part of notation governed by a "Type" (for example, in a
"SubtypeElementSpec"), then the "DefinedType" shall be compatible with the governing "Type" as specified in F.6.2.

4) New subclause 13.7

Add a new subclause 13.7 as follows:

13.7 Every occurrence within an ASN.1 specification of a "DefinedValue" is governed by a "Type", and that
"DefinedValue" shall reference a value of a type that is compatible with the governing "Type" as specified in F.6.2.

5) Subclause 15.2

In 15.2, change the sentence after the BNF by inserting immediately before "shall" the text:

is governed by "Type" and

6) Subclause 36.7

Add the following to the Note 3 example in 36.7:

An alternative unambiguous definition of "mystring" would be:

Q]WXVMRK 1]%PTLEFIX�&EWMG0EXMR����!��,34)�

Formally, "mystring" is a value reference to a value of a subset of "MyAlphabet", but it can, by the value mapping rules
of Annex F, be used wherever a value reference is needed to this value within "MyAlphabet".

7) Subclause 48.3.2

Replace 48.3.2 with the following text:

48.3.2 A "ContainedSubtype" specifies all of the values in the parent type that are also in "Type". "Type" is required
to be compatible with the parent type as specified in F.6.3.

8) Subclause 48.5.2

In 48.5.2, delete the text ", or types formed from any of those types by tagging".

9) Subclause 48.8.2

In 48.8.2, delete the text ", or types formed from any of those types by tagging".

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 3

10) New Annex F

Add a new Annex F as follows:

Annex F

Rules for Type and Value Compatibility
(This annex forms an integral part of this Recommendation | International Standard)

This annex is expected to be mainly of use to tool builders to ensure that they interpret the language identically. It is
present in order to clearly specify what is legal ASN.1 and what is not, and to be able to specify the precise value that
any value reference name identifies, and the precise set of values that any type or value set reference name identifies. It
is not intended to provide a definition of valid transformations of ASN.1 notations for any purpose other than those
stated above.

F.1 The need for the value mapping concept (Tutorial introduction)

F.1.1 Consider the following ASN.1 definitions:

%���!�-28)+)6

&���!�?�A�-28)+)6

'���!�?�A�-28)+)6�����������

(���!�?�A�-28)+)6�������������

)���!�-28)+)6��������

*���!�-28)+)6�_VIH�����[LMXI�����FPYI�����KVIIR�����TYVTPI���a

E�%���!��

F�&���!��

G�'���!��

H�(���!��

I�)���!��

J�*���!�KVIIR

F.1.2 It is clear that the value references a, b, c, d, e, and f can be used in value notation governed by A, B, C, D, E,
and F, respectively. For example:

;���!�7)59)2')�_[���%��()*%908�Ea

and:

\�%���!�E

and:

=���!�%����E�

are all valid given the definitions in F.1.1. If, however, A above were replaced by B, or C, or D, or E, or F, would the
resulting statements be illegal? Similarly, if the value reference a above were replaced in each of these cases by b, or c,
or d, or e, or f, are the resulting statements legal?

F.1.3 A more sophisticated question would be to consider in each case replacement of the type reference by the
explicit text to the right of its assignment. Consider for example:

J�-28)+)6�_VIH�����[LMXI�����FPYI�����KVIIR�����TYVTPI���a���!�KVIIR

;���!�7)59)2')�_

[� -28)+)6�_VIH�����[LMXI�����FPYI�����KVIIR������TYVTPI���a

()*%908�Ja

\�-28)+)6�_VIH�����[LMXI�����FPYI�����KVIIR������TYVTPI���a���!�J

=���!�-28)+)6�_VIH�����[LMXI�����FPYI�����KVIIR������TYVTPI���a����J�

Would the above be legal ASN.1?

