)

Superseded by a more recent version

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.680

TELECOMMUNICATION (07/94)
STANDARDIZATION SECTOR
OF ITU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OS|I NETWORKING AND SYSTEM ASPECTS -
ABSTRACT SYNTAX NOTATION ONE (ASN.1)

INFORMATION TECHNOLOGY -
ABSTRACT SYNTAX NOTATION ONE (ASN.1):
SPECIFICATION OF BASIC NOTATION

ITU-T Recommendation X.680
Superseded by a more recent version

(Previously “CCITT Recommendation”)

Superseded by a more recent version

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU.
Some 179 member countries, 84 telecom operating entities, 145 scientific and industrial organizations and
38 international organizations participate in ITU-T which is the body which sets world telecommunications standards
(Recommendations).

The approval of Recommendations by the Members of ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, 1993). In addition, the World Telecommunication Standardization Conference (WTSC),
which meets every four years, approves Recommendations submitted to it and establishes the study programme for the
following period.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are prepared on a
collaborative basis with ISO and IEC. The text of ITU-T Recommendation X.680 was approved on 1st of July 1994. The
identical text is also published as ISO/IEC International Standard 8824-1.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

0 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Superseded by a more recent version

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS AND OPEN SYSTEM COMMUNICATIONS

(February 1994)

ORGANIZATION OF X-SERIES RECOMMENDATIONS

Subject area

Recommendation Series

PUBLIC DATA NETWORKS

Services and facilities X.1-X.19
Interfaces X.20-X.49
Transmission, signalling and switching X.50-X.89
Network aspects X.90-X.149
Maintenance X.150-X.179
Administrative arrangements X.180-X.199
OPEN SYSTEMSINTERCONNECTION
Model and notation X.200-X.209
Service definitions X.210-X.219
Connection-mode protocol specifications X.220-X.229
Connectionless-mode protocol specifications X.230-X.239
PICS proformas X.240-X.259
Protocol identification X.260-X.269
Security protocols X.270-X.279
Layer managed objects X.280-X.289
Conformance testing X.290-X.299
INTERWORKING BETWEEN NETWORKS
General X.300-X.349
Mobile data transmission systems X.350-X.369
Management X.370-X.399
MESSAGE HANDLING SYSTEMS X.400-X.499
DIRECTORY X.500-X.599
OSlI NETWORKING AND SYSTEM ASPECTS
Networking X.600-X.649
Naming, addressing and registration X.650-X.679
Abstract Syntax Notation One (ASN.1) X.680-X.699
OSI MANAGEMENT X.700-X.799
SECURITY X.800-X.849
OS| APPLICATIONS
Commitment, concurrency and recovery X.850-X.859
Transaction processing X.860-X.879
Remote operations X.880-X.899
OPEN DISTRIBUTED PROCESSING X.900-X.999

Superseded by a more recent version

CONTENTS
1o [N o 1) o SR
1 R o0 oL TSRS P PP PPN
2 NOIMEBLIVE FEFEIBNCES ...ttt ettt sttt et st e st et e b et et e st e se e bese et e e be e ebeseenesbe e enentene
2.1 Identica Recommendations | International Standards............cccvvrrireirineineneeeese s
2 o (o (1o 0 = = 410 TS
3 [T T (oSSR
3.1 Information ODJECE SPECITICALIONeiviieiirieiiiieieier et s et s enas
3.2 CONStraint SPECITICALION.c.eieeeeireeieterieesteste sttt sttt e bt e s be e se s s e e ese st en e sbeneesessenennan
3.3 Parameterization of ASN.L SPECITICAION.......cciirieiriiieirieeere et enes
34 Presentation SErviCe defiMitiONcoieiiiieiriees ettt nne e
3.5 Presentation protoCol SPECITICALIONcceciiiiicieeeeeree et s r et s re e n e nes
3.6 Structurefor identification of OrganiZatioNS...........cccceviereieceeieeceece e
3.7 Universal Multiple-Octet Coded Character Set (UCS)cceveviievesiene e st
3.8 Additional defiNItIONScceeviieiieiriciese et b et sa s bt nennn
F N o]0 (= T 1o = TSRS
5 [N\ To1 = 0] o OSSO
LTS A = (o [F o 1 o] SRRSO
52 Theaternative COlIECLIONS. ..ottt st sestenennn
LG TN ¢ 001 o] F=X ol =1 o] oo L1 1o o S
L I Yo 1 | APPSR UPRRR
LY o = o: U= o o TSP
56 Referencesto acollection Of SBOUENCES.........ccuciricieiie et st
5.7 REFEIENCESTO @M ITEIM ..ot ettt et b s es et e s e s sentenennan
5.8 SNOM-hand NOBLIONScceiiieieiiieiriesiee ettt b et e e b et es et enessenaenenean
6 L= OSSP P PRSP
7 USE Of the ASNLL NOLBEIONeoveieeeieiesietes ettt st sttt sttt s s be et e ste e ebe et ebestenesbeneesesens
8 =N A e = T ol = RS
9 F N TR (o OO S
.1 GENENEI TUIES ...ttt sttt sttt ettt b s b e e et e st e neebe s e e seebe st ebesbe e ebente e ebeneenenre e
S A 1Y 1= = (= (=0 S
1SR T [(= 01 11 £ SRPRSTSRRN
0.4 VAlUB TEfEIBNCES. ...ttt ettt sttt e st et e se et e s be et eseeneebese et e sbenenbestenenbeneas
0.5 MOUUIE FEFEIEINCE ... ettt ettt sttt sttt e st bese et e s b et et eseeneebeseebe s sbeseesesbenenbeneas
1S K T o 101011 o | OO P PP U PRPRTPR
LS A 4070 201 (=2 S
SRS T A\ W o 1 = 0 SRS
LSS T =TT = VR 1 0o [= TS
9.10 HexadeCimal StHNQ ITEMccveci et e e e e tesaesbesaesresseeneseneeseenneneenes
LS R O = =T 1 = 1 To 1 (=0 S
1S 2N =S T 010 0T= o1 =
LS T =0 Lo o= (o
LS 00 R T 0 S
.15 SiNGIE CharaCter ITEMS.....c.eecieie st ettt s et e e e tesaestesteeseeseesresnenrenns
.16 RESEIVEU WOITS.ecviiieietiieeiete sttt sttt sttt sttt se b bese et e st et et e seesesbene et e sbe e nbenbeneebeneas
10 MOTUIE EFTNITTION ..ot sttt sttt st b e et st e s et sttt e st b st ne et e
11 Referencing type and value defiNitiONS..........ccv it re e eneas
12 Notation to support references to ASN.L COMPONENES.......ccvieiieerieeieeieresesee e se e e e e e e e seeseesseneenes

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

© O ©O© 00 00 00 WO NN N WWWWWMNDNDNNDNREREPRP P

e
= O

P R R REPERREPRPRRPRREBRRERERERER
ORI DOWWWWNNNNNNRP PR

e
© © u

Superseded by a more recent version

Page

13 ASSIQNING tYPES AN VAIUESoevecieeieceeie sttt sttt e et e et e e se e be s tesbeetesaeeaeeseessenae e e seenteseeseenteseenrennes 20
14 Definition Of tYPES BNG VAIUES..........ooveuiiiiiitirieetire sttt s b bt n s nnenes 21
15 Notation for the BOOIEAN TYPE.......ccui it st e e e e e e st e besresresaenneas 23
16 NOLELiON TOF thE TNEEOEN TYPE ...ttt et ettt bbbt st eene 23
17 NoOtation fOr the ENUMErAtE tYPE.......ecueeeceeeecee et st e st e s be s aeer e e besbesresresnenneas 24
18 NOLELON TOF ThE FEAI TYPR ...ttt e b et b e et b nene 25
19 N[o) 2 (o L (o g T oL 5 T o [N 8Y = R 25
20 NOtation fOr the OCLELSIIING TYPE......c.e ettt st b e et 27
21 NTo) 2 1 LT (o g T a0 R £ TSRS 27
22 NOLELON TOF SEOUENCE TYPES ...ttt ettt ettt b e et b e e b e s bt b e s et b et be b et b et eb e b et st e e eneenns 27
23 N[O (L oS =0 (U1 0) 1Y 0= 29
24 NOLELION FOF SELLYPES ...ttt ettt b et b e bbb bbbt b e e e h b e £ b et e st b e e ebe e be e b e nnns 29
25 N[0 1 LT 0 = o 1 - SRS 30
26 NOLELON TOF CROICE TYPES ...ttt ettt b e st b e bt b bt b et b et sb e b nens 30
27 NOLatiON FOr SHECHION LYPES.....c.eiieie it e e e e e se e e enteseestestesrenrennennens 31
28 N [o) 7 (LT o g F=To o< o 1Y o= USRI 32
29 Notation for the 0bjeCt IdENtifiEr tYPE....c.coe e eneas 33
30 Notation for the embeddet-PAV LY PE.... .o et 34
31 NOtation fOr the EXIEINAl LY PE.......oce e e e e ae e se et e tesrenrennenneas 36
32 The CharaCter SIING TYPES. ...cue it ree sttt sttt h ettt e e e besee s besbesaeeb e s st eaeese e s enseenseseesbesbesaesbesaeans 38
33 NoOtation fOr CharaCter SING LYPES ..ottt sttt sttt s e et st sbene 38
34 Definition of restricted CharaCter StHNG IYPESovo et sb e 38
35 Naming characters and collections defined in ISO/IEC 10646.............cooveererieenenenerienese e seeeseesesienens 42
36 Canonical Order Of CRAIACIENS.........ccveiriieeirrie et e et r e re e n e 45
37 Definition of unrestricted charaCter StHNG tYPESco.eeierieirieeereere et e ene 46
38 Notation for types defined iN ClaUSES 39-41........o.o i e s 47
39 GENETAIIZEA TIME ...ttt et b et b e et b et b e bt b e s e bt bt bt b e bRt bt b bttt 47
40 UNIVEISAl LM ...ttt e e et b e et R e e st E e se bR et R s et b e e et erene st r e nr e nees 48
41 The ODJECT AESCIIPLOr TYPE. .. c.eetereeueitereett sttt sttt sttt sttt sttt b e bbb bbbt b e bt e et b e e st b e b nnns 49
42 CONSLTAINEG TYPES..ctieetirteiete sttt sttt sttt sttt s et be st eb e bt e be s e e bt e b e se e bt s b et eb e s e e Rt e be e ebe e b et £ ebenbe st ebeseebesbe e ebennene 49
N 1 T X = Cor= o1 g T (=01) = 50
44 Element SEt SPECITICALION.cuiiieieie sttt e e st e sttt s ae et s ae e teese e e e s e ee e eentesteseentesaeerenreens 51
S ¥ 011 o <X = 1= 0T o TSR 52
T I €= 0T - | P TT 52

452 SINGIEVEIUB.......eiiecteere ettt e e ee 53

45.3 CONtAINE SUDLYPE....ccueitiiiietieeeeete e e ste e te st te et e e e e e e e e e testeseesbesresbestesseeseensensesse s sestenteseesrensens 53

5.4 VAU RBINGE.......ceetiieeietirtei ettt st b bt e bt s e st b e s e s e R e e bt R e e e bt e e st bt e s e bt e e st b e s e n s 53

A5.5 SIZE CONSIAINL ... ecuevieeterteseete sttt sttt b e eb e e s b e e s e sb e eb e b e s e e b e s e e st bt s e bt b en e e bt s e es e eb e s b e s e b e s eneneenes 53

L N Y/ o =Y O g =] | ST PES 54

45,7 PEMITEEO AIPNADEL ... ee e ee e s se e ee e s se s eeseseeseeseseseeesseeseesseesesseseseeseneseseseseneees 54

5.8 INNEN SUDLYPING ... ettt ettt sttt eb et b e s ss e e bt ne e bt seeae bt se e s e b e s e bt s e ene e ebenbes e b e s enennenes 54

ii ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version

Page
Annex A — Use 0f ASN.1-88/90 NOTALIONc.eeiiiiiiiiiiiie ittt nmmmresemmner e s 56
AL MBINTENANCEeii ittt ettt ettt e et ekt e e sk e e e st e e e sa b et e s bbe e e s ke e e e ssbee e e neeemmnemamns ssreeean 56
A.2 Mixing ASN.1-88/90 and current ASN.1 NOTAtiONcoooiiiiiiiiiiiiee e
A.3 Migration to the current ASN.L NOTALIONc.uviiiiiiiiiiiiii e sreeeeee s 56
Annex B — ISO assignment of OBJECT IDENTIFIER cOmponent VAlUES...........uuuveiiiiieeeeeiiisiiiiiinineeeeeeeeeeeesennnnnns
Annex C — ITU-T assignment of OBJECT IDENTIFIER component ValUes............cccoouveeiieeiiiee e
Annex D — Joint assignment of OBJECT IDENTIFIER component ValUESceciiiiiiiiiiiiiiiiiiiiiieeceee e
Annex E — Assignment of object identifier VAIUES ... e 61
Annex F — Examples and NintS ... e s 62
F.1 Example of @ personnel reCOId.........cccociiiiiiiiiiiii i e 62
F.2 Guidelines for use of the NOtAtioN ... 63
F.3 1dentifying abStraCt SYNIAXESuviiiieiiiiiiiee ettt e e e s nneeee e s 71
L T 011/ o1 PP 72
Annex G — Tutorial Annex on ASN.1 Character StrNQGScccciiiiiiiiiiiieier e e e e e eeeeeenes 75
G.1 Character string SUPPOIt IN ASNLLuiiiiiiiiiiiiee ettt e e e e e e reeeeeeeaaeas 75
G.2 The UniversalString and BMPSIING tYPESceiiiiiiiiiiee ettt ebee e e 75
G.3 On ISO/IEC 10646-1 conformance reqUIrEMENTScceeiiiiieicceietietee e e e e e e e ae e e e e e s s e s s ssnnnereerneneeeeeees
G.4 Recommendations for ASN.1 users on ISO/IEC 10646-1 cONfOrMancCeccccovcvvveiiineeiineessineeens
G.5 Adopted subsets as parameters of the abstract SYNtaX............oooviiiiiiiiiiiiiiiiiiee s 77....
G.6 The CHARACTER STRING type
ANNEX H — SUPEISEUEA FEATUIESoiiiiiiiiieie ittt e emmmmem e mnne e n e nnnes
H.1 Use of identifiers now mandatory
H.2 The ChOICE VAIUEoiiiiiiiiiet et
H.3 ThE AN LY Pe . e e e et e e e e e emmmmmeen

H.4 The macro capability

ANNEX | — Te @ny tYPE NOTALIONeiiiiiiiiiie et e ettt e+ ———— e e e 81
.1 Notation fOr the @Y TYPEeiii it e e e e nneeee e s 81

ANNEX J — ThE MACKO NOTALION........tiiiiie ettt e e e sttt e e e s sttt e e e s saeeeeesseeneeeeesabbaeeeeeaan 82
S 10 1o T VT3 1o PSP 82
J.2 Extensions to the ASN.1 character set and itEMS.......oocuuviiiiiiiiiiiii e e 82.
IS TN Y/ = Tod o I o [=3 1101 (0T N g Vo] =1 1o 1 o 0 84
J.4 Use Of the NEW NOLATIONeiiiiiiiiiiiei et et e e s e rneeeee e 87

Annex K — Summary of the ASN.L NOTATIONoiuiiiiiiiiii e s c— 88

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version iii

56

58
59
60

76
76

Superseded by a more recent version

Summary

This Recommendation | International Standard provides a notation called Abstract Syntax Notation One (ASN.1) for
defining the syntax of information data. It defines a number of simple data types and specifies a notation for referencing
these types and for specifying values of these types.

The ASN.1 notations can be applied whenever it is necessary to define the abstract syntax of information without
constraining in any way how the information is encoded for transmission. It is particularly, but not exclusively,
applicable to application layer protocols.

iv ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version
Introduction

This Recommendation | International Standard presents a standard notation for the definition of data types and values. A
data type (or type for short) is a class of information (for example, numeric, textual, still image or video information). A
data value (or value for short) is an instance of such a class. This Recommendation | International Standard defines
several basic types and their corresponding values, and rules for combining them into more complex types and values.

Although this standard notation is defined within the OSI framework, it can be used for many other purposes. In the
lower layers of the OSI Basic Reference Model (see ITU-T Rec. X.200 | ISO/IEC 7498) and in many other protocol
architectures, each message is specified as the binary value of a sequence of octets. In the Presentation layer of OSI (see
ITU-T Rec. X.216 | ISO/IEC 8822), the nature of user data parameters changes. However, Application layer standards
need to define quite complex data types to carry their messages, without concern for their binary representation. In order
to specify the data types they require a notation which does not necessarily determine the representation of each value.
Such notation has to be supplemented by the specification of one or more algorithms caled encoding rules which
determine the value of the lower layer octets that carry the Application data (called the transfer syntax). The
Presentation layer protocol of OSl (see ITU-T Rec. X.226 | ISO/IEC 8823) can negotiate which transfer syntaxes
(encodings) are to be used.

Outside the context of OSI there is increasing recognition of the notion of an abstract value of some class (e.g., a
particular 256-color picture) divorced from the details of any particular encoding where in order to correctly interpret the
bit-pattern representation of the value, it is necessary to know (usually from the context), the type (class) of the value
being represented, as well as the encoding mechanism being employed. Thus the identification of a type is an important
part of this Recommendation | International Standard.

A very general technique for defining a complicated type at the abstract level is to define a small number of simple
types by defining all possible values of the simple types, then combining these simple types in various ways. Some of
the ways of defining new types are as follows:

a) given an (ordered) list of existing types, a value can be formed as an (ordered) sequence of values, one
from each of the existing types; the collection of al possible values obtained in this way is a new type; (if
the existing types in the list are all distinct, this mechanism can be extended to allow omission of some
values from the list);

b) given an unordered set of (distinct) existing types, a value can be formed as an (unordered) set of values,
one from each of the existing types; the collection of all possible unordered sets of values obtained in this
way isanew type; (the mechanism can again be extended to allow omission of some values);

C) given asingle existing type, a value can be formed as an (ordered) list or (unordered) set of zero, one or
more values of the existing type; the collection of all possible lists or sets of values obtained in thisway is
anew type;

d) givenalist of (distinct) types, a value can be chosen from any one of them; the set of all possible values
obtained in thisway isanew type;

€) given atype, a new type can be formed as a subset of it by using some structure or order relationship
among the values.

An important aspect of combining types in this way is that encoding rules should recognize the combining constructs,
providing unambiguous encodings of the collection of values of the basic types. Thus, every basic type defined using the
notation specified in this Recommendation | International Standard is assigned a tag to aid in the unambiguous encoding
of values.

Four classes of tag are specified in the notation.

The first is the universal class. Universal class tags are only used as specified within this Recommendation |
International Standard, and each tag is either

a) assignedtoasingletype; or
b) assigned to a construction mechanism.

Users of this notation are not allowed to explicitly specify universal class tags in their ASN.1 specifications, for these
tags are built-in and can be specified explicitly only in this Recommendation | International Standard.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version Y

Superseded by a more recent version

The other three classes of tag are called application class tags, private class tags, and context-specific class tags. There
is no formal difference between use of tags from these three classes. Where application class tags are employed, a
private or context-specific class tag could generally be applied instead, as a matter of user choice and style. The presence
of the three classesis largely for historical reasons, but guidance is given in F.2.1.2 on the way in which the classes are
usually employed.

Tags are mainly intended for machine use, and are not essential for the human notation defined in this
Recommendation | International Standard. Where, however, it is necessary to require that certain types be distinct, thisis
expressed by requiring that they have distinct tags. The allocation of tags is therefore an important part of the use of this
notation.
NOTE — Within this Recommendation | International Standard, tag values are assigned to all simple types and construction

mechanisms. The restrictions placed on the use of the notation ensure that tags can be used in transfer for unambigatios identif
of values.

Clauses 8 to 29 (inclusive) define the simple types supported by ASN.1, and specify the notation to be used for
referencing simple types and for defining new types using them. Clauses 8 to 29 also specify the notation to be used for
specifying values of types defined using ASN.1.

Clauses 30 to 31 (inclusive) define the types supported by ASN.1 for carrying within them the complete encoding of
ASN.1 types.

Clauses 32 to 37 (inclusive) defines the character string types.

Clauses 38 to 41 (inclusive) define certain types which are considered to be of genera utility, but which require no
additional encoding rules.

Clauses 42 and 45 define a notation which enables subtypes to be defined from the values of a parent type.

Annex A forms an integral part of this Recommendation | International Standard, and gives guidance on how users of
this Recommendation | International Standard can refer to ASN.1 types and values defined using CCITT Rec. X.208
(1988) | ISO/IEC 8824:1990.

Annex B forms an integral part of this Recommendation | International Standard, and defines the object identifier tree for
authorities supported by 1SO.

Annex C forms an integral part of this Recommendation | International Standard, and defines the object identifier tree for
authorities supported by ITU-T.

Annex D forms an integral part of this Recommendation | International Standard, and defines the object identifier tree
for joint use by 1ISO and ITU-T.

Annex E forms an integral part of this Recommendation | International Standard, and records object identifier and object
descriptor values assigned in this Recommendation | International Standard.

Annex F does not form an integral part of this Recommendation | International Standard, and provides examples and
hints on the use of the ASN.1 notation.

Annex G does not form an integral part of this Recommendation | International Standard, and provides a tutorial on
ASN.1 character strings.

Annex H does not form an integral part of this Recommendation | International Standard, and describes features of the
previous version of ASN.1 that have been superseded.

Annex | does not form an integral part of this Recommendation | International Standard, and details the superseded ANY
type notation.

Annex J does not form an integral part of this Recommendation | International Standard, and details the superseded
macro notation.

Annex K does not form an integral part of this Recommendation | International Standard, and provides a summary of
ASN.1 using the notation of clause 5.

Vi ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY -
ABSTRACT SYNTAX NOTATION ONE (ASN.1):
SPECIFICATION OF BASIC NOTATION

1 Scope

This Recommendation | International Standard provides a standard notation called Abstract Syntax Notation One
(ASN.1) that is used for the definition of data types, values, and constraints on data types.

This Recommendation | International Standard

— defines a number of simple types, with their tags, and specifies a notation for referencing these types and
for specifying values of these types;

— defines mechanisms for constructing new types from more basic types, and specifies a notation for
defining such types and assigning them tags, and for specifying values of these types;

— defines character sets (by reference to other Recommendations and/or International Standards) for use
within ASN.1;

— defines a number of useful types (using ASN.1), which can be referenced by users of ASN.1;

The ASN.1 notation can be applied whenever it is necessary to define the abstract syntax of information. It is
particularly, but not exclusively, applicable to application protocols.

The ASN.1 notation is referenced by other standards which define encoding rules for the ASN.1 types.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
editions of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunications Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

2.1 Identical Recommendations | International StandardsError! Bookmark not defined.

— ITU-T Recommendation X.200 (1994) | ISO/IEC 7498-1:198frmation technology — Open Systems
Interconnection — Basic Reference Model: The basic model.

— ITU-T Recommendation X.216 (1994) | ISO/IEC 8822:19@4rmation technology — Open Systems
Interconnection — Presentation service definition.

— ITU-T Recommendation X.226 (1994) | ISO/IEC 8823-1:198fymation technology — Open Systems
Interconnection — Connection-oriented presentation protocol: Protocol specification.

— ITU-T Recommendation X.681 (1994) | ISO/IEC 8824-2:198bymation technology — Abstract Syntax
Notation One (ASN.1): Information Object Specification.

— ITU-T Recommendation X.682 (1994) | ISO/IEC 8824-3:198bymation technology — Abstract Syntax
Notation One (ASN.1): Constraint specification.

— ITU-T Recommendation X.683 (1994) | ISO/IEC 8824-4:198bymation technology — Abstract Syntax
Notation One (ASN.1): Parameterization of ASN. 1 specifications.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 1

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

— ITU-T Recommendation X.690 (1994) | ISO/IEC 8825-1:198bymation technology — ASN. 1 encoding
Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and
Distinguished Encoding Rules (DER).

— ITU-T Recommendation X.691 (1995) | ISO/IEC 8825-2:1985rmation technology — ASN.1 encoding
rules: Specification of Packed Encoding Rules (PER).

2.2 Additional references
— ISOlInternational Register of Coded Character Sets to be used with Escape Sequences.
— ISO/IEC 646:1991nformation technology — ISO 7-bit coded character set for information interchange.
— ISO/IEC 2022:1994Information technology — Character code structure and extension techniques.
— IS0 3166:1993Codes for the representation of names of countries.
— IS0 6523:1984Data interchange — Structure for identification of organizations.

— 1SO 8601:1988Data elements and interchange formats — Information Interchange — Representation of
dates and times.

— ISO/IEC 10646-1:1993nformation technology — Universal Multiple-Octet Coded Character Set (UCS):
— Architecture and Basic Multilingual Plane.

— CCITT Recommendation X.121 (1992)¢ernational numbering plan for public data networks.

— CCITT Recommendation X.208 (1988)yformation Technology — Open Systems Interconnection —
Specification of Abstract Syntax Notation One (ASN.1).

— ISO/IEC 8824:199Unformation Technology — Open Systems Interconnection — Specification of Abstract
Syntax Notation One (ASN.1).

3 Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

3.1 Information object specification
This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.681 | ISO/IEC 8824-2:
a) information object;
b) information object class;
¢) information object set;
d) instance-of type;

e) object class field type.

3.2 Constraint specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.682 | ISO/IEC 8824-3:
a) component relation constraint;

b) table constraint.

33 Parameterization of ASN.1 specification

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:
a) parameterized type;

b) parameterized value.

2 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

34

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Presentation service definition

This Recommendation | International Standard uses the following terms defined in ITU-T Rec. X.216 | ISO/IEC 8822:

3.5

a) (an) abstract syntax;

b) abstract syntax name;
¢) defined context set;

d) presentation datavalue;
e) (@) transfer syntax;

f) transfer syntax name.

Presentation protocol specification

This Recommendation | International Standard uses the following term defined in ITU-T Rec. X.226 | ISO/IEC 8823:

3.6

— presentation context identifier

Structure for identification of organizations

This Recommendation | International Standard uses the following terms defined in ISO 6523:

3.7

a) issuing organization;
b) organization code;

¢) International Code Designator.

Universal Multiple-Octet Coded Character Set (UCS)

This Recommendation | International Standard uses the following terms defined in ISO/IEC 10646-1:

3.8

3.8.1

3.8.2

a) Basic Multilingual Plane (BMP);
b) cell;
c) combining character;

d) graphic symbol;

e) group;

f) limited subset;
g) plane;

h) row;

i) selected subset.

Additional definitions

abstract character: The set of information associated with a cell in a table defining a character repertoire.
NOTE — The information will normally include some or all of the following items:

a) agraphic symbol,

b) acharacter name, or

¢) thedefinition of functions associated with the character when used in particular environments.

abstract value: A value whose definition is based only on the type, independent of how it is represented in

any encoding rule.

NOTE — Use of the term "abstract value” is frequently an assertion that what is being said probably varies based upon the

enocding rules used.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 3

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

3.8.3 ASN.1 character set: The set of characters, specified in clause 8, used in the ASN.1 notation.
3.8.4 ASN.1 specification: A collection of one or more ASN.1 modules.

3.8.5 associated type: A type which isused only for defining the value and subtype notation for atype.

NOTE — Associated types are defined in this Recommendation | International Standard when it is necessary to make it clear
that there may be a significant difference between how the type is defined in ASN.1 and how it is encoded. Associateabtypes do
appear in user specifications.

3.8.6 bitstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more hits.

NOTE — Where there is a need to carry embedded encodings of an abstract value, the use of the embedded-pdv type will in
general provide a more flexible mechanism for announcement or agreement on the nature of the encodings than the bitstring type.
3.8.7 boolean type: A simple type with two distinguished values.

3.8.8 character: A member of a set of elements used for the organization, control or representation of data.
NOTE — For example, this implies that an accent combining character and lower case 'e' are two characters in the 1SO 646
French Version, and not the single character é.

3.8.9 character abstract syntax: Any abstract syntax whose values are specified as the set of character strings of
zero, one or more characters from some specified collection of characters.

3.8.10 character repertoire: The characters in a character set without any implication on how such characters are
encoded.

3.8.11 character string types: Simple typeswhose values are strings of characters from some defined character set.

3.8.12 character transfer syntax: Any transfer syntax for a character abstract syntax.
NOTE — ASN.1 does not support character transfer syntaxes which do not encode all character strings as an integral
multiple of 8 bits.

3.8.13 choice types: Types defined by referencing a list of distinct types; each value of the choice type is derived
from the value of one of the component types.

3.8.14 component type: One of the types referenced when defining a CHOICE, SET, SEQUENCE, SET OF, or
SEQUENCE OF.

3.8.15 constraint: A notation which can be used in association with atype, to define a subtype of that type.

3.8.16 control characters: Characters appearing in some character repertoires that have been given a name (and
perhaps a defined function in relation to certain environments) but which have not been assigned a graphic symbol, and
which are not spacing characters.

NOTE — NEWLINE and TAB are examples of control characters that have been assigned a formatting function in a
printing environment. DLE is an example of a control character that has been assigned a function in a communication environment
3.8.17 Coordinated Universal Time (UTC): The time scale maintained by the Bureau Internationale de I'Heure
(International Time Bureau) that forms the basis of a coordinated dissemination of standard frequencies and time signals.

NOTES

1 The source of this definition is Recommendation 460-2 of the Consultative Committee on International Radio
(CCIR). CCIR has also defined the acronym for Coordinated Universal Time as UTC.

2 UTC and Greenwich Mean Time are two alternative time standards which for most practical purposes determine the
same time.

3.8.18 element: A member of an element class, distinguishable from all other elements of the same class.

3.8.19 element class: A type (whose elements are its values) or information object class (whose elements are all
possible objects of that class).

3.8.20 element set: One or more elements of the same element class.

3.8.21 embedded-pdv type: A type whose set of values is the union of the sets of values in al possible abstract
syntaxes. Thistype is a part of an ASN.1 specification that carries a value whose type may be defined externally to that
ASN.1 specification. It also carries an identification of the type of the value being carried as well as an identification of
the encoding rule used to encode the value.

4 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

3.8.22 encoding: The bit-pattern resulting from the application of a set of encoding rules to a value of a specific
abstract syntax.

3.8.23 (ASN.1) encoding rules: Ruleswhich specify the representation during transfer of the values of ASN.1 types.
Encoding rules also enable the values to be recovered from the representation, given knowledge of the type.

NOTE — For the purpose of specifying encoding rules, the various referenced type (and value) notations, which can provide
alternative notations for built-in types (and values), are not relevant.

3.8.24 enumerated types: Simple typeswhose values are given distinct identifiers as part of the type notation.

3.8.25 external type: A type which is a part of an ASN.1 specification that carries a value whose type may be
defined externally to that ASN.1 specification. It also carries an identification of the type of the value being carried.

3.8.26 external reference: A type reference, value reference, information object, etc., that is defined in some other
module than the one in which it is being referenced, and which is being referred to by prefixing the module name to the
referenced item.

EXAMPLE — ModuleName.TypeReference
3.8.27 false: One of the distinguished values of the boolean type (see "true").

3.8.28 governing; governor: Relative to some object, object set, value set, value or subtype, the information object
class or type which controls its interpretation by restricting the items(s) involved to be value notation of that class or
type, respectively.

3.8.29 integer type: A simple type with distinguished values which are the positive and negative whole numbers,
including zero (as a single value).

NOTE - Particular encoding rules limit the range of an integer, but such limitations are chosen so as not to affect any user
of ASN.1.

3.8.30 items: Named sequences of characters from the ASN.1 character set, specified in clause 9, which are used to
form the ASN.1 notation.

3.8.31 module: One or more instances of the use of the ASN.1 notation for type, value, etc., encapsulated using the
ASN.1 module notation (see clause 10).

3.8.32 null type: A simpletype consisting of asingle value, also called null.

3.8.33 object: A well-defined piece of information, definition, or specification which requires a name in order to
identify its use in an instance of communication.