F.1.4 Some of the above examples are cases which, even if legal (as most of them are – see later text), users would
be ill-advised to write similar text, as they are at the least obscure and at worst confusing. However, there are frequent
uses of a value reference to a value of some type (not necessarily just an INTEGER type) as the default value for that
type with tagging or subtyping applied in the governor. The value mapping concept is introduced in order to provide a
clear and precise means of determining which constructs such as the above are legal.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

4 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

F.1.5 Again, consider:

'���!�?�A�-28)+)6�����������

)���!�-28)+)6��������

*���!�-28)+)6�_VIH�����[LMXI�����FPYI�����KVIIR�����TYVTPI���a

In each case a new type is being created. For F we can clearly identify a 1-1 correspondence between the values in it and
the values in the universal type "INTEGER". In the case of C and E, we can clearly identify a 1-1 correspondence
between the values in them and a subset of the values in the universal type "INTEGER". We call this relationship a
value mapping between values in the two types. Moreover, because values in F, C, and E all have (1-1) mappings to
values of "INTEGER", we can use these mappings to provide mappings between the values of F, C, and E themselves.
This is illustrated for F and C in Figure F.1.

. . .
. . .

. . .

. . .

T0732160-99/d01

Mappings
Mappings

Integer

red(0)

white(1)

blue(2)

green(3)

purple(4)

Derived
Mappings

Figure F.1

F C

[2]1
[2]0

[2]2

[2]5

[2]6

[2]4

[2]3

F.1.6 Now when we have a value reference such as:

G�'���!��

to a value in "C" which is required in some context to identify a value in "F", then, provided a value mapping exists
between that value in "C" and a (single) value in "F", we can (and do) define "c" to be a legal reference to the value
in "F". This is illustrated in Figure F.2, where the value reference "c" is used to identify a value in "F", and can be used
in place of a direct reference f1 where we would otherwise have to define:

J��*���!��

F.1.7 It should be noted that in some cases there will be values in one type (7 to 20 in A of F.1.1 for example) that
have value mappings to values in another type (7 to 20 in E of F.1.1 for example), but other values (21 upwards of A)
that have no such mapping. A reference to such values in A would not provide a valid reference to a value in E. (In this
example, the whole of E has a value mapping to a subset of A. In the general case, there may be a subset of values in
both types that have mappings, with other values in both types that are unmapped.)

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 5

. . .

. . .

T0732170-99/d02

5

red(0)

white(1)
blue(2)

green(3)

purple(4)

Figure F.2

F

C

c

f

f1

[2]1
[2]0

[2]2

[2]5

[2]6
[2]4

[2]3

FIGURE F.2/X.680...[D02]

F.1.8 In the body of the ASN.1 standards, normal English text is used to specify legality in the above and similar
cases. Subclause F.6 gives the precise requirements for legality and should be referenced whenever there is doubt about
a complex construction.

NOTE – The fact that value mappings are defined to exist between two occurrences of the "Type" construct permits the use of
value references established using one "Type" construct to identify values in another "Type" construct which is sufficiently
similar. It allows dummy and actual parameters to be typed using two textually separate "Type" constructs without violating the
rules for compatibility of dummy and actual parameters. It also allows fields of information object classes to be specified using
one "Type" construct and the corresponding value in an information object to be specified using a distinct "Type" construct which
is sufficiently similar. (These examples are not intended to be exhaustive.) It is, however, recommended that advantage be taken
of this freedom only for simple cases such as "SEQUENCE OF INTEGER", or "CHOICE {int INTEGER, id OBJECT
IDENTIFIER}", and not for more complex "Type" constructs.

F.2 Value mappings

F.2.1 The underlying model is of types, as non-overlapping containers, that contain values, with every occurrence of
the ASN.1 "Type" construct defining a distinct new type (see Figures F.1 and F.2). This annex specifies when value
mappings exist between such types, enabling a reference to a value in one type to be used where a reference to a value
in some other type is needed.

Example: Consider:

<���!�-28)+)6

=���!�-28)+)6

X and Y are type reference names (pointers) to two distinct types, but value mappings exist between these types, so any
value reference to a value of X can be used when governed by Y (for example, following DEFAULT).

F.2.2 In the set of all possible ASN.1 values, a value mapping relates a pair of values. The whole set of value
mappings is a mathematical relation. This relation possesses the following properties: it is reflexive (each ASN.1 value is
related to itself), it is symmetric (if a value mapping is defined to exist from a value x1 to a value x2, then there
automatically exists a value mapping from x2 to x1), and it is transitive (if there is a value mapping from a value x1
to x2, and a value mapping from x2 to x3, then there automatically exists a value mapping from x1 to x3).