3.8.34 object descriptor type: A type whose distinguished values are human-readable text providing a brief
description of an object.

NOTE — An object descriptor value is usually associated with a single object. Only an object identifier value
unambiguously identifies an object.
3.8.35 object identifier: A value (distinguishable from all other such values) which is associated with an object.
3.8.36 object identifier type: A simple type whose distinguished values are the set of all object identifiers allocated
in accordance with the rules of this Recommendation | International Standard.

NOTE — The rules of this Recommendation | International Standard permit a wide range of authorities to independently

associate object identifiers with objects.

3.8.37 octetstring type: A simple type whose distinguished values are an ordered sequence of zero, one or more
octets, each octet being an ordered sequence of eight bits.

3.8.38 open type notation: An ASN.1 notation used to denote a set of values from more than one ASN.1 type.

NOTES

1 The term "open type" is used synonymously with "open type notation" in the body of this Recommendation |
International Standard.

2 All ASN.1 encoding rules provide unambiguous encodings for the values of a single ASN.1 type. They do not
necessarily provide unambiguous encodings for "open type notation”, which carries values from ASN.1 types that are not normally
determined at specification time. Knowledge of the type of the value being encoded in the "open type notation" is neetlesl before
abstract value for that field can be unambiguously determined.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 5

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

3 The only notation in this Recommendation | International Standard which is an open type notation is the
"ObjectClassFieldType" specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, where the "FieldName" denotes either a type field or a
variable-type value field. The "ANY" notation which was defined in CCITT Rec. X.208 (1988) | ISO/IEC 8824:1990, and described
in Annex |, was an open type notation.

3.8.39 parent type (of a subtype): Thetype that isbeing constrained when defining a subtype.
NOTE — The parent type may itself be a subtype of some other type.

3.8.40 production: A part of the formal notation used to specify ASN.1.

3.8.41 real type: A simple type whose distinguished values (specified in clause 18) are members of the set of rea
numbers.

3.8.42 recursive definitions: A set of ASN.1 definitions which cannot be reordered so that all types used in a
construction are defined before the definition of the construction.

NOTE — Recursive definitions are allowed in ASN.1: the user of the notation has the responsibility for ensuring that those
values (of the resulting types) which are used have a finite representation.

3.8.43 restricted character string type: A character string type whose characters are taken from a fixed character
repertoire identified in the type specification.

3.8.44 selection types: Types defined by reference to a component type of a choice type, and whose values are
precisely the values of that component type.

3.8.45 sequence types: Types defined by referencing an ordered list of types (some of which may be declared to be
optiona); each value of the sequence type isan ordered list of values, one from each component type.

NOTE — Where a component type is declared to be optional, a value of the sequence type need not contain a value of that
component type.

3.8.46 sequence-of types: Types defined by referencing a single component type; each value in the sequence-of type
isan ordered list of zero, one or more values of the component type.

3.8.47 set types: Types defined by referencing a fixed, unordered, list of distinct types (some of which may be
declared to be optional); each valuein the set type is an unordered list of values, one from each of the component types.

NOTE — Where a component type is declared to be optional, the new type need not contain a value of that component type.

3.8.48 set-of types: Types defined by referencing a single component type; each value in the set-of type is an
unordered list of zero, one or more values of the component type.

3.8.49 simple types: Typesdefined by directly specifying the set of its values.
3.8.50 spacing character: A character in a character repertoire which is intended for inclusion with graphic

characters in the printing of a character string but which is represented in the physical rendition by empty space; it is not
normally considered to be a control character (see 3.8.16).

NOTE - There may be a single spacing character in the character repertoire, or there may be multiple spacing characters
with varying widths.

3.8.51 subtype (of a parent type): A type whose values are a subset (or the complete set) of the values of some
other type (the parent type).

3.8.52 tag: A typedenotation which is associated with every ASN.1 type.

3.8.53 tagged types: A type defined by referencing a single existing type and a tag; the new type isisomorphic to the
existing type, but is distinct fromiit.

3.8.54 tagging: Replacing the existing (possibly the default) tag of atype by a specified tag.
3.8.55 true: One of the distinguished values of the boolean type (see "false").
3.8.56 type: A named set of values.

3.8.57 type reference name: A name associated uniquely with atype within some context.

6 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)
NOTE — Reference names are assigned to the types defined in this Recommendation | International Standard; these are
universally available within ASN.1. Other reference names are defined in other Recommendations | International Standards, and a
applicable only in the context of that Recommendation | International Standard.

3.8.58 unrestricted character string type: A type whose values are values from a character abstract syntax
identified separately for each instance of use of that type.

3.8.59 user (of ASN.1): The individual or organization that defines the abstract syntax of a particular piece of
information using ASN.1.

3.8.60 value: A distinguished member of a set of values.
3.8.61 value reference name: A name associated uniquely with avalue within some context.
3.8.62 value set: A collection of values of atype. Semantically equivalent to a subtype.

3.8.63 white-space: Any formatting action that yields a space on a printed page, such as the SPACE or TAB
character, or multiple uses of such characters.

4 Abbreviations

ASN.1 Abstract Syntax Notation One

BER Basic Encoding Rules of ASN.1

DCC Data Country Code

DNIC Data Network Identification Code

ICD International Code Designator

IEC International Electrotechnical Commission

ISO International Standards Organization

ITU-T Telecommunication Standardization Sector of the International Telecommunication Union

PDV Presentation Data Value

PER Packed Encoding Rules of ASN.1

ROA Recognized Operating Agency

UCS Universal Multiple-Octet Coded Character Set
5 Notation

The ASN.1 notation consists of a sequence of characters from the ASN.1 character set specified in clause 8.

Each use of the ASN.1 notation contains characters from the ASN.1 character set grouped into items. Clause 9 specifies
all the sequences of characters forming ASN.1 items, and names each item.

The ASN.1 notation is specified in clause 10 (and following clauses) by specifying the collection of sequences of items
which form valid instances of the ASN.1 notation, and by specifying the semantics of each sequence.

In order to specify these collections, this Recommendation | International Standard uses a formal notation defined in the
following subclauses.

51 Productions

A new (more complex) collection of ASN.1 sequences is defined by means of a production. This uses the names of
collections of production segquences defined in this Recommendation | International Standard and forms a new collection
of production sequences by specifying either

a) that the new collection of production sequences is to consist of any sequence contained in any of the
original collections; or

b) that the new collection isto consist of any production sequence which can be generated by taking exactly
one production sequence from each collection, and juxtaposing them in a specified order.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 7

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Each production consists of the following parts, on one or severa lines, in order:
a) anamefor the new collection of production sequences,

b) thecharacters

c) oneor more alternative collections of production sequences, defined asin 5.2, separated by the character

I
A production sequence is present in the new collection if it is present in one or more of the alternative collections. The
new collection is referenced in this Recommendation | International Standard by the namein a) above.

NOTE - If the same production sequence appears in more than one alternative, any semantic ambiguity in the resulting
notation is resolved by other parts of the complete ASN.1 production sequence.

5.2 The alternative collections

Each of the alternative collections of production sequences in "one or more aternative collections of" [see clause 5.1.c)]
is specified by a list of names. Each name is either the name of an item, or is the name of a collection of production
sequences defined by a production in this Recommendation | International Standard.

The collection of production sequences defined by the aternative consists of all production sequences obtained by taking
any one of the production sequences (or the item) associated with the first name, in combination with (and followed by)
any one of the production sequences (or item) associated with the second name, in combination with (and followed by)
any one of the production sequences (or item) associated with the third name, and so on up to and including the last
name (or item) in the alternative.

53 Example of a production

BitStringValue ::=
bstring |
hstring |
"{"" IdentifierList "}"

is a production which associates with the name "BitStringValue" the following production sequences:
a) any "bstring" (anitem); or
b) any "hstring" (anitem); or
¢) any production sequence associated with "IdentifierList", preceded by a" {" and followed by a"}".

NOTE - "{" and "}" are the names of items containing the single characters { and } (see 9.15).

In this example, "ldentifierList" would be defined by a further production, either before or after the production defining
"BitStringValue'.

5.4 Layout

Each production used in this Recommendation | International Standard is preceded and followed by an empty line.
Empty lines do not appear within productions. The production may be on a single line, or may be spread over several
lines. Layout is not significant.

5.5 Recursion

The productions in this Recommendation | International Standard are frequently recursive. In this case the productions
are to be continuously reapplied until no new seguences are generated.

NOTE - In many cases, such reapplication results in an unbounded collection of allowed sequences, some or all of which
may themselves be unbounded. This is not an error.
5.6 References to a collection of sequences

This Recommendation | International Standard references a collection of sequences (part of the ASN.1 notation) by
referencing the first name (that appears before the "::=") in a production; the name is surrounded by the double-quote
character (") to distinguish it from natural language text, unlessit appears as part of a production.

8 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

5.7 References to an item

This Recommendation | International Standard references an item by referencing the name of the item; the name is
surrounded by the double-quote character (") to distinguish it from natural language text, unless it appears as part of a

production and is not asingle character item, "::=", "..", or "..".

5.8 Short-hand notations

In order to make productions more concise and more readable, the following short-hand notations are used in the
definition of the collections of ASN.1 production sequences in ITU-T Rec. 681 | ISO/IEC 8824-2, ITU-T Rec. X.682 |
ISO/IEC 8824-3 and ITU-T Rec. X.683 | ISO/IEC 8824-4 (it is not used anywhere in this Recommendation |
International Standard):

a) an asterisk (*) following two names, "A" and "B", denotes the empty item (see 9.7), or a production
seguence associated with "A", or an aternating series of production sequences associated with "A" and
"B" both starting and finishing with one associated with "A". Thus:

C:=AB*
is equivalent to

C ::=D | empty
D::=A|ABD

"D" being an auxiliary name not appearing el sewhere in the productions.

EXAMPLE —"C ::= A B *" is the shorthand notation for the following alternatives of C:

empty

A

ABA
ABABA
ABABABA

b) a plus sign(+) is similar to the asterisk in a), except that the empty item is excluded. Thus:
E:=AB+
is equivalent to
E:=A|ABE
EXAMPLE —"E ::= A B +" is the shorthand notation for the following alternatives of E:

A

ABA
ABABA
ABABABA

c) a question mark (?) following a name denotes either the empty item (see 9.7) or a production sequence
associated with "A". Thus:
F:=A?
is equivalent to

F ::=empty | A

6 Tags

6.1 A tag is specified by giving a class and a number within the class. The class is one of:
— universal;
— application;
— private;

— context-specific.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 9

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

6.2 The number is a non-negative integer, specified in decimal notation.
Restrictions on tags assigned by the user of ASN.1 are specified in clause 28.

Table 1 summarizes the assignment of tags in the universal class which are specified in this Recommendation |
International Standard.

Table 1 — Universal class tag assignments

UNIVERSAL 0 Reserved for use by the encoding rules

UNIVERSAL 1 Boolean type

UNIVERSAL 2 Integer type

UNIVERSAL 3 Bitstring type

UNIVERSAL 4 Octetstring type

UNIVERSAL 5 Null type

UNIVERSAL 6 Object identifier type

UNIVERSAL 7 Object descriptor type

UNIVERSAL 8 External type and Instance-of type

UNIVERSAL 9 Real type

UNIVERSAL 10 Enumerated type

UNIVERSAL 11 Embedded-pdv type

UNIVERSAL 12-15 Reserved for future editions of this Recommendation | International Standard
UNIVERSAL 16 Sequence and Sequence-of types

UNIVERSAL 17 Set and Set-of types

UNIVERSAL 18-22, 25-30 Character string types

UNIVERSAL 23-24 Time types

UNIVERSAL 31-... Reserved for addenda to this Recommendation | International Standard
6.3 Some encoding rules require a canonical order for tags. To provide uniformity, a canonical order for tags is
defined in 6.4.

NOTE - This ordering is not used elsewhere in this Recommendation | International Standard, but is referenced by other
Recommendations | International Standards.

6.4 The canonical order for tags is defined as follows:

a) those elements or alternatives with universal class tags shall appear first, followed by those with
application class tags, followed by those with context-specific tags, followed by those with private class

tags;
b) within each class of tags, the elements or alternatives shall appear in ascending order of their tag numbers.

7 Use of the ASN.1 notation
7.1 The ASN.1 notation for atype definition shall be "Type" (see 14.1).

7.2 The ASN.1 notation for avalue of atype shall be"Value" (see 14.7).
NOTE — It is not in general possible to interpret the value notation without knowledge of the type.

10 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

7.3 The ASN.1 notation for assigning a type to a type reference name shall be either "TypeAssignment” (see 13.1),
"VaueSetTypeAssignment” (see 13.4), "ParameterizedTypeAssignment" (see ITU-T Rec. X.683 | ISO/IEC 8824-4,
subclause 8.2), or "ParameterizedV alueSetTypeAssignment” (see ITU-T Rec. X.683 | |SO/IEC 8824-4, subclause 8.2).

7.4 The ASN.1 notation for assigning a value to a value reference name shall be either "ValueAssignment” (see
13.2) or "ParameterizedVaueAssignment” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, subclause 8.2).

7.5 The production alternatives of the notation "Assignment" shal only be used within the notation
"ModuleDefinition" (except as specified in Note 2 of 10.1).

8 The ASN.1 character set
8.1 An ASN.1 item shall consist of a sequence of the characters listed in Table 2, except as specified in 8.2
and 8.3.
Table 2 — ASN.1 characters

Atoz

atoz

Oto9

= {l<.@()I
1-""[&")!

NOTE — Where equivalent derivative standards are developed by national standards bodies, additional characters may
appear in the following items:

typereference (see 9.2)
identifier (see 9.3)

valuereference (see 9.4)
modulereference (see 9.5)

When additional characters are introduced to accommodate a language in which the distinction between upper-case and
lower-case letters is without meaning, the syntactic distinction achieved by dictating the case of the first character aff tberta
above ASN.1 items has to be achieved in some other way. This is to allow valid ASN.1 specifications to be written in various
languages.

8.2 Where the notation is used to specify the value of a character string type, all graphic symbols for the defined
character set can appear in the ASN.1 notation, surrounded by the double quote characters (") (see 9.11).

8.3 Additional (arbitrary) graphic symbols may appear in the "comment” item (see 9.6).

8.4 There shall be no significance placed on the typographical style, size, color, intensity, or other display
characteristics.

8.5 The upper and lower case |etters shall be regarded as distinct.
9 ASN.1 items
9.1 General rules

9.1.1 The following subclauses specify the characters in ASN.1 items. In each case the name of the item is given,
together with the definition of the character sequences which form the item.

9.1.2 Each item specified in the following subclauses (except "bstring”, "hstring" and "cstring") shall appear on a

single line, and (except for the "comment”,
(se€ 9.9, 9.10 and 9.11).

bstring", "hstring" and "cstring" items) shall not contain white-space

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 11

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

9.1.3 The length of alineis not restricted.

9.14 The items in the production sequences specified by this Recommendation | International Standard (the ASN.1
notation) may appear on one line or may appear on severa lines, and may be separated by white-space, empty lines or
comments.

9.1.5 An item shall be separated from a following item by white-space, newline or comment, if the initial character
(or characters) of the following item is a permitted character (or characters) for inclusion at the end of the charactersin
the earlier item.

9.2 Type references
Name of item — typereference

9.2.1 A "typereference" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial
character shall be an upper-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately
followed by another hyphen.

NOTE — The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

9.2.2 A "typereference” shall not be one of the reserved character sequences listed in 9.16.

9.3 Identifiers
Name of item — identifier

An "identifier" shall consist of an arbitrary number (one or more) of letters, digits, and hyphens. The initial character
shall be a lower-case letter. A hyphen shall not be the last character. A hyphen shall not be immediately followed by
another hyphen.

NOTE — The rules concerning hyphen are designed to avoid ambiguity with (possibly following) comment.

9.4 Value references
Name of item — valuereference

A "valuereference" shall consist of the sequence of characters specified for an "identifier" in 9.2. In analysing an
instance of use of this notation, a "valuereference" is distinguished from an "identifier" by the context in which it
appears.

9.5 Module reference

Name of item — modulereference

A "modulereference"” shall consist of the sequence of characters specified for a "typereference" in 9.2. In analysing an
instance of use of this notation, a "modulereference" is distinguished from a "typereference" by the context in which it
appears.

9.6 Comment

Name of item — comment

9.6.1 A "comment" is not referenced in the definition of the ASN.1 notation. It may, however, appear at any time
between other ASN.1 items, and has no syntactic significance.

NOTE — Nonetheless, in the context of a Recommendation | International Standard that uses ASN.1, an ASN.1 comment
may contain normative text related to the application semantics, or constraints on the syntax.

9.6.2 A "comment" shall commence with a pair of adjacent hyphens and shall end with the next pair of adjacent
hyphens or at the end of the line, whichever occurs first. A comment shall not contain a pair of adjacent hyphens other
than the pair which opens it and the pair, if any, which ends it. It may include graphic symbols which are not in the
character set specified in 8.1 (see 8.3).

9.7 Empty item

Name of item — empty

12 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

The "empty" item contains no characters. It is used in the notation of clause 5 when alternative sets of production
seguences are specified, to indicate that absence of al alternativesis possible.

9.8 Number item
Name of item — number

A "number" shall consist of one or more digits. The first digit shall not be zero unless the "number" is a single digit.
NOTE — The "number" item is always mapped to an integer value by interpreting it as decimal notation.

9.9 Binary string item
Name of item — bstring

A "bstring" shall consist of an arbitrary number (possibly zero) of zeros, ones, white-space or newlines, preceded by a
single quote (') and followed by the pair of characters

'B
White-space and newlines that appear within a binary string item have no significance.

EXAMPLE -'01101100'B

9.10 Hexadecimal string item

Name of item — hstring

9.10.1 An "hstring" shall consist of an arbitrary number (possibly zero) of the characters
ABCDEFO0123456789

or white-space or newlines, preceded by a single quote (') and followed by the pair of characters

'H

White-space and newlines that appear within a hexadecimal string item have no significance.

EXAMPLE —-’AB0196'H

9.10.2 Each character is used to denote the value of a semi-octet using a hexadecimal representation.

9.11 Character string item
Name of item — cstring

9.11.1 A "cstring" shall consist of an arbitrary number (possibly zero) of graphic symbols and spacing characters
from the character set referenced by the character string type, preceded and followed by double quotes (). If the
character set includes a double quote, this character (if present in the character string being represented by the "cstring")
shall be represented in the "cstring" by a pair of double quotes on the same line with no intervening spacing character.
The "cstring" may span more than one line of text, in which case the character string being represented shall not include
spacing characters in the position prior to or following the end of line in the "cstring". White-space that appears
immediately prior to or following the end of line in the "cstring" have no significance.

NOTES

1 The"cstring" can only be used to represent character strings for which every character in the string being represented
has either been assigned a graphic symbol, or is a spacing character. Where a character string containing control characters needs to
be denoted, alternative ASN.1 syntax is available. (See clause 32).

2 The character string represented by a "cstring" consists of the characters associated with the printed graphic symbols
and spacing characters. Spacing characters immediately preceding or following any end of line in the "cstring" are not part of the
character string being represented (they are ignored). Where spacing characters are included in the "cstring”, or where the graphic
symbolsin the character repertoire are not unambiguous the character string denoted by "cstring" may be ambiguous.

EXAMPLE1-'BR B T &
EXAMPLE 2 — The "cstring"

"ABCDE FGH
IIK™XYZ"

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 13

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

can be used to represent a character string value of type |A5String. The value represented consists of the characters

ABCDE FGHIXK"XYZ

where the precise number of spaces intended between E and F can be ambiguous if a proportional spacing font (such as
is used above) is used in the specification.

9.11.2 When a character is a combining character it shall be denoted in the "cstring" as an individual character. It
shall not be overprinted with the characters with which it combines. (This ensures that the order of combining characters
in the string value is unambiguously defined.)

EXAMPLE — The accent combining character and lower case 'e’ are two characters in the ISO 646 French Version, and
thus in a corresponding "cstring" is written as two characters and not as the single character é.

9.11.3 The "cstring" shall not be used to represent character string values which contain control characters. Only
graphic and spacing characters are permitted in it.

9.12 Assignment item

Name of item —"::=

This item shall consist of the sequence of characters

NOTE - This sequence does not contain any white-space characters (see 9.1.2).

9.13 Range separator

Name of item —"..

This item shall consist of the sequence of characters

NOTE - This sequence does not contain any white-space characters (see 9.1.2).

9.14 Ellipsis

Name of item -"...

This item shall consist of the sequence of characters

NOTE — This sequence does not contain any white-space characters (see 9.1.2).

9.15 Single character items

Names of items —

e
g

’
nn

e
[

o
"-" (hyphen)

nn
3

u@n
|||||
u!n

npn

An item with any of the names listed above shall consist of the single character without the quotation marks.

14 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

9.16 Reserved words
Names of reserved words -
ABSENT EMBEDDED INSTANCE REAL
ABSTRACT-SYNTAX END INTEGER SEQUENCE
ALL ENUMERATED INTERSECTION SET
APPLICATION EXCEPT 1SO646String SIZE
AUTOMATIC EXPLICIT MAX STRING
BEGIN EXPORTS MIN SYNTAX
BIT EXTERNAL MINUS-INFINITY T61String
BMPString FALSE NULL TAGS
BOOLEAN FROM NumericString TeletexString
BY GeneralizedTime OBJECT TRUE
CHARACTER General String ObjectDescriptor UNION
CHOICE GraphicString OCTET UNIQUE
CLASS |A5String OF UNIVERSAL
COMPONENT TYPE-IDENTIFIER OPTIONAL Universal String
COMPONENTS IDENTIFIER PDV UTCTime
CONSTRAINED IMPLICIT PLUS-INFINITY VideotexString
DEFAULT IMPORTS PRESENT VisibleString
DEFINITIONS INCLUDES PrintableString WITH
PRIVATE

Items with the above names shall consist of the sequence of characters in the name, and are reserved character
sequences.

NOTES
1 White-space does not occur in these sequences.

2 The keywords CLASS, CONSTRAINED, INSTANCE, SYNTAX and UNIQUE ae not used in this
Recommendation | International Standard; they are used in ITU-T Rec. 681 | ISO/IEC 8824-2, ITU-T Rec. X.682 | ISO/IEC 8824-3
and ITU-T Rec. X.683 | ISO/IEC 8824-4.

10 Module definition
10.1 A "ModuleDefinition" is specified by the following productions:;

ModuleDefinition ::=
Moduleldentifier
DEFINITIONS
TagDefault
" = "

BEGIN
ModuleBody
END

Moduleldentifier ::=
modulereference
Definitiveldentifier

Definitiveldentifier ::=
"{" DefinitiveObjldComponentList ""}" | empty

DefinitiveObjldComponentList ::=
DefinitiveObjldComponent |
DefinitiveObjIldComponent DefinitiveObjldComponentList

DefinitiveObjldComponent ::=
NameForm |
DefinitiveNumberForm |
DefinitiveNameAndNumberForm

DefinitiveNumberForm ::= number

DefinitiveNameAndNumberForm ::= identifier ""("" DefinitiveNumberForm)"

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 15

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

TagDefault ::=
EXPLICIT TAGS |
IMPLICIT TAGS |
AUTOMATIC TAGS |
empty

ModuleBody ::=
Exports Imports AssignmentList |

empty

Exports ::=
EXPORTS SymbolsExported ";"
empty

SymbolsExported ::=
SymbolList |

empty

Imports ::=
IMPORTS SymbolsImported ";"
empty

SymbolsImported ::=
SymbolsFromModuleList |

empty

SymbolsFromModuleList ::=
SymbolsFromModule |
SymbolsFromModuleList SymbolsFromModule

SymbolsFromModule ::=
SymbolList FROM GlobalModuleReference

GlobalModuleReference ::=
modulereference AssignedIdentifier

Assignedldentifier ::=
ObjectldentifierValue |
DefinedValue |

empty

SymbolList ::=
Symbol |
SymbolList "," Symbol

Symbol ::=
Reference |
ParameterizedReference

Reference ::=
typereference
valuereference
objectclassreference
objectreference
objectsetreference

AssignmentList ::=
Assignment |
AssignmentList Assignment

Assignment ::=
TypeAssignment
ValueAssignment
ValueSetTypeAssignment
ObjectClassAssignment
ObjectAssignment
ObjectSetAssignment
Parameterized Assignment

NOTES

1 The use of a ParameterizedReference in the EXPORTS and IMPORTS lists is specified in ITU-T Rec. X.683 |
ISO/IEC 8824-4.

2 For examples (and for the definition in this Recommendation | International Standard of types with universal class
tags), the "ModuleBody" can be used outside of a"ModuleDefinition™.

16 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

3 "TypeAssignment" and "VaueAssignment" productions are specified in clause 13.

4 The grouping of ASN.1 data types into modules does not necessarily determine the formation of presentation data
values into named abstract syntaxes for the purpose of presentation context definition.

5 Thevaue of "TagDefault" for the module definition affects only those types defined explicitly in the module. It does
not affect the interpretation of imported types.

6 The character semicolon does not appear in the assignment list specification or any of its subordinate productions,
and isreserved for use by ASN.1 tool developers.
10.2 The "TagDefault" istaken as"EXPLICIT TAGS" if it is"empty".

NOTE — Clause 28 gives the meaning of "EXPLICIT TAGS", "IMPLICIT TAGS", and "AUTOMATIC TAGS".

10.3 When the "AUTOMATIC TAGS' aternative of "TagDefault" is selected, automatic tagging is said to be
selected for the module, otherwise it is said to be not selected. Automatic tagging is a syntactical transformation which is
applied (with additional conditions) to the "ComponentTypeList" and "AlternativeTypeList” productions occurring
within the definition of the module. This transformation is formally specified by clauses 22.5, 24.3 and 26.2 regarding
the notations for sequence types, set types and choice types, respectively.

104 The "modulereference” appearing in the "Moduleldentifier" production is called the module name.

NOTE — The possibility of defining a single ASN.1 module by the use of several occurrences of "ModuleBody" assigned
the same "modulereference” was (arguably) permitted in earlier specifications. It is not permitted by this Recommendation |
International Standard.

10.5 Module names shall be used only once (except as specified in 10.8) within the sphere of interest of the
definition of the module.

10.6 If the "Definitiveldentifier" is not empty, the denoted object identifier value unambiguously and uniquely
identifies the module being defined. No defined value may be used in defining the object identifier value.

NOTE — The question of what changes to a module require a new "Definitiveldentifier" is not addressed in this
Recommendation | International Standard.

10.7 If the "Assignedidentifier" is not empty, the "ObjectldentifierValue" and the "DefinedValue" alternatives
unambiguously and uniquely identify the module from which items are being imported. When the "DefinedValue"
alternative of "Assignedidentifier” is used, it shall be a value of type object identifier. Each "valuereference" which
textually appears within an "Assignedidentifier" shall satisfy one of the following rules:

a) It is defined in the "AssignmentList” of the module being defined, and all "valuereferences' which
textually appear on the right side of the assignment statement also satisfy this rule (rule "a") or the next
rule (rule"b").

b) It appears as a "Symbol" in a "SymbolsFromModule" whose "Assignedidentifier" does not textualy
contain any "valuereferences”.

NOTE - It is recommended that an object identifier be assigned so that others can unambiguously refer to the module.

10.8 The "GlobalModuleReference" in a"SymbolsFromModul€e" shall appear in the "ModuleDefinition" of another
module, except that if it includes a non-empty "Definitiveldentifier", the "modul ereference” may differ in the two cases.

NOTE - A different "modulereference" from that used in the other module should only be used when symbols are to be
imported from two modules with the same name (the modules being named in disregard of 10.5). The use of alternativendstinct na
makes these names available for use in the body of the module (see 10.14).

10.9 When both a "modulereference” and a non-empty "Assignedidentifier" are used in referencing a module, the
latter shall be considered definitive.

10.10 When the referenced module has a non-empty "Definitiveldentifier”, the "GlobalModuleReference’
referencing that module shall not have an empty "Assignedidentifier".

10.11 When the "SymbolsExported" alternative of "Exports' is selected:
a) each"Symbol" in "SymbolsExported" shall satisfy one and only one of the following conditions:
i) isonly defined in the module being constructed, or
ii) only appears exactly once in the " Symbolslmported" alternative of "Imports'.

b) every "Symbol" to which reference from outside the module is appropriate shall be included in the
"SymbolsExported" and only these " Symbol"s may be referenced from outside the module; and

c) if there are no such "Symbol"s, then the empty alternative of "SymbolsExported” (not of "Exports"') shall
be selected.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 17

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

10.12

When the "empty" aternative of "Exports' is selected, every "Symbol" defined in the module may be

referenced from other modules.

10.13

NOTE — The "empty" alternative of "Exports" is included for backwards compatibility.

Identifiers that appear in a "NamedNumberList", "Enumeration” or "NamedBitList" are implicitly exported if

the typereference that defines them is exported or appears as a component (or subcomponent) within an exported type.

10.14

10.15

When the " Symbolsimported" alternative of "Imports" is selected:

a) Each"Symbol" in"SymbolsFromModul€e" shall either be defined in the module body, or be present in the
IMPORTS clause, of the module denoted by the "GlobalModuleReference” in " SymbolsFromModule”.
Importing a" Symbol" present in the IMPORTS clause of the referenced module is only allowed if thereis
only one occurrence of the "Symbol” in that clause, and the "Symbol" is not defined in the referenced
module.

NOTE 1 — This does not prohibit the same symbol name defined in two different modules from being imported

into another module. However, if the same "Symbol" name appears more than once in the IMPORTS clause of
module A, that "Symbol" name cannot be exported from A for import to another module B.

b) If the "SymbolsExported" alternative of "Exports' is selected in the definition of the module denoted by
the "GlobaModuleReference” in "SymbolsFromModule' the "Symbol" shall appear in its
"Symbol sExported".

¢) Only those "Symbol"s that appear amongst the "SymbolList" of a"SymbolsFromModule" may appear as
the symbol in any "External<X>Reference’ which has the "modulereference” denoted by the
"GlobalModuleReference” of that "SymbolsFromModule” (where <X> is "value", "type", "object",
"objectclass’, or "objectset").
d) If there are no such "Symbol"s, then the "empty" alternative of " Symbolsimported” shall be selected.
NOTE 2 — An effect of ¢) and d) is that the statement "IMPORTS;" implies that the module can not contain an
"External<X>Reference".

e) All the "SymbolsFromModule" in the "SymbolsFromModulelList” shal include occurrences of
"GlobalModuleReference” such that:

i) the "modulereference” in them are all different from each other and from the "modulereference”
associated with the referencing module; and

i) the "Assignedidentifier", when non-empty, denotes object identifier values which are all different
from each other and from the object identifier value (if any) associated with the referencing module.

When the "empty" alternative of "Imports’ is selected, the module may still reference "Symbols® defined in

other modules by means of an "External<X>Reference".

10.16

NOTE — The "empty" alternative of "Imports" is included for backwards compatibility.

Identifiers that appear in a NamedNumberList, Enumeration or NamedBitList are implicitly imported if the

typereference that defines them isimported or appears as a component (or subcomponent) within an exported type.

10.17

A "Symbol" in a "SymbolsFromModule' may appear in "ModuleBody" as a "Reference”. The meaning

associated with the "Symbol" is that which it has in the module denoted by the corresponding
"Globa ModuleReference.

10.18

Where the "Symbol" also appears in an "AssignmentList" (deprecated), or appears in one or more other

instances of " SymbolsFromModule", it shall only be used in an "External<X>Reference". Where it does not so appear, it
shall be used directly as a"Reference”.

10.19

The various alternatives for "Assignment” are defined in the following clauses in this Recommendation |

International Standard, except as noted otherwise:

Assignment alternative Defining clause

"TypeAssignment” 131

"ValueAssignment" 13.2

"V alueSetTypeAssignment” 134

" ObjectClassAssignment” ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause 9.1
" ObjectAssignment" ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause 11.1
" ObjectSetAssignment” ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause 12.1
" ParameterizedA ssignment” ITU-T Rec. X.683 | ISO/IEC 8824-4, subclause 8.1

The first symbol of every "Assignment” is one of the alternatives of "Reference", denoting the reference name being
defined. In no two assignments within an "AssignmentList" shall the reference names be the same.

18

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

11 Referencing type and value definitions

11.1 The defined type and value productions

DefinedType ::=
Externaltypereference |
typereference |
ParameterizedType |
ParameterizedValueSetType

DefinedValue ::=
Externalvaluereference |
valuereference |
ParameterizedValue

specify the sequences which shall be used to reference type and value definitions. The type identified by a
"ParameterizedType" and "ParameterizedValueSetType"', and the vaue identified by a "ParameterizedVaue' are
specified in ITU-T Rec. X.683 | ISO/IEC 8824-4.

11.2 Except as specified in 1017, the “typereference', "valuereference', "ParameterizedType",
"ParameterizedValueSetType" or "ParameterizedValue" alternatives shall not be used unless the reference is within the
"ModuleBody" in which atype or value is assigned (see 13.1 and 13.2) to the typereference or valuereference.

11.3 The "Externaltypereference’ and "Externalvaluereference” shall not be used unless the corresponding
"typereference” or "valuereference":

a) hasbeen assigned atype or value respectively (see 13.1 and 13.2); or
b) arepresentinthe IMPORTS clause

within the "ModuleBody" used to define the corresponding "modulereference”. Referencing an item in the IMPORTS
clause of another module shall only be alowed if there is no more than one occurrence of the "Symbol" in that clause.
NOTE — This does not prohibit the same "Symbol" defined in two different modules from being imported into another

module. However, if the same "Symbol" appears more than once in the IMPORTS clause of a module A, then that "Symbol" cannot
be referenced using module A in an external reference.

114 An external reference shall be used in a module only to refer to an item which is defined in a different module,
and is specified by the following productions:

Externaltypereference ::=
modulereference

typereference

Externalvaluereference ::=
modulereference
"nn
valuereference

NOTE — Additional external reference productions (ExternalClassReference, ExternalObjectReference and
ExternalObjectSetReference) are specified in ITU-T Rec. X.681 | ISO/IEC 8824-2.

11.5 When the referencing module is defined using the "Symbolsimported" alternative of "Imports’, the
"modulereference” in the external reference shall appear in the "GlobalModuleReference” of exactly one of the
"SymbolsFromModule" in the "Symbolsimported’. When the referencing module is defined using the "empty"
alternative of "Imports’, the "modulereference” in the external reference shall appear in the "ModuleDefinition" of the
module (different from the referencing module) where the "Reference” is defined.

12 Notation to support references to ASN.1 components

12.1 There is a requirement for formal reference to components of ASN.1 types, values, etc. for many purposes.
One such instance is the need to write text to identify a specific type within some ASN.1 module. This clause defines a
notation which can be used to provide such references.

12.2 The notation enables any component of a set or sequence type (which is either mandatorily or optionally
present in the type) to be identified.

NOTE — ITU-T Rec. X.682 | ISO/IEC 8824-3 specifies the meaning of the notation in each instance of use. In particular,
the meaning of a reference to a field that is absent in some values of the enclosing type is not in the scope of this Réanrhmend
International Standard.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 19

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

12.3 Any part of any ASN.1 type definition can be referenced by use of the "AbsoluteReference" syntactic
construct:

AbsoluteReference ::= "@" GlobalModuleReference

"nan

ItemSpec

ItemSpec ::=
typereference |
Itemld "." Componentld

Itemld ::= ItemSpec
Componentld ::=
identifier | number | "*"

NOTE — The AbsoluteReference production is not used elsewhere in this Recommendation | International Standard. It is
provided for the purposes stated in 12.1.

124 The "GlobaModuleReference” identifiesan ASN.1 module (see 10.1).

12.5 The “"typereference" references any ASN.1 type defined in the module identified by
"GlobaModuleReference.

12.6 The "Componentld" in each "ItemSpec" identifies a component of the type which has been identified by the
"Itemld". It shall be the last "Componentld" if the component it identifies is not a set, sequence, set-of, sequence-of, or
choice type.

12.7 The "identifier" form of "Componentld” can be used if the parent "Itemld" is a set or sequence type, and is
required to be one of the "identifier"s of the "NamedType" in the "ComponentTypeList" of that set or sequence. It can
also be used if the "Itemld" identifies a choice type, and is then required to be one of the "identifier"s of a"NamedType"
inthe "AlternativeTypeList" of that choice type. It cannot be used in any other circumstance.

12.8 The number form of "Componentld” can be used only if the "Itemld" is a sequence-of or set-of type. The value
of the number identifies the instance of the type in the sequence-of or set-of, with the value "1" identifying the first
instance of the type. The value zero identifies a conceptual integer type component (not explicitly present in transfer, and
called the iteration count) that contains a count of the number of instances of the type in the sequence-of or set-of that
are present in the value of the enclosing type.

12.9 The "*" form of "Componentld" can be used only if the "Itemld" is a sequence-of or set-of. Any semantics
associated with the use of the "*" form of "Componentld" apply to all components of the sequence-of and set-of .

NOTE - In the following example:

M DEFINITIONS ::= BEGIN
T ::= SEQUENCE {
a BOOLEAN,
b SET OF INTEGER

}
END

the components of "T" could be referenced by text outside an ASN.1 module (or in acomment), such as

if (@M.T.b.0 is odd) then
(@M.T.b.* shall be an odd integer)

which is used to state that if the number of components in "b" is odd, all components of "b" must be odd.

13 Assigning types and values

13.1 A "typereference” shall be assigned a type by the notation specified by the "TypeAssignment" production:

TypeAssignment ::=
typereference

Type
The "typereference" shall not be an ASN.1 reserved word (see 9.16).

20 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

13.2 A "valuereference" shall be assigned a value by the notation specified by the "ValueAssignment” production:

ValueAssignment ::=
valuereference

Type

Value

The "Vaue" being assigned to the "valuereference" shall be a notation for a value of the type defined by "Type" (as
specified in 13.3).

13.3 "Vaue' isanotation for avalue of atypeif either

a) "Vaue'isa"BuiltinvValue" notation for the type (see 14.8); or
b) "Vaue"isa"DefinedVaue' notation for avalue of that type.

134 A "typereference” can be assigned a value set by the notation specified by the "ValueSetTypeAssignment"
production:

ValueSetTypeAssignment ::= typereference
Type

Moozt

ValueSet

This notation assigns to "typereference” the type defined as a subtype of the type denoted by "Type" and which contains
exactly the values which are specified in or alowed by "VaueSet". The "typereference” shall not be an ASN.1 reserved
word (see 9.16), and may be referenced as atype. "VaueSet" isdefined in 13.5.

13.5 A value set governed by some type shall be specified by the notation "ValueSet":
ValueSet ::="{" ElementSetSpec "}"

The value set comprises all of the values, of which there shall be at least one, specified by "ElementSetSpec" (see
clause 44).

14 Definition of types and values
14.1 A type shall be specified by the notation "Type":
Type ::= BuiltinType | ReferencedType | ConstrainedType
14.2 The built-in types of ASN.1 are specified by the notation "BuiltinType", defined as follows:

BuiltinType ::=
BitStringType
BooleanType
CharacterStringType
ChoiceType
EmbeddedPDVType
EnumeratedType
ExternalType
InstanceOfType
IntegerType
NullType
ObjectClassFieldType
ObjectldentifierType
OctetStringType
RealType
SequenceType
SequenceOfType
SetType
SetOfType
TaggedType

The various "BuiltinType" notations are defined in the following clauses (in this Recommendation | International
Standard unless otherwise stated):

BitStringType 19
BooleanType 15
CharacterStringType 33

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 21

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

14.3

ChoiceType 26
EmbeddedPDV Type 30
EnumeratedType 17
External Type 31
InstanceOf Type ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex C
IntegerType 16
NullType 21
ObjectClassFieldType ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause 14.1
ObjectldentifierType 29
OctetStringType 20
Rea Type 18
SequenceType 22
SequenceOf Type 23
SetType 24
SetOf Type 25
TaggedType 28
The referenced types of ASN.1 are specified by the notation "ReferencedType":
ReferencedType ::=
DefinedType |
UsefulType |
SelectionType |
TypeFromObject |
ValueSetFromObjects

The "ReferencedType" notation provides an alternative means of referring to some other type (and ultimately to a built-
in type). The various "ReferencedType" notations, and the way in which the type to which they refer is determined, are
specified in the following placesin this Recommendation | International Standard unless otherwise stated):

14.4
14.5

14.6

type, and has no effect on the type.

14.7

14.8

22

DefinedType

Useful Type
SelectionType
TypeFromObject
VaueSetFromObjects

111

38.1

27

ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15
ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

The"ConstrainedType" is defined in clause 42.

This Recommendation | International Standard requires the use of the notation "NamedType" in specifying the
components of the set type, sequence type and choice types. The notation for "NamedType" is.

NamedType ::= identifier Type

The "identifier" is used to unambiguously refer to components of a set type, sequence type or choice type in
the value notation and in component relation constraints (see ITU-T Rec. X.682 | ISO/IEC 8824-3). It is not part of the

A value of some type shall be specified by the notation "Vaue":

Value ::= BuiltinValue | ReferencedValue | ObjectClassFieldValue
NOTE — ObjectClassFieldValue is defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause 14.6.

Values of the built-in types of ASN.1 can be specified by the notation "BuiltinVaue", defined as follows:

BuiltinValue ::=

BitStringValue
BooleanValue
CharacterStringValue

ChoiceValue

EmbeddedPDVValue
EnumeratedValue
ExternalValue
InstanceOfValue
IntegerValue

NullValue

ObjectldentifierValue
OctetStringValue

RealValue

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

SequenceValue
SequenceOfValue
SetValue
SetOfValue
TaggedValue

Each of the various "BuiltinValue" notations is defined in the same clause as the corresponding "BuiltinType" notation,
aslisted in 14.2 above.

14.9 The referenced values of ASN.1 are specified by the notation "ReferencedValue':

ReferencedValue ::=
DefinedValue |
ValueFromObject

The "ReferencedValue" notation provides an alternative means of referring to some other value (and ultimately to a
built-in value). The various "ReferencedValue’ notations, and the way in which the value to which they refer is
determined, are specified in the following places (in this Recommendation | International Standard unless otherwise
stated):

DefinedValue 111
VaueFromObject ITU-T Rec. X.681 | ISO/IEC 8824-2, clause 15

14.10 Regardless of whether or not atypeisa"BuiltinType", "ReferencedType" or "ConstrainedType", its values can
be specified by either a"BuiltinValue" or "ReferencedValue" of that type.

1411 The value of a type referenced using the "NamedType' notation shall be defined by the notation
"NamedValue'":

NamedValue ::= identifier Value

where the "identifier" is the same as that used in the "NamedType" notation.

NOTE — The "identifier" is part of the notation, it does not form part of the value itself. It is used to unambiguously refer t
the components of a set type, sequence type or choice type.

15 Notation for the boolean type
15.1 The boolean type (see 3.8.7) shall be referenced by the notation "BooleanType":
BooleanType ::= BOOLEAN
15.2 The tag for types defined by this notation is universal class, number 1.
153 The value of aboolean type (see 3.8.55 and 3.8.27) shall be defined by the notation "BooleanValue':

BooleanValue ::= TRUE | FALSE

16 Notation for the integer type
16.1 The integer type (see 3.8.29) shall be referenced by the notation "Integer Type":

IntegerType ::=

INTEGER |

INTEGER "{" NamedNumberList "}"
NamedNumberList ::=

NamedNumber |

NamedNumberList "," NamedNumber
NamedNumber ::=

identifier " ("' SignedNumber ")" |

identifier " ("' DefinedValue ")"
SignedNumber ::= number | "-" number

16.2 The second alternative of "SignedNumber" shall not be used if the "number" is zero.

16.3 The "NamedNumberList" is not significant in the definition of a type. It is used solely in the value notation
specifiedin 16.9.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 23

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

16.4 The "valuereference” in "DefinedValue” shall be of type integer.

NOTE - Since an "identifier" cannot be used to specify the value associated with "NamedNumber", the "DefinedValue"
can never be misinterpreted as an "IntegerValue". Therefore in the following case

a INTEGER ::=1

T1 ::=INTEGER {a(2) }

T2 ::= INTEGER { a(3), b(a) }
cT2::=b

dT2::=a

"c" denotes the value 1, since it cannot be a reference to the second nor the third occurrence of "a", and "d" denes the valu

16.5 The value of each "SignedNumber" or "DefinedVaue' appearing in the "NamedNumberList" shall be
different, and represents a distinguished value of the integer type.

16.6 Each "identifier" appearing in the "NamedNumberList" shall be different.

16.7 The order of the "NamedNumber" sequencesin the "NamedNumberList" is not significant.
16.8 The tag for types defined by this notation is universal class, number 2.

16.9 The value of an integer type shall be defined by the notation "IntegerValue":

IntegerValue ::=
SignedNumber |
identifier

16.10 The"identifier" in "IntegerValue" shall be one of the "identifier"sin the "IntegerType" with which the valueis
associated, and shall represent the corresponding number.

NOTE — When referencing an integer value for which an "identifier" has been defined, use of the "identifier" form of
"IntegerValue" should be preferred.

17 Notation for the enumerated type
17.1 The enumerated type (see 3.8.24) shall be referenced by the notation "EnumeratedType":

EnumeratedType ::=
ENUMERATED "{" Enumeration "}"

Enumeration ::=
EnumerationItem | Enumerationltem "," Enumeration

Enumerationltem ::=
identifier | NamedNumber
NOTES

1 Each value of an "EnumeratedType" has an identifier which is associated with a distinct integer. However, the values
themselves are not expected to have any integer semantics. Specifying the "NamedNumber" alternative of "Enumerationitem"”
provides control of the representation of the value in order to facilitate compatible extensions.

2 The numeric values inside the "NamedNumber"s in the "Enumeration™ are not necessarily ordered or contiguous.

17.2 For each "NamedNumber", the "identifier" and the "SignedNumber" shall be distinct from all other
"identifier"s and " SignedNumber"sin the "Enumeration". Subclauses 16.2 and 16.4 also apply to each "NamedNumber".

17.3 Each "Enumerationltem” (in an "EnumeratedType") which is an "identifier" is successively assigned a distinct
non-negative integer. For this purpose, the successive integers starting with 0, but excluding any which are employed in
"Enumerationltem”s which are "NamedNumber"s, are assigned.

NOTE — An integer value is associated with an "Enumerationltem" to assist in the definition of encoding rules. It is not
otherwise used in the ASN.1 specification.

17.4 The enumerated type has atag which is universal class, number 10.
17.5 The value of an enumerated type shall be defined by the notation "EnumeratedValue":
EnumeratedValue ::= identifier

17.6 The "identifier" in "EnumeratedValue" shall be equal to that of an "identifier" in the "EnumeratedType"
sequence with which the value is associated.

24 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

18 Notation for the real type
18.1 Thereal type (see 3.8.41) shall be referenced by the notation "Real Type":

RealType ::= REAL
18.2 The real type has atag which isuniversal class, number 9.

18.3 The values of the real type are the values PLUSINFINITY and MINUS-INFINITY together with the real
numbers capable of being specified by the following formulainvolving three integers, M, B and E:

M x BE

where M is called the mantissa, B the base, and E the exponent.

18.4 The real type has an associated type which is used to give precision to the definition of the abstract values of
thereal type and is also used to support the value and subtype notations of the real type.

NOTE — Encoding rules may define a different type which is used to specify encodings, or may specify encodings without
reference to the associated type. In particular, the encoding in BER and PER provides a binary-coded decimal (BCD) encoding if

"base" is 10, and an encoding which permits efficient transformation to and from hardware floating point representats&is if "ba
is 2.

18.5 The associated type for value definition and subtyping purposes is (with normative comments):

SEQUENCE {
mantissa INTEGER,
base INTEGER (2|10),
exponent INTEGER
-- The associated mathematical real number is "mantissa”
-- multiplied by "base" raised to the power "exponent"
}
NOTES

1 Values represented by "base" 2 and by "base" 10 are considered to be distinct abstract values even if they evaluate to
the same real numbers value, and may carry different application semantics.

2 The notation "REAL (WITH COMPONENTS { ... , base (10)})" can be used to restrict the set of values to base 10
abstract values (and similarly for base 2 abstract values).

3 This type is capable of carrying an exact finite representation of any number which can be stored in typical floating
point hardware, and of any number with a finite character-decimal representation.

18.6 The value of areal type shall be defined by the notation "RealValue':

RealValue ::=
NumericRealValue | SpecialRealValue

NumericRealValue ::= 0 |
SequenceValue -- Value of the associated sequence type

SpecialRealValue ::=
PLUS-INFINITY | MINUS-INFINITY

Theform "0" shall be used for zero values, the aternate form for "NumericReal Vaue" shall not be used for zero values.

19 Notation for the bitstring type

19.1 The bitstring type (see 3.8.6) shall be referenced by the notation "BitStringType":

BitStringType ::=
BIT STRING
BIT STRING "{" NamedBitList ""}"

NamedBitList ::=
NamedBit |
NamedBitList "," NamedBit

NamedBit ::=
identifier "'("" number ")" |
identifier "(" DefinedValue ")"

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 25

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

19.2 Thefirst bit in abit string is called bit zero. The final bit in a bit string is called the trailing bit.
NOTE — This terminology is used in specifying the value notation and in defining encoding rules.

19.3 The "DefinedValue" shall be areference to a non-negative value of type integer.

19.4 The value of each "number" or "DefinedValue" appearing in the "NamedBitList" shall be different, and is the
number of a distinguished bit in a bitstring value.

19.5 Each "identifier" appearing in the "NamedBitList" shall be different.
NOTES
1 The order of the "NamedBit" production sequences in the "NamedBitList" is not significant.

2 Since an "identifier" that appears within the "NamedBitList" cannot be used to specify the value associated with a
"NamedBit", the "DefinedValue" can never be misinterpreted as an "IntegerValue". Therefore in the following case

a INTEGER ::=1
T1 ::= INTEGER { a(2) }
T2 ::= BIT STRING { a(3), b(a) }

the last occurrence of "a" denotes the value 1, as it cannot be a reference to the second nor the third occurrence of "a".

19.6 The presence of a"NamedBitList" has no effect on the set of abstract values of this type. Values containing
1 bits other than the named bits are permitted.

19.7 When a"NamedBitList" is used in defining a bitstring type ASN.1 encoding rules are free to add (or remove)
arbitrarily many trailing O bits to (or from) values that are being encoded or decoded. Application designers should
therefore ensure that different semantics are not associated with such values which differ only in the number of trailing
0 hits.

19.8 This type has atag which is universal class, number 3.
19.9 The value of abitstring type shall be defined by the notation "BitStringValue":

BitStringValue ::=
bstring |
hstring |
"{" IdentifierList "}" |

" {" "}"

IdentifierList ::=
identifier |
IdentifierList "," identifier

19.10 Each "identifier" in "BitStringValue" shall be the same as an "identifier" in the "BitStringType" production
sequence with which the value is associated.

19.11 The"BitStringValue" notation denotes a bitstring value with ones in the bit positions specified by the numbers
corresponding to the "identifier"s, and with all other bits zero.

NOTE — The "{" "}" production sequence is used to denote the bitstring which contains no one bits.

19.12 In specifying the encoding rules for a bitstring, the bits shall be referenced by the terms first bit and trailing
bit where the first bit is bit zero (see 19.2).

19.13 When using the "bstring" notation, the first bit is on the |eft, and the trailing bit is on the right.

19.14 When using the "hstring" notation, the most significant bit of each hexadecima digit corresponds to the
leftmost bit in the bitstring.

NOTE - This notation does not in any way constrain the way encoding rules place a bitstring into octets for transfer.
19.15 The"hstring" notation shall not be used unless the bitstring value consists of a multiple of four bits.
EXAMPLE

"ASBA'H
and

’1010100110001010'B

are alternative notations for the same bitstring value. If the type was defined using a "NamedBitList", the (single) trailing
zero does not form part of the value, which is thus 15 bits in length. If the type was defined without a "NamedBitList",
the trailing zero does form part of the value, which is thus 16 bits in length.

26 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

20 Notation for the octetstring type

20.1 The octetstring type (see 3.8.37) shall be referenced by the notation "OctetStringType'":
OctetStringType ::= OCTET STRING

20.2 This type has atag which is universal class, number 4.

20.3 The value of an octetstring type shall be defined by the notation " OctetStringVa ue':

OctetStringValue ::=
bstring |
hstring

20.4 In specifying the encoding rules for an octetstring, the octets are referenced by the terms first octet and
trailing octet, and the bits within an octet are referenced by the terms most significant bit and least significant bit.

20.5 When using the "bstring" notation, the left-most bit shall be the most significant bit of the first octet. If the
"bstring” is not a multiple of eight bits, it shall be interpreted as if it contained additional zero trailing bits to make it the
next multiple of eight.

20.6 When using the "hstring" notation, the left-most hexadecimal digit shall be the most significant semi-octet of
thefirst octet.

20.7 If the "hstring" is not an even number of hexadecimal digits, it shall be interpreted as if it contained a single
additional trailing zero hexadecimal digit.

21 Notation for the null type

21.1 The null type (see 3.8.32) shall be referenced by the notation "Null Type":
NullType ::= NULL

21.2 This type has atag which is universal class, number 5.

21.3 The value of anull type shall be referenced by the notation "NullValue':

NullValue ::= NULL

22 Notation for sequence types

22.1 The notation for defining a sequence type (see 3.8.45) shall be the " SequenceType":

SequenceType ::=
SEQUENCE "{'" ComponentTypeList "}" |
SEQUENCE "{H "}H

ComponentTypeList ::=
ComponentType |
ComponentTypeList "," ComponentType

ComponentType ::=
NamedType |
NamedType OPTIONAL |
NamedType DEFAULT Value |
COMPONENTS OF Type

22.2 When the "ComponentTypeList" production occurs within the definition of a module for which automatic
tagging is selected (see 10.3), and none of the occurrences of "NamedType" in any of the first three aternatives for
"ComponentType" contains a "TaggedType', then automatic tagging transformation is selected for the entire
"ComponentTypeList", otherwiseit is not.

NOTES

1 The use of the "TaggedType" notation within the definition of the list of components for a sequence type gives
control of tags to the specifier, as opposed to automatic assignment by the automatic tagging mechanism. Therefore, in the following
case:

T := SEQUENCE { aINTEGER, b [1] BOOLEAN, c OCTET STRING }

no automatic tagging is applied to the list of components g, b, ¢, even if this definition of sequence type T occurs within a module for
which automatic tagging is selected.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 27

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

2 Only those occurrences of the "ComponentTypeList" production appearing within a module where automatic tagging
is selected are candidates for transformation by automatic tagging.

22.3 The decision to apply the automatic tagging transformation is taken individually for each occurrence of
"ComponentTypeList" and prior to the COMPONENTS OF transformation specified by 22.4. However, as specified
in 22.6, the automatic tagging transformation (if applied) is applied after the COMPONENTS OF transformation.

NOTE - The effect of this is that the application of automatic tags is suppressed by tags explicitly present in the
"ComponentTypelList", but not by tags present in the "Type" following "COMPONENTS OF".

22.4 The "Type" in the fourth alternative of the "ComponentType" shall be a sequence type. The "COMPONENTS
OF Type" notation shall be used to define the inclusion, at this point in the list of components, of all the component
types of the referenced type.

NOTE - This transformation is logically completed prior to the satisfaction of the requirements in the following clauses.

22.5 For each series of one or more consecutive occurrences of "ComponentType" marked as OPTIONAL or
DEFAULT, the tags of those "ComponentType" and of any immediately following "ComponentType" shall be distinct.
(See clause 28). If automatic tagging was selected, the requirement that tags be distinct applies only after automatic
tagging has been performed, and will always be satisfied if automatic tagging has been applied.

22.6 The automatic tagging transformation of an occurrence of "ComponentTypeList" is logically performed after
the transformation specified by 22.4, but only if 22.2 determines that it shall apply to that occurrence of
"ComponentTypeList". Automatic tagging transformation impacts each "ComponentType" of the "ComponentTypeList"
by replacing the "Type" originally in the "NamedType" production with a replacement "TaggedType' occurrence
specifiedin 22.7.

22.7 The replacement "TaggedType" is specified as follows:
a) thereplacement "TaggedType" notation usesthe "Tag Type" alternative;
b) the"Class' of the replacement "TaggedType" is empty (i.e. tagging is context-specific);

¢) the"ClassNumber" in the replacement "TaggedType" is tag value zero for the first ComponentType, one
for the second, and so on, proceeding with increasing tag numbers;

d) the"Type" inthereplacement "TaggedType" isthe origina "Type" being replaced.

NOTES

1 The rules governing specification of implicit tagging or explicit tagging for replacement "TaggedTypes" are provided
by 28.6. Automatic tagging is always implicit tagging unless the "Type" is a choice type or an open type notation, or a
"DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, subclause 8.3), in which case it is explicit tagging.

2 Once 22.6 is satisfied, the tags of the components are completely determined, and are not modified even when the
sequence type is referenced in the definition of a component within another "ComponentTypeList" for which automatic tagging
transformation applies. Thus, in the following case:

T:=SEQUENCE{a Ta, b Th, ¢ Tc}
E ::= SEQUENCE {fl E1, f2 T, f3 E3}
the tags attached to a, b and c are not impacted by the possible automatic tagging applied to components of E.

3 When a sequence type appears as the "Type" in "COMPONENTS OF Type", each occurrence of "ComponentType"
in it is duplicated by the application of 22.4 prior to the possible application of automatic tagging to the referencing $goeen
Thus, in the following case:

T = SEQUENCE {a Ta, b SEQUENCE {b1 T1, b2 T2, b3 T3}, ¢ Tc}
W ::= SEQUENCE {x Wx, COMPONENTS OF T,y Wy}

the tags of a, b, and ¢ within T need not be the same as the tags of a, b, and ¢ within W if W has been defined in ataggiogatic
environment, but the tags of b1, b2 and b3 are the same in both T and W. In other words, the automatic tagging transfonfyation i
applied once to a given "ComponentTypeList".

4 Subtyping has no impact on automatic tagging.
5 When automatic tagging is in place, insertion of new components may result in changes to other components due to
the side effect of modifying the tags.
22.8 If "OPTIONAL" or "DEFAULT" are present, the corresponding value may be omitted from a value of the new
type.
22.9 If "DEFAULT" occurs, the omission of avalue for that type shall be exactly equivalent to the insertion of the

value defined by "Vaue", which shall be avalue notation for a value of the type defined by "Type" in the "NamedType"
production sequence.

22.10 The"identifier"sin all "NamedType" production sequences of the "ComponentTypeList" (together with those
obtained by expansion of COMPONENTS OF) shall al be distinct.

28 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)
22.11 All sequence types have atag which is universal class, number 16.
NOTE — Sequence-of types have the same tag as sequence types (see 23.2).
22.12 Thenotation for defining a value of a sequence type shall be "SequenceValue":

SequenceValue ::=
"{" ComponentValueList "}" |
"{" "}H

ComponentValueList ::=

NamedValue |
ComponentValueList "," NamedValue

22.13 The"{" "}" notation shall only be used if:

a) al "ComponentType" sequences in the "SequenceType" are marked "DEFAULT" or "OPTIONAL", and
all values are omitted; or

b) thetype notation was"SEQUENCE{}".

22.14 There shal be one "NamedVaue" for each "NamedType" in the "SequenceType" which is not marked
OPTIONAL or DEFAULT, and the values shall be in the same order as the corresponding "NamedType" sequences.

23 Notation for sequence-of types

23.1 The notation for defining a sequence-of type (see 3.8.46) from another type shall be the " SequenceOf Type".
SequenceOfType ::= SEQUENCE OF Type

23.2 All sequence-of types have atag which isuniversal class, number 16.
NOTE — Sequence types have the same tag as sequence-of types (see 22.11).

23.3 The notation for defining a value of a sequence-of type shall be the " SequenceOfValue':
SequenceOfValue ::= "{" ValueList "}" | "{" "}"

ValueList ::=
Value |
ValueList "," Value

The"{" "}" notation is used when the SequenceOfValue is an empty list.

23.4 Each"Value" inthe"ValueList" shall be of the type specified in the "SequenceOf Type".
NOTE — Semantic significance may be placed on the order of these values.

24 Notation for set types
24.1 The notation for defining a set type (see 3.8.47) from other types shall be the "SetType":

SetType ::=
SET "{" ComponentTypeList "}" |
SET H{" ”}"

"ComponentTypeList" is specified in 22.1.

24.2 The "Type" in the fourth aternative of the "ComponentType" (see 22.1) shall be a set type. The
"COMPONENTS OF Type" notation shall be used, at this point in the "ComponentTypeL.ist", to define the inclusion of
all the "ComponentType" sequences appearing in the referenced type.

NOTE - This transformation is logically completed prior to the satisfaction of the requirements in the following clauses.

24.3 The "ComponentType" typesin a set type shall all have different tags. (See clause 28).

NOTE — Where the "TagDefault" for the module in which this notation appears is "AUTOMATIC TAGS", this is achieved
regardless of the actual "ComponentType"s, as a result of the application of .

24.4 Subclauses 22.2 and 22.6-22.10 also apply to set types.

24.5 All set types have atag which is universal class, number 17.
NOTE - Set-of types have the same tag as set types (see 25.2).

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 29

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

24.6 There shall be no semantics associated with the order of valuesin a set type.
24.7 The notation for defining the value of a set type shall be "SetValue':

SetValue ::= "{" ComponentValueList "}" | "{" "}"
"ComponentValuelList" is specified in 22.12.

248 The"SetValue' shall only be"{" "}" if:

a) al "ComponentType" sequences in the "SetType" are marked "DEFAULT" or "OPTIONAL", and all
values are omitted; or

b) thetype notation was"SET{}".

24.9 There shall be one "NamedVaue' for each "NamedType" in the "SetType" which is not marked "OPTIONAL"
or "DEFAULT".

NOTE — These "NamedValues" may appear in any order.

25 Notation for set-of types

25.1 The notation for defining a set-of type (see 3.8.48) from another type shall be the " SetOf Type":

SetOfType ::=
SET OF Type
25.2 All set-of types have atag which is universal class, number 17.
NOTE — Set types have the same tag as set-of types (see 24.5).

25.3 The notation for defining a value of a set-of type shall be the "SetOfValue":
SetOfValue ::= "{" ValueList "}" | "{" "}"

"ValueList" is specified in clause 23.3.

The"{" "}" notation is used when the SetOfVaue is an empty list.

25.4 Each "Vaue' sequence in the "VaueList" shall be the notation for a value of the "Type" specified in the
"Setof Type".

NOTES
1 Semantic significance should not be placed on the order of these values.
2 Encoding rules are not required to preserve the order of these values.

3 The set-of type is not a mathematical set of values, thus, as an example, for "SET OF INTEGER" the values "{ 1 }"
and "{1 1}" are distinct.

26 Notation for choice types
26.1 The notation for defining a choice type (see 3.8.13) from other types shall be the "ChoiceType":

ChoiceType ::= CHOICE "{" AlternativeTypeList '"}"

AlternativeTypeList ::=
NamedType |
AlternativeTypeList "," NamedType

NOTE — T ::= CHOICE {a A} and A are not the same type, and may be encoded differently by encoding rules.

26.2 The types defined in the "AlternativeTypeList" shall al have distinct tags (see clause 28).

NOTE — Where the "TagDefault" for the module in which this notation appears is "AUTOMATIC TAGS", the tags are
made distinct as a result of the application of 22.6.

26.3 When the "AlternativeTypeList" production occurs within the definition of a module for which automatic
tagging is selected (see 10.3), and none of the occurrences of "NamedType" in it contain a "Type" which is an
occurrence of "TaggedType", then automatic tagging transformation is selected for the entire "AlternativeTypeList",
otherwise it is not. When selected, the automatic tagging transformation of an "AlternativeTypeList" is applied to each
"NamedType" of the "AlternativeTypeList" by replacing each "Type" originally in the "NamedType" production with a
replacement "TaggedType" occurrence specified in 22.7.