F.2.3 Furthermore, given any two types X1 and X2, seen as sets of values, the set of value mappings from values
in X1 to values in X2 is a one-to-one relation, that is, for all values x1 in X1, and x2 in X2, if there is a value mapping
from x1 to x2, then:

a) there is no value mapping from x1 to another value in X2 different from x2; and

b) there is no value mapping from any value in X1 (other than x1) to x2.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

6 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

F.2.4 Where a value mapping exists between a value x1 and a value x2, a value reference to either one can
automatically be used to reference the other if so required by some governor type.

NOTE – The fact that value mappings are defined to exist between values in some "Type" constructs is solely for the purpose of
providing flexibility in the use of the ASN.1 notation. The existence of such mappings carries no implications whatsoever that
the two types carry the same application semantics, but it is recommended that ASN.1 constructs which would be illegal
without value mappings are used only if the corresponding types do indeed carry the same application semantics. Note that value
mappings will frequently exist in any large specification between two types that are identical ASN.1 constructs, but which carry
totally different application semantics, and where the existence of these value mappings is never used in determining the legality
of the total specification.

F.3 Identical type definitions

F.3.1 The concept of identical type definitions is used to enable value mappings to be defined between two
instances of "Type" which are either identical or sufficiently similar that one would normally expect their use to be
interchangeable. In order to give precision to the meaning of "sufficiently similar", this subclause specifies a series of
transformations which are applied to each of the instances of "Type" to produce a normal form for those instances of
"Type". The two instances of "Type" are defined to be identical type definitions if, and only if, their normal forms are
identical ordered lists of the same ASN.1 items (see clause 11).

F.3.2 Each occurrence of "Type" in an ASN.1 specification is an ordered list of the items defined in clause 11. The
normal form is obtained by applying the transformations defined in F.3.2.1 to F.3.2.4 in that order.

F.3.2.1 All the comments (see 11.6) are removed.

F.3.2.2 The following transformations are not recursive and hence need only to be applied once, in any order:

a) For each integer type: the "NamedNumberList" (see 18.1), if any, is reordered so that the "identifiers" are
in alphabetical order ("a" first, "z" last).

b) For each enumerated type: numbers are added, as specified in 19.3, to any "EnumerationItem" (see 19.1)
that is an "identifier" (without a number); then the "RootEnumeration" is reordered so that the
"identifiers" are in alphabetical order ("a" first, "z" last).

c) For each bitstring type: the "NamedBitList" (see 21.1), if any, is reordered so that the "identifiers" are in
alphabetical order ("a" first, "z" last).

d) For each object identifier value: each "ObjectIdComponent" is transformed into its corresponding
"NumberForm" in accordance with the semantics of clause 31 (see the example in 31.11).

e) For sequence types (see clause 24) and set types (see clause 26): any extension of the form
"ExtensionAndException", "ExtensionAdditions", is cut and pasted to the end of the
"ComponentTypeLists"; "OptionalExtensionMarker", if present, is removed.

If "TagDefault" is "IMPLICIT TAGS", the keyword "IMPLICIT" is added to all instances of "Tag" (see
clause 30) unless either:

• it is already present; or

• the reserved word item EXPLICIT is present; or

• the type being tagged is a CHOICE type or;

• it is an open type.

If "TagDefault" is "AUTOMATIC TAGS", the decision on whether to apply automatic tagging is taken
according to 24.2 (the automatic tagging will be performed later on).

NOTE – Subclauses 24.3 and 26.2 specify that the presence of a "Tag" item in a "ComponentType" which was
inserted as a result of the replacement of "Components of Type" does not in itself prevent the automatic tagging
transformation.

If "ExtensionDefault" is "EXTENSIBILITY IMPLIED", an ellipsis ("…") is added after the
"ComponentTypeLists" if it is not present.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 7

f) For choice type (see clause 28): "RootAlternativeTypeList" is reordered so that the identifiers of the
"NameType"s are in alphabetical order ("a" first, "z" last). If "TagDefault" is "IMPLICIT TAGS", the
keyword "IMPLICIT" is added to all instances of "Tags" (see clause 30) unless either:

• it is already present; or

• the reserved word item EXPLICIT is present; or

• the type being tagged is a CHOICE type; or

• it is an open type.