30 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

26.4 The choice type contains values which do not all have the same tag. (The tag depends on the alternative which
contributed the value to the choice type.)

26.5 Where this type is used in a place where this Recommendation | International Standard requires the use of
types with distinct tags (see 22.5, 24.3, and 26.2), all possible tags of values of the choice type shall be considered in
such requirement.

The following examples which assume that the "TagDefault" isnot "AUTOMATIC TAGS' illustrate this requirement.

EXAMPLES
1 A ::= CHOICE
{b B,
[NULL}
B ::= CHOICE
{d [0] NULL,
e [1] NULL}
2 A ::= CHOICE
{b B,
c C}
B ::= CHOICE
{d [0] NULL,
e [1] NULL}
C ::= CHOICE
{f [2] NULL,
g [3] NULL}
3 (INCORRECT)
A ::= CHOICE
{b B,
[C}
B ::= CHOICE
{d [0] NULL,

e [1]NULL}

C ::= CHOICE
{t [0] NULL,
g [1] NULL}

Examples 1 and 2 are correct uses of the notation. Example 3 isincorrect without automatic tagging, as the tags for types
dand f areidentical, aswell asfor and eand g.

26.6 The "identifier's of al "NamedTypes' in the "AlternativeTypelList" shall differ from those of the other
"NamedTypes" in that list.

26.7 The notation for defining the value of a choice type shall be the "ChoiceVaue":
ChoiceValue ::= identifier '":" Value

26.8 "Vaue' shal be a notation for a value of the type in the "AlternativeTypelList" that is named by the
"identifier".

27 Notation for selection types
27.1 The notation for defining a selection type (see 3.8.44) shall be "SelectionType":
SelectionType ::= identifier "'<" Type

where "Type' denotes a choice type, and "identifier" is that of some "NamedType' appearing in the
"AlternativeTypeList" of the definition of that choice type.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 31

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

27.2 Where the "SelectionType" is used as a "NamedType", the "identifier" of the "NamedType" is present, as well
asthe"identifier" of the "SelectionType".

27.3 Where the "SelectionType" is used as a "Type", the "identifier" is retained and the type denoted is that of the
selected alternative.

27.4 The notation for a value of a selection type shall be the notation for a value of the type referenced by the
"SelectionType".

28 Notation for tagged types

A tagged type (see 3.8.53) is a new type which isisomorphic with an old type, but which has a different tag. The tagged
typeis mainly of use where this Recommendation | International Standard requires the use of types with distinct tags (see
225, 24.3, 26.2, and 26.4). The use of a "TagDefault" of "AUTOMATIC TAGS" in a module alows this to be
accomplished without the explicit appearance of tagged type notation in that module.

NOTE — Where a protocol determines that values from several data types may be transmitted at any moment in time,
distinct tags may be needed to enable the recipient to correctly decode the value.
28.1 The notation for atagged type shall be "TaggedType":
TaggedType ::=
Tag Type |
Tag IMPLICIT Type |
Tag EXPLICIT Type

Tag ::="[" Class ClassNumber "]"

ClassNumber ::=
number |
DefinedValue

Class ::=
UNIVERSAL |
APPLICATION |
PRIVATE |

empty
28.2 The "vauereference" in "DefinedValue" shall be of type integer, and assigned a non-negative value.

28.3 The new type is isomorphic with the old type, but has a tag with class "Class' and number "ClassNumber",
except when "Class" is"empty", in which case the tag is context-specific class and number is " ClassNumber".

28.4 The "Class' shall not be "UNIVERSAL" except for types defined in this Recommendation | International
Standard.

NOTES
1 Use of universal class tags are agreed from time to time by ISO and ITU-T.
2 Subclause F.2.12 contains guidance and hints on stylistic use of tag classes.
28.5 All application of tags is either implicit tagging or explicit tagging. Implicit tagging indicates, for those

encoding rules which provide the option, that explicit identification of the origina tag of the "Type' in the
"TaggedType" is not needed during transfer.

NOTE - It can be useful to retain the old tag where this was universal class, and hence unambiguously identifies the old
type without knowledge of the ASN.1 definition of the new type. Minimum transfer octets is, however, normally achievedéy the u
of IMPLICIT. An example of an encoding using IMPLICIT is given in ITU-T Rec. X.690 | ISO/IEC 8825-1.

28.6 The tagging construction specifies explicit tagging if any of the following holds:
a) the"Tag EXPLICIT Type" alternativeisused;

b) the "Tag Type" dternative is used and the value of "TagDefault" for the module is either "EXPLICIT
TAGS' or isempty;

c) the"Tag Type" aternative is used and the value of "TagDefault" for the moduleis"IMPLICIT TAGS" or
"AUTOMATIC TAGS', but the type defined by "Type' is a choice type, open type, or a
"DummyReference” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, subclause 8.3).

The tagging construction specifiesimplicit tagging otherwise.

32 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

28.7 If the "Class' is "empty", there are no restrictions on the use of "Tag", other than those implied by the
requirement for distinct tagsin 22.5, 24.3, and 26.2.

28.8 The "IMPLICIT" dternative shall not be used if the type defined by "Type" is a choice type or an open type or
a"DummyReference" (see ITU-T Rec. X.683 | ISO/IEC 8824-4, subclause 8.3).

28.9 The notation for avalue of a"TaggedType" shall be "TaggedValue":
TaggedValue ::= Value

where "Vaue'" isanotation for avalue of the "Type" in the "TaggedType".
NOTE — The "Tag" does not appear in this notation.

29 Notation for the object identifier type
29.1 The object identifier type (see 3.8.36) shall be referenced by the notation "ObjectldentifierType":

ObjectldentifierType ::=
OBJECT IDENTIFIER

29.2 This type has atag which is universal class, number 6.
29.3 The value notation for an object identifier shall be "ObjectldentifierValue":

ObjectldentifierValue ::=
"{" ObjldComponentList ""}" |
"{" DefinedValue ObjldComponentList '"}"

ObjldComponentList ::=
ObjldComponent |
ObjldComponent ObjldComponentList

ObjldComponent ::= NameForm |
NumberForm |
NameAndNumberForm

NameForm ::= identifier
NumberForm ::= number | DefinedValue

NameAndNumberForm ::=
identifier " (" NumberForm ")"

29.4 The "valuereference” in "DefinedValue" of "NumberForm" shall be of type integer, and assigned a non-
negative value.

29.5 The "valuereference" in "DefinedValue" of "ObjectidentifierVaue" shall be of type object identifier.

29.6 The "NameForm" shall be used only for those object identifier components whose numeric value and identifier
are specified in Annexes B to D, and shall be one of the identifiers specified in Annexes B to D.

29.7 The "number" in the "NumberForm" shall be the numeric value assigned to the object identifier component.

29.8 The "identifier" in the "NameAndNumberForm" shall be specified when a numeric value is assigned to the
object identifier component.

NOTE — The authorities allocating numeric values to object identifier components are identified in the annexes to this
Recommendation | International Standard.

29.9 The semantics of an object identifier value are defined by reference to an object identifier tree. An object
identifier tree is a tree whose root corresponds to this Recommendation | International Standard and whose vertices
correspond to administrative authorities responsible for allocating arcs from that vertex. Each arc of the tree is labelled
by an object identifier component which is a numeric value. Each object to be identified is allocated precisely one vertex
(normally aleaf), and no other object (of the same or a different type) is allocated to that same vertex. Thus, an object is
uniquely and unambiguously identified by the sequence of numeric values (object identifier components) labelling the
arcsin a path from the root to the vertex allocated to the object.

NOTE - Object identifier values contain at least two object identifier components, as specified in Annexes B to D.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 33

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

29.10 An object identifier value is semantically an ordered list of object identifier component values. Starting with
the root of the object identifier tree, each object identifier component value identifies an arc in the object identifier tree.
The last object identifier component value identifies an arc leading to a vertex to which an object has been assigned. It is
this object which isidentified by the object identifier value. The significant part of the object identifier component is the
"NameForm™ or "NumberForm" which it reduces to, and which provides the numeric value for the object identifier
component.

NOTE - In general, an object is a class of information (for example, a file format), rather than an instance of such a class
(for example, an individual file). It is thus the class of information, (defined by some referenceable specificatio)arathergiece
of information itself, that is assigned a place in the tree.

29.11 Where the "ObjectldentifierValue' includes a "DefinedValue', the list of object identifier components to
which it refersis prefixed to the components explicitly present in the value.

NOTE - It is recommended that, whenever a Recommendation, International Standard or other document assigns values of
type OBJECT IDENTIFIER to objects there should be an appendix or annex which summarizes the assignments made therein. It is
also recommended that an authority assigning values of type OBJECT IDENTIFIER to an object should also assign values of type
ObjectDescriptor (see clause 41) to that object.

EXAMPLES
With identifiers assigned as specified in Annex B, the values

{iso standard 8571 pci (1) }
and

(1085711}
would each identify an object, "pci”, defined in 1SO 8571.
With the following additional definition:

ftam OBJECT IDENTIFIER ::= { iso standard 8571 }

the following value is a so equivalent to those above

{ ftam pci(1) }

30 Notation for the embedded-pdv type

30.1 The embedded-pdv type (see 3.8.21) shall be referenced by the notation "EmbeddedPDV Type":
EmbeddedPDVType ::= EMBEDDED PDV

30.2 Thistype has atag which is universal class, number 11.

NOTE - Where presentation layer negotiation is in use, the same functionality as EXTERNAL is provided by
EMBEDDED PDV (together with added functionality), but the bits on the line will be different. It is recommended in thistase th
further version changes to application protocols should incorporate the replacement of EXTERNAL by CHOICE{external
EXTERNAL, embedded-pdv EMBEDDED PDV}. Additional replacements to use of EXTERNAL where Presentation layer
negotiation is not in use are proposed in ITU-T Rec. X.681 | ISO/IEC 8824-2, Annex C.

30.3 The type consists of values representing:
a) anencoding of asingle data value that may, but need not, be the value of an ASN.1 type; and
b) identification (separately or together) of:
1) aclassof values containing that data value (an abstract syntax); and
2) the encoding used (the transfer syntax) to distinguish that data value from other values in the same
class.

NOTES

1 The data value may be the value of an ASN.1 type, or may, for example, be the encoding of a still image or a moving
picture. The identification consists of either one or two object identifiers, or references an OSI presentation contetiti¢atioe
of the abstract and transfer syntaxes.

2 The identification of the abstract syntax and/or the encoding may also be determined by the application designer as a
fixed value, in which case it may not be encoded in an instance of communication.

30.4 The embedded-pdv type has an associated type. This type is used to give precision to the definition of the
abstract values of the embedded-pdv type and is also used to support the value and subtype notations of the embedded-
pdv type.

34 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

NOTE - Encoding rules may define a different type which is used to derive encodings, or may specify encodings without
reference to any associated type. In particular, the encoding in PER ensures that multiple occurrences (in the same message) of
EMBEDDED PDV with the same object identifier(s) encode the object identifier(s) only once.

30.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHOICE {
syntaxes SEQUENCE {
abstract OBJECT IDENTIFIER,
transfer OBJECT IDENTIFIER }
-- Abstract and transfer syntax object identifiers --,
syntax OBJECT IDENTIFIER
-- A single object identifier for identification of the class and encoding --,
presentation-context-id INTEGER
-- (Applicable only to OSI environments)
-- The negotiated presentation context identifies the class of the value and its encoding --,
context-negotiation SEQUENCE {
presentation-context-id INTEGER,
transfer-syntax OBJECT IDENTIFIER }
-- (Applicable only to OSI environments)
-- Context-negotiation in progress for a context to identify the class of the value
-- and its encoding --,
transfer-syntax OBJECT IDENTIFIER
-- The class of the value (for example, specification that it is the value of an ASN.1 type)
-- is fixed by the application designer (and hence known to both sender and receiver). This
-- case is provided primarily to support selective-field-encryption (or other encoding
-- transformations) of an ASN.1 type --,
fixed NULL
-- The data value is the value of a fixed ASN.1 type (and hence known to both sender
-- and receiver) -- },
data-value-descriptor ObjectDescriptor OPTIONAL
-- This provides human-readable identification of the class of the value --,
data-value CHOICE {
notation ABSTRACT-SYNTAX.&Type
-- This type notation is defined in ITU-T Rec X.681 | ISO/IEC 8824-2, and has a value
-- notation which is any ASN.1 type definition, followed by a colon and the value notation
-- for that type. This choice alternative is provided to enable the specification using
-- human-friendly notation of the data values that are values of a single ASN.1 type. --,
encoded BIT STRING

-- This choice alternative is provided to enable the specification of data values that are not
-- values of a single ASN.1 type. -- } }

(WITH COMPONENTS {

s
data-value-descriptor ABSENT })

NOTE — The embedded-pdv type does not allow the inclusion of a "data-value-descriptor" value. However, the definition
of the associated type provided here underlies the commonalities which exist between the embedded-pdv type, the extetnal type a
the unrestricted character string type.

30.6 For the "presentation-context-id" aternative, the integer value shall be a presentation context identifier in the
defined context set. This alternative shall not be used on the P-CONNECT request nor on the P-ALTER-CONTEXT
request for a presentation context that is being proposed for addition or deletion by those request primitives.

NOTE — Even if there is a single transfer syntax being proposed for a presentation context in the presentation context
definition list, the "presentation-context-id" alternative cannot be used for that presentation context.

30.7 The "context-negotiation” alternative shall only be used on the P-CONNECT request or on the P-ALTER-
CONTEXT request, and the integer value shall be a presentation context identifier proposed for addition to the defined
context set. The object identifier "transfer-syntax” shall identify a proposed transfer syntax for that presentation context
which is used to encode the value.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 35

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

30.8 The notation for a value of the embedded-pdv type shall be the value notation for the associated type defined
in 30.5.

EmbeddedPdvValue ::= SequenceValue -- value of associated type defined in 30.5.

30.9 EXAMPLE 1 — Where an application designer wishes the encoding to be independent of any presentation
environment (and hence to be capable of being relayed or stored and retrieved without modification), it is necessary to
forbid the use of the "presentation-context-id" and "context-negotiation" alternatives. This can be done by writing:

EMBEDDED PDV (WITH COMPONENTS {

cee g

identification (WITH COMPONENTS {

Y

presentation-context-id ABSENT,
context-negotiation ABSENT })})

30.10 EXAMPLE 2 - If a single option is to be enforced, such as use of "syntaxes”, then this can be done by writing:

EMBEDDED PDV (WITH COMPONENTS {

ces o

identification (WITH COMPONENTS {
syntaxes PRESENT })})

30.11 EXAMPLE 3 — (This example makes use of the parameterized type specified in ITU-T Rec. X.683 |
ISO/IEC 8824-4). A parameterized type, ENCRYPTED, is defined using EMBEDDED PDV as follows:

ENCRYPTED { ToBeEncrypted } ::= EMBEDDED PDV (WITH COMPONENTS {
identification (WITH COMPONENTS { fixed PRESENT }),
-- The data-value is any value of ToBeEncrypted.
-- The transfer syntax is the security transfer syntax.
data-value (WITH COMPONENTS { notation (ToBeEncrypted) }) })

A type, such as "CONFIDENTIAL", can now be encrypted by writing "ENCRYPTED {CONFIDENTIAL}". In this
example only the encrypted value would be transmitted, with no additional object identifier values.

31 Notation for the external type

31.1 The external type (see 3.8.25) shall be referenced by the notation "ExternalType":
ExternalType ::= EXTERNAL

31.2 This type has a tag which is universal class, number 8.

31.3 The type consists of values representing:
a) an encoding of a single data value that may, but need not, be the value of an ASN.1 type; and
b) identification of:
1) aclass of values containing that data value (an abstract syntax); and

2) the encoding used (the transfer syntax) to distinguish that data value from other values in the same
class; and

c) (optionally) an object descriptor which provides a human-readable description of the class of the data
value. The optional object descriptor shall not be present unless explicitly permitted by comment
associated with use of the "ExternalType" notation.

NOTE — Note 1 on 30.4 also applies to the external type.
314 The externa type has an associated type. This type is used to give precision to the definition of the abstract
values of the external type and is also used to support the value and subtype notations of the external type.

NOTE - Encoding rules may define a different type which is used to derive encodings, or may specify encodings without
reference to any associated type. In particular, the encoding in BER uses an equivalent sequence type identical to that which w
present in the definition of the external type in CCITT Rec. X.208 (1988) | ISO/IEC 8824:1990, and encodings of exterhgl values
BER are unchanged.

36 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

31.5 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHOICE {
syntaxes SEQUENCE {
abstract OBJECT IDENTIFIER,
transfer OBJECT IDENTIFIER }
-- Abstract and transfer syntax object identifiers --,
syntax OBJECT IDENTIFIER
-- A single object identifier for identification of the class and encoding --,
presentation-context-id INTEGER
-- (Applicable only to OSI environments)
-- The negotiated presentation context identifies the class of the value and its encoding --,
context-negotiation SEQUENCE {
presentation-context-id INTEGER
transfer-syntax OBJECT IDENTIFIER }
-- (Applicable only to OSI environments)
-- Context-negotiation in progress for a context to identify the class of the value
-- and its encoding --,
transfer-syntax OBJECT IDENTIFIER
-- The class of the value (for example, specification that it is the value of an ASN.1 type)
-- is fixed by the application designer (and hence known to both sender and receiver). This
-- case is provided primarily to support selective-field-encryption (or other encoding
-- transformations) of an ASN.1 type --,
fixed NULL
-- The data value is the value of a fixed ASN.1 type (and hence known to both sender
-- and receiver) -- },
data-value-descriptor ObjectDescriptor OPTIONAL
-- This provides human-readable identification of the class of the value --,
data-value CHOICE {
notation ABSTRACT-SYNTAX.&Type
-- This type notation is defined in ITU-T Rec X.681 | ISO/IEC 8824-2, and has a value
-- notation which is any ASN.1 type definition, followed by a colon and the value notation
-- for that type. This choice alternative is provided to enable the specification using
-- human-friendly notation of the data values that are values of an ASN.1 type. --,
encoded BIT STRING

-- This choice alternative is provided to enable the specification of data values that are not
-- values of a single ASN.1 type. -- } }
(WITH COMPONENTS {

ey

identification (WITH COMPONENTS {

cee g

syntaxes ABSENT,
transfer-syntax ABSENT,
fixed ABSENT })})

NOTE — The external type does not allow the "syntaxes", "transfer-syntax” or "fixed" alternatives of “identification".
These alternatives cannot be allowed for the external type because of the need to maintain backwards compatibility @sitiaithe ext
type of CCITT Rec. X.208 (1988) | ISO/IEC 8824:1990. Application designers requiring these options should use the embedded pdv
type. The definition of the associated type provided here underlies the commonalities which exist between the extermal type, th
unrestricted character string type and the embedded-pdv type

31.6 The text of 30.6 and 30.7 also applies to the external type.
31.7 The notation for avalue of the external type shall be the value notation for the associated type defined in 31.5.

ExternalValue ::= SequenceValue -- value of associated type defined in 31.5

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 37

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

32 The Character String types

These types consist of strings of characters from some specified character repertoire. It is normal to define a character
repertoire and its encoding by use of cellsin one or more tables, each cell corresponding to a character in the repertoire.
A graphic symbol and a character name are also usually assigned to each cell, although in some repertoires, cells are | eft
empty, or have names but no shapes (examples of cells with names but no shape include control characters such as EOF
in 1SO 646 and spacing characters such as THIN-SPACE and EN-SPACE in ISO/IEC 10646-1).

The term abstract character denotes the totality of information associated with a cell in a character repertoire table. The
information associated with a cell denotes a distinct abstract character in the repertoire even if that information is null
(no graphic symbol or name is assigned to that cell).

The ASN.1 value notation for character string types has three variants (which can be combined), specified formally
below:

a) a printed representation of the characters in the string using the assigned graphic symbol, possibly
including spacing characters; thisisthe "cstring" notation;
NOTES

1 Such a representation can be ambiguous when the same graphic symbol is used for more than one
character in the repertaire.

2 Such a representation can be ambiguous when spacing characters are used or the specification is printed
with a proportional-spacing font.

b) alisting of the characters in the character string value by giving a series of ASN.1 value references that
have been assigned the character; a set of such value references is defined in the module ASN1-
CHARACTER-MODULE in clause 35 for the ISO/IEC 10646-1 character repertoire and for the
|A5String character repertoire; this form is not available for other character repertoires unless the user
assigns to such value references using the value notation described in a) above or c) below;

¢) alisting of the characters in the character string value by identifying each abstract character by the
position of its cell in the character repertoire table(s); this form is available only for IA5String,
Universal String, and BMPString.

33 Notation for character string types

33.1 The notation for referencing a character string type (see 3.8.11) shall be
CharacterStringType ::= RestrictedCharacterStringType | UnrestrictedCharacterStringType

"RestrictedCharacterStringType" is the notation for a restricted character string type and is defined in clause 34.
"UnrestrictedCharacterStringType" is the notation for the unrestricted character string type and is defined in 37.1.

33.2 The tag of each restricted character string type is specified in 34.1. The tag of the unrestricted character string
typeis specified in 37.2.

33.3 The notation for a character string value shall be
CharacterStringValue ::= RestrictedCharacterStringValue | UnrestrictedCharacterStringValue

"RestrictedCharacterStringValue” is defined in 34.7. "UnrestrictedCharacterStringValue" is notation for an unrestricted
character string value and it is defined in 37.6.

34 Definition of restricted character string types

This clause defines types whose values are restricted to sequences of zero, one or more characters from some specified
collection of characters. The notation for referencing a restricted character string type shall be
"RestrictedCharacterStringType':

RestrictedCharacterStringType ::= BMPString
GeneralString
GraphicString
IASString
ISO646String
NumericString
PrintableString

38 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

TeletexString
T61String
UniversalString
VideotexString
VisibleString

Each "RestrictedCharacterStringType" aternative is defined by specifying:
a) thetag assigned to the type; and
b) aname (e.g. NumericString) by which the type is referenced; and

c) the characters in the collection of characters used in defining the type, by reference to a table listing the
character graphics or by reference to a registration number in the 1SO International Register of Coded
Character Sets (see ISO International Register of Coded Character Sets to be used with Escape
Sequences), or by reference to 1SO/IEC 10646-1.

34.1 Table 3 lists the name by which each restricted character string type is referenced, the number of the universal
class tag assigned to the type, the defining registration number or table, or the defining text clause, and, where necessary,
identification of a Note relating to the entry in the table. Where a synonymous name is defined in the notation, this is
listed in parentheses.

NOTE — The tag assigned to character string types unambiguously identifies the type. Note, however, that if ASN.1 is used
to define new types from this type (particularly using IMPLICIT), it may be impossible to recognize these types withougknoivled

the ASN.1 type definition.

Table 3 — List of restricted character string types

. Universal Defining registration numb@; table number,
Name for referencing the type | ¢ 1oqs umber or ITU-T Rec. X.680 | ISO/IEC 8824-1 clause| 'NOtes
NumericString 18 Table 4 Q)
PrintableString 19 Table 5 (1)
TeletexString (T61String) 20 6, 87, 102, 103, 106, 107, 126, 144, 150, 153} 156, (2)
164, 165, 168 + SPACE + DELETE

VideotexString 21 1, 13, 72, 73, 87, 89, 102, 108, 126, 128, 129,/144, (3)
150, 153, 164, 165, 168 + SPACE + DELETE

IA5String 22 1, 6 + SPACE + DELETE

GraphicString 25 All G sets + SPACE

VisibleString (1ISO646String) 26 6 + SPACE

GeneralString 27 All G and all C sets + SPACE + DELETE

UniversalString 28 See 34.6

BMPString 30 See 34.12

3 The defining registration numbers are listedS® International Register of Coded Character Sets to be used with Escape

Sequences.
NOTES

1 The type-style, size, color, intensity, or other display characteristics are not significant.

2 The entries corresponding to these registration numbers reference Recommendation T.61 for rules concerning
Register entries 6 and 156 can be used instead of 102 and 103.

3 The entries corresponding to these registration numbers provide the functionality of Recommendations T.100 and T

4 The reference to register 6 of “ISO International Register of Coded Character Sets to be used with Escape S
constitutes an indirect reference to ISO 646:1991. This is a change from CCITT Rec. X.208 (1988) | ISO/IEC 8824:19
referenced the register 2 (indirect reference to 1ISO 646:1973). Applications wishing to reference register number 2 g
other means of doing so (e.g. use the unrestricted character string (see clause 37) to carry the old definition of ¥isib
reference CCITT Rec. X.208 | ISO/IEC 8824.

their use.

.101.

equences”
D0, which
hould use
eStrin

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 39

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

34.2 Table 4 lists the characters which can appear in the NumericString type and NumericString character abstract
syntax.

Table 4 — NumericString

Name Graphic
Digits 01..9
Space (space)

34.3 The following object identifier and object descriptor values are assigned to identify and describe the
NumericString character abstract syntax:

{ joint-iso-ccitt asn1(1) specification(0) characterStrings(1) numericString(0) }
and

"NumericString character abstract syntax"
NOTES

1 Thisobject identifier value can be used in CHARACTER STRING values and in other cases where there is a need to
carry the identification of the character string type separate from the value.

2 A vaueof aNumericString character abstract syntax may be encoded by:

a) One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character
transfer syntax isidentified by the object identifier associated with those rulesin |SO/IEC 10646-1, Annex M.

b) The ASN.1 encoding rules for the built-in type NumericString. In this case the character transfer syntax is
identified by the object identifier value {joint-iso-ccitt asn1(1) basic-encoding(1)}.

34.4 Table 5 lists the characters which can appear in the PrintableString type and PrintableString character abstract
syntax.

Table 5 — PrintableString

Name

Graphic

Capital letters
Small letters
Digits
Space
Apostrophe
Left Parenthesis
Right Parenthesis
Plussign
Comma
Hyphen
Full stop
Solidus
Colon

Equal sign

Question mark

A, B, ..Z
ab,..z
0,1,..9

(space)

40 ITU-T Rec. X.680 (1994 E)

Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

34.5 The following object identifier and object descriptor values are assigned to identify and describe the
PrintableString character abstract syntax:

{ joint-iso-ccitt asn1(1) specification(0) characterStrings(1) printableString(1) }
and

"PrintableString character abstract syntax"
NOTES

1 Thisobject identifier value can be used in CHARACTER STRING values and in other cases where there is a need to
carry the identification of the character string type separate from the value.

2 A vaueof aPrintableString character abstract syntax may be encoded by:

a) One of the rules given in ISO/IEC 10646-1 for encoding the abstract characters. In this case the character
transfer syntax isidentified by the object identifier associated with those rulesin |SO/IEC 10646-1, Annex M.

b) The ASN.1 encoding rules for the built-in type PrintableString. In this case the character transfer syntax is
identified by the object identifier { joint-iso-ccitt asn1(1) basic-encoding(l) }.

34.6 The characters which can appear in the UniversalString type are any of the characters alowed by
ISO/IEC 10646-1, and use of this type invokes the conformance requirements specified in |SO/IEC 10646-1, especialy
with regard to the restricted use zone of |SO/IEC 10646-1.

NOTES

1 Useof thistype without a constraint is deprecated, as conformance will generally be impractical.

2 Clause 35 defines an ASN.1 module containing a number of subtypes of this type for the "Collections of graphics
characters for subsets' defined in Annex A of |SO/IEC 10646-1.

34.7 The value notation for the restricted character string types shall be "cstring" (see 9.11), "CharacterStringList",
"Quadruple”, or "Tuple". "Quadruple” is only capable of defining a character string of length one, and can only be used
in value notation for Universal String or BMPString types. "Tuple" is only capable of defining a character string of length
one, and can only be used in value notation for IA5String types.

RestrictedCharacterStringValue ::= cstring | CharacterStringList | Quadruple | Tuple

CharacterStringList ::= "{"" CharSyms "}"

CharSyms ::= CharsDefn | CharSyms "," CharsDefn
CharsDefn ::= cstring | DefinedValue

Quadruple ::="{" Group "," Plane "," Row "," Cell "}"

Group ::=number
Plane ::= number
Row ::= number
Cell ::= number

Tuple ::="{" TableColumn "," TableRow "}"
TableColumn ::= number
TableRow ::= number

NOTES

1 The "cstring" notation can only be used on a medium capable of displaying the graphic symbols for the characters
which are present in the value. Conversely, if the medium has no such capability, the only means of specifying a character string value
that uses such graphic symbols is by means of the "CharacterStringList" notation, and only if the type is Universal String, BMPString
or IA5String, and the "DefinedValue" aternative of "CharsDefn" isused (see 35.1.2).

2 Clause 35 defines a number of "valuereference”s which denote single characters (strings of size 1) of type BMPString
(and hence Universa String) and |A5String.

EXAMPLE - Suppose that we wish to specify a value of "abcZef" for a UniversalString where the character "" is not
representable on the available medium, this value can also be expressed as:

IMPORTS BasicLatin, greekCapitalLetterSigma FROM ASN1-CHARACTER-MODULE
{ joint-iso-ccitt asn1(1) specification(0) modules(0) is010646(0) };
MyAlphabet ::= UniversalString (FROM (BasicLatin | greekCapitalLetterSigma))

mystring MyAlphabet ::= { "abc" , greekCapitalLetterSigma , "def" }

3 When specifying the value of a UniversalString or BMPString type, the "cstring" notation should not be used unless
ambiguities arising from different graphic characters with similar shapes have been resolved.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 41

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

EXAMPLE - The following "cstring" notation should not be used because the graphic symbols'H’, 'O’, 'P and 'E’ occur in
the BASIC LATIN, CYRILLIC and BASIC GREEK alphabets and thus are ambiguous.

IMPORTS BasicLatin, Cyrillic, BasicGreek FROM ASN1-CHARACTER-MODULE
{ joint-iso-ccitt asn1(1) specification(0) modules(0) is010646(0) };
MyAlphabet ::= UniversalString (FROM (BasicLatin | Cyrillic | BasicGreek))
mystring MyAlphabet ::= "HOPE"
34.8 The "DefinedValue" in "CharsDefn" shall be areference to avalue of that type.
349 The "number” in the "Group", "Plane”, "Row" and "Cell" productions shall be less than 256.

34.10 The"Group" specifies a group in the coding space of the UCS, the "Plane" specifies a plane within the group,
the "Row" specifies a row within the plane, and the "Cell" specifies a cell within the row. The abstract character
identified by this notation is the abstract character for the cell specified by the "Group", "Plane", "Row", and "Cell"
values. In al cases, the set of permitted characters may be restricted by subtyping.

NOTE - Application designers should consider carefully the conformance implications when using open-ended character
string types such as GeneralString, GraphicString, and UniversalString without the application of constraints. Careful text on
conformance is also needed for bounded but large character string types such as TeletexString.

34.11 The "number" in the "TableColumn" production shall be in the range zero to seven, and the "number" in the
"TableRow" production shall bein the range zero to fifteen. The "TableColumn" specifies a column and the " TableRow"
specifies a row of a character code table in accordance with Figure 1 of ISO/IEC 2022. This notation is used only for
I A5String when the code table contains Register Entry 1 in columns 0 and 1 and Register Entry 6 in columns 2 to 7 (see
the ISO International Register of Coded Character Sets to be used with Escape Sequences).

34.12 BMPString is a subtype of UniversalString that has its own unique tag and models the Basic Multilingual
Plane (thefirst 64K-2 cells) of ISO/IEC 10646-1. It has an associated type defined as:

UniversalString (Bmp)
where Bmp is defined in the ASN.1 module ASN1-CHARACTER-MODULE (see clause 35) as the subtype of
Universal String corresponding to the "BMP" collection name defined in ISO/IEC 10646-1, Annex A.

NOTES

1 Since BMPString is a built-in type it is not defined in ASN1-CHARACTER-MODULE.

2 The purpose of defining BMPString as a built-in type is to enable encoding rules (such as BER) that do not take
account of constraints to use 16-bit rather than 32-bit encodings.

3 Inthe value notation all BMPString values are valid UniversalString values.

35 Naming characters and collections defined in ISO/IEC 10646

This clause specifies an ASN.1 built-in module which contains the definition of a value reference name for each
character from ISO/IEC 10646-1, where each name references a UniversalString value of size 1. This module also
contains the definition of a type reference name for each collection of characters from ISO/IEC 10646-1, where each
name references a subset of Universal String.

NOTE — These values are available for use in the value notation of the UniversalString type and types derived from it. All
of the value and type references defined in the module specified in 35.1 are exported and must be imported by any memhile that u
them.
35.1 Specification of the ASN.1 Module "ASN1-CHARACTER-MODULE"
The module is not printed here in full. Instead, the means by which it is defined is specified.

35.1.1 Themodule begins asfollows:

ASN1-CHARACTER-MODULE {joint-iso-ccitt asn1(1) specification(0) modules(0) is010646(0)}
DEFINITIONS ::= BEGIN
-- All of the value references and type references defined within this module are implicitly exported,

-- and are available for import by any module.

42 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

-- ISO 646 control characters

nul
soh
stx
etx
eot
enq
ack
bel
bs
ht
If
vt
ff
cr
)
si
dle
dcl
dc2
dc3
dc4
nak
syn
etb
can
em
sub
esc
is4
is3
is2
is1
del

IAS5String ::= {0, 0}
IAS5String ::= {0, 1}
IAS5String ::= {0, 2}
IAS5String ::= {0, 3}
IAS5String ::= {0, 4}

{

{

IAS5String ::= {0, 5}
IASString ::= {0, 6}
IAS5String ::= {0, 7}
IASString ::= {0, 8}

IASString ::= {0, 9}
IASString ::= {0,10}
IASString ::= {0,11}
IAS5String ::= {0,12}
IASString ::= {0,13}
IASString ::= {0,14}
IAS5String ::= {0,15}
IAS5String ::= {1, 0}

IASString ::= {1, 1}
IASString ::= {1, 2}
IASString ::= {1, 3}
IAS5String ::= {1, 4}
IASString ::= {1, 5}
IASString ::= {1, 6}

IASString ::={1, 7}
IAS5String ::= {1, 8}
IASString ::= {1, 9}
IAS5String ::= {1,10}
IASString ::= {1,11}
IASString ::= {1,12}
IASString ::= {1,13}
IASString ::= {1,14}
IAS5String ::= {1,15}
IASString ::= {7,15}

35.1.2 For each entry in each list of character names for the graphic characters (glyphs) shown in clauses 24 and 25 of
|SO/IEC 10646-1, the module includes a statement of the form:

<namedcharacter> BMPString ::= <tablecell>

where:
a)
b)
c)
EXAMPLE

-- represents the character <isol0646name>, see ISO/IEC 10646-1

<is010646name> is the character name derived from one listed in 1SO/IEC 10646-1;
<namedcharacter> is a string obtained by applying to <iso10646name> the procedures specified in 35.2;
<tablecell> isthe glyph in the table cell in ISO/IEC 10646-1 corresponding to the list entry.

latinCapitalLetterA BMPString ::= {0, 0, 0, 65}

-- represents the character LATIN CAPITAL LETTER A, see ISO/IEC 10646-1

greekCapitalLetterSigma BMPString ::= {0, 0, 3, 145}

-- represents the character GREEK CAPITAL LETTER SIGMA, see ISO/IEC 10646-1

35.1.3 For each name for a collection of graphic characters specified in ISO/IEC 10646-1, Annex A, a statement is
included in the module of the form:

<namedcollectionstring> ::= BMPString

where:
a)
b)
c)

(FROM (<alternativelist>))
-- represents the collection of characters <collectionstring>,
-- see ISO/IEC 10646-1.

<collectionstring> is the name for the collection of characters assigned in | SO/IEC 10646-1,
<namedcollectionstring> is formed by applying to <collectionstring> the procedures of 35.3;

<alternativelist> is formed by using the <namedcharacter>s as generated in 35.2 for each of the characters
specified by |SO/IEC 10646-1.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 43

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

The resulting type reference, <namedcollectionstring>, forms a limited subset. (See the tutorial in Annex G).

NOTE — A limited subset is a list of characters in a specified subset. Contrast this to a selected subset, which i1a collectio
of characters listed in ISO/IEC 10646, Annex A, plus the BASIC LATIN collection.

EXAMPLE (partial)

space BMPString ::= {0, 0, 0, 32}
exclamationMark BMPString ::= {0, 0, 0, 33}
quotationMark BMPString ::= {0, 0, 0, 34}

-- and so on

tilde BMPString ::= {0, 0, 0, 126}

BasicLatin ::= BMPString
(FROM (space
| exclamationMark
| quotationMark
[oo -- and so on
| tilde)
)
-- represents the collection of characters BASIC LATIN, see ISO/IEC 10646-1.

-- The ellipsis in this example is used for brevity and means "and so on";
-- you cannot use this in an actual ASN.1 module.

35.1.4 ISO/IEC 10646-1 defines three levels of implementation. By default all types defined in ASN1-
CHARACTER-MODULE, except for "Levell" and "Level2" conform to implementation level 3, since such types have
no restriction on use of combining characters. "Levell" indicates that implementation level 1 is required, "Level2"
indicates that implementation level 2 is required, and "Level3" indicates that implementation level 3 is required. Thus,
the following are defined in ASN1-CHARACTER-MODULE:

Levell ::= BMPString (FROM (ALL EXCEPT CombiningCharacters))
Level2 ::= BMPString (FROM (ALL EXCEPT CombiningCharactersB-2))

Level3 ::= BMPString
NOTES

1 "CombiningCharacters" and "CombiningCharactersB-2" are the <namedcollectionstring>s corresponding to
"COMBINING CHARACTERS" and "COMBINING CHARACTERS B-2", respectively, defined in ISO/IEC 10646-1, Annex A.

2 "Levell" and "Level2" will be used either following an "IntersectionMark" (see clause 44) or as the only constraint in
a "ConstraintSpec". See F.2.7.1 for an example.

3 See G.2.5 for more information on this topic.
35.1.5 Themoduleisterminated by the statement:

END
35.1.6 A user-defined equivalent of the examplein 35.1.3is:

BasicLatin ::= BMPString (FROM (space..tilde))
-- represents the collection of characters BASIC LATIN, see ISO/IEC 10646-1.

35.2 A <namedcharacter> is the string obtained by taking an <iso10646name> (see 35.1.2) and applying the
following agorithm:

a) each upper-case letter of the <iso10646name> is transformed into the corresponding lower-case letter,
unless the upper-case letter is preceded by a SPACE, in which case the upper case letter is kept
unchanged;

b) eachdigit and each HYPHEN-MINUS is kept unchanged;

¢) each SPACE isdeleted.

NOTE — The above algorithm, taken in conjunction with the character naming guidelines in Annex K of ISO/IEC 10646-1
will always result in unambiguous value notation for every character name listed in ISO/IEC 10646-1.

EXAMPLE — The character from ISO/IEC 10646-1, row 0, cell 60, which is named "LESS-THAN SIGN" and has the
graphic representation "<" can be referenced using the "DefinedValue" of:

less-thanSign

44 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)
353 A <namedcollectionstring> is the string obtained by taking <collectionstring> and applying the following
algorithm;

a) each upper-case letter of the ISO/IEC 10646-1 collection name is transformed into the corresponding
lower-case letter, unless the upper-case letter is preceded by a SPACE or it is the first letter of the name,
in which case the upper case letter is kept unchanged,

b) eachdigit and each HY PHEN-MINUS is kept unchanged;
¢) each SPACE isdeleted.

EXAMPLES
1 The collection identified in Annex A of ISO/IEC 10646-1 as
BASIC LATIN

has the ASN.1 type reference
BasicLatin

2 A character string type consisting of the characters in the BASIC LATIN collection, together with the BASIC
ARABIC collection, could be defined as follows:

My-Character-String ::= BMPString (FROM (BasicLatin | BasicArabic))
NOTE — The above construction is necessary because the apparently simpler construction of

My-Character-String ::= BMPString (BasicLatin | BasicArabic)
would allow only strings which were entirely BASIC LATIN or BASIC ARABIC but not a mixture of both.

36 Canonical order of characters

36.1 For the purpose of "VaueRange" subtyping and for possible use by encoding rules, a canonical ordering of
charactersis specified for Universal String, BMPString, NumericString, PrintableString, VisibleString, and |A5String.

36.2 For the purpose of this clause only, a character is in one-to-one correspondence with a cell in a code table,
whether that cell has been assigned a character name or shape, and whether it is a control character or printing character,
combining or non-combining character.

36.3 The canonical order of an abstract character is defined by the canonical order of its cell.
36.4 For Universal String, the canonical order of the cellsis defined (see |SO/IEC 10646-1) as.
256* (256* (256* (Group Number)+(Plane Number))+(Row Number))+(Cell Number)

The entire character set contains precisely 256* 256* 256*256 characters. Endpoints of "ValueRanges' within
"PermittedAlphabet" notations (or individual characters) can be specified using either the ASN.1 value reference defined
in the module ASN1-CHARACTER-MODULE or (where the graphic symbol is unambiguous in the context of the
specification) by giving the graphic symbol in a"cstring" (ASN1-CHARACTER-MODULE is defined in 35.1). It is not
possible to specify a cell as an end-point of a range or to identify an individual character where there have been no
names or graphic symbols assigned to that cell.

36.5 For BMPString, the canonical order of the cellsis defined (see |SO/IEC 10646-1) as.
256* (Row Number)+(Cell Number)

The entire character set contains precisely 256* 256 characters. Endpoints of "ValueRanges' within "PermittedAlphabet”
notations (or individual characters) can be specified using either the ASN.1 value reference defined in the module
ASN1-CHARACTER-MODULE or (where the graphic symbol is unambiguous in the context of the specification) by
giving the graphic symbol in a "cstring". It is not possible to specify a cell as an end-point of a range or to identify an
individual character where there have been no names or graphic symbols assigned to that cell.

36.6 For NumericString, the canonical ordering, increasing from left to right, is defined (see Table 4 of clause 34)
as:

(space) 0123456789
The entire character set contains precisely 11 characters. The endpoint of a"VaueRange" (or individual characters) can
be specified using the graphic symbol in a"cstring".

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 45

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

NOTE - This order is the same as the order of the corresponding characters in the BASIC LATIN collection of
ISO/IEC 10646-1.

36.7 For PrintableString, the canonical ordering, increasing from left to right and top to bottom, is defined (see
Table 5 of clause 34) as:

(Space) (Apostrophe) (Left Parenthesis) (Right Parenthesis) (Plus Sign) (Comma) (Hyphen) (Full Stop)
(Solidus) 0123456789 (Colon) (Equal Sign) (Question Mark)
ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopgrstuvwxyz

The entire character set contains precisely 74 characters. The endpoint of a"VaueRange" (or individual characters) can
be specified using the graphic symbol in a*cstring”.

NOTE - This order is the same as the order of the corresponding characters in the BASIC LATIN collection of
ISO/IEC 10646-1.

36.8 For VisibleString, the canonical order of the cells is defined from the 1SO 646 encoding (called 1SO 646
ENCODING) asfollows:

(ISO 646 ENCODING) - 32
NOTE — That is, the canonical order is the same as the characters in cells 2/0 - 7/14 of the ISO 646 code table.

The entire character set contains precisely 95 characters. The endpoint of a"ValueRange" (or individual characters) can
be specified using the graphic symbol in a"cstring".

36.9 For |A5String, the canonical order of the cellsis defined from the | SO 646 encoding as follows:
(I1SO 646 ENCODING)

The entire character set contains precisely 128 characters. The endpoint of a"VaueRange" (or individua characters) can
be specified using the graphic symbol in a"cstring” or an 1SO 646 control character value reference defined in 35.1.1.

37 Definition of unrestricted character string types

This clause defines a type whose values are the values of any character abstract syntax. This abstract syntax may be part
of the defined context set in an instance of communication, or may be referenced directly for each instance of use of the
unrestricted character string type.

NOTES

1 A character abstract syntax (and one or more corresponding character transfer syntaxes) can be defined by any
organization able to allocate ASN.1 OBJECT IDENTIFIERs.

2 Profiles produced by a community of interest will normally determine the character abstract syntaxes and character
transfer syntaxes that are to be supported for specific instances or groups of instances of CHARACTER STRING. It wiliobe usual
include reference to supported syntaxes in a PICS proforma (Protocol Implementation Conformance Statement). Note thaft grouping
instances for the purpose of application layer specification can be achieved using different ASN.1 type references (alofildhic
be references for the CHARACTER STRING type).

37.1 The unrestricted character string type (see 3.8.58) shall be referenced by the notation "CharacterStringType'":
UnrestrictedCharacterStringType ::= CHARACTER STRING
37.2 Thistype hasatag which is universal class, number 29.

373 The unrestricted character string type has an associated type which is provided solely for the purpose of
specifying the value and subtype notations for this type.

NOTE - Encoding rules may define a different type which is used to derive encodings for values of the type.

37.4 The associated type for value definition and subtyping, assuming an automatic tagging environment, is (with
normative comments):

SEQUENCE {
identification CHOICE {
syntaxes SEQUENCE {
abstract OBJECT IDENTIFIER,
transfer OBJECT IDENTIFIER }
-- Abstract and transfer syntax object identifiers --,
syntax OBJECT IDENTIFIER

-- A single object identifier for identification of the class and encoding --,

46 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

presentation-context-id INTEGER
-- (Applicable only to OSI environments)
-- The negotiated presentation context identifies the class of the value and its encoding --,

context-negotiation SEQUENCE {
presentation-context-id INTEGER,
transfer-syntax OBJECT IDENTIFIER }

-- (Applicable only to OSI environments)
-- Context-negotiation in progress _for a context to identify the class of the value
-- and its encoding --,

transfer-syntax OBJECT IDENTIFIER
-- The class of the value (for example, specification that it is the value of an ASN.1 type)
-- is fixed by the application designer (and hence known to both sender and receiver). This
-- case is provided primarily to support selective-field-encryption (or other encoding
-- transformations) of an ASN.1 type --,

fixed NULL
-- The data value is the value of a fixed ASN.1 type (and hence known to both sender
-- and receiver) --},

data-value-descriptor ObjectDescriptor OPTIONAL
-- This provides human-readable identification of the class of the value --,
string-value CHOICE {
notation ABSTRACT-SYNTAX.&Type

- This type notation is defined in ITU-T Rec. X.681 | ISO/IEC 8824-2, and has a value

- notationwhich is any ASN. 1 type definition, followed by a colon and the value notation for
-- that type. This choice alternative is provided to enable the specification using human-

- friendly notation of the data values that are values of an ASN.1 type. --,

encoded OCTET STRING
-- This choice alternative is provided to enable the specification of data values that are not

-- valuesof an ASN.1 type. --}}
(WITH COMPONENTS {

s
data-value-descriptor ABSENT })

NOTE — The unrestricted character string type does not allow the inclusion of a "data-value-descriptor" value together with
the "identification". However, the definition of the associated type provided here underlies the commonalities which eristtbetw
embedded-pdv type, the external type and the unrestricted character string type.

37.5 The "string-value" component shall be designated either by means of "notation” (only if the character abstract
syntax is defined as a restricted character string type or a subset of such atype), or by means of "encoded”. In the latter
case the "identification" component identifies a character transfer syntax for the character abstract syntax, and the
"encoded" component is an octet string value representation of the character string value using the "identification"
character transfer syntax.

37.6 The value notation shall be the value notation for the associ ated type.
UnrestrictedCharacterStringValue ::= SequenceValue -- value of associated type defined in 37.4

37.7 An example of the unrestricted character string typeisin F.2.8.

38 Notation for types defined in clauses 39-41

38.1 The notation for referencing atype defined in clauses 39-41 shall be:
UsefulType ::= typereference

where "typereference” is one of those defined in clauses 39-41 using the ASN.1 notation.

38.2 Thetag of each "Useful Type" is specified in clauses 39-41.

39 Generalized time
39.1 Thistype shall be referenced by the name

GeneralizedTime

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 47

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

39.2 The type consists of values representing
a) acadendar date, asdefined in SO 8601; and

b) atime of day, to any of the precisions defined in 1SO 8601, except for the hours value 24 which shall not
be used; and

¢) thelocal time differentia factor as defined in 1SO 8601.
39.3 The typeis defined, using ASN.1, asfollows:

GeneralizedTime ::=
[UNIVERSAL 24] IMPLICIT VisibleString

with the values of the "VisibleString" restricted to strings of characters which are either

a) astring representing the calendar date, as specified in 1SO 8601, with a four-digit representation of the
year, a two-digit representation of the month and a two-digit representation of the day, without use of
separators, followed by a string representing the time of day, as specified in SO 8601, without separators
other than decimal comma or decimal period (as provided for in 1SO 8601), and with no terminating Z (as
provided for in ISO 8601); or

b) thecharactersin a) above followed by an upper-case letter Z; or

c) the characters in a) above followed by a string representing a local time differential, as specified in
ISO 601, without separators.

In case a), the time shall represent the local time. In case b), the time shall represent coordinated universal time. In
case c), the part of the string formed as in case a) represents the local time (t;), and the time differentia (tp) enables
coordinated universal time to be determined as follows:

coordinated universal timeist; —to
EXAMPLES
Casea)

"19851106210627.3"
local time 6 minutes, 27.3 seconds after 9 pm on 6 November 1985.

Caseb)

"19851106210627.3Z"
coordinated universal time as above.

Casec)

"19851106210627.3-0500"
local time asin example a), with local time 5 hours retarded in relation to coordinated universal time.

394 The tag shall be as defined in 39.3.
39.5 The value notation shall be the value notation for the "VisibleString" defined in 39.3

40 Universal time
40.1 Thistype shall be referenced by the name
UTCTime

40.2 The type consists of values representing:

a) calendar date; and

b) timeto aprecision of one minute or one second; and

c) (optionally) alocal time differential from coordinated universal time.
40.3 Thetypeis defined, using ASN.1, as follows:

UTCTime ::= [UNIVERSAL 23] IMPLICIT VisibleString

with the values of the "VisibleString" restricted to strings of characters which are the juxtaposition of

a) the six digits YYMMDD where YY is the two low-order digits of the Christian year, MM is the month
(counting January as 01), and DD isthe day of the month (01 to 31); and

48 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

b) either

1) thefour digits hhmm where hh is hour (00 to 23) and mm is minutes (00 to 59); or

2) thesix digits hhmmss where hh and mm are asin 1) above, and ssis seconds (00 to 59); and
c) either

1) thecharacter Z; or

2) oneof the characters + or —, followed by hhmm, where hh is hour and mm is minutes.

The alternatives in b) above allow varying precisions in the specification of the time.

In alternative) 1), the time is coordinated universal time. In aternative c) 2), the time (t1) specified by a) and b) above
is the local time; the time differentia (t;) specified by c) 2) above enables the coordinated universal time to be
determined as follows:

Coordinated universal timeist; —to

EXAMPLE 1 - If local time is 7am on 2 January 1982 and coordinated universal time is 12 noon on 2 January 1982, the
value of UTCTime is either of

"8201021200Z", or
"8201020700-0500".

EXAMPLE 2 — If local time is 7am on 2 January 2001 and coordinated universal time is 12 noon on 2 January 2001, the
value of UTCTime is either of

"0101021200Z", or
"0101020700-0500".

40.4 The tag shall be as defined in 40.3.

40.5 The value notation shall be the value notation for the "VisibleString" defined in 40.3.

41 The object descriptor type
41.1 This type shall be referenced by the name
ObjectDescriptor

41.2 The type consists of human-readable text which serves to describe an object. The text is not an unambiguous
identification of the object, but identical text for different objects is intended to be uncommon.

NOTE - It is recommended that an authority assigning values of type "OBJECT IDENTIFIER" to an object should also
assign values of type "ObjectDescriptor" to that object.

41.3 Thetypeis defined, using ASN.1, as follows:
ObjectDescriptor ::= [UNIVERSAL 7] IMPLICIT GraphicString
The "GraphicString" contains the text describing the object.
41.4 Thetag shall be as defined in 41.3.
41.5 The value notation shall be the value notation for the "GraphicString" defined in 41.3.

42 Constrained Types

42.1 The "ConstrainedType" notation allows a constraint to be applied to a (parent) type, either to restrict its set of
values to some subtype of the parent or (within a set or sequence type) to specify that component relations apply to
values of the parent type and to values of some other component in the same set or sequence value. It aso alows an
exception identifier to be associated with a constraint.

ConstrainedType ::=
Type Constraint |
TypeWithConstraint

In the first alternative, the parent type is "Type", and the constraint is specified by "Constraint” as defined in 42.5. The
second alternative is defined in 42.4.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 49

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

42.2 When the "Constraint” notation follows a set-of or sequence-of type notation, it applies to the "Type" in the
(innermost) set-of or sequence-of notation, not to the set-of or sequence-of type.

NOTE - For example, in the following the constraint "(SIZE(1..64))" applies to the VisibleString, not the SEQUENCE OF:
NamesOfMemberNations ::= SEQUENCE OF VisibleString (SIZE(1..64))

42.3 When the "Constraint" notation follows a "TaggedType" notation, the interpretation of the overall notation is
the same regardless of whether the "TaggedType" or the "Type" is considered as the parent type.

424 As aconsequence of the interpretation specified in 42.2, specia notation is provided to allow a constraint to be
applied to a set-of or sequence-of type. Thisis"TypeWithConstraint":

TypeWithConstraint ::=
SET Constraint OF Type |
SET SizeConstraint OF Type |
SEQUENCE Constraint OF Type |
SEQUENCE SizeConstraint OF Type

In the first and second alternatives the parent typeis "SET OF Type", while in the third and fourth it is"SEQUENCE OF
Type'. In the first and third alternatives, the constraint is "Constraint” (see 42.5), while in the second and fourth it is
"SizeConstraint" (see 45.5).

NOTE - Although the "Constraint" alternatives encompass the corresponding "SizeConstraint” alternatives, the latter,
which have no enclosing brackets, are provided for backwards-compatibility with CCITT Rec. X.208 (1988) | ISO/IEC 8824:1990.

42.5 A constraint is specified by the notation "Constraint”:
Constraint ::= "(" ConstraintSpec ExceptionSpec ")"

ConstraintSpec ::=
SubtypeConstraint |
GeneralConstraint

If any form of constraint other than " SubtypeConstraint” is required, then the "General Constraint” aternative, specified
in ITU-T Rec. X.682 | ISO/IEC 8824-3, subclause 8.1 shall be used; otherwise the "SubtypeConstraint” aternative,
specified in 42.6 shall be used. "ExceptionSpec” is defined in clause 43. It shall only be present if the "ConstraintSpec"
includes an occurrence of "DummyReference” (see ITU-T Rec. X.683 | ISO/IEC 8824-4, subclause 8.3) or is a
"UserDefinedConstraint” (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 9).

42.6 The notation " SubtypeConstraint" is the general-purpose "ElementSetSpec" notation (clause 44):
SubtypeConstraint ::= ElementSetSpec

In this context, the elements are values of the parent type (the governor of the element set is the parent type). There shall
be at least one element in the set.

43 The exception identifier

43.1 In a complex ASN.1 specification, there are a number of places where it is specifically recognized that
decoders have to handle material that is not completely specified in it. These cases arise in particular from use of a
constraint that is defined using a parameter of the abstract syntax (see ITU-T Rec. X.683 | ISO/IEC 8824-4, clause 10).

43.2 In such cases, the application designer needs to identify the actions to be taken when some implementation-
dependent constraint is violated. The exception identifier is provided as an unambiguous means of referring to parts of
an ASN.1 specification in order to indicate the actions to be taken. The identifier consists of a"!" character, followed by
an optional ASN.1 type and a value of that type. In the absence of the type, INTEGER is assumed as the type of the
value.

43.3 If an ExceptionSpec is present, it indicates that there is text in the body of the standard saying how to handle
the constraint violation associated with the "!". If it is absent, then the implementors will either need to identify text that
describes the action that they are to take, or will take implementation-dependent action when a constraint violation
occurs.

43.4 The "ExceptionSpec" notation is defined as follows:
ExceptionSpec ::="!" Exceptionldentification | empty

Exceptionldentification ::= SignedNumber |
DefinedValue |
Type ":" Value

50 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

The first two alternatives denote exception identifiers of type integer. The third alternative denotes an exception
identifier ("Value") of arbitrary type ("Type").
44 Element set specification

44.1 In some notations a set of elements of some identified element class (the governor) can be specified. In such
cases, the notation "ElementSetSpec” is used:

ElementSetSpec ::= Unions |
ALL Exclusions

Unions ::= Intersections |
UElems UnionMark Intersections

UElems ::= Unions

Intersections ::= IntersectionElements |
IElems IntersectionMark IntersectionElements

IElems ::= Intersections
IntersectionElements ::= Elements | Elems Exclusions
Elems ::= Elements

Exclusions ::= EXCEPT Elements

UnionMark ::= "|" | UNION
IntersectionMark ::= """ | INTERSECTION
NOTES

1 The caret character """ and the word INTERSECTION are synonymous. The character "[" and the word UNION are
synonymous. It is recommended that, as a stylistic matter, either the characters or the words be used throughout a user Specification.
EXCEPT can be used with either style.

2 Theorder of precedence from highest to lowest is: "EXCEPT", "A", "[". Notice that "ALL EXCEPT" is specified so
that it cannot be interspersed with the other constraints without the use of parentheses around "ALL EXCEPT xxx".

3 Anywhere that "Elements" occurs, either a constraint without parentheses (e.g. INTEGER (1..4)) or a parenthesized
subtype constraint (e.g. INTEGER ((1..4 | 9))) can appear.

4 Note that two "EXCEPT" operators must have either "[*, "A", "(" or ")" separating them, so (A EXCEPT B
EXCEPT C) isnot permitted. This must be changed to ((A EXCEPT B) EXCEPT C) or (A EXCEPT (B EXCEPT C)).

5 Notethat ((A EXCEPT B) EXCEPT C) isthe sameas (A EXCEPT (B | C)).
44.2 The elements forming the set are;

a) if the first adternative of the "ElementSetSpec” is selected, those specified in the "Unions' [see b)],
otherwise al elements of the governor except those specified in the "Elements' notation of the
"Exclusions’;

b) if thefirst aternative of "Unions’ is selected, then those specified in the "Intersections’ [see c)], otherwise
those specified at least once either in the "UElems' or "Intersections”;

c) if thefirst alternative of "Intersections’ is selected, those specified in the "IntersectionElements” [see d)],
otherwise those specified by "IElems" which also are specified by "IntersectionElements”;

d) if the first aternative of "IntersectionElements” is selected, those specified in the "Elements’, otherwise
those specified in the "Elems" except those specified in the "Exclusions".
44.3 The "Elements' notation is defined as follows:

Elements ::=
SubtypeElements |
ObjectSetElements |
"(" ElementSetSpec '")"

The elements specified by this notation are:

a) Asdescribed in clause 45 below if the "SubtypeElements" alternative is used. This notation shall only be
used when the governor is a type, and the actual type involved will further constrain the notational
possibilities. In this context, the governor is referred to as the parent type.

b) Asdescribed in ITU-T Rec. X.681 | ISO/IEC 8824-2, subclause 12.3 if the "ObjectSetElements® notation
isused. This notation shall only be used when the governor is an information object class.

¢) Those specified by the "ElementSetSpec” if the third alternative is used.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 51

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

45 Subtype elements

45.1 General

A number of different forms of notation for " SubtypeElements' are provided. They are identified below, and their syntax
and semantics are defined in the following subclauses. Table 6 summarizes which notations can be applied to which
parent types.

SubtypeElements ::=

SingleValue |

ContainedSubtype |

ValueRange |

PermittedAlphabet |

SizeConstraint |

TypeConstraint |

InnerTypeConstraints

Table 6 — Applicability of subtype value sets
Tvoe Single Contained Value Size Permitted Type Inner
yp Value Subtype Range Constraint Alphabet constraint Subtyping
Bit String Yes Yes No Yes No No No
Boolean Yes Yes No No No No No
Choice Yes Yes No No No No Yes
Embedded-pdv Yes No No No No No Yes
Enumerated Yes Yes No No No No No
External Yes No No No No No Yes
Instance-of Yes Yes No No No No Yes
Integer Yes Yes Yes No No No No
Null Yes Yes No No No No No
Object classfield type Yes Yes No No No No No
Object Identifier Yes Yes No No No No No
Octet String Yes Yes No Yes No No No
open type No No No No No Yes No
Real Yes Yes Yes No No No Yes
Restricted Character Yes Yes Yesd Yes Yes No No
String Types
Sequence Yes Yes No No No No Yes
Sequence-of Yes Yes No Yes No No Yes
Set Yes Yes No No No No Yes
Set-of Yes Yes No Yes No No Yes
Unrestricted Character Yes No No Yes No No Yes
String Type
3 Allowed only within the "PermittedAlphabet” of BMPString, |A5String, NumericString, PrintableString, VisibleString and
Universal String.
52 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

45.2 Single Value

45.2.1 The"SingleValue" notation shall be:
SingleValue ::= Value

where"Value' isthe value notation for the parent type.

45.2.2 A "SingleValue" specifiesthe single value of the parent type specified by "Value".

45.3 Contained Subtype
45.3.1 The"ContainedSubtype" notation shall be:

ContainedSubtype ::= Includes Type
Includes ::= INCLUDES | empty

The "empty" alternative of the "Includes’ production shall not be used when "Type" in "ContainedSubtype" is the
notation for the null type.

45.3.2 A "ContainedSubtype" specifies all of the values in the parent type resulting from the intersection of the parent
type and "Type". "Type" isrequired to be derived from the same built-in type as the parent type.

454 Value Range
45.4.1 The"VaueRange" notation shall be:
ValueRange ::= LowerEndpoint ".." UpperEndpoint

45.4.2 A "VaueRange' specifies al the values in arange of values which are designated by specifying the values of
the endpoints of the range. This notation can only be applied to integer types, the PermittedAlphabet of certain restricted
character string types (IA5String, NumericString, PrintableString, VisibleString, BMPString and UniversalString only)
and real types.

NOTE - For the purpose of subtyping, "PLUS-INFINITY" exceeds all "NumericReal" values and "MINUS-INFINITY" is
less than all "NumericReal" values.

45.4.3 Each endpoint of the range is either closed (in which case that endpoint is specified) or open (in which case the
endpoint is not specified). When open, the specification of the endpoint includes aless-than symbol ("<"):

LowerEndpoint ::= LowerEndValue | LowerEndValue "<"
UpperEndpoint ::= UpperEndValue | "<" UpperEndValue

45.4.4 Anendpoint may aso be unspecified, in which case the range extends in that direction as far as the parent type
alows:

LowerEndValue ::= Value | MIN

UpperEndValue ::= Value | MAX

45.5 Size Constraint
45.5.1 The"SizeConstraint" notation shall be:
SizeConstraint ::= SIZE Constraint

45.5.2 A "SizeConstraint" can only be applied to bit string types, octet string types, character string types, set-of types
or sequence-of types, or types formed from any of those types by tagging.

45.5.3 The "Constraint" specifies the permitted integer values for the length of the specified values, and takes the
form of any constraint which can be applied to the following parent type:

INTEGER (0 .. MAX)

The"Constraint” shall use the " SubtypeConstraint”" alternative of "ConstraintSpec".

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 53

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

45.5.4 The unit of measure depends on the parent type, as follows:

Type Unit of measure
bit string bit

octet string octet

character string character

set-of component value
sequence-of component value

NOTE — The count of the number of characters specified in this clause for determining the size of a character string value
shall be clearly distinguished from a count of octets. The count of characters shall be interpreted according to theodiefigition

collection of characters used in the type, in particular, in relation to references to the standards, tables or registrat®mnnal
register which can appear in such a definition.