If "TagDefault" is "AUTOMATIC TAGS", the decision on whether to apply automatic tagging is taken
according to 28.3 (the automatic tagging will be performed later on). If "ExtensionDefault" is
"EXTENSIBILITY IMPLIED", an ellipsis ("…") is added after the "AlternativeTypeLists" if it is not
present.

F.3.2.3 The following transformations shall be applied recursively in the specified order, until a fix-point is reached:

a) For each object identifier value (see 31.3): if the value definition begins with a "DefinedValue", the
"DefinedValue" is replaced by its definition.

b) For sequence types and set types: all instances of "COMPONENTS OF Type" (see clause 24) are
transformed according to clauses 24 and 26.

c) For sequence, set and choice types: if it has earlier been decided to tag automatically (see F.3.2.2 items e)
and f)), the automatic tagging is applied according to clauses 24, 26 and 28.

d) For selection type: the construction is replaced by the selected alternative according to clause 29.

e) All type references are replaced by their definitions according to the following rules:

• If the replacing type is a reference to the type being transformed, the type reference is replaced by a
special item that matches no other item than itself.

• If the replacing type is a sequence-of type or a set-of type, the constraints following the replaced
type, if any, are moved in front of the keyword "OF".

• If the replaced type is a parameterized type or a parameterized value set (see 8.2 of ITU-T
Rec. X.683 | ISO/IEC 8824-4), every "DummyReference" item is replaced by the corresponding
"ActualParameter".

f) All value references are replaced by their definitions; if the replaced value is a parameterized value (see
8.2 of ITU-T Rec. X.683 | ISO/IEC 8824-4), every "DummyReference" item is replaced by the
corresponding "ActualParameter".

NOTE – Before replacing any value reference, the procedures of this annex shall be applied to ensure that the
value reference identifies, through value mappings or directly, a value in its governing type.

F.3.2.4 For set type: the "RootComponentTypeList" is reordered so that the "ComponentType"s are in alphabetical
order ("a" first, "z" last).

NOTE – Text in 11.9 (bstring), 11.10 (hstring), and 11.11 (cstring) specifies that new-lines and white space are not significant in
such items. If two occurrences of such items contain different uses of new-lines and white space, they are treated as identical
items for the purposes of F.3.3.

F.3.3 If two instances of "Type", when transformed to their normal form, are identical lists of ASN.1 items (see
clause 11), then the two instances of "Type" are defined to be identical type definitions with the following exception: if
an "objectclassreference" (see 7.1 of ITU-T Rec. X.681 | ISO/IEC 8824-2) appears within the normalized form of the
"Type", then the two types are not defined to be identical type definitions, and value mappings (see F.4 below) will not
exist between them.

NOTE – This exception was inserted to avoid the need to provide transformation rules to normal form for elements of syntax
concerned with information object class, information object, and information object set notation. Similarly, specification for the
normalization of all value notation and of set arithmetic notation has not been included at this time. Should there prove to be a
requirement for such specification, this could be provided in a future version of this Recommendation | International Standard.
The concept of identical type definitions and of value mappings was introduced to ensure that simple ASN.1 constructs could be
used either by using reference names or by copying text. It was felt unnecessary to provide this functionality for more complex
instances of "Type" that included information object classes, etc.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

8 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

F.4 Specification of value mappings

F.4.1 If two occurrences of "Type" are identical type definitions under the rules of F.3, then value mappings exist
between every value of one type and the corresponding value of the other type.

F.4.2 For a type, X1, created from any type, X2, by tagging (see clause 30), value mappings are defined to exist
between all the members of X1 and the corresponding members of X2.

NOTE – Whilst value mappings are defined to exist between the values of X1 and X2 in F.4.2 above, and between the values
of X3 and X4 in F.4.3, if such types are embedded in otherwise identical but distinct type definitions (such as SEQUENCE or
CHOICE type definitions), the resulting type definitions (the SEQUENCE or CHOICE types) will not be identical type
definitions, and there will be no value mappings between them.