45.6 Type Constraint
45.6.1 The"TypeConstraint" notation shall be:
TypeConstraint ::= Type
45.6.2 Thisnotation isonly applied to an open type notation and restricts the open type to values of "Type".

45.7 Permitted Alphabet
45.7.1 The"PermittedAlphabet" notation shall be:
PermittedAlphabet ::= FROM Constraint

45.7.2 A "PermittedAlphabet" specifies all values which can be constructed using a sub-alphabet of the parent string.
This notation can only be applied to restricted character string types.

45.7.3 The "Constraint" is any which could be applied to the parent type (see Table 6), except that it shall use the
"SubtypeConstraint” alternative of "ConstraintSpec”. The sub-alphabet includes precisely those characters which appear
in one or more of the values of the parent string type which are allowed by the "Constraint".

45.8 Inner Subtyping
45.8.1 The"InnerTypeConstraints’ notation shall be:

InnerTypeConstraints ::=
WITH COMPONENT SingleTypeConstraint |
WITH COMPONENTS MultipleTypeConstraints

45.8.2 An"InnerTypeConstraints’ specifies only those values which satisfy a collection of constraints on the presence
and/or values of the components of the parent type. A value of the parent type is not specified unless it satisfies all of the
constraints expressed or implied (see 45.8.6). This notation can be applied to the set-of, sequence-of, set, sequence and
choice types, or types formed from them by tagging.

45.8.3 For the types which are defined in terms of a single other (inner) type (set-of and sequence-of), a constraint
taking the form of a subtype value specification is provided. The notation for thisis"SingleTypeConstraint":

SingleTypeConstraint ::= Constraint

The "Constraint" defines a subtype of the single other (inner) type. A value of the parent type is specified if and only if
each inner value belongs to the subtype obtained by applying the "Constraint” to the inner type.

45.8.4 For the types which are defined in terms of multiple other (inner) types (choice, set, and sequence), a number
of constraints on these inner types can be provided. The notation for thisis "MultipleTypeConstraints':

MultipleTypeConstraints ::= FullSpecification | PartialSpecification

FullSpecification ::="{" TypeConstraints "}"
PartialSpecification ::="{" "..." "," TypeConstraints "}"
TypeConstraints ::=

NamedConstraint |

NamedConstraint "," TypeConstraints

NamedConstraint ::=
identifier ComponentConstraint

54 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

45.8.5 The"TypeConstraints' contains alist of constraints on the component types of the parent type. For a sequence
type, the constraints must appear in order. The inner type to which the constraint applies is identified by means of its
identifier. For a given component there shall be at most one "NamedConstraint”.

45.8.6 The "MultipleTypeConstraints' comprises either a "FullSpecification" or a "Partia Specification”. When
"Full Specification" is used, there is an implied presence constraint of "ABSENT" on all inner types which can be
constrained to be absent (see 45.8.9) and which is not explicitly listed. Where "Partia Specification” is employed, there
are no implied constraints, and any inner type can be omitted from the list.

45.8.7 A particular inner type may be constrained in terms of its presence (in values of the parent type), its value, or
both. The notation is " ComponentConstraint":

ComponentConstraint ::= ValueConstraint PresenceConstraint
45.8.8 A constraint on the value of an inner type is expressed by the notation "ValueConstraint":
ValueConstraint ::= Constraint | empty

The constraint is satisfied by a value of the parent type if and only if the inner value belongs to the subtype specified by
the "Constraint" applied to the inner type.

45.8.9 A constraint on the presence of an inner type shall be expressed by the notation "PresenceConstraint":
PresenceConstraint ::= PRESENT | ABSENT | OPTIONAL | empty
The meaning of these alternatives, and the situations in which they are permitted are defined in 45.8.9.1 to 45.8.9.3.

45.8.9.1 If the parent type is a sequence or set, a component type marked "OPTIONAL" may be constrained to be
"PRESENT" (in which case the constraint is satisfied if and only if the corresponding component value is present) or to
be "ABSENT" (in which case the constraint is satisfied if and only if the corresponding component value is absent) or to
be"OPTIONAL" (in which case no constraint is placed upon the presence of the corresponding component value).

45.8.9.2 If the parent type is a choice, a component type can be constrained to be "ABSENT" (in which case the
constraint is satisfied if and only if the corresponding component type is not used in the value), or "PRESENT" (in
which case the constraint is satisfied if and only if the corresponding component type is used in the value); there shall be
at most one "PRESENT" keyword in a"MultipleTypeConstraints'.

NOTE — See F.4.5 for a clarifying example.

45.8.9.3 The meaning of an empty "PresenceConstraint” depends on whether a "FullSpecification” or a
"Partial Specification” is being employed:

a) ina"FullSpecification", thisis equivalent to a constraint of "PRESENT" for a set or sequence component
marked OPTIONAL and imposes no further constraint otherwise;

b) ina"PartialSpecification", no constraint isimposed.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 55

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Annex A

Use of ASN.1-88/90 notation
(Thisannex forms an integral part of this Recommendation | International Standard)

Al Maintenance

The term ASN.1-88/90 notation is used to refer to that ASN.1 notation specified in CCITT Rec. X.208 (1988) |
ISO/IEC 8824:1990. The term current ASN.1 notation is used to refer to that specified in this Recommendation |
International Standard.

At the time of publication of this Recommendation | International Standard, CCITT Rec. X.208 | ISO/IEC 8824 was till
being maintained. This continued maintenance depends on an annual Resolution by 1SO/IEC/JTC1/SC21, and cannot be
expected to be indefinite. It is provided in order to give users of ASN.1 time to replace features (particularly ANY and
use of the macro notation) of the ASN.1-88/90 notation with current ASN.1 notation. (This can be done with no change
to bitson theline.)

A2 Mixing ASN.1-88/90 and current ASN.1 notation

Both the ASN.1-88/90 and the current ASN.1 notation specify atop-level syntactic construct which isan ASN.1 module.
A user of ASN.1 writes acollection of ASN.1 modules, and may import definitions from other ASN.1 modules.

For any given module, the notation used is required to conform (completely) to either the ASN.1-88/90 notation or to the
current ASN. 1 notation, and a user Specification should clearly identify which notation is being used (by reference to the
appropriate Recommendation | International Standard) for each module textually included in the user Specification.

Note that it might happen that a user wishes to modify part of a module to use the new notation, but to leave other parts
in the old notation. This can (only) be achieved by splitting the module into two modules.

Where a module conforms to the ASN.1-88/90 notation, type and value references may be imported from a module that
was defined using the current notation. Such types and values must be associated with types that can be defined using
only the ASN.1-88/90 notation. For example, a module written using the ASN.1-88/90 notation cannot import a value of
type Universal String, since this type is defined in the current notation but not in ASN.1-88/90; it can, however, import
values whose types are, for example, INTEGER, 1A5String, etc.

Where a module conforms to the current ASN.1 notation, type and value references may be imported from a module that
was defined using the ASN.1-88/90 notation. No ASN.1 macro shall be imported. Vaue notation for an imported type
shall only be used in the importing module if identifiers for SET and SEQUENCE and CHOICE values used in the value
notation are present, and if there is no requirement in the value notation for a value of the ANY type. An inner type
constraint shall not be applied to an imported type if the component being constrained does not have an identifier.

A3 Migration to the current ASN.1 notation

When modifying a module (originally written to conform to the ASN.1-88/90 notation) to conform to the current
notation, the following points should be noted:

a) All components of SET and SEQUENCE and CHOICE shall be given identifiers that are unambiguous
within that SET, SEQUENCE or CHOICE, and such identifiers shall be included in the value notation.

NOTE - The value notation for a CHOICE type contains a colon (":").

b) All uses of ANY and ANY DEFINED BY shall be supported by a suitable information object class
definition, with the ANY and ANY DEFINED BY (and the referenced component) replaced by
appropriate references to fields of that object class. In most cases the specification can be greatly
improved by careful attention to the insertion of table and component relation constraints. In many cases
the specification can be further improved if the table or component relation constraint is made a parameter
of the type.

¢) All macro definitions shall be replaced by either the definition of an information object class, a
parameterized type or a parameterized value. If the WITH SYNTAX clause is carefully designed in the
definition of an information object class, the notation used to define an object of that class can be made
very similar to the notation defined by the old use of the macro notation.

56 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

d) All instances of use of a macro shall be replaced by either equivalent information object definitions, or by
references to equivalent "ObjectClassFieldType's, parameterized types or parameterized values. In most
cases the specification of information objects can be greatly improved by grouping such definitions into
information object sets, and by giving clear guidance on whether it is mandatory to support all
information objects in the set, and on whether implementation-dependent extensions to that information
object set are to be accommodated by receiving implementations, and if so, how they are to handle receipt
of "unknown" values. It may also be desirable to consider the possibility that a later version of the user
Specification may extend the information object set, and to give guidance to current implementors on how
such extensions are to be treated.

€) All occurrences of EXTERNAL should be carefully examined; while such notation is till legal in the
current ASN.1, auser Specification can probably be improved by doing the following:

1) Consider the use of the INSTANCE OF notation (preferably with atable constraint that may be as a
parameter of the type, as discussed above for ANY and ANY DEFINED BY) in place of the
EXTERNAL notation; in many cases thiswill not change the bits on the line.

2) Where EXTERNAL isretained, use of inner subtyping of the associated type (see 31.5) can help to
give precision to the specification of whether use of presentation context identifiers is or is not
permitted. Earlier comments (see clause 31) that give guidance about what values of EXTERNAL
are to be supported, and what implementations should do if unsupported values are received aso

apply here.

3) Consider achangeto
CHOICE {external EXTERNAL, embedded-pdv EMBEDDED PDV}

(again with inner subtyping if appropriate) to allow a phased migration of distributed peer
applications to the current notation. This can affect the bits on the line, and would normally be done
as part of a version change in the protocol. The use of EMBEDDED PDV (particularly for new
specifications) will normally give more flexibility, as can be seen by comparison of the associated
types; further, EMBEDDED PDV is encoded more efficiently than EXTERNAL by all the encoding
rules specified in ITU-T Rec. X.690 | ISO/IEC 8825-1.

f) It may be possible to improve the readability of the notation in existing ASN.1 modules (with no change
to bits on the line) by insertion of AUTOMATIC TAGS in the module header and deletion of some or all

tags.

NOTE — This must be done with care, and with understanding of the way automatic tagging works, since if this
is incorrectly applied, the bits on the line will change.

g) |If AUTOMATIC TAGS is not applied to existing modules as described in) above, it will normally be
desirable not to add new type definitions to the existing module, but rather to create a new module (with
automatic tagging) for new type definitions. This makes it possible for the benefits of automatic tagging
to be enjoyed without affecting the bits on the line.

h) Attention should be given to fields that contain character strings to see whether the CHARACTER
STRING, BMPString, or UniversalString notation should be employed. This would normally, however,
change the bits on the line, and would be done as part of a version change.

i) The identifiers "mantissa’, "base", and "exponent" need to be added to any real value notation that uses
the "NumericRealVaue" alternative of the "RealValue" production. Consideration should be given to
restricting "base" to 2 or 10 in the type notation.

In general, there can be significant improvements in readability, efficiency, precision, and flexibility by use of the new
ASN.1 notation (particularly if full advantage is taken of the use of table and component relation constraints and
parameterization, and of the new character string types). All users of ASN.1-88/90 are urged to undertake migration
whenever a Specification is revised, or as a separate activity if no revision is expected for some time.

It is generally regarded as a mistake to make additions to existing modules using notation which does not conform to the
current ASN.1 specification, even if references to the ASN.1-88/90 specifications are retained for such modules. In
particular, new uses of macros and ANY or ANY DEFINED BY, or new SET, SEQUENCE, or CHOICE constructs
without unambiguous identifiers should be avoided.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 57

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Annex B

ISO assignment of OBJECT IDENTIFIER component values
(Thisannex forms an integral part of this Recommendation | International Standard)

B.1 Three arcs are specified from the root node. The assignment of values and identifiers, and the authority for
assignment of subsequent component values, are as follows:

Value Identifier Authority for subsequent assignments
0 itu-t ITU-T

1 iso SO

2 joint-iso-itu-t See Annex D

NOTE — The remainder of this annex concerns itself only with ISO assignment of values.
B.2 Theidentifiers "itu-t", "iso" and "joint-iso-itu-t", assigned above, may each be used as a"NameForm".

B.3 The identifiers "ccitt" and "joint-iso-ccitt" are synonyms for "itu-t" and "joint-iso-itu-t", respectively, and thus
may appear in object identifier values.

B.4 Three arcs are specified from the node identified by "iso". The assignment of values and identifiersis
Value Identifier Authority for subsequent assignments
0 standard SeeB.5
2 member-body SeeB.6
3 identified-organization SeeB.7

These identifiers may be used as a"NameForm".

NOTE - Arc 1 (registration-authority) is not used. It was reserved in earlier versions for future use, but its use has been
withdrawn.

B.5 The arcs below "standard" shall each have the value of the number of an International Standard. Where the
International Standard is multi-part, there shall be an additiona arc for the part number, unless this is specificaly
excluded in the text of the International Standard. Further arcs shall have values as defined in that International Standard.

NOTE - If a non-multipart International Standard allocates object identifiers, and subsequently becomes a multipart
International Standard, it shall continue to allocate object identifiers as if it were a single part International Standard.

B.6 The arcs immediately below "member-body" shall have values of a three digit numeric country code, as
specified in ISO 3166, that identifies the ISO Member Body in that country (see the Note). The "NameForm" of object
identifier component is not permitted with these identifiers. Arcs below the "country code" are not defined in this
Recommendation | International Standard.

NOTE — The existence of a country code in 1ISO 3166 does not necessarily imply that there is an ISO Member Body
representing that country or that the ISO Member Body for that country administers a scheme for the allocation of offigct identi
components.

B.7 The arcs immediately below "identified-organization” shall have values of an International Code Designator
(ICD) alocated by the Registration Authority for SO 6523 that identify an issuing organization specifically registered
by that authority as alocating object identifier components (see Notes 1 and 2). The arcs immediately below the ICD
shall have values of an "organization code" allocated by the issuing organization in accordance with 1SO 6523. Arcs
below "organization code" are not defined by this Recommendation | International Standard (see Note 3).

NOTES

1 The requirement that issuing organizations are recorded by the Registration Authority for ISO 6523 as allocating
organization codes for the purpose of object identifier components ensures that only numerical values in accordance with this
Recommendation | International Standard are allocated.

2 The declaration that an issuing organization allocates organization codes for the purpose of object identifier
components does not preclude the use of these codes for other purposes.

3 Itis assumed that the organizations identified by the "organization code" will define further arcs in such a way as to
ensure allocation of unique values.

58 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Annex C

ITU-T assignment of OBJECT IDENTIFIER component values
(Thisannex forms an integral part of this Recommendation | International Standard)

Ccl Three arcs are specified from the root node. The assignment of values and identifiers, and the authority for
assignment of subsequent component values are as follows:

Value Identifier Authority for subsequent assignments
0 itu-t ITU-T

1 iso ISO

2 joint-iso-itu-t See Annex D

NOTE — The remainder of this annex concerns itself only with ITU-T assignment of values.

C.2 Theidentifiers "itu-t", "iso" and "joint-iso-itu-t", assigned above, may each be used as a"NameForm".
CJ3 The identifiers "ccitt" and "joint-iso-ccitt" are synonyms for "itu-t" and "joint-iso-itu-t", respectively, and thus
may appear in object identifier values.
C4 Five arcs are specified from the node identified by "itu-t". The assignment of values and identifiersis
Value Identifier Authority for subsequent assignments
0 recommendation SeeC5
1 guestion SeeC.6
2 administration SeeC.7
3 network-operator See C.8
4 identified-organization SeeC.9

These identifiers may be used as a"NameForm".

Cs The arcs below "recommendation” have the value 1 to 26 with assigned identifiers of ato z. Arcs below these
have the numbers of ITU-T and CCITT Recommendations in the series identified by the letter. Arcs below this are
determined as necessary by the ITU-T and CCITT Recommendations. The identifiers a to z may be used as a
"NameForm".

C.6 The arcs below "question" have values corresponding to ITU-T Study Groups, qualified by the Study Period.
The value is computed by the formula:

study group number + (Period * 32)
where "Period" hasthe value O for 1984-1988, 1 for 1988-1992, etc., and the multiplier is 32 decimal.

The arcs below each study group have the values corresponding to the questions assigned to that study group. Arcs
below this are determined as necessary by the group (e.g. working party or special rapporteur group) assigned to study
the question.

C.7 The arcs below "administration" have the values of X.121 DCCs. Arcs below this are determined as necessary
by the Administration of the country identified by the X.121 DCC.

C.8 The arcs below "network-operator” have the value of X.121 DNICs. Arcs below this are determined as
necessary by the Administration or ROA identified by the DNIC.

C9 The arcs below "identified-organization" are assigned values by the ITU Telecommunication Standardization
Bureau (TSB). Arcs below this are determined as necessary by the organizations identified by the value of the ITU.

NOTE - It is reasonable to expect that the types of organizations which may find this arc useful include:
— ROAs not operating a public data network;

— scientific and industrial organizations;

— regional standards organizations; and

— multi-national organizations.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 59

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Annex D

Joint assignment of OBJECT IDENTIFIER component values
(Thisannex forms an integral part of this Recommendation | International Standard)

D.1 Three arcs are specified from the root node. The assignment of values and identifiers, and the authority for
assignment of subsegquent component values are as follows:

Value Identifier Authority for subsequent assignments

0 itu-t ITU-T

1 IS0 ISO

2 joint-iso-itu-t See Annex D

NOTE — The remainder of this annex concerns itself only with joint ISO/ITU-T assignment of values.
D.2 Theidentifiers "itu-t", "iso" and "joint-iso-itu-t", assigned above, may each be used as a"NameForm".

D.3 The identifiers "ccitt" and "joint-iso-ccitt" are synonyms for "itu-t" and "joint-iso-itu-t", respectively, and thus
may appear in object identifier values.

D.4 The arcs below "joint-iso-itu-t" have values which are assigned and agreed from time to time by 1SO and
ITU-T to identify areas of joint ISO/ITU-T standardization activity, in accordance with the "Procedures for assignment
of object identifier component values for joint ISO/ITU-T use".2)

D.5 The arcs beneath each arc identified by the mechanisms of D.4 shall be alocated in accordance with
mechanisms established when the arc is allocated.

NOTE - It is expected that this will involve delegation of authority to the joint agreement of ITU-T and ISO Rapporteurs
for the joint area of work.

D.6 Initial International Standards and ITU-T and CCITT Recommendations in areas of joint ISO/ITU-T activity
require to allocate OBJECT IDENTIFIERS in advance of the establishment of the procedures of D.4, and hence alocate
in accordance with Annexes B or C. Objects identified in this way by International Standards or ITU-T or CCITT
Recommendations shall not have their OBJECT IDENTIFIERS changed when the procedures of D.4 are established.

2 The Registration Authority for the assignment of object identifier component values for joint ISO/ITU-T use is the American
National Standards Institute (ANSI), 11 West 42nd Street, New York, NY 10036, USA.

60 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Annex E

Assignment of object identifier values
(Thisannex forms an integral part of this Recommendation | International Standard)

The following values are assigned in this Recommendation | International Standard:
Clause Object Identifier Value
34.3 { joint-iso-ccitt asn1(1) specification(0) characterStrings(1) numericString(0) }
Object Descriptor Value
"NumericString ASN.1 type"
Clause Object Identifier Value
345 { joint-iso-ccitt asn1(1) specification(0) characterStrings(1) printableString(1) }
Object Descriptor Value
"PrintableString ASN.1 type"
Clause Object Identifier Value
351 { joint-iso-ccitt asn1(1) specification(0) modules(0) is010646(0) }
Object Descriptor Value
"ASN1 Character Module"

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 61

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Annex F

Examples and hints
(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ASN.1 in the description of (hypothetical) data structures. It also contains
hints, or guidelines, for the use of the various features of ASN.1l. Unless otherwise stated, an environment of
AUTOMATIC TAGS is assumed.

F.1 Example of a personnel record
The use of ASN.1isillustrated by means of asimple, hypothetical personnel record.

F.1.1 Informal description of Personnel Record

The structure of the personnel record and its value for a particular individual are shown below.

Name: John P Smith

Title: Director

Employee Number: 51

Date of Hire: 17 September 1971
Name of Spouse: Mary T Smith

Number of Children: 2
Child Information

Name: Ralph T Smith

Date of Birth 11 November 1957
Child Information

Name: Susan B Jones

Date of Birth 17 July 1959

F.1.2 ASN.1 description of the record structure
The structure of every personnel record is formally described below using the standard notation for data types.

PersonnelRecord ::= [APPLICATION 0] SET

{ name Name,
title VisibleString,
number EmployeeNumber,

dateOfHire Date,
nameOfSpouse Name,

children SEQUENCE OF ChildInformation DEFAULT {}
}
ChildInformation ::= SET
{ name Name,

dateOfBirth Date
}

Name ::= [APPLICATION 1] SEQUENCE
{ givenName VisibleString,
initial VisibleString,
familyName VisibleString
}

EmployeeNumber ::= [APPLICATION 2] INTEGER
Date ::= [APPLICATION 3] VisibleString -- YYYY MMDD

This example illustrates an aspect of the parsing of the ASN.1 syntax. The syntactic construct "DEFAULT" can only be
applied to a component of a"SEQUENCE" or a"SET", it cannot be applied to an element of a"SEQUENCE OF". Thus
the"DEFAULT { }" in "PersonnelRecord" appliesto "children”, not to " ChildInformation".

F.1.3 ASN.1 description of a record value

The value of John Smith’s personnel record is formally described below using the standard notation for data values.

62 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

{ name {givenName "John", initial "P", familyName "Smith"},
title "Director"',
number 51,

dateOfHire "19710917",
nameOfSpouse {givenName ""Mary", initial "T", familyName "Smith"},
children
{ {name {givenName "Ralph", initial "T", familyName "Smith"} ,
dateOfBirth "19571111"},
{name {givenName "Susan", initial ""B"", familyName "Jones"} ,
dateOfBirth "19590717" }

}
}

F.2 Guidelines for use of the notation

The data types and formal notation defined by this Recommendation | International Standard are flexible, alowing a
wide range of protocols to be designed using them. This flexibility, however, can sometimes lead to confusion,
especially when the notation is approached for the first time. This annex attempts to minimize confusion by giving
guidelines for, and examples of, the use of the notation. For each of the built-in data types, one or more usage guidelines
are offered. The character string types (for example, VisibleString) and the types defined in clauses 39 to 41 are not dealt
with here.

F.2.1 Boolean

F.2.1.1 Use aboolean type to model the values of alogical (that is, two-state) variable, for example, the answer to a
yes-or-no question.

EXAMPLE
Employed ::= BOOLEAN
F.2.1.2 When assigning areference name to a boolean type, choose one that describes the true state.
EXAMPLE
Married ::= BOOLEAN
not

MaritalStatus ::= BOOLEAN

F.2.2 Integer

F.2.2.1 Use an integer type to model the values (for all practical purposes, unlimited in magnitude) of a cardinal or
integer variable.

EXAMPLE
CheckingAccountBalance ::= INTEGER -- in cents, negative means overdrawn
balance CheckingAccountBalance ::= 0
F.2.2.2 Define the minimum and maximum allowed values of an integer type as named numbers.
EXAMPLE
DayOfTheMonth ::= INTEGER {first(1), last(31)}
today DayOfTheMonth ::= first
unknown DayOfTheMonth ::=0

Note that the named numbers "first" and "last" was chosen because of their semantic significance to the reader, and does
not exclude the possibility of DayOfTheMonth having other values which may be less than 1, greater than 31 or
between 1 and 31.

To restrict the value of DayOf TheMonth to just "first" and "last", one would write:

DayOfTheMonth ::= INTEGER {first(1), last(31)} (first | last)

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 63

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

and to restrict the value of the DayOf TheMonth to all values between 1 and 31, inclusive, one would write:
DayOfTheMonth ::= INTEGER {first(1), last(31)} (first .. last)

dayOfTheMonth DayOfTheMonth ::= 4

F.2.3 Enumerated

F.2.3.1 Usean enumerated type to model the values of a variable with three or more states. Assign values starting with
zero if their only constraint is distinctness.

EXAMPLE

DayOfTheWeek ::= ENUMERATED {sunday(0), monday(1), tuesday(2),
wednesday(3), thursday(4), friday(5), saturday(6)}

firstDay DayOfTheWeek ::= sunday

Note that while the enumerations "sunday", "monday"”, etc., were chosen because of their semantic significance to the
reader, DayOf TheWeek is restricted to assuming one of these values and no other. Further, only the name "sunday",
"monday", etc., can be assigned to a value; the equivalent integer values are not allowed.

F.2.3.2 Use an enumerated type to model the values of a variable that has just two states now, but that may have
additional statesin afuture version of the protocol.

EXAMPLE
MaritalStatus ::= ENUMERATED {single(0), married(1)}
in anticipation of
MaritalStatus ::= ENUMERATED {single(0), married(1), widowed(2)}
F.2.4 Real
F.2.4.1 Usearea typeto model an approximate number.
EXAMPLE
AngleInRadians ::= REAL
pi REAL ::= {mantissa 3141592653589793238462643383279, base 10, exponent —30}

F.2.4.2 Application designers may wish to ensure full interworking with real values despite differences in floating
point hardware, and in implementation decisions to use (for example) single or double length floating point for an
application. This can be achieved by the following:

App-X-Real ::= REAL (WITH COMPONENTS {

mantissa (—16777215..16777215),

base (2),

exponent (—125..128) })
-- Senders shall not transmit values outside these ranges
-- and conforming receivers shall be capable of receiving
-- and processing all values in these ranges.

girth App-X-Real ::= {mantissa 16, base 2, exponent 1}

F.2.5 Bit string

F.2.5.1 Useabit string type to model binary data whose format and length are unspecified, or specified elsewhere, and
whose length in bits is not necessarily a multiple of eight.

EXAMPLE

G3FacsimilePage ::= BIT STRING
-- a sequence of bits conforming to Recommendation T.4.

image G3FacsimilePage ::='100110100100001110110'B
trailer BIT STRING ::='0123456789ABCDEF'H
bodyl G3FacsimilePage ::='1101'B

body2 G3FacsimilePage ::='1101000'B

64 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Note that "body1" and "body2" are distinct abstract values because trailing O bits are significant (due to there being no
"NamedBitList" in the definition of G3FacsimilePage).
F.2.5.2 Useabit string type with a size constraint to model the values of afixed sized bit field.

EXAMPLE

BitField ::= BIT STRING (SIZE (12))

map1 BitField ::='100110100100'B

map?2 BitField ::='9A4'H

map3 BitField ::='1001101001'B -- Illegal - violates size constraint
Note that "mapl" and "map2" are the same abstract value, for the four trailing bits of "map2" are not significant.

F.2.5.3 Use abit string type to model the values of a bit map, an ordered collection of logical variables indicating
whether aparticular condition holds for each of a correspondingly ordered collection of objects.

DaysOfTheWeek ::= BIT STRING {
sunday(0), monday (1), tuesday(2),
wednesday(3), thursday(4), friday(5),
saturday(6) } (SIZE (0..7))

sunnyDaysLastWeekl DaysOfTheWeek ::= {sunday, monday, wednesday}
sunnyDaysLastWeek2 DaysOfTheWeek ::= '1101'B
sunnyDaysLastWeek3 DaysOfTheWeek ::='1101000'B

sunnyDaysLastWeek4 DaysOfTheWeek ::

'11010000'B -- Illegal - violates size constraint

Note that if the bit string value is less than 7 bits long then the missing bits indicate a cloudy day for those days, hence
the first three values above have the same abstract value.

F.2.54 Use a hit string type to model the values of a bit map, a fixed-size ordered collection of logical variables
indicating whether a particular condition holds for each of a correspondingly ordered collection of objects.

DaysOfTheWeek ::= BIT STRING {
sunday(0), monday (1), tuesday(2),
wednesday(3), thursday(4), friday(5),
saturday(6) } (SIZE (7))
sunnyDaysLastWeekl DaysOfTheWeek ::= {sunday, monday, wednesday}
sunnyDaysLastWeek2 DaysOfTheWeek ::='1101'B -- Illegal - violates size constraint
sunnyDaysLastWeek3 DaysOfTheWeek ::='1101000'B

sunnyDaysLastWeek4 DaysOfTheWeek ::= '11010000'B -- Illegal - violates size constraint

Note that the first and third values have the same abstract value.

F.2.5.5 Useabit string type with named bits to model the values of a collection of related logical variables.
EXAMPLE

PersonalStatus ::= BIT STRING
{married(0), employed(1), veteran(2), collegeGraduate(3)}

billClinton PersonalStatus ::= {married, employed, collegeGraduate}
hillaryClinton PersonalStatus ::='110100'B

Note that "billClinton" and "hillaryClinton" have the same abstract values.

F.2.6 Octet string

F.2.6.1 Usean octet string type to model binary data whose format and length are unspecified, or specified elsewhere,
and whose length in bitsis a multiple of eight.

EXAMPLE

G4FacsimileImage ::= OCTET STRING
-- a sequence of octets conforming to
-- Recommendations T.5 and T.6

image G4FacsimilePage ::= '3FE2EBAD471005'H

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 65

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

F.2.6.2 Use a restricted character string type in preference to an octet string type, where an appropriate one is
available.

EXAMPLE
Surname ::= PrintableString

president Surname ::= "Clinton"

F.2.7 UniversalString and BMPString

Use the BMPString type to model any string of information which consists solely of characters from the
ISO/IEC 10646-1 Basic Multilingual Plane (BMP), and UniversalString to model any string which consists of
I SO/IEC 10646-1 characters not confined to the BMP.

F.2.7.1 Use"Levell" or "Level2" to denote that the implementation level places restrictions on the use of combining
characters.

EXAMPLE
RussianName ::= Cyrillic (Levell) -- RussianName uses no combining characters
SaudiName ::= BasicArabic (SIZE (1..100) * Level2) -- SaudiName uses a subset of combining characters

F.2.7.2 A collection can be expanded to be a selected subset (i.e. include al characters in the BASIC LATIN
collection) by use of the "UnionMark" (see 44).

EXAMPLE
KatakanaAndBasicLatin ::= UniversalString (FROM(Katakana | BasicLatin))
F.2.8 CHARACTER STRING

Use the unrestricted character string type to model any string of information which cannot be modelled using one of the
restricted character string types. Be sure to specify the repertoire of characters and their coding into octets.

EXAMPLE

PackedBCDString ::= CHARACTER STRING (WITH COMPONENTS {
identification (WITH COMPONENTS {
fixed PRESENT })
-- The abstract and transfer syntaxes shall be packedBCDStringAbstractSyntax and
-- packedBCDStringTransferSyntax defined below

)

-- object identifier value for a character abstract syntax (character set) whose alphabet

-- is the digits 0 through 9
packedBCDStringAbstractSyntaxld OBJECT IDENTIFIER ::=
{ joint-iso-ccitt xxx(999) yyy(999) zzz(999) packedBCD(999) charSet(0) }

-- object identifier value for a character transfer syntax that packs two
-- digits per octet, each digit encoded as 0000 to 1001, 1111 ; used for padding.
packedBCDStringTransferSyntaxld OBJECT IDENTIFIER ::=

{ joint-iso-ccitt xxx(999) yyy(999) zzz(999) packedBCD(999) characterTransferSyntax(1) }

-- The encoding of PackedBCDString will contain only the defined encoding of the characters, with any
-- necessary length field, and in the case of BER with a field carrying the tag. The object identifier values are
-- not carried, as "fixed" has been specified.

NOTE — Encoding rules do not necessarily encode values of the type CHARACTER STRING in a form that always
includes the object identifier values, although they do guarantee that the abstract value is preserved in the encoding.

F.2.9 Null

Use anull typeto indicate the effective absence of a component of a sequence.

EXAMPLE

Patientldentifier ::= SEQUENCE {
name VisibleString,
roomNumber CHOICE {

66 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

room INTEGER,
outPatient NULL -- if an out-patient --

}

lastPatient PatientIdentifier ::
name "Jane Doe",
roomNumber outPatient : NULL

Il
~—

}

F.2.10 Sequence and sequence-of

F.2.10.1 Use a sequence-of type to model a collection of variables whose types are the same, whose number is large or
unpredictable, and whose order is significant.

EXAMPLE

NamesOfMemberNations ::= SEQUENCE OF VisibleString
-- in alphabetical order

firstTwo NamesOfMemberNations ::= {"' Australia', ""Austria'}

F.2.10.2 Use a sequence type to model a collection of variables whose types are the same, whose number is known and
modest, and whose order is significant, provided that the makeup of the collection is unlikely to change from one version
of the protocol to the next.

EXAMPLE

NamesOfOfficers ::= SEQUENCE {
president VisibleString,
vicePresident VisibleString,
secretary VisibleString}

acmeCorp NamesOfOfficers ::= {
president "Jane Doe",
vicePresident "John Doe",
secretary "Joe Doe''}

F.2.10.3 Use a sequence type to model a collection of variables whose types differ, whose number is known and
modest, and whose order is significant, provided that the makeup of the collection is unlikely to change from one version
of the protocol to the next.

EXAMPLE

Credentials ::= SEQUENCE {
userName VisibleString,
password VisibleString,

accountNumber INTEGER}

F.2.11 Set and set-of

F.2.11.1 Use a set type to model a collection of variables whose number is known and modest and whose order is
insignificant. If automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown
below. (With automatic tagging, the tags are not needed.)

EXAMPLE

UserName ::= SET {
personalName [0] VisibleString,
organizationName [1] VisibleString,
countryName [2] VisibleString}

user UserName ::= {
countryName ""Nigeria'',
personalName "Jonas Maruba",
organizationName '""Meteorology, Ltd."}

F.2.11.2 Use a set type with "OPTIONAL" to model a collection of variables that is a (proper or improper) subset of
another collection of variables whose number is known and reasonably small and whose order is insignificant. If
automatic tagging is not in effect, identify each variable by context-specifically tagging it as shown below. (With
automatic tagging, the tags are not needed.)

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 67

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

EXAMPLE

UserName ::= SET {
personalName [0] VisibleString,
organizationName [1] VisibleString OPTIONAL
-- defaults to that of the local organization --,
countryName [2] VisibleString OPTIONAL
-- defaults to that of the local country -- }

F.2.11.3 Use a set type to model a collection of variables whose makeup is likely to change from one version of the
protocol to the next. |dentify each variable by context-specifically tagging it to retain control of the tags used.

EXAMPLE

UserName ::= SET {
personalName [0] VisibleString,
organizationName [1] VisibleString OPTIONAL ,
-- defaults to that of the local organization
countryName [2] VisibleString OPTIONAL
-- defaults to that of the local country
-- other optional attributes are for further study --}

user UserName ::= { personalName ''Jonas Maruba" }
F.2.11.4 Use aset-of type to model acollection of variables whose types are the same and whose order is insignificant.
EXAMPLE
Keywords ::= SET OF VisibleString -- in arbitrary order
someASN1Keywords Keywords ::= {""INTEGER", "BOOLEAN", "REAL"}

F.2.12 Tagged

Prior to the introduction of the AUTOMATIC TAGS construct, ASN.1 specifications frequently contained tags. The
following subclauses describe the way in which tagging was typically applied. With the introduction of AUTOMATIC
TAGS, new ASN.1 specifications need make no use of the tag notation, although those modifying old notation may have
to concern themselves with tags.

F.2.12.1 Universa class tags are used only within this Recommendation | International Standard. The notation
[UNIVERSAL 30] (for example) is provided solely to enable precision in the definition of the Internationally
Standardized Useful Types. It should not be used elsewhere.

F.2.12.2 A frequently encountered style for the use of tags is to assign an application class tag precisely once in the
entire specification, using it to identify atype that finds wide, scattered, use within the specification. An application class
tag is aso frequently used (once only) to tag the types in the outermost CHOICE of an application, providing
identification of individual messages by the application class tag. The following is an example use in the former case:

EXAMPLE

FileName ::= [APPLICATION 8] SEQUENCE {
directoryName VisibleString,
directoryRelativeFileName VisibleString}

F.2.12.3 Context-specific tagging is frequently applied in an algorithmic manner to all components of a SET,
SEQUENCE, or CHOICE. Note, however, that the AUTOMATIC TAGS facility does this easily for you.

EXAMPLE
CustomerRecord ::= SET {
name [0] VisibleString,
mailingAddress [1] VisibleString,
accountNumber [2] INTEGER,
balanceDue [3] INTEGER -- in cents --}
CustomerAttribute ::= CHOICE {
name [0] VisibleString,
mailingAddress [1] VisibleString,
accountNumber [2] INTEGER,
balanceDue [3] INTEGER -- in cents --}

68 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

F.2.12.4 Private class tagging should normally not be used in Internationally Standardized specifications (although this
cannot be prohibited). Applications produced by an enterprise will normally use application and context-specific tag
classes. There may be occasional cases, however, where an enterprise-specific specification seeks to extend an
Internationally Standardized specification, and in this case use of private class tags may give some benefits in partially
protecting the enterprise-specific specification from changes to the Internationally Standardized specification.

EXAMPLE
AcmeBadgeNumber ::= [PRIVATE 2] INTEGER
badgeNumber AcmeBadgeNumber ::=2345

F.2.12.5 Textua use of IMPLICIT with every tag is generaly found only in older specifications. BER produces a less
compact representation when explicit tagging is used than when implicit tagging is used. PER produces the same
compact encoding in both cases. With BER and explicit tagging, there is more visibility of the underlying type
(INTEGER, REAL, BOOLEAN, etc.) in the encoded data. These guidelines use implicit tagging in the examples
whenever it is legal to do so. This may, depending on the encoding rules, result in a compact representation, which is
highly desirable in some applications. In other applications, compactness may be less important than, for example, the
ability to carry out strong type-checking. In the latter case, explicit tagging can be used.

EXAMPLE
CustomerRecord ::= SET {
name [0] IMPLICIT VisibleString,
mailingAddress [1] IMPLICIT VisibleString,
accountNumber [2] IMPLICIT INTEGER,
balanceDue [3] IMPLICIT INTEGER -- in cents --}
CustomerAttribute ::= CHOICE {
name [0] IMPLICIT VisibleString,
mailingAddress [1] IMPLICIT VisibleString,
accountNumber [2] IMPLICIT INTEGER,
balanceDue [3] IMPLICIT INTEGER -- in cents --}

F.2.12.6 Guidance on use of tags in new ASN.1 specifications referencing this Recommendation | International
Standard is quite simple: DON'T USE TAGS. Put AUTOMATIC TAGS in the module header, then forget about tags. If
you need to add new components to the SET, SEQUENCE or CHOICE in a later version, add them to the end.

F.2.13 Choice

F.2.13.1 Use a CHOICE to model a variable that is selected from a collection of variables whose number are known and
modest.

EXAMPLE

Fileldentifier ::= CHOICE {

relativeName VisibleString,

-- name of file (for example, "MarchProgressReport")
absoluteName VisibleString,

-- name of file and containing directory

-- (for example, "<Williams>MarchProgressReport")
serialNumber INTEGER

-- system-assigned identifier for file --}

file FileIdentifier ::= serialNumber : 106448503

F.2.13.2 Use a CHOICE to model a variable that is selected from a collection of variables whose makeup is likely to
change from one version of the protocol to the next.

EXAMPLE

Fileldentifier ::= CHOICE {
relativeName VisibleString,
-- name of file (for example, "MarchProgressReport")
absoluteName VisibleString
-- name of file and containing directory
-~ (for example, "<Williams>MarchProgressReport")
-- other forms of file identifiers are for further study --}

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 69

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

F.2.13.3 Where implicit tagging isthe norm in a particular application of this Recommendation | International Standard,
use a CHOICE of only one type where the possihility is envisaged of more than one type being permitted in the future.

EXAMPLE

Greeting ::= [APPLICATION 12] CHOICE {
postCard VisibleString}

in anticipation of

Greeting ::= [APPLICATION 12] CHOICE {
postCard VisibleString,
recording Voice }

F.2.13.4 Multiple colons are required when a choice value is nested within another choice value.
EXAMPLE

Greeting ::= [APPLICATION 12] CHOICE {
postCard VisibleString,
recording Voice }

Voice ::= CHOICE {
english OCTET STRING,
swahili OCTET STRING }

myGreeting Greeting ::= recording : english : '019838547E0'H

F.2.14 Selection type

F.2.14.1 Use a selection type to model a variable whose type is that of some particular aternatives of a previously
defined CHOICE.

F.2.14.2 Consider the definition:

FileAttribute ::= CHOICE {
date-last-used INTEGER,
file-name VisibleString}

then the following definition is possible:

AttributeList ::= SEQUENCE {
first-attribute date-last-used < FileAttribute,
second-attribute file-name < FileAttribute }

with a possible value notation of

listOfAttributes AttributeList ::= {
first-attribute 27,
second-attribute "PROGRAM" }

F.2.15 Object class field type

F.2.15.1 Use an object class field type to identify a type defined by means of an information object class (see ITU-T
Rec. X.681 | ISO/IEC 8824-2). For example, fields of the information object class ATTRIBUTE may be used in defining
atype, Attribute.

EXAMPLE

ATTRIBUTE ::= CLASS

{
&AttributeType,
&attributeld OBJECT IDENTIFIER UNIQUE

}

Attribute ::= SEQUENCE {
attributeID ATTRIBUTE.&attributeld, -- this is normally constrained
attributeValue ATTRIBUTE.&AttributeType -- this is normally constrained
}

Both ATTRIBUTE.&attributeld and ATTRIBUTE.& AttributeType are object class field types, in that they are types
defined by reference to an information object class (ATTRIBUTE). The type ATTRIBUTE.&attributeld is fixed because
it is explicitly defined in ATTRIBUTE as an OBJECT IDENTIFIER. However, the type ATTRIBUTE.& AttributeType

70 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

can carry a value of any type defined using ASN.1, since its type is not fixed in the definition of ATTRIBUTE.
Notations that possess this property of being able to carry a value of any type are termed "open type notation", hence
ATTRIBUTE.&AttributeType is an open type.

F.2.16 Embedded-pdv

F.2.16.1 Use an embedded-pdv type to model a variable whose type is unspecified, or specified elsewhere with no
restriction on the notation used to specify the type.

EXAMPLE

FileContents ::= EMBEDDED PDV

DocumentList ::= SEQUENCE OF EMBEDDED PDV
F.2.17 External

The externa type is similar to the embedded-pdv type, but has fewer identification options. New specifications will
generaly prefer to use embedded-pdv because of its greater flexibility and the fact that some encoding rules encode its
values more efficiently.

F.2.18 Instance-of

F.2.18.1 Use an instance-of to specify a type containing an object identifier field and an open type whose value is
of atype determined by the object identifier. The instance-of type is restricted to carrying a vaue from the class
TYPE-IDENTIFIER (see Annexes A and C of ITU-T Rec. X.681 | ISO/IEC 8824-2).

EXAMPLE
ACCESS-CONTROL-CLASS ::= TYPE-IDENTIFIER
Get-Invoke ::= SEQUENCE {

objectClass ObjectClass,

objectInstance ObjectInstance,

accessControl INSTANCE OF ACCESS-CONTROL-CLASS, -- this is normally constrained
attributeID ATTRIBUTE.&attributeld

}
Get-Invoke is then equivalent to:

Get-Invoke ::= SEQUENCE {

objectClass ObjectClass,
objectInstance ObjectInstance,
accessControl [UNIVERSAL 8] IMPLICIT SEQUENCE {
type-id ACCESS-CONTROL-CLASS.&id, -- this is normally constrained
value [0] ACCESS-CONTROL-CLASS.&Type -- this is normally constrained
|3
attributeID ATTRIBUTE.&attributeld

}

The true utility of the instance-of type is not seen until it is constrained using an information object set, but such an
example goes beyond the scope of this Recommendation | International Standard. See ITU-T Rec. X.682 |
ISO/IEC 8824-3 for the definition of information object set, and Annex A of that document for how to use an
information object set to constrain an instance-of type. Note that the encoding of the INSTANCE OF ACCESS
CONTROL-CLASS isthe same as that for an EXTERNAL value that has only an object identifier and a data value.

F.3 Identifying abstract syntaxes

F.3.1 Use of the presentation service ITU-T Rec. X.216 | ISO/IEC 8822 requires the specification of values called
presentation data values and the grouping of those presentation data values into sets which are called abstract syntaxes.
Each of these setsis given an abstract syntax name of ASN.1 type object identifier.

F.3.2 ASN.1 can be used as a general tool in the specification of presentation data values and their grouping into
named abstract syntaxes.

F.3.3 In the simplest such use, there is a single ASN.1 type such that every presentation data value in the named
abstract syntax is avalue of that ASN.1 type. Thistype will normally be a choice type, and every presentation data value
will be an alternative type from this choice type. In this case it is recommended that the ASN.1 module notation be used
to contain this choice type as the first defined type, followed by the definition of those (non-universal) types referenced
directly or indirectly by this choice type.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 71

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

F.3.4

NOTE - This is not intended to exclude references to types defined in other modules.

It is recommended that the assignment of an object identifier and object descriptor to an abstract syntax be

done using the useful information object class ABSTRACT-SYNTAX which is defined in ITU-T Rec. X.681 |
|SO/IEC 8824-2. It is also recommended that all uses of ABSTRACT-SYNTAX be grouped into a single "root" module
that identifies all abstract syntaxes used by an application standard.

F.3.5

F.3.6

The following is an example of text which might appear in an application standard.
EXAMPLE

ISOxxxx-yyyy {iso standard xxxx asnl-modules(...) yyyy-pdu(...)} DEFINITIONS ::=
BEGIN
EXPORTS YYYY-PDU;

YYYY-PDU ::= CHOICE {
connect-pdu ,
data-pdu CHOICE {

ISOxxxx-yyyy-Abstract-Syntax-Module {iso standard xxxx asnl-modules(...) } DEFINITIONS ::=
BEGIN
IMPORTS YYYY-PDU FROM ISOxxxx-yyyy {iso standard xxxx asnl-modules(...) yyyy-pdu(...)};

-- This Recommendation | International Standard defines the following abstract syntax:

YYYY-Abstract-Syntax ABSTRACT-SYNTAX ::=
{YYYY-PDU IDENTIFIED BY yyyy-abstract-syntax-object-id }

yyyy-abstract-syntax-object-id OBJECT IDENTIFIER ::= {iso standard yyyy(xxxx) abstract-syntax(...) }

-- The corresponding object descriptor is:
yyyy-abstract-syntax-descriptor ObjectDescriptor ::="......cccceeueenes
-- The ASN.1 object identifier and object descriptor values:
................. -- encoding rule object identifier
................. -- encoding rule object descriptor

-- assigned to encoding rules in ITU-T Rec. X.690 - 691 | ISO/IEC 8825-1 - 2 can be used as the
-- transfer syntax identifier in conjunction with this transfer syntax, ISOxxxx-yyyy-Abstract-Syntax.

END

In order to ensure interworking, the standard may additionally make mandatory the support of the transfer

syntax obtained by applying the encoding rules mentioned in its abstract syntax module.

F.4

F.4.1

72

Subtypes

Use subtypes to limit the values of an existing type which are to be permitted in a particular situation.
EXAMPLES

AtomicNumber ::= INTEGER (1..104)

TouchToneString ::= 1ASString
(FROM ("'0123456789" | "*'" | "#'")) (SIZE (1..63))

ParameterList ::= SET SIZE (1..63) OF Parameter

SmallPrime ::= INTEGER (2/3/5/7|11]13[17|19]23|29)

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

F.4.2 Where two or more related types have significant commonality, consider explicitly defining their common
parent as a type and use subtyping for the individual types. This approach makes clear the relationship and the
commonality, and encourages (though does not force) this to continue as the types evolve. It thus facilitates the use of
common implementation approaches to the handling of values of these types.

EXAMPLE

Envelope ::= SET {
typeA TypeA,
typeB TypeB OPTIONAL,
typeC TypeC OPTIONAL}
-- the common parent

ABEnvelope ::= Envelope (WITH COMPONENTS

cee

typeB PRESENT, typeC ABSENT})
-- where typeB must always appear and typeC must not

ACEnvelope ::= Envelope (WITH COMPONENTS

cee

typeB ABSENT, typeC PRESENT})
-- where typeC must always appear and typeB must not

The latter definitions could alternatively be expressed as
ABEnvelope ::= Envelope (WITH COMPONENTS {typeA, typeB})
ACEnvelope ::= Envelope (WITH COMPONENTS {typeA, typeC})

The choice between the alternatives would be made upon such factors as the number of components in the parent type,

and the number of those which are optional, the extent of the difference between the individual types, and the likely
evolution strategy.

F.4.3 Use subtyping to partialy define a value, for example, a protocol data unit to be tested for in a conformance
test, where the test is concerned only with some components of the PDU.

EXAMPLE

Given:

PDU ::= SET
{alpha INTEGER,
beta TIA5String OPTIONAL,
gamma SEQUENCE OF Parameter,
delta BOOLEAN}

then in composing atest which requires the Boolean to be false and the integer to be negative, write:

TestPDU ::= PDU (WITH COMPONENTS

{ors
delta (FALSE),
alpha (MIN..<0)})

and if, further, the IA5String, beta, isto be present and either 5 or 12 charactersin length, write:
FurtherTestPDU ::= TestPDU (WITH COMPONENTS {...,, beta (SIZE (5/12)) PRESENT })

F.4.4 If a general-purpose data type has been defined as a SEQUENCE OF, use subtyping to define a restricted
subtype of the general type:

EXAMPLE
Text-block ::= SEQUENCE OF VisibleString

Address ::= Text-block (SIZE (1..6)) (WITH COMPONENT (SIZE (1..32)))

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 73

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

F.4.5

If a general-purpose data type had been defined as a CHOICE, use subtyping to define a restricted subtype of

the general type:

F.4.6

74

EXAMPLE
Z ::= CHOICE {

a A,

b B,

c C,

d D,

e E
}
V ::=Z (WITH COMPONENTS {...,a ABSENT, b ABSENT }) -- 'a’ and 'b' must be absent, either 'c’,

-- 'd" or 'e’ may be present in a value

W ::=Z (WITH COMPONENTS { ...,a PRESENT }) -- only 'a’ can be present (see 45.8.9.2)
X ::=Z (WITH COMPONENTS { a PRESENT }) -- only 'a’ can be present (see 45.8.9.2)
Y ::=Z (WITH COMPONENTS {a ABSENT, b, c}) -- 'a’, 'd' and 'e' must be absent, either

-- 'b'or 'c' may be present in a value
NOTE — W and X are semantically identical.

Use contained subtypes to form new subtypes from existing subtypes:

EXAMPLE

Months ::= ENUMERATED {
january),
february 2),
march A3),
april 4),
may ®),
june ©),
july),
august (8),
september),
october (10),
november (11),
december 12)}

First-quarter ::= Months (
january |
february |
march)

Second-quarter ::= Months (
april |
may |
june)

Third-quarter ::= Months (
july I
august |
september)

Fourth-quarter ::= Months (
october |
november |
december)

First-half ::= Months (First-quarter | Second-quarter)

Second-half ::= Months (Third-quarter | Fourth-quarter)

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Annex G

Tutorial Annex on ASN.1 Character Strings
(This annex does not form an integral part of this Recommendation | International Standard)

G.1 Character string support in ASN.1

G.1.1 Therearefour groups of character string support in ASN.1. The four groups are:

a) character string types based on ISO International Register of Coded Character Sets to be used with
Escape Sequences (that is, the structure of 1SO 646) and the associated International Register of Coded
Character Sets, and provided by the types VisibleString, |A5String, TeletexString, VideotexString,
GraphicString, and General String;

b) character string types based on ISO/IEC 10646-1, and provided by subsetting the type Universal String or
BMPString with subsets defined in 1SO/IEC 10646-1 or by using named characters,

NOTES

1 Use of the unconstrained UniversalString type leads to violation of the conformance requirements for
information interchange specified in ISO/IEC 10646-1, as no adopted subset has been specified.

2 Despite the above, use of this type with a simple subtype constraint which uses a parameter of the abstract
syntax (restricted to a defined subtype of Universal String) can provide a powerful and flexible provision for character
handling, relying on profiles to determine the value of the parameter to meet the needs of particular communities of
interest. In general, however, the use of CHARACTER STRING is to be preferred in Recommendations |
International Standards (see below).

c) character string types providing a simple small collection of characters specified in this Recommendation |
International Standard, and intended for specialized use; these are the NumericString and PrintableString

types,

d) use of the type CHARACTER STRING, with negotiation of the character set to be used (or
announcement of the set being used); this permits an implementation to use any collection of characters
and encodings for which OBJECT IDENTIFIERs have been assigned, including those of ISO
International Register of Coded Character Sets to be used with Escape Sequences, 1SO 7350,
ISO/IEC 10646-1, and private collections of characters and encodings; (profiles may impose requirements
or restrictions on the character sets — the character abstract syntaxes — to be used).

G.2 The UniversalString and BMPString types

G.2.1 The UniversalString type carries any character from ISO/IEC 10646-1. The set of characters in
ISO/IEC 10646-1 is generally too large for meaningful conformance to be required, and should normally be subsetted to
a combination of the standard collections of characters in Annex A of ISO/IEC 10646-1.

G.2.2 The BMPString type carries any character from the Basic Multilingual Plan of ISO/IEC 10646-1 (the first 62K
characters). The Basic Multilingual Plane is normally subsetted to a combination of the standard collections of characters
in Annex A of ISO/IEC 10646-1.

G.2.3 For the collections defined in Annex A of ISO/IEC 10646-1, there are type references defined in the built-in
ASN.1 module "ASN1-CHARACTER-MODULE" (see clause 35). The "subtype constraint' mechanism allows new
subtypes of UniversalString that are combinations of existing subtypes to be defined.

G.24 Examples of type references defined in ASN1-CHARACTER-MODULE and their corresponding
ISO/IEC 10646 collection names are:

BasicLatin BASIC LATIN

Latin-1Supplement LATIN-1 SUPPLEMENT
LatinExtended-a LATIN EXTENDED-A
LatinExtended-b LATIN EXTENDED-B
IpaExtensions IPA EXTENSIONS
SpacingModifierLetters SPACING MODIFIER LETTERS
CombiningDiacriticalMarks COMBINING DIACRITICAL MARKS

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 75

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

G.2.5 ISO/IEC 10646-1 specifies three "levels of implementation”, and requires that all uses of ISO/IEC 10646-1
specify the implementation level.

The implementation level relates to the extent to which support is given for combining characters in the character
repertoire, and hence, in ASN.1 terms, defines a subset of the Universal String and BMPString restricted character string

types.

In implementation level 1, combining characters are not alowed, and there is normally a one-to-one correspondence
between abstract characters (cell references) in ASN.1 character strings and printed characters in a physical rendition of
the string.

In implementation level 2, certain combining characters (listed in ISO/IEC 10646-1, Annex B) are available for use, but
there are others whose use is prohibited.

In implementation level 3, there are no restrictions on the use of combining characters.

G.J3 On ISO/IEC 10646-1 conformance requirements

Use of UniversalString (4-octet encodings) or BMPString (2-octet encodings) (or subtypes of UniversalString or
BMPString) in an ASN.1 type definition requires that the conformance requirements of | SO/IEC 10646-1 be addressed.

These conformance requirements demand that implementors of a standard (X say) using such ASN.1 types provide (in
the Protocol Implementation Conformance Statement) a statement of the adopted subset of 1SO/IEC 10646-1 for their
implementation of standard X, and of the level (support for combining characters) of the implementation.

The use of an ASN.1 subtype of UniversalString or BMPString in a specification requires that an implementation
support al the ISO/IEC 10646-1 characters that are included in that ASN.1 subtype, and hence that (at least) those
characters are present in the adopted subset for the implementation. It is also a requirement that the stated level is
supported for all such ASN.1 subtypes.

NOTE — An ASN.1 specification (in the absence of parameters of the abstract syntax and exception specifications)
determines both the (maximum) set of characters that can be transmitted and the (minimum) set of characters that halledo be han
on receipt. The adopted set of ISO/IEC 10646-1 requires that characters beyond this set are not transmitted, and tbirsll chara
within this set be supported on receipt. The adopted set therefore needs to be precisely the set of all characters pleentigdd by
specification. The case where a parameter of the abstract syntax is present is discussed below.

G4 Recommendations for ASN.1 users on ISO/IEC 10646-1 conformance

Users of ASN.1 should make clear the set of ISO/IEC 10646-1 characters that will form the adopted subset of
implementations (and the required implementation level) if the requirements of their standard are to be met.

This can conveniently be done by defining an ASN.1 subtype of UniversalString or BMPString that contains al the
characters needed for the standard, and by restricting it to "Level1" or "Level2" if appropriate. A convenient name for
this type might be "1SO-10646-String".

EXAMPLE:
ISO-10646-String ::= BMPString

(FROM(Level2 INTERSECTION (BasicLatin UNION HebrewExtended UNION Hiragana)))
-- This is the type that defines the minimum set of characters in the adopted subset for an
-- implementation of this standard. The implementation level is required to be at least level 2.
The PICS would then contain a simple statement that the adopted subset of 1SO/IEC 10646-1 is the limited subset (and
the level) defined by "I1SO-10646-String”, and "1SO-10646-String" (possibly subtyped) would be used throughout the
standard where | SO/IEC 10646-1 strings were to be included.
EXAMPLE PICS:
The adopted subset of 1SO/IEC 10646-1 is the limited subset consisting of al the charactersin the ASN.1 type
"I SO-10646-String" defined in module <your module name goes here>, with an implementation level of 2.

76 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

EXAMPLE USE IN PROTOCOL:

Message ::= SEQUENCE {

first-field ISO-10646-String, -- all characters in the adopted subset can appear
second-field I1SO-10646-String (FROM (latinSmallLetterA .. latinSmallLetterZ)), -- lower case latin
-- letters only
third-field ISO-10646-String (FROM (digitZero .. digitNine)) -- digits only
}
G.5 Adopted subsets as parameters of the abstract syntax

I SO/IEC 10646-1 requires that the adopted subset and level of an implementation be explicitly defined. Where an ASN.1
user does not wish to constrain the range of 1SO/IEC 10646-1 characters in some part of the standard being defined, this
can be expressed by defining "1SO-10646-String" (for example) as a subtype of Universal String (4-octet encoding) or of
BMPString (2-octet encoding) with a subtype constraint consisting of (or including) "ImplementorsSubset” which is left
as aparameter of the abstract syntax.

Users of ASN.1 are warned that in this case a conforming sender may transmit to a conforming receiver characters that
cannot be handled by the receiver because they fall outside the (implementation-dependent) adopted subset or level of
the receiver, and it is recommended that an exception-handling specification be included in the definition of "1SO-
10646-String" in this case.

EXAMPLE:

ISO-10646-String {UniversalString : ImplementorsSubset, ImplementationLevel} ::=
UniversalString (FROM((ImplementorsSubset UNION BasicLatin)
INTERSECTION ImplementationLevel) !characterSetProblem)
-- The adopted subset of ISO/IEC 10646-1 shall include "BasicLatin", but may also include
-- any additional characters specified in "ImplementorsSubset", which is a parameter
-- of the abstract syntax. "ImplementationLevel”, which is a parameter of the abstract
-- syntax defines the implementation level. A conforming receiver must be prepared to
-- recieve characters outside of its adopted subset and implementation level. In this case
-- the exception handling specified in clause <add your clause number here> for
-- "characterSetProblem" is invoked. Note that this can never be invoked by a conforming
-- receiver if the actual characters used in an instance of communication are restricted
-- to "BasicLatin".

My-Level2-String ::= ISO-10646-String { { HebrewExtended UNION Hiragana }, Level2 }

G.6 The CHARACTER STRING type

G.6.1 The CHARACTER STRING type gives complete flexibility in the choice of character set and encoding
method. Where a single connection provides end-to-end data transfer (no application relaying), then negotiation of the
character sets to be used and the encoding can be accomplished as part of the definition of the presentation contexts for
character abstract syntaxes.

G.6.2 It is important to understand that a character abstract syntax is an ordinary abstract syntax with some
restrictions on the possible values (they are al character strings, and indeed are all the character strings formed from
some collection of characters). Thus registration of such syntaxes, and negotiation of a presentation context, is
performed in the normal way.

G.6.3 Theencoding of CHARACTER STRING also permits announcement of the abstract and transfer syntax used,
without negotiation, for environments where thisis appropriate.

NOTES

1 Application designers may forbid use of presentation negotiation for these fields, or may require it, or may leave the
option to the sender.

2 Where announcement rather than negotiation is employed, the application designer should both consider how the
sender can determine what character abstract syntaxes (and transfer syntaxes) might be acceptable to the receiver (for example by use
of the Directory Service or as a result of profiling), and also consider the actions a receiver is to take if a CHARACTER STRING
valueisreceived from a Character Abstract Syntax that it does not support.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 77

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

G.6.4 If negotiation is used, the application layer designer may control such negotiation, specifying when such
presentation contexts are to be established, and specifying the user data parameter of the P-ALTER-CONTEXT
primitives, or may simply assume that some profile will have determined which character abstract syntax to use,
establishing a presentation context for it at the time of P-CONNECT.

G.6.5 The presentation service context management facilities enable an initiator (in a P-CONNECT or within an
established connection using P-ALTER-CONTEXT) to propose a list of new abstract syntaxes (which can include
character abstract syntaxes), or to remove abstract syntaxes from use, and for the responder to select from that list.

G.6.6 The initiator can express preference by the order of the abstract syntax in the list, or by use of the user-data
parameter, which is available for use by the application designer in order to clarify the purpose of proposing the use of
the new abstract syntax. It could, for example, indicate that all the (character) abstract syntaxes are being proposed for
use for some single purpose, or that the intent is to allow the selection of a single (character) abstract syntax to be used
for anumber of purposes.

G.6.7 Character abstract syntaxes (and corresponding character transfer syntaxes) have been defined in a number of
ITU-T Recommendations and International Standards, and additional character abstract syntaxes (and/or character
transfer syntaxes) can be defined by any organization able to allocate object identifiers.

G.6.8 InISO/IEC 10646-1, there is a character abstract syntax defined (and object identifiers assigned) for the entire
collection of characters, for each of the defined collection of characters for subsets (BASIC LATIN, BASIC
SYMBOLS, etc.), and for every possible combination of the defined collections of characters. There are also two
character transfer syntaxes defined to identify the various options (particularly 16-bit and 32-bit) in ISO/IEC 10646-1.

78 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Annex H

Superseded features
(This annex does not form an integral part of this Recommendation | International Standard)

A number of features which were included in previous editions of this Recommendation | International Standard (namely
CCITT Rec. X.208 (1988) | ISO/IEC 8824:1990) have been replaced and do not now form a part of ASN.1. They may,
however, be encountered in some existing ASN.1 modules. This annex describes these features, and how their
capabilities can be achieved by the use of those which replace them.

H.1 Use of identifiers now mandatory

The notation for a NamedType and a NamedV alue were originally:

NamedType ::= identifier Type | Type | SelectionType
NamedValue ::= identifier Value | Value

but this has been changed to:

NamedType ::= identifier Type
NamedValue ::= identifier Value

because the former could result in ambiguous grammar.

Identifiers can be added to "NamedType's in old ASN.1 specifications without affecting the encoding of the type
(although changes to the ASN.1 will be needed for any use of related value notation). Such change should be done either
under a defect report or as part of anew revision of the Recommendation | International Standard being modified.
H.2 The choice value
The value notation for the choice type was originaly:

ChoiceValue ::= NamedValue

NamedValue ::= identifier Value | Value
but this has been changed to:

ChoiceValue ::= identifier ":" Value

because the former could result in ambiguous grammar.

H.3 The any type

The any type was defined in earlier versions of this Recommendation | International Standard. For information, the part
of the previous edition of this Recommendation | International Standard which specified the capability is attached to this
Recommendation | International Standard as Annex I.