F.4.3 For a type, X3, created by selecting values from any governor type, X4, by the element set construct or by
subtyping, value mappings are defined to exist between the members of the new type and those members of the governor
type that were selected by the element set or subtyping construct. The presence or absence of an extension marker has no
effect on this rule.

F.4.4 Additional value mappings are specified in F.5 between some of the character string types.

F.4.5 A value mapping is defined to exist between all the values of any type defined as an integer type with named
values and any integer type defined without named values, or with different named values, or with different names for
named values, or both.

NOTE – The existence of the value mapping does not affect any scope rule requirements on the use of the names of named values.
They can only be used in a scope governed by the type in which they are defined, or by a typereference name to that type.

F.4.6 A value mapping is defined to exist between all the values of any type defined as a bit string type with named
bits and any bit string type defined without named bits, or with different named bits, or with different names for named
bits, or both.

NOTE – The existence of the value mapping does not affect any scope rule requirements on the use of the names of named bits.
They can only be used in a scope governed by the type in which they are defined, or by a typereference name to that type.

F.5 Additional value mappings defined for the character string types

F.5.1 There are two groups of restricted character string types, group A (see F.5.2) and group B (see F.5.3). Value
mappings are defined to exist between all types in group A, and value references to values of these types can be used
when governed by one of the other types. For the types in group B, value mappings never exist between these different
types, nor between any type in group A and any type in group B.

F.5.2 Group A consists of:

98*�7XVMRK

2YQIVMG7XVMRK

4VMRXEFPI7XVMRK

-%�7XVMRK

:MWMFPI7XVMRK��-73���7XVMRK�

9RMZIVWEP7XVMRK

&147XVMRK

F.5.3 Group B consists of:

8IPIXI\7XVMRK��8��7XVMRK�

:MHISXI\7XVMRK

+VETLMG7XVMRK

+IRIVEP7XVMRK

F.5.4 The value mappings in group A are specified by mapping the character string values of each type to
UniversalString, then using the transitivity property of value mappings. To map values from one of the group A types to
UniversalString, the string is replaced by a UniversalString of the same length with each character mapped as specified
below.

F.5.5 Formally, the set of abstract values in UTF8String is the same set of abstract values that occur in
UniversalString but with a different tag (see 36.13), and each abstract value in UTF8String is defined to map to the
corresponding abstract value in UniversalString.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

ITU-T Rec. X.680 (1997)/Amd.2 (1999 E) 9

F.5.6 The glyphs (printed character shapes) for characters used to form the types NumericString and PrintableString
have recognisable and unambiguous mappings to a subset of the glyphs assigned to the first 128 characters of
ISO/IEC 10646. The mapping for these types is defined using this mapping of glyphs.

F.5.7 IA5String and VisibleString are mapped into UniversalString by mapping each character into the
UniversalString character that has the identical (32-bit) value in the BER encoding of UniversalString as the (8-bit)
value of the BER encoding of IA5String and VisibleString.

F.5.8 BMPString is formally a subset of UniversalString, and corresponding abstract values have value mappings.

F.6 Specific type and value compatibility requirements

This subclause uses the value mapping concept to provide precise text for the legality of certain ASN.1 constructs.

F.6.1 Any "Value" occurrence, x-notation, with a governor type, "Y", identifies the value, y-val, in the governor type
"Y" that has a value mapping to the value x-val specified by x-notation. It is a requirement that such a value exists.

For example, consider the occurrence of "x" in the last line of the following:

<�����!�?�A�-28)+)6��������

\�<���!����

=�����!�?�A�-28)+)6���������

>�����!��=��\�`����

These ASN.1 constructs are legal, and in the last assignment the x-notation "x" is referencing the x-val 29 in "X" and,
through value mapping, identifies the y-val 29 in "Y". The x-notation 30 is referencing the y-val 30 in "Y", and "Z1" is
the set of values 29 and 30. On the other hand, the assignment:

>����!�=��\�`����

is illegal because there is no y-val to which the x-notation 20 can refer.

F.6.2 Any "Type" occurrence, t-notation, that has a governor type, "V", identifies the complete set of values in the
governor type "V" that have value mappings to any of the values in the "Type" t-notation. This set is required to contain
at least one value.