The normal use of the any type was to leave a "hole" in the specification which would be filled in by some other
specification. The notation was"AnyType", allowed as an aternative for "Type", and specified as:

AnyType ::= ANY | ANY DEFINED BY identifier
The value notation for the any type was originally:
AnyValue ::= Type Value
although this was later changed to
AnyValue ::= Type : Value

because the former led to difficulties in the machine processing of ASN.1.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 79

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

It was strongly recommended that the second aternative of the notation be used. In this aternative, only allowed where
the any type was one of the component types of a set or sequence type, some other component of the set or sequence
(that with the referenced "identifier") would indicate, by its integer or object identifier value (or a choice of these), the
actual type governing the any component. The mapping from such values to particular ASN.1 types could be viewed as
some sort of "table" which would form part of the abstract syntax. In the absence of the "DEFINED BY identifier" (the
first notational alternative), there would be no indication within the notation of how the type of the field could be
determined. This frequently led to specifications where the "hole" continued to exist even a the stage where
implementations were expected.

The any type has now been superseded by the ability to specify information object classes and then to refer to the fields
of information object classes from within type definitions (see ITU-T Rec. X.681 | ISO/IEC 8824-2). Since fields may be
defined to allow an arbitrary ASN.1 type, the basic ability to leave "holes' is provided. However, the new feature also
permits the specification of a "table constraint”, wherein a particular "information object set" (a set of information
objects of the appropriate information object class) is explicitly cited as constraining the type. This latter capability
encompasses that offered by "ANY DEFINED BY identifier".

In addition, some pre-defined uses of the new capabilities are provided (see ITU-T Rec. X.681 | ISO/IEC 8824-2), which
correspond to various commonly occurring patterns of use of the any type. For example, a sequence containing an object
identifier and an any, often used previously to convey some arbitrary value together with an indication of its type, can
now be described as:

INSTANCE OF MUMBLE
where MUMBLE is defined as an information object class (not as an ASN.1 type):
MUMBLE ::= TYPE-IDENTIFIER

This notation causes "INSTANCE OF MUMBLE" to be replaced by an object identifier for an object of class
MUMBLE, together with the type identified by the object identifier. See F.2.18 for an example.

Particular pairings of object identifier and type are defined as information objects of class MUMBLE, and, if required,
particular sets of these can also be defined and used to constrain the INSTANCE OF construct so that only those objects
in the set can appear.

The macro capability was often used as a semi-formal way of defining tables of information objects to govern an
associated use of an any type, and is also superseded by the new capabilities.

H.4 The macro capability

The macro capability allowed the user of ASN.1 to extend the notation by defining macros. For information, the part of
the previous edition of this Recommendation | International Standard which specified the capability is attached to this
Recommendation | International Standard as Annex J.

The predominant usage of the macro capability has been to define notation for specifying information objects. This
capability has now been included in ASN.1 directly (see ITU-T Rec. X.681 | ISO/IEC 8824-2) without the need for the
full generality (and attendant dangers) of user-defined notation.

Besides this, the only other usage for macros seems to be in defining expressions which must be supplied with some
parameters before they are fully-defined ASN.1 types. Thisis now provided through the more general parameterization
capability (see ITU-T Rec. X.683 | ISO/IEC 8824-4).

80 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Annex I

The any type notation
(This annex does not form an integral part of this Recommendation | International Standard)

Thisannex isincluded as a historical reference, and the notation described by it no longer forms a part of ASN. 1.

L1 Notation for the any type
L1.1 The notation for an any typeis"AnyType":

AnyType ::= ANY | ANY DEFINED BY identifier

NOTE - The use of "ANY" in a Recommendation or ISO Standard produces an incomplete specification unless it is
supplemented by additional specification. The "ANY DEFINED BY" construct provides the means of specifying in an instance of
communication the type which fills the ANY, and a pointer to its semantics. If the following rules for its use are folleard, it
provide a complete specification. Use of ANY without the DEFINED BY construct is deprecated.

L1.2 The "DEFINED BY" dternative shall be used only when the any type, or a type derived from it, is one of the
component types of a sequence type or set type (the containing type).

L.1.3 The "identifier" in the "DEFINED BY" alternative shall also appear in a "NamedType" that specifies another,
non-optional, component of the containing type. The "Type" in the "NamedType" shall be either derived from an integer
type, derived from an object identifier type, or derived from a choice of these types.

.14 When the "Type" in the "NamedType" is of type integer type, the document employing the "DEFINED BY"
notation shall contain, or explicitly reference, a single list which specifies the ASN.1 type to be carried by the ANY for
each permitted value of the integer type. There shall be precisely one such list covering all instances of communication
of the containing type.

I.1.5 When the "Type" in the "NamedType" is of the object identifier type, there is a need for registers which, for
each alocated object identifier value, associate a single ASN.1 type (which may be a CHOICE type) which is to be
carried by the ANY.

NOTES

1 There may be an arbitrary number of registers associating an object identifier value with an ASN.1 type for this
purpose.

2 Registration of values for open interconnection is expected to occur within Recommendations and ISO Standards
using the notation. Where a separate International Registration Authority is intended for any instance of "ANY DEFINEDG BY", thi
should be identified in the document using the notation.

3 The main difference between the integer and object identifier definers is that the use of integer references a single list,
contained in the using standard, whilst the use of object identifier allows an open-ended set of types determined byitgrabkuthor
to allocate object identifiers.

I.1.6 This type has an indeterminate tag, and shall not be used where this Recommendation | International Standard
requires distinct tags (see 22.5, 24.3, 26.2 and 26.4).

1.1.7 The notation for the value of an any type shall be defined using ASN.1, and is"AnyValue":
AnyValue ::= Type : Value

where "Type" is the notation for the chosen type, and "Value' isavalid notation for a value of thistype.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 81

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Annex J

The macro notation
(This annex does not form an integral part of this Recommendation | International Standard)

Thisannex isincluded as a historical reference, and the notation described by it no longer forms a part of ASN. 1.

J.1 Introduction

A mechanism is provided within ASN.1 for the user of ASN.1 to define a new notation with which he can then construct
and reference ASN.1 types or specify values of types. The new notation is defined using the notation "MacroDefinition".
A "MacroDefinition" simultaneously specifies a hew notation for constructing and referencing a type and also a new
notation for specifying avalue.

With a "MacroDefinition" the ASN.1 user specifies the new notation by means of a set of productions in a manner
similar to that of this Recommendation | International Standard. The writer of the macro definition:

a) gpecifies the complete syntax to be used for defining all types supported by the macro; (this syntax
specification is invoked for syntax analysis by any occurrence of the macro name in the ASN.1 type
notation); and

b) specifies the complete syntax to be used for a value of one of these types; (this syntax specification is
invoked for syntax analysis whenever avalue of the macro type is expected); and

c) specifies, asthe value of astandard ASN.1 type (of arbitrary complexity), the resulting type and value for
all instances of the macro value notation.

An instance of the syntax defined by the macro definition can contain instances of types or values (using the standard
ASN.1 notation). These types or values (appearing in the use of the macro notation) can be associated, for the duration
of the syntax analysis, with a local type reference or a local value reference by appropriate statements in the macro
definition. It is also possible to embed, within the macro definition, standard ASN.1 type assignments. These
assignments become active when the associated syntactic category is matched against an item or items in the instance of
the new notation being analysed. Their lifetimeislimited to that of the analysis.

When analysing a value in the new notation, assignments made during analysis of the corresponding type notation are
available. Such analysisis considered to logically precede analysis of every instance of the value notation.

The resulting type and value of an instance of use of the new value notation is determined by the value (and the type of
the value) finally assigned to the distinguished local value reference identified by the keyword item VALUE, according
to the processing of the macrodefinition for the new type notation followed by that for the new value notation.

Each "MacroDefinition" defines a notation (a syntax) for type definition and a notation (a syntax) for value definition.

The ASN.1 type which is defined by an instance of the new type notation may, but need not, depend on the instance of

the value notation with which the type is associated. To this extent, the use of the new type notation is similar to a

CHOICE - the tag is indeterminate. Thus the new notation cannot in this case be used in places where a known tag is
required, nor can it be implicitly tagged.

J.2 Extensions to the ASN.1 character set and items

The characters | and > are used in the macro notation.

The items specified in the following subclauses are also used.

J.2.1 Macroreference
Name of item — macroreference

A "macroreference" shall consist of the sequence of characters specified for a "typereference" in 9.2, except that all
characters shall be in upper-case. Within a single module, the same sequence of characters shall not be used for both
typereference and a macroreference.

J.2.2 Productionreference
Name of item — productionreference

A "productionreference" shall consist of the sequence of characters specified for a "typereference" in 9.2.

82 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

J.2.3 Localtypereference
Name of item — localtypereference

A ‘"localtypereference" shall consist of the sequence of characters specified for a "typereference" in 9.2. A
"localtypereference" is used as an identifier for types which are recognized during syntax analysis of an instance of the
new type or value notation.

J.2.4 Localvaluereference
Name of item — localvaluereference

A "localvaluereference" shall consist of the sequence of characters specified for a "typereference" in 9.2. A
"localvaluereference" is used as an identifier for values which are recognized during syntax analysis of an instance of the
new type or value notation.

NOTE - A "localvaluereference" starts with an upper-case letter.

J.2.5 Alternation item
Name of item —"|"

This item shall consist of the single character |.

J.2.6 Definition terminator item
Name of item — >

This item shall consist of the single character >.
NOTE - The item < for the start of definitions is defined in clause 9.15.

J.2.7 Syntactic terminal item
Name of item — astring

An "astring" shall consist of an arbitrary number (possibly zero) of characters from the ASN.1 character set (see
clause 8), surrounded by ". The character " shall be represented in an "astring" by a pair of ".

NOTE — Use of "astring" in the macro notation specifies the occurrence, at the corresponding point in the syntax being
analysed, of the characters enclosed in quotation marks ().

J.2.8 Syntactic category keyword items
Names of items —

"string"
"identifier"
"number"
"empty"

Items with the above names shall consist (in the macro notation) of the sequences of characters in the name, excluding
the quotation symbols (). These items are used in the macro notation to specify the occurrence, in an instance of the new
notation, of certain sequences of characters. The sequences in the new notation specified by each item are given in Table
J.1 by reference to a clause in this Recommendation | International Standard which defines the sequence of characters
appearing in the new notation.

NOTE — The macro notation does not support the distinction between identifiers and references based on the case of the
initial letter. This is for historical reasons.

Table J.1 — Sequence specified by items

Item name Defining clause
"string" Any sequence of characters
"identifier” 9.3 — Identifiers
"number"” 9.8 — Numbers
"empty"” 9.7 — Empty

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 83

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

J.2.9 Additional keyword items
Names of items —

MACRO
TYPE
NOTATION
VALUE
value

type
Items with the above names shall consist of the sequence of characters in the name.

The items specified in J.2.2 to J.2.4 inclusive shall not be one of the J.2.9 sequences, except when used as specifiec
below.

The keyword "MACRO" shall be used to introduce a macro definition. The keyword "TYPE NOTATION" shall be used

as the name of the production which defines the new type notation. The keyword "VALUE NOTATION" shall be used
as the name of the production which defines the new value notation. The keyword "VALUE" shall be used as the
"localvaluereference" to which the resulting value is assigned. The keyword "value" shall be used to specify that each
instance of the new notation contains at this point, using standard ASN.1 notation, some value of a type (specified in the
macro definition). The keyword "type" shall be used to specify that each instance of the new notation contains at this
point, using standard ASN.1 notation, some "Type".

J.3 Macro definition notation
J.3.1 A macro shall be defined using the notation "MacroDefinition™:

MacroDefinition ::=
macroreference
MACRO

Moozt

MacroSubstance

MacroSubstance ::=
BEGIN MacroBody END |
macroreference |
Externalmacroreference

MacroBody ::=
TypeProduction
ValueProduction
SupportingProductions

TypeProduction ::=
TYPE NOTATION

Moozt

MacroAlternativeList

ValueProduction ::=
VALUE NOTATION

Moozt

MacroAlternativeList

SupportingProductions ::=
ProductionList |
empty

ProductionList ::=
Production |
ProductionList Production

Production ::=
productionreference

Moot

MacroAlternativeList

Externalmacroreference ::=

modulereference "." macroreference

84 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

J.3.2

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

If the "macroreference” alternative of "MacroSubstance” is chosen, then the module containing the macro

definition shall either:

J.3.3

a) contain another macro definition defining that "macroreference”; or

b) contain the "macroreference” in its " Symbolslmported”.

If the "Externalmacroreference" aternative of "MacroSubstance” is chosen, then the module denoted by

"modulereference" shall contain a macro definition defining the "macroreference”. The associated definition is then also
associated with the "macroreference” being defined.

J.3.4

The chain of definitions which can arise from repeated applications of the rules of J.3.2 to J.3.3 shall terminate

with a"MacroDefinition" which usesthe "BEGIN MacroBody END" alternative.

J.3.5

Each "productionreference" which occurs in a "SymbolDefn" (see J.3.9) shall occur exactly once as the first

itemin a"Production".

J.3.6

Each instance of the new type notation shall commence with the sequence of characters in the

"macroreference”, followed by one of the sequences of characters referenced by "TYPE NOTATION" after applying the
productions specified in the macro definition.

J.3.7

Each instance of the new value notation shall consist of one of the sequences of characters referenced by

"VALUE NOTATION" after applying the productions specified in the macro definition.

J.3.8

The "MacroAlternativeList" in a production specifies the possible sets of character sequences referenced by

that production. It is specified by:

MacroAlternativeList ::=
MacroAlternative |
MacroAlternativeList "|" MacroAlternative

The set of character sequences referenced by the "MacroAlternativelist" consists of all the character sequences which
are referenced by any of the "MacroAlternative" productionsin the "MacroAlternativelist".

J.3.9

"Type".

The notation for a"MacroAlternative" shall be:
MacroAlternative ::= SymbolList

SymbolList ::=
SymbolElement |
SymbolList SymbolElement

SymbolElement ::=
SymbolDefn |
EmbeddedDefinitions

SymbolDefn ::=
astring
productionreference
""'string"'
"identifier"
"number"
"empty"
type |
type(localtypereference) |
value(MacroType) |
value(localvaluereference MacroType)
value(VALUE MacroType)

MacroType ::=
localtypereference |
Type
NOTE — When in a macro, any "MacroType" defined in that macro can appear at any point in which ASN.1 specifies a

A "MacroAlternative" references all character strings which are formed by taking any of the character strings referenced
by the first "SymbolDefn" in the "SymbolList", followed by anyone of the character strings referenced by the second
"SymbolDefn" in the "SymbolList", and so on, up to and including the last " SymbolDefn" in the "SymbolList".

NOTE — The "EmbeddedDefinitions" (if any) play no direct part in determining these strings.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 85

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

J.3.10 An"astring" references the sequence of charactersin the "astring” without the enclosing pair of ".
J.3.11 A "productionreference” references any sequence of characters specified by the "Production” it identifies.

J.3.12 The sequences of characters referenced by the next four aternatives for "SymbolDefn" are specified in
Table J.1.

NOTE — The sequences of characters referenced by the "string" should be terminated in an instance of the macro notation
by the appearance of a sequence referenced by the next "SymbolDefn" in the "SymbolList.”

J.3.13 A "type" references any sequence of symbolswhich formsa"Type" notation as specified in 14.1.

NOTE — The "ReferencedType" of 14.1 may in this case contain a "localtypereference" referencing a type defined in the
macro notation.

J.3.14 A "type(localtypereference)” references any sequence of symbols which forms a "Type" as specified in 14.1,
but in addition assigns that type to the "localtypereference”. A later assignment may occur to the same
"localtypereference’.

J3.15 A "vaue(MacroType)" references any sequence of symbols which forms a "Vaue" notation (as specified
in 14.7) for the type specified by "MacroType".

J.3.16 A "vaue(localvaluereference MacroType)" references any sequence of symbols which forms a "Value"
notation (as specified in 14.7) for the type specified by "MacroType", but in addition assigns the value specified by the
value notation to the "localvaluereference”. A later assignment may occur to the "localvaluereference”.

J.3.17 A "vaug(VALUE MacroType)" references any sequence of symbols which forms a "Vaue' notation (as
specified in 14.7) for the type specified by "MacroType", but in addition returns the value as the value specified by the
value notation. The type of the value returned is the type referenced by MacroType.

J.3.18 Precisely one assignment to VALUE (as specified in J.3.17 or in J.3.19) occurs in the analysis of any correct
instance of the new notation.

J.3.19 The notation for an "EmbeddedDefinitions" shall be:
EmbeddedDefinitions ::= "<" EmbeddedDefinitionList '">"

EmbeddedDefinitionList ::=
EmbeddedDefinition |
EmbeddedDefinitionList
EmbeddedDefinition

EmbeddedDefinition ::=
LocalTypeassignment |
LocalValueassignment

LocalTypeassignment ::=
localtypereference

Moozt

MacroType

LocalValueassignment ::=
localvaluereference
MacroType

Moozt

MacroValue

MacroValue ::=
Value |
localvaluereference

The assignment of a"MacroType" to a"localtypereference” (or of a"MacroValue" to a "localvaluereference") within an
"EmbeddedDefinitions" takes effect during the syntax analysis of an instance of the new notation at the time when the
"EmbeddedDefinitions' is encountered, and persists until redefinition of the "locatypereference” or
"localvaluereference” occurs.

86 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

NOTES

1 The use of the associated "localtypereference” or "localvauereference" elsewhere in the "Alternative' implies
assumptions on the nature of the parsing algorithm. Such assumptions should be indicated by comment. For example, use of the
"localtypereference” textually following the "EmbeddedDefinitions" implies aleft to right parse.

2 The "localvauereference" "VALUE" may be assigned a value either by the "value (VALUE MacroType)" construct
or by an "EmbeddedDefinition”. In both cases, the value is returned, as specified in J.3.17.

J.4 Use of the new notation

Whenever a"Type" (or "Vaue") notation is called for by this Recommendation | International Standard, an instance of
the type notation (or value notation) defined by a macro may be used, provided that the macro is either:

a) defined within the same module; or

b) imported into the module, by means of the appearance of the "macroreference” in the "' Symbolslmported"
of the module.

To alow the latter possibility, a"macroreference” can appear asa"Symbol" in 10.1.
NOTES

1 This extension to the standard ASN.1 notation is not shown in the body of this Recommendation | International
Standard.

2 ltispossible to construct modules including sequences of type assignment and macro definitions which make parsing
of the value syntax in DEFAULT values arbitrarily complex.

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 87

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Annex K

Summary of the ASN.1 notation
(This annex does not form an integral part of this Recommendation | International Standard)

The following items are defined in clause 9:

typereference BEGIN | SO646String
identifier BIT MAX
valuereference BMPString MIN

modul ereference BOOLEAN MINUS-INFINITY
comment BY NULL

empty CHARACTER NumericString
number CHOICE OBJECT
bstring CLASS ObjectDescriptor
hstring COMPONENT OCTET

cstring COMPONENTS OF

o=t CONSTRAINED OPTIONAL
" DEFAULT PDV

"L DEFINITIONS PLUS-INFINITY
" EMBEDDED PRESENT

" END PrintableString
"<t ENUMERATED PRIVATE
EXCEPT REAL
EXPLICIT SEQUENCE
(" EXPORTS SET

" EXTERNAL SIZE

"I FALSE STRING

"1 FROM SYNTAX
GeneralizedTime T61String
General String TAGS
GraphicString TeletexString
"@" IA5String TRUE

"l TYPE-IDENTIFIER UNION

" IDENTIFIER UNIQUE

A IMPLICIT UNIVERSAL
ABSENT IMPORTS UniversalString
ABSTRACT-SYNTAX INCLUDES UTCTime
ALL INSTANCE VideotexString
APPLICATION INTEGER VisibleString
AUTOMATIC INTERSECTION WITH

88 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version

ISO/TEC 8824-1:1995 (E)

The following productions are used in this Recommendation | International Standard, with the above items as terminal

symbols:

ModuleDefinition ::= Moduleldentifier
DEFINITIONS
TagDefault

Moozt

BEGIN
ModuleBody
END

Moduleldentifier ::= modulereference
Definitiveldentifier

Definitiveldentifier ::="{" DefinitiveObjldComponentList "'}" |
empty

DefinitiveObjldComponentList ::=
DefinitiveObjldComponent |
DefinitiveObjldComponent DefinitiveObjldComponentList

DefinitiveObjldComponent ::=
NameForm |
DefinitiveNumberForm |
DefinitiveNameAndNumberForm

DefinitiveNumberForm ::= number
DefinitiveNameAndNumberForm ::= identifier " (" DefinitiveNumberForm)"

TagDefault ::= EXPLICIT TAGS |
IMPLICIT TAGS |
AUTOMATIC TAGS |

empty

ModuleBody ::= Exports Imports AssignmentList |
empty

Exports ::= EXPORTS SymbolsExported ";" |
empty
SymbolsExported ::= SymbolList |
empty
Imports ::= IMPORTS SymbolsImported ";" |
empty

SymbolsImported ::= SymbolsFromModuleList |
empty

SymbolsFromModuleList ::=
SymbolsFromModule |
SymbolsFromModuleList SymbolsFromModule

SymbolsFromModule ::= SymbolList FROM GlobalModuleReference
GlobalModuleReference ::= modulereference Assignedldentifier

Assignedldentifier ::= ObjectldentifierValue |
DefinedValue |
empty

SymbolList ::=Symbol | Symbol "," SymbolList
Symbol ::=Reference | ParameterizedReference

Reference ::=
typereference |
valuereference |
objectclassreference
objectreference |
objectsetreference

AssignmentList ::= Assignment | AssignmentList Assignment

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 89

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Assignment ::=
TypeAssignment |
ValueAssignment |
ValueSetTypeAssignment |
ObjectClassAssignment |
ObjectAssignment |
ObjectSetAssignment |
Parameterized Assignment

Externaltypereference ::=
modulereference

"nmn

typereference

Externalvaluereference ::=
modulereference

valuereference

DefinedType ::=
Externaltypereference |
typereference |
ParameterizedType |
ParameterizedValueSetType

DefinedValue ::=
Externalvaluereference |
valuereference |
ParameterizedValue

AbsoluteReference ::= "@" GlobalModuleReference
"an
ItemSpec
ItemSpec ::=
typereference |
Itemld "." Componentld

Itemld ::= ItemSpec

Componentld ::=
identifier | number | "*"
TypeAssignment ::= typereference
Teozt
Type
ValueAssignment ::= valuereference
Type
Moot
Value
ValueSetTypeAssignment ::= typereference
Type
Moot
ValueSet

ValueSet ::="{" ElementSetSpec "}"
Type ::= BuiltinType | ReferencedType | ConstrainedType

BuiltinType ::=
BitStringType |
BooleanType |
CharacterStringType |
ChoiceType |
EmbeddedPDVType |
EnumeratedType |
ExternalType |
InstanceOfType |
IntegerType |
NullType |

90 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version

ObjectClassFieldType |
ObjectldentifierType |
OctetStringType |
RealType |
SequenceType |
SequenceOfType |
SetType |

SetOfType |
TaggedType

NamedType ::= identifier Type | SelectionType

ReferencedType ::=
DefinedType |
UsefulType |
SelectionType |
TypeFromObject |
ValueSetFromObjects

Value ::= BuiltinValue | ReferencedValue

BuiltinValue ::=
BitStringValue |
BooleanValue |
CharacterStringValue |
ChoiceValue |
EmbeddedPDVValue |
EnumeratedValue |
ExternalValue |
InstanceOfValue |
IntegerValue |
NullValue |
ObjectClassFieldValue |
ObjectldentifierValue |
OctetStringValue |
RealValue |
SequenceValue |
SequenceOfValue |
SetValue |
SetOfValue |
TaggedValue

ReferencedValue ::=
DefinedValue |
ValueFromObject

NamedValue ::= identifier Value
BooleanType ::= BOOLEAN
BooleanValue::= TRUE | FALSE

IntegerType ::=

INTEGER |

INTEGER "{" NamedNumberList "}"
NamedNumberList ::=

NamedNumber |

NamedNumberList ","" NamedNumber
NamedNumber ::=

identifier " (" SignedNumber ")"

identifier " ("' DefinedValue ")"
SignedNumber ::= number | "-"" number
IntegerValue ::= SignedNumber | identifier
EnumeratedType ::=

ENUMERATED "{" Enumeration "}"

Enumeration ::=

Enumerationltem | Enumerationltem "," Enumeration

ITU-T Rec. X.680 (1994 E)

Superseded by a more recent version

ISO/TEC 8824-1:1995 (E)

91

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

Enumerationltem ::=
identifier | NamedNumber

EnumeratedValue ::=
identifier

RealType ::= REAL

RealValue ::=
NumericRealValue | SpecialRealValue

NumericRealValue ::=0 |
SequenceValue -- Value of the associated sequence type

SpecialRealValue ::=
PLUS-INFINITY | MINUS-INFINITY
BitStringType ::= BIT STRING | BIT STRING "{" NamedBitList '"}"
NamedBitList::= NamedBit | NamedBitList "," NamedBit
NamedBit ::= identifier " (" number ")" |

identifier " (" DefinedValue ")"

BitStringValue ::= bstring | hstring | ""{"" IdentifierList "'}" | "{" "}"
IdentifierList ::= identifier | IdentifierList "," identifier
OctetStringType ::= OCTET STRING
OctetStringValue ::= bstring | hstring
NullType ::= NULL
NullValue ::= NULL
SequenceType ::= SEQUENCE "{" ComponentTypeList "}" |
SEQUENCE H{" H}"
ComponentTypeList ::= ComponentType |
ComponentTypeList ""," ComponentType
ComponentType ::= NamedType |
NamedType OPTIONAL |
NamedType DEFAULT Value |
COMPONENTS OF Type
SequenceValue ::= "{" ComponentValueList "}" | "{" "}"
ComponentValueList ::= NamedValue |

ComponentValueList "," NamedValue
SequenceOfType ::= SEQUENCE OF Type
SequenceOfValue ::= "{" ValueList "}" | "{" "}"
ValueList ::=Value | ValueList "," Value
SetType ::= SET "{" ComponentTypeList "}" | SET "{" "}"
SetValue ::="{" ComponentValueList "}" | "{" "}"
SetOfType ::= SET OF Type
SetOfValue ::="{" ValueList "}" | "{" "}"

ChoiceType ::= CHOICE "{" AlternativeTypeList "}"

AlternativeTypeList ::= NamedType |
AlternativeTypeList "," NamedType
ChoiceValue ::= identifier '":" Value
SelectionType ::= identifier "<" Type
TaggedType ::= Tag Type |
Tag IMPLICIT Type |
Tag EXPLICIT Type

92 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version ISO/IEC 8824-1 : 1995 (E)

Tag u= "[" Class ClassNumber "]"
ClassNumber ::= number | DefinedValue

Class ::= UNIVERSAL |
APPLICATION |
PRIVATE |
empty

TaggedValue ::=Value

EmbeddedPDVType ::= EMBEDDED PDV
EmbeddedPDVValue ::= SequenceValue
ExternalType ::= EXTERNAL

ExternalValue ::= SequenceValue
ObjectldentifierType ::= OBJECT IDENTIFIER

ObjectldentifierValue ::= "{'" ObjldComponentList "'}" |
"{" DefinedValue ObjldComponentList "}"

ObjldComponentList ::= ObjldComponent |
ObjldComponent ObjldComponentList

ObjldComponent ::= NameForm |
NumberForm |
NameAndNumberForm

NameForm ::= identifier
NumberForm ::= number | DefinedValue
NameAndNumberForm ::= identifier " ("' NumberForm ")"

CharacterStringType ::= RestrictedCharacterStringType | UnrestrictedCharacterStringType
RestrictedCharacterStringType ::= BMPString |

GeneralString |
GraphicString |
IASString [
ISO646String |
NumericString |
PrintableString |
TeletexString |
T61String |
UniversalString |
VideotexString |
VisibleString

RestrictedCharacterStringValue ::= cstring | CharacterStringList | Quadruple | Tuple

CharacterStringList ::= "{" CharSyms "}"
CharSyms ::= CharsDefn | CharSyms "," CharsDefn
CharsDefn ::= cstring | DefinedValue

Quadruple 2="{" Group ",” Plane ","” Row "," Cell "}"
Group ::= number
Plane ::= number
Row ::= number
Cell ::= number

Tuple ::="{" TableColumn "," TableRow "}"
TableColumn ::= number
TableRow ::= number

UnrestrictedCharacterStringType ::= CHARACTER STRING
CharacterStringValue ::= RestrictedCharacterStringValue | UnrestrictedCharacterStringValue
UnrestrictedCharacterStringValue ::= SequenceValue

UsefulType ::=typereference

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

93

Superseded by a more recent version ISO/IEC 8824-1: 1995 (E)

The following character string types are defined in 34.1:
NumericString VisibleString
PrintableString 1SO646String
TeletexString IASString
T61String GraphicString
VideotexString GeneralString
UniversalString BMPString

The following useful types are defined in clauses 39-41:
GeneralizedTime
UTCTime
ObjectDescriptor

The following productions are used in clauses 42-45:

ConstrainedType ::=
Type Constraint |
TypeWithConstraint

TypeWithConstraint ::=
SET Constraint OF Type |
SET SizeConstraint OF Type |
SEQUENCE Constraint OF Type |
SEQUENCE SizeConstraint OF Type

Constraint ::= "(" ConstraintSpec ExceptionSpec ')"

ConstraintSpec ::=
SubtypeConstraint |
GeneralConstraint

ExceptionSpec ::=""!" Exceptionldentification | empty

Exceptionldentification ::= SignedNumber |
DefinedValue |
Type ":" Value

SubtypeConstraint ::= ElementSetSpec
ElementSetSpec ::= Unions | ALL. Exclusions

Unions ::= Intersections |
UElems UnionMark Intersections

UElems ::= Unions

Intersections ::= IntersectionElements |
1Elems IntersectionMark IntersectionElements

IElems ::= Intersections
IntersectionElements ::= Elements | Elems Exclusions
Elems ::= Elements

Exclusions ::= EXCEPT Elements

UnionMark ::= "|" | UNION
IntersectionMark ::= "~" | INTERSECTION
Elements ::=

SubtypeElements |

ObjectSetElements |

"(" ElementSetSpec ')"

94 ITU-T Rec. X.680 (1994 E) Superseded by a more recent version

Superseded by a more recent version

SubtypeElements ::=
SingleValue |
ContainedSubtype |
ValueRange |
PermittedAlphabet |
SizeConstraint |
TypeConstraint |

InnerTypeConstraints

SingleValue ::= Value

ContainedSubtype ::= Includes Type

Includes ::= INCLUDES | empty

ValueRange ::= LowerEndpoint ".." UpperEndpoint
LowerEndpoint ::= LowerEndValue | LowerEndValue "<"
UpperEndpoint ::= UpperEndValue | "<" UpperEndValue
LowerEndValue ::= Value | MIN

UpperEndValue ::= Value | MAX

SizeConstraint ::= SIZE Constraint

PermittedAlphabet ::= FROM Constraint

TypeConstraint ::= Type

InnerTypeConstraints ::=
WITH COMPONENT SingleTypeConstraint |
WITH COMPONENTS MultipleTypeConstraints

SingleTypeConstraint::= Constraint

MultipleTypeConstraints ::= FullSpecification | PartialSpecification

FullSpecification ::='"{" TypeConstraints "}"
PartialSpecification ::="{" ".." ", TypeConstraints '}"
TypeConstraints ::=

NamedConstraint |

NamedConstraint "," TypeConstraints

NamedConstraint ::=
identifier ComponentConstraint

ComponentConstraint ::= ValueConstraint PresenceConstraint
ValueConstraint ::= Constraint | empty

PresenceConstraint ::= PRESENT | ABSENT | OPTIONAL | empty

ISO/TEC 8824-1:1995 (E)

ITU-T Rec. X.680 (1994 E) Superseded by a more recent version 95