For example, consider the occurrence of "W" in the last line of the following:

:����!�?�A�-28)+)6��������

;����!�?�A�-28)+)6���������

=����!�?�A�-28)+)6���������

>����!��:��;�`����

"W" contributes values 25-30 to the set arithmetic resulting in "Z1" having the values 24-30. On the other hand, the
assignment:

>����!��:��=�`����

is illegal because there are no values in "Y" which map to a value in "V".

F.6.3 The type of any value supplied as an actual parameter is required to have a value mapping from that value to
one of the values in the type governing the dummy parameter, and it is a value of that governor type which is identified.

F.6.4 If a "Type" is supplied as an actual parameter for a dummy parameter which is a value set dummy parameter,
then all values of that "Type" are required to have value mappings to values in the governor of the value set dummy
parameter. The actual parameter selects the total set of values in the governor which have mappings to the "Type".

F.6.5 In specifying the type, A, of a dummy parameter that is a value or a value set parameter, it is an illegal
specification unless for all values of A, and for every instance of use of A on the right-hand side of the assignment, that
value of A can legally be applied in place of the dummy parameter.

F.7 Examples

F.7.1 This subclause provides examples to illustrate subclauses F.3 and F.4.

ISO/IEC 8824-1 : 1998/Amd.2 : 1999 (E)

10 ITU-T Rec. X.680 (1997)/Amd.2 (1999 E)

F.7.2 Example 1

<���! 7)59)2') <����! 7)59)2')

_REQI�:MWMFPI7XVMRK� _REQI�:MWMFPI7XVMRK�

EKI��-28)+)6a ���GSQQIRX���

EKI��-28)+)6a

<����! ?�A�7)59)2') <����! 7)59)2')

_REQI�:MWMFPI7XVMRK� _REQI�:MWMFPI7XVMRK�

EKI��-28)+)6a EKI��%KI8]TIa

%KI8]TI���!�-28)+)6

X, X1, X2, and X3 are all identical type definitions. Differences of white space and comment are not visible, nor does
the use of the "AgeType" type reference in X3 affect the type definition. Note, however, that if any of the identifiers for
the elements of the sequence were changed, the types would cease to be identical definitions, and there would be no
value mappings between them.

F.7.3 Example 2

&���! 7)8 &����! 7)8

_REQI�:MWMFPI7XVMRK� _EKI -28)+)6�

EKI��-28)+)6a REQI�:MWMFPI7XVMRKa

are identical type definitions provided neither is in a module with "AUTOMATIC TAGS" in the module header,
otherwise they are not identical type definitions, and value mappings will not exist between them. Similar examples can
be written using CHOICE and ENUMERATED (using the "identifier" form of "EnumerationItem").

F.7.4 Example 3

'���! 7)8 '����! 7)8

_REQI�?�A:MWMFPI7XVMRK� _REQI�:MWMFPI7XVMRK�

EKI�-28)+)6a EKI�-28)+)6��������a

are not identical type definitions, nor are either of them identical type definitions to either of B or B1, and there are no
value mappings between any of the values of C and C1, nor between either of them and either of B or B1.

F.7.5 Example 4

\��-28)+)6�_�]�����a���!��

^��-28)+)6���!�\

is legal, and assigns the value 3 to z through the value mapping defined in F.4.5

F.7.6 Example 5

F��&-8�786-2+���!�k���k&

F��&-8�786-2+�_ZIVWMSR������ZIVWMSR������ZIVWMSR����a���!�F�

is legal, and assigns the value {version1, version3} to b2.

F.7.7 Example 6

With the definitions of F.1.1, SEQUENCE elements of the form:

<�()*%908�]

are legal, where X is any of A, B, C, D, E, or F, or any of the text to the right of the type assignments to these names,
and y is any of a, b, c, d, e, or f, with the following exceptions: E DEFAULT y is illegal for all of a, b, c, d, f, and
C DEFAULT e is illegal, because in these cases there are no value mappings available from the defaulting value
reference into the type being defaulted.

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure

Series Z Languages and general software aspects for telecommunication systems

